Document Document Title
US10162773B1 Double data rate (DDR) memory read latency reduction
A system for memory management includes an incoming memory data strobe connecting a memory data interface, and a clock distribution network. The clock distribution network includes an internal clock aligned to the incoming memory data strobe. The system also includes an asynchronous clock domain that is asynchronous with the clock distribution network; and a strobe select circuit configured to align to the incoming memory data strobe. The clock distribution network is configured to propagate read data with reduced latency from the memory data interface to a second interface.
US10162767B2 Virtualized trusted storage
Particular embodiments described herein provide for an electronic device that can be configured to receive a request from a process to access data is a system, determine if the data is in a virtualized protected area of memory in the system, and allow access to the data if the data is in the virtualized protected area of memory and the process is a trusted process. The electronic device can also be configured to determine if new data should be protected, store the new data in the virtualized protected area of memory in the system if the new data should be protected, and store the new data in an unprotected area of memory in the system if the new data should not be protected.
US10162766B2 Deleting records in a multi-level storage architecture without record locks
The multi-level storage system and method of deleting first level storage structure pages or records without record locks. The method includes determining whether a record to be deleted from the first level storage structure has any uncommitted write operation, and if the record has an uncommitted write operation, the record is kept in the first level storage structure. Record-moved version information is added to the record to designate the record being moved from the first level storage structure to the second level storage structure. Data change operations are executed for the record based on the record-moved version information without waiting until the record's movement from the first level storage structure to the second level storage structure finishes.
US10162765B2 Routing direct memory access requests in a virtualized computing environment
A device may receive a direct memory access request that identifies a virtual address. The device may determine whether the virtual address is within a particular range of virtual addresses. The device may selectively perform a first action or a second action based on determining whether the virtual address is within the particular range of virtual addresses. The first action may include causing a first address translation algorithm to be performed to translate the virtual address to a physical address associated with a memory device when the virtual address is not within the particular range of virtual addresses. The second action may include causing a second address translation algorithm to be performed to translate the virtual address to the physical address when the virtual address is within the particular range of virtual addresses. The second address translation algorithm may be different from the first address translation algorithm.
US10162764B2 Marking page table/page status table entries to indicate memory used to back address translation structures
A marking capability is used to provide an indication of whether a block of memory is backing an address translation structure of a control program being managed by a virtual machine manager. By providing the marking, the virtual machine manager may check the indication prior to making paging decisions. With this information, a hint may be provided to the hardware to be used in decisions relating to purging associated address translation structures, such as translation look-aside buffer (TLB) entries.
US10162760B2 Hibernation based on page source
In some examples, a computing device includes a non-volatile memory, a volatile memory to store a page that is also stored in the non-volatile memory. As part of a hibernation process of the computing device, it is determined whether the page is sourced from a first type of non-volatile memory or a second type of non-volatile memory different from the first type of non-volatile memory. In response to determining that the page is sourced from the first type of non-volatile memory, cause storage of the page to the non-volatile memory, and in response to determining that the page is sourced from the second type of non-volatile memory, decline to store the page to the non-volatile memory.
US10162759B2 Methods for caching and reading data to be programmed into a storage unit and apparatuses using the same
The invention introduces a method for caching and reading data to be programmed into a storage unit, performed by a processing unit, including at least the following steps. A write command for programming at least a data page into a first address is received from a master device via an access interface. It is determined whether a block of data to be programmed has been collected, where the block contains a specified number of pages. The data page is stored in a DRAM (Dynamic Random Access Memory) and cache information is updated to indicate that the data page has not been programmed into the storage unit, and to also indicate the location of the DRAM caching the data page when the block of data to be programmed has not been collected.
US10162758B2 Opportunistic increase of ways in memory-side cache
A processor includes a processor core and a cache controller coupled to the processor core. The cache controller is to allocate, for a memory, a plurality of cache entries in a cache, wherein the processor core is to: detect an amount of the memory installed in a computing system and, responsive to detecting less than a maximum allowable amount of the memory for the computing system, direct the cache controller to increase a number of ways of the cache in which to allocate the plurality of cache entries.
US10162754B2 Lateral cast out of cache memory
An aspect includes a method of lateral cast out in a cache memory system. The method includes configuring one or more cache memories of the cache memory system as lateral cast out receiving cache memories. A stress test mode of the cache memory system is enabled. One or more cache lines of a lateral cast out source cache memory of the cache memory system are cast out. At least one of the one or more cache lines from the lateral cast out source cache memory is accepted into at least one of the lateral cast out receiving cache memories based on the stress test mode being enabled.
US10162752B2 Data storage at contiguous memory addresses
A method for storing data at contiguous memory addresses includes, at a single-instruction-multiple-data (SIMD) processor, executing a parallel-prefix valid count instruction to determine a first offset of a first data vector and to determine a second offset of a second data vector that includes valid data and invalid data. The second offset is based on the first offset and a number of positions in the first data vector that are associated with valid data. The method also includes storing first valid data from the first data vector at a first memory address of a memory and storing second valid data from the second data vector at a particular memory address of the memory. The first memory address is based on the first offset and the particular memory address is based on the second offset.
US10162751B2 Nested wrap-around memory access with fixed offset
A nested wrap-around technology includes an address counter and associated logic for generating addresses to perform a nested wrap-around access operation. The nested wrap-around access operation may be a read or a write operation. A wrap-around section length and a wrap-around count define a wrap-around block. A wrap starting address, initially set to a supplied start address, is offset from a lower boundary of a wrap-around section. Access starts at a wrap starting address and proceeds in a wrap-around manner within a wrap-around section. After access of the address immediately preceding the wrap starting address, the wrap starting address is incremented by the wrap-around section length, or, if the wrap-around section is the last one in the wrap-around block, the wrap starting address is set to the lower boundary of the wrap-around block plus the offset. Access continues until a termination event.
US10162747B2 Data writing method, memory control circuit unit and memory storage apparatus
A data writing method for a rewritable non-volatile memory module is provided. The method includes: compressing data to generate first data; determining whether a data length of the first data meets a predetermined condition. The method also includes: if the data length of the first data meets the predetermined condition, writing the first data into a first physical erasing unit among a plurality of physical erasing units; if the data length of the first data does not meet the predetermined condition, generating dummy data according to a predetermined rule, padding the first data with the dummy data to generate second data and writing the second data into the first physical erasing unit. A data length of the second data meets the predetermined condition.
US10162743B2 Prefetch insensitive transactional memory
Prevention of a prefetch memory operation from causing a transaction to abort. A local processor receives a prefetch request from a remote processor. Prior to execution of the prefetch request, a processor determines whether the prefetch request conflicts with a transaction of the local processor. A processor responds to a determination that the priority of the prefetch request is greater than priority of the transaction, by (i) aborting the transaction (ii) executing the prefetch request, and (iii) providing requested prefetch data to the remote processor.
US10162734B1 Method and system for crowdsourcing software quality testing and error detection in a tax return preparation system
Disclosed methods and systems crowdsource quality assurance testing and error detection for user experience pages of a tax return preparation system, according to one embodiment. Testing and debugging combinations and sequences user experience pages can be time consuming and costly, and crowdsourcing error detection can reduce the length of time typically consumed in detecting all errors in a user experience flow, according to one embodiment. The methods and system include monitoring users' navigation behavior (e.g., system access data) within one or more user experience pages, using predictive models to detect when users are experiencing a potential issue, and providing issue resolution content to both help the users and characterize the potential issue, according to one embodiment. If the potential issue is an error, the methods and systems include requesting more information about the error, to facilitate resolving the error for current and subsequent users, according to one embodiment.
US10162732B2 Managing logger source code segments
A computer-implemented method includes identifying a primary code segment, determining a confidence score associated with said primary code segment, and determining whether the confidence score exceeds a confidence threshold. The computer-implemented method further includes responsive to the confidence score exceeding the confidence threshold, determining a logger code segment associated with the primary code segment. A corresponding computer program product and computer system are also disclosed.
US10162730B2 System and method for debugging software in an information handling system
A method of debugging software code in an information handling system (IHS) is disclosed. The method includes establishing communications between a debug computer and a target computer and triggering the target computer to collect and transmit a plurality of symptom and root cause (SARC) values associated with the software code. The SARC values are compared to SARC reference values associated with the software code. The method further includes determining if the SARC values meet the requirements of the SARC reference values. In response to the SARC values not meeting the requirements of the SARC reference values, at least one process associated with the SARC values that do not meet the requirements of the SARC reference values is identified. Process data corresponding to the at least one process is collected and a SARC diagnosis report is generated for the software code based on the process data.
US10162728B2 Method and device for monitoring the execution of a program code
A method for monitoring the execution of a program code by a monitoring program code may include storing instructions of the program code and instructions for monitoring the program code in the same program memory. Each instruction to be monitored and the associated monitoring instructions may be simultaneously extracted from the program memory, and the instruction to be monitored and the monitoring instructions may be executed.
US10162725B1 System, method, and computer program for providing feedback indicating an impact of user directives on a software system
A system, method, and computer program product are provided for providing feedback indicating an impact of user directives on a software system. In use, user input associated with a software system is received. Additionally, an impact of the user input on the software system is determined. Further, feedback is provided indicating the impact of the user input on the software system.
US10162715B1 Cloning and recovery of data volumes
Aspects of a data environment, such as the cloning, hibernation, and recovery of databases, are managed using a separate control environment. A monitoring component of the control environment can periodically communicate with the data environment to determine any necessary actions to be performed, such as to recover from faults or events for a data instance in the data environment. A workflow can be instantiated that includes tasks necessary to perform actions such as recovery, hibernation, resumption from hibernation, or backup or cloning. Tasks of the workflow can cause certain jobs to be performed by host managers in the data environment to affect calls made to the control environment.
US10162714B2 Methods and systems for restoring data containers in a storage system
Methods and systems for recovering data containers is provided. One method includes creating a first set of one or more incremental backups for a data container; associating by a processor the first set of one or more incremental backups with the first full backup of the data container; presenting the association of the first set of one or more incremental backups with the first full backup; and restoring the data container within a recovery time period associated with the data container.
US10162712B2 System and method for extended media retention
The present invention provides systems and methods for extending media retention. Methods are provided in which a set of aging preferences are obtained. Data elements of a data set stored on storage media are evaluated against the aging preferences to determine whether each of the data elements satisfy the aging preferences. Each of the data elements that is determined to satisfy the aging preferences is aged. Aging can include freeing a portion of storage media, previously used to store a data element, for other storage usage.
US10162709B1 Incremental backups for removable media
Techniques for storing incremental backups in long-term storage are described herein. A backup data set is generated from a set of data to backup and a deletion time for that backup data set is determined. A scheduled time period to perform the backup is selected based at least in part on a requested time period to perform the backup. The requested time period is altered if the performing the backup at the requested time period would produce a period of high resource contention at the destination for the backup. The backup is then stored at the destination at the scheduled time.
US10162708B2 Fault tolerance for complex distributed computing operations
A method for enabling a distributed computing system to tolerate system faults during the execution of a client process. The method includes instantiating an execution environment relating to the client process; executing instructions within the execution environment, the instructions causing the execution environment to issue further instructions to the distributing computing system, the further instructions relating to actions to be performed with respect to data stored on the distributed computing system. An object interface proxy receives the further instructions and monitors the received to determine if the execution environment is in a desired save-state condition; and, if so, save a current state of the execution environment in a data store.
US10162702B2 Segmented error coding for block-based memory
In one embodiment, memory circuitry includes an error-correction code (ECC) encoder, memory, and an ECC decoder. The ECC encoder performs encoding, based on an ECC algorithm having an algorithm size, on an algorithm-size segment of input user data to generate a corresponding subset of parity data for the segment of input user data. The memory has input user data and corresponding parity data written based on a write data size and stored user data and corresponding stored parity data read based on a read data size. The ECC decoder performs decoding, based on the ECC algorithm, on an algorithm-size segment of retrieved user data and a corresponding subset of retrieved parity data, wherein the algorithm size is smaller than the write data size or the read data size. The memory circuitry enables conventional SEC-DED algorithms to be used when the write and read data sizes are different.
US10162700B2 Workload-adaptive data packing algorithm
A method, according to one embodiment, includes selecting, from a buffer, a combination of compressed logical pages of data to maximize an amount of used space in an error correction code container. The method also preferably includes processing the combination of compressed logical pages to generate error correction code data. Furthermore, the method may include writing the data corresponding to the combination of compressed logical pages and the associated error correction code data to a non-volatile random access memory. Other systems, methods, and computer program products are described in additional embodiments.
US10162699B2 Artificial intelligence for resolution and notification of a fault detected by information technology fault monitoring
A resolution and notification server and computer-implemented techniques implemented on the same are disclosed for providing automated resolution and notification of a fault detected about a device monitored by an information technology (IT) fault monitoring server.
US10162697B2 Building a failure-predictive model from message sequences
A method to build a failure predictive model includes: receiving an input of a set of event sequences, where each sequence is labeled as representing a failure or not representing a failure, extracting a single predictive closed pattern from among the input sequences that represents a failure, creating a root node with the single closed pattern, splitting the set of event sequences into a first set that includes the single closed pattern and a second set that excludes the single pattern, and processing each of the first and second sets until at least one child node is created that is labeled as either representing a failure or not representing a failure.
US10162694B2 Hardware apparatuses and methods for memory corruption detection
Methods and apparatuses relating to memory corruption detection are described. In one embodiment, a hardware processor includes an execution unit to execute an instruction to request access to a block of a memory through a pointer to the block of the memory, and a memory management unit to allow access to the block of the memory when a memory corruption detection value in the pointer is validated with a memory corruption detection value in the memory for the block, wherein a position of the memory corruption detection value in the pointer is selectable between a first location and a second, different location.
US10162689B2 Adaptive volume control
The disclosed embodiments relate to regulation of receipt, rate or volume, and processing of messages, such as order, mass quote or other trade related messages by available trading system resources to minimize congestion, maximize efficient use, minimize unfair monopolization and ensure fair access to/allocation thereof. The disclosed embodiments may act as a governor limiting the maximum rate of message submission to the rate at which the submitted messages can be processed. In particular, the number of concurrent, i.e. received/accepted but not yet completed/processed/responded to, messages may be limited. As long as the limit is not exceeded, i.e. the rate of completion/processing meets or exceeds the receipt rate, no interruption may be imposed. However, once the limit is reached, subsequently received messages may be buffered or otherwise dropped. In this way, the limit may define the extent to which incoming messages may consume the concurrent processing capacity, or allocated portion thereof.
US10162687B2 Selective migration of workloads between heterogeneous compute elements based on evaluation of migration performance benefit and available energy and thermal budgets
A processor of an aspect includes at least one lower processing capability and lower power consumption physical compute element and at least one higher processing capability and higher power consumption physical compute element. Migration performance benefit evaluation logic is to evaluate a performance benefit of a migration of a workload from the at least one lower processing capability compute element to the at least one higher processing capability compute element, and to determine whether or not to allow the migration based on the evaluated performance benefit. Available energy and thermal budget evaluation logic is to evaluate available energy and thermal budgets and to determine to allow the migration if the migration fits within the available energy and thermal budgets. Workload migration logic is to perform the migration when allowed by both the migration performance benefit evaluation logic and the available energy and thermal budget evaluation logic.
US10162683B2 Weighted stealing of resources
In a computer system with multiple job queues and limited resources, an initial allocation of resources is given to each job queue. The utilization of these initially allocated resources is monitored, and queues with excess resources may have those resources stolen and temporarily redistributed to queues with unmet resource needs.
US10162680B2 Control of data exchange between a primary core and a secondary core using a freeze process flag and a data frozen flag in real-time
A method of exchanging data in a real-time operating system, between a primary core and a secondary core in a multi-core processor, includes executing a primary path via the primary core and executing a secondary path via the secondary core. The primary path is configured to be a relatively faster processing task and the secondary path is configured to be a relatively slower processing task. The method includes devising a freeze in process flag to have a respective flag status set and cleared by the primary path. The method includes devising a data frozen flag to have a respective flag status set and cleared by both the primary and the secondary paths. A component that is operatively connected to the multi-core processor may be controlled based at least partially on a difference between primary and secondary sets of calculations executed by the primary and secondary cores, respectively.
US10162677B2 Data storage resource allocation list updating for data storage operations
A system and method to perform data management operations in a data management system assigns the data management request to one or more available data management resources. If the data management request fails, at least one data management resource at least partially responsible for the failure is determined, as is a category associated with the one data management resource at least partially responsible for the failure. Other data management requests are identified in a list of data management requests that request data management resources having the same category and the list of data management requests is updated to indicate that the data management system should not perform the other identified data management requests.
US10162670B2 Composite virtual machine template for virtualized computing environment
Composite virtual machine templates may be used in the deployment of virtual machines into virtualized computing environments. A composite virtual machine template may define a plurality of deployment attributes for use in a virtual machine deployment, and at least some of these deployment attributes may be determined through references to other virtual machine templates and included in the composite virtual machine template.
US10162667B2 Multi-virtual-machine snapshot using guest hypervisor
A process of obtaining, in effect, a multi-virtual-machine snapshot by taking a single-virtual-machine snapshot begins with creating, by a host hypervisor, a host virtual machine and a guest hypervisor. The guest hypervisor executes on the host virtual machine. Virtual machines to be included together in an effective multi-virtual-machine snapshot are migrated to the guest hypervisor. A single-virtual-machine snapshot is taken, by the host hypervisor, of the host virtual machine. The snapshot contains the state data for the virtual machines migrated to the guest hypervisor.
US10162666B2 Apparatus, systems and methods for cross-cloud software migration and deployment
Embodiments disclosed facilitate obtaining a cloud agnostic representation of a first Virtual Machine Image (VMI) on a first cloud; and obtaining a second VMI for a second cloud different from the first cloud, wherein the second VMI is obtained based, at least in part, on the cloud agnostic representation of the first VMI.
US10162657B2 Device and method for address translation setting in nested virtualization environment
An information processing device includes a processor that executes a process. The process includes: identifying a cause of a shift from non-privileged mode to privileged mode that has occurred in processing by a guest program in an upper level virtual machine in a nested virtualization environment in which a first level virtual machine monitor operates in privileged mode, and an upper level virtual machine monitor and the guest program operate in non-privileged mode; and when the identified cause is setting or updating a virtual translation table employed in a virtual translation mechanism provided to the guest program by virtualizing an address translation mechanism for hardware that uses a set translation table to translate addresses of DMA by an input/output device assigned to the upper level virtual machine, setting the translation table employed by the translation mechanism based on a correspondence relationship between guest memory space and host memory space.
US10162656B2 Minimizing guest operating system licensing costs in a processor based licensing model in a virtual datacenter
Techniques for optimizing guest operating system (OS) utilization cost in a processor based licensing model in a virtual datacenter are described. In one example embodiment, a virtual machine (VM) that has or is scheduled to have an instance of an operating system (OS) that requires a license is identified. Availability of a physical processor of a first host computing system that is licensed to execute the OS based on the computing resource requirements of the VM, the physical processor based license, author assigned affinity to physical processors in the first host computing system is determined. The VM is then migrated/placed to/on the physical processor of the first host computing system or migrated/placed to/on a physical processor of a second host computing system based on the outcome of the determination.
US10162651B1 Systems and methods for providing gaze-based notifications
A computer system may track the user's eye gaze on a display device over time using an eye tracker. When the computer system detects a risk associated with a graphical object and determines that the user's gaze is close to the graphical object, it may display a warning message indicating the risk. The computer system may display the warning message at a location that corresponds to the graphical object associated with the risk. Furthermore, when the computer system detects a risk and determines that the user's gaze is not at the graphical object that needs the user's immediate attention, it may display a warning message near the user's current gaze to notify the user. If desired, the warning message may be hidden based on the user's gaze, such as when the user moves his gaze away from the detected risk.
US10162650B2 Maintaining deployment pipelines for a production computing service using live pipeline templates
Techniques are presented for managing a deployment pipeline using an inheritable and extensible source code template—generally referred to as a live pipeline template (LPT). As described, live pipeline templates may be used to manage deployment pipelines which, in turn, are used to launch, maintain, and update the services and systems used to host and provide computing services.
US10162649B2 Information processing system, information processing apparatus and start up control method
An information processing system includes an operation part that receives an operation performed by a user; and a body part that operates based on a request from the operation part. The operation part includes a power control part that, when receiving a power turning off instruction from the body part, reboots the operation part and causes the operation part to stand by in a power saving state in which some of operations are stopped, and, when receiving a start up notification from the body part, causes the operation part to return from the power saving state.
US10162648B2 Methods for dynamically selecting a booting operating system and apparatuses using the same
The invention introduces a method for dynamically selecting a booting OS (Operating System), executed by a micro-controller of an apparatus, which contains at least the following steps. The micro-controller detects a selection signal output from a selection unit, and determines which one of two ROMs (Read-Only Memories) is to be activated accordingly. After a CS (Chip Select) signal of the determined ROM is asserted, a firmware stored in the determined ROM is loaded and executed, and an OS corresponding to the firmware, which is stored in a storage device, is loaded and executed.
US10162646B2 System for programmably configuring a motherboard
A system includes a programmable non-volatile memory, a switch, a control chipset, and a basic input/output (BIOS) module. The switch has a first terminal coupled to the programmable non-volatile memory, and a second terminal coupled to the control chipset. The control chipset is configured to store a SKU parameter set in the programmable non-volatile memory according to a predetermined memory allocation. The BIOS module is coupled to the control chipset, and is configured to load and update the SKU parameter set according to the predetermined memory configuration during a booting operation of the motherboard.
US10162645B2 Selecting a virtual basic input output system based on information about a software stack
A virtual basic input output system can be selected from different virtual basic input output systems. The selection of the virtual basic input output system is by a controller and the selection can be based on information about a software stack.
US10162643B2 Method and system for booting automotive electronics in an electronic control unit of an automobile
Disclosed is a method and system for achieving faster booting of automotive electronics in ECU of an automobile in terms of early availability of vehicle communication. The method comprises implementing an Open Systems and their interfaces for Electronics in motor vehicles (OSEK) based Controller Area Network (CAN) stack in each of booting phases of the ECU, wherein the CAN stack is stored in a memory mapped region of the ECU. The method comprises creating a data structure storing information pertaining to at least runtime information, state information, message buffers, and diagnostic session state, wherein the data structure is stored in the memory mapped region. The information stored in the data structure is used for executing one or more instructions of the OSEK based CAN stack for booting the automotive electronics in the ECU, wherein the one or more instructions are executed across each of the booting phases of the ECU.
US10162641B2 Highly integrated scalable, flexible DSP megamodule architecture
This invention addresses implements a range of interesting technologies into a single block. Each DSP CPU has a streaming engine. The streaming engines include: a SE to L2 interface that can request 512 bits/cycle from L2; a loose binding between SE and L2 interface, to allow a single stream to peak at 1024 bits/cycle; one-way coherence where the SE sees all earlier writes cached in system, but not writes that occur after stream opens; full protection against single-bit data errors within its internal storage via single-bit parity with semi-automatic restart on parity error.
US10162640B2 Instruction for performing an overload check
A processor is described having a functional unit within an instruction execution pipeline. The functional unit having circuitry to determine whether substantive data from a larger source data size will fit within a smaller data size that the substantive data is to flow to.
US10162635B2 Confidence-driven selective predication of processor instructions
An apparatus includes a network interface, memory, and a processor. The processor is coupled with the network interface and memory. The processor is configured to determine that an instruction instance is a branch instruction instance. Responsive to a determination that an instruction instance is a branch instruction instance, the processor is configured to obtain a branch prediction for the branch instruction instance and a confidence value of the branch prediction. The processor is further configured to determine that the confidence for the branch prediction is low based on the confidence value, and responsive to such a determination, generate predicated instruction instances based on the branch instruction instance.
US10162634B2 Extendable conditional permute SIMD instructions
A method, apparatus and non-transitory computer readable medium are provided for permuting data registers to a target register. Two or more data registers are concatenated to form a concatenated data register. Each data register comprises a plurality of elements. A permutation instruction which uses one of the data registers as a data input register is executed and conditionally selects an element of the data input register by comparing a portion of an element of a pattern register to an immediate match field value. The selected element of the data input register is copied to an element in a target register at a position corresponding to a position of the element of the pattern register when the portion of the element of the pattern register matches the immediate match field value. When the portion of the element of the pattern register does not match, the target register remains unchanged.
US10162625B2 Vehicle control storage methods and systems
A vehicle can include methods and systems to update controls for a plurality of vehicle systems that operate using updatable controls, wherein each control is mounted in vehicle persistent memory as an image. The controls are stored in non-volatile vehicle memory that has a size less than twice a size of all of the controls loaded thereon. A core system provides access to the control images in the memory.
US10162623B2 Remote management of electronic products
A remote server may receive a data log with information regarding the status and/or a setting of an electronic product. The remote server may store information in the data log in a database. The remote server may process information in the database to determine whether a newer version of firmware is available for the electronic product.
US10162618B2 Method and apparatus for creation of customized install packages for installation of software
An install factory creates install packages used to install complex applications onto multiple data processing systems in a reliable and reproducible manner. The install factory takes a variety of inputs to build a custom installation package. The custom install package may be used repeatedly for installs, using the same install package, a full install on a first data processing system, an updated install on a second data processing system, a fix or service pack on a third data processing system, and also configure an application on a fourth data processing system. Thereafter, all data processing systems have the desired level of the application installed. In addition, the install factory may create install packages that are modified in accordance with user preferences.
US10162611B2 Method and apparatus for business rule extraction
A method and apparatus for migration of application source code may include parsing the source code and generating a first output, dynamically analyzing the source code to produce a second output wherein the second output comprises at least business rule metadata associated with the application, converting, using the at least business rule metadata, the source code of the application in an original language to a destination language on the second platform and a data source in an assigned format to a destination format. The method may include simulating memory to execute the source code by creating a dynamic memory array, executing the source code within the dynamic memory array, detecting and resolving parameters of the source code by monitoring execution of the source code, and storing the detected and resolved parameters of the source code in a metadata register.
US10162605B2 Code snippet content recommendation to define an object literal
Techniques are described herein that are capable of recommending content of a code snippet to define an object literal. For instance, information regarding one or more properties of the object literal is determined. The content of the code snippet is recommended to define the object literal based at least in part on the information. The content identifies the one or more properties of the object literal. In a first example, the information may be determined from comment(s) that are included in code. In a second example, a proxy object may be provided to a function that is included in code. In accordance with this example, the information regarding the one or more properties of the object literal may be determined using global dynamic analysis based at least in part on a getter trap that is encountered during execution of the function with regard to the proxy object.
US10162604B2 Navigation history visualization in integrated development environment
An integrated development environment displays a diagram that indicates relationships between code elements navigated by a user. The diagram provides a visualization of the navigation history of the user to allow the user to understand the code structure and flow of a program. A navigation history engine extracts the navigation history, generates the diagram, and displays the diagram adjacent to code displayed by a code editor.
US10162596B2 Portable electronic device configured to receive voice activated commands and to wirelessly manage or drive an output device
A portable electronic device configured for receiving voice activated commands for wirelessly managing or driving an output device. The output device may include, for example, a television, a controller connectable to a television, a printer, an audio output device, or a projector. The portable electronic device includes an interface that includes at least one button or other controls, a microphone, and wireless communication circuitry. Subsequent to establishing, within a physical proximity, a wireless connection to the output device using the wireless communication circuitry, the portable electronic device is operable for receiving an indication from a user via the interface, for wirelessly sending information to the output device related to the indication, and for wirelessly receiving data or component from the output device in response to having sent the information. Additionally, the portable electronic device is configured to receive voice activated commands from the user via the microphone.
US10162592B2 Determining a representation of an image and causing display of the representation by a bead apparatus
A method comprising receiving a representation of an image (702), the image being based, at least in part, on at least one operational circumstance, determining a first part of the representation based, at least in part, on a position of a first bead apparatus (704), causing display of the first part of the representation by the first bead apparatus (706), determining a second part of the representation based, at least in part, on a position of a second bead apparatus (708), and causing display of, at least a portion of, the second part of the representation by the second bead apparatus (710) is disclosed.
US10162590B2 Video wall system and method of making and using same
The system is comprised of a hub which in turn is made of a housing, at least one video input port, at least two video output ports, a digital card enabling communication between a computer and at least one display without a direct physical connection and a processor. The hub is used to make a video wall.
US10162580B2 Image processing apparatus, image processing apparatus control method, and storage medium
An image processing apparatus wirelessly communicates with an information processing apparatus without passing through an access point, provides a print service in which predetermined printing is performed in response to a print request from the information processing apparatus via a wireless communication unit, and enables a setting that is used for providing the print service if the setting is disabled when the information processing apparatus establishes communication with the image processing apparatus via the wireless communication unit.
US10162579B2 Image forming apparatus and control method for setting and holding print settings
An image forming apparatus includes a processor, and a memory storing instructions, when executed by the processor, causing the image forming apparatus to function as a reception unit configured to receive image data from an information processing apparatus, a printing unit configured to print an image based on the image data, an acceptance unit configured to accept a user operation for issuing an instruction to start printing, a first print control unit configured to cause the printing unit to print an image generated from the image data received by the reception unit, and a second print control unit configured to cause the printing unit to print an image obtained by adding a predetermined pattern image to an image generated from the image data received by the reception unit, wherein the second print control unit starts printing according to the user operation being accepted by the acceptance unit.
US10162578B2 Information distribution system, information distribution apparatus, electronic apparatus and information distribution method
There is provided an information distribution system including an electronic apparatus and an information distribution apparatus connected through a network, the information distribution apparatus comprising an apparatus usage information collection unit configured to collect apparatus usage information indicating usage situation of the electronic apparatus; a distribution information generating unit configured to generate distribution information to be distributed to the electronic apparatus based on the apparatus usage information; and a distribution unit configured to distribute the distribution information to the electronic apparatus; the electronic apparatus comprising a distribution information acquiring unit configured to acquire the distribution information; and a display control unit configured to display the distribution information in a display unit of the electronic apparatus.
US10162577B2 Image processing apparatus and method and non-transitory computer readable medium
An image processing apparatus includes plural communication interfaces, a request receiving unit, and a restricting unit. The request receiving unit receives, by using a communication interface, a request for system information including management information concerning the image processing apparatus from a communication device. The restricting unit restricts at least part of the system information to be sent to the communication device if an IP address assigned to the communication interface used for receiving the request is a global IP address.
US10162576B2 System and method for displaying color reproduction status on a job scheduling screen
A method, job management apparatus, and computer program product are disclosed for a job management apparatus, the job management apparatus managing a print job for at least one printer, wherein the code computer readable code configured to cause the job management apparatus to display a job scheduling screen. The process includes obtaining first information on a job to be executed by the at least one printer; obtaining second information on color reproduction state of the at least one printer; and generating the job scheduling screen, wherein the job scheduling screen is a two dimensional chart in which a first axis indicates an execution length of time for the job or a number of sheets of paper to be used for the job, and in which a part of a second axis of the two dimensional chart indicates the color reproduction state of the at least one printer.
US10162571B2 Systems and methods for managing public and private queues for a storage system
A storage system includes: a controller including a plurality of processors; an interface device; and a plurality of queues associated with the interface device. The plurality of queues each store data transmitted from a processor allocated to the queue to the interface device. The plurality of queues include a private queue and a public queue. The private queue is a queue allocated with only a first processor as one of the plurality of processors, the private queue requiring no exclusion processing when data is stored, whereas the public queue is a queue allocated with two or more second processors in the plurality of processors, the public queue requiring the exclusion processing when data is stored.
US10162567B2 Computer system
A computer system includes a first storage control module and at least one server module. The first storage control module includes plural storage processors. Each server module includes a server processor and a server I/F connected to the server processor and at least two of the plurality of storage processors. The sever I/F of an issuance server which is any one of the at least one server module specifies the storage processor by referring to sorting information in which identification information of the issuance server of an I/O request issued by the server processor of the issuance server, identification information of a destination storage area of the I/O request, and identification information of the storage processor in charge of the destination storage area are correlated with each other, and sends a command based on the I/O request to the specified storage processor.
US10162565B2 Data erasure of a target device
Examples herein disclose erasing data from a target device based upon an authentication of an erase command. The examples receive an erase command during execution to boot strap information and authenticate the erase command. Upon the authentication of the erase command, the examples erase data from the target device prior to completion of execution of boot strap information.
US10162559B2 Systems and methods for performing live migrations of software containers
The disclosed computer-implemented method for performing live migrations of software containers may include (i) identifying a request to migrate a software container from a source computing system to a target computing system while a process executes within the software container, (ii) creating a checkpoint of the process in execution (iii) transferring the checkpoint to the target computing system, (iv) updating the checkpoint recurrently by recurrently creating an incremental checkpoint of the process and merging the incremental checkpoint into the checkpoint, (v) predicting, before updating the checkpoint with an iteration of the incremental checkpoint and based on a size of the iteration of the incremental checkpoint, that finalizing a migration of the software container to the target computing system would meet a predetermined time objective, and (vi) finalizing the migration of the software container to the target computing system. Various other methods, systems, and computer-readable media are also disclosed.
US10162556B2 Multi-partitioning of memories
Various embodiments comprise devices and methods to manage multiple memory types and reconfigure partitions in a memory device as directed by a host. In one embodiment, the device is to manage logical memory partitioning on each of multiple memory devices that are based on differing, hybrid-memory technologies, the device is further to hide an actual storage media type of the multiple memory devices from the host through abstracted logical interface blocks. Additional devices and methods are described.
US10162555B2 Deduplicating snapshots associated with a backup operation
Deduplicating snapshot associated with a backup operation is disclosed, including: performing a backup operation including by generating a plurality of snapshots; maintaining, at a source system, deduplication data corresponding to one or more data blocks that have already been written to backup media during the backup operation; and using the deduplication data to deduplicate backup data across the plurality of snapshots.
US10162554B2 System and method for controlling a programmable deduplication ratio for a memory system
A memory module has a logic including a programming register, a deduplication ratio control logic, and a deduplication engine. The programming register stores a maximum deduplication ratio of the memory module. The control logic is configured to control a deduplication ratio of the memory module according to the maximum deduplication ratio. The deduplication ratio is programmable by the host computer.
US10162544B2 Memory system and operating method of memory system for controlling memory blocks divided into memory sub-blocks containing a plurality of memory pages
A memory system may include a memory device comprising a plurality of memory blocks, each of the plurality of memory blocks comprising a plurality of pages having a plurality of memory cells coupled to a plurality of word lines, the memory device being suitable for storing read data and write data requested by a host in the plurality of pages, and a controller suitable for grouping the plurality of pages included in the memory blocks, dividing each of the memory blocks into a plurality of sub-memory blocks, programming data corresponding to a write command, performing an update program on the data programmed into the first memory block into the memory blocks in response to a write command, and storing a map list for the sub-memory blocks included in the first memory block in accordance with the update program.
US10162543B1 System and method for power mode selection in a computing device
A system and a method for power mode selection in a portable computing device is provided herein. The system and method may comprise operations for operating the portable computing device in a normal mode. The normal mode may utilize a plurality of memory banks within a volatile memory, such as a random access memory (“RAM”), where the memory banks are powered-up and operable to store data. The system and method may further identify a memory segment within the plurality of memory banks, store the memory segment as a stored memory segment (where the stored memory segment is operable to restore the memory segment), and power down the powered-up memory bank associated with the memory segment. Further aspects are described herein.
US10162542B1 Data protection and incremental processing for multi-span business applications
A protection orchestrator manages creation of temporally consistent protection points for a multi-span business application. Each multi-span protection point includes component protection points generated by nodes such as host computers, storage arrays, version control repositories and cloud storage gateways. Shim programs running on the nodes translate commands from the protection orchestrator into protocol commands for the node with which they are associated. A first command pauses changes to all components of the multi-span business application. A second command causes creation of the component protection points. A third command un-pauses the changes to the components.
US10162541B2 Adaptive block cache management method and DBMS applying the same
An adaptive block cache management method and a DBMS applying the same are provided. A DB system according to an exemplary embodiment of the present disclosure includes: a cache configured to temporarily store DB data; a disk configured to permanently store the DB data; and a processor configured to determine whether to operate the cache according to a state of the DB system. Accordingly, a high-speed cache is adaptively managed according to a current state of a DBMS, such that a DB processing speed can be improved.
US10162539B2 Information processing apparatus, information processing method, and information processing system
An information processing apparatus includes circuitry that controls mounting or unmounting of a specified storage area to an operating system on the information processing apparatus and a memory that stores a first mount status indicating whether or not mounting or unmounting operation is performed to the information processing apparatus and a second mount status indicating whether or not the specified storage area is mounted. The circuitry presents the specified storage area as an available mounted storage area to a user if the second mount status indicates that the specified storage area is mounted, and does not present the specified storage area as the available storage area if the second mount status indicates that the storage area is not mounted.
US10162533B2 Reducing write amplification in solid-state drives by separating allocation of relocate writes from user writes
A computer-implemented method, according to one embodiment, includes: maintaining, by a processor, a first open logical erase block for user writes; maintaining, by the processor, a second open logical erase block for relocate writes; receiving, by the processor, a first data stream having the user writes; transferring, by the processor, the first data stream to the first open logical erase block; receiving, by the processor, a second data stream having the relocate writes; and transferring, by the processor, the second data stream to the second open logical erase block. Moreover, the first and second open logical erase blocks are different logical erase blocks. Other systems, methods, and computer program products are described in additional embodiments.
US10162532B2 Data storage device and mode-detection method thereof
A data storage device including a flash memory and a controller. The controller enables the flash memory to transmit a predetermined parameter stored in the flash memory according to a first predetermined trigger edge of a clock signal and reads the predetermined parameter transmitted by the flash memory according to the first predetermined trigger edge of the clock signal to obtain a first reference parameter in an asynchronous mode. The controller enables the flash memory to switch to a synchronous mode and transmit the predetermined parameter and reads the predetermined parameter transmitted by the flash memory according to the first predetermined trigger edge of the clock signal to obtain a second reference parameter in a detection mode.
US10162530B2 Computer and computer system for collision determination of a command identifier
A computer coupled to an external apparatus via an I/O device comprising, a control unit configured to assign a command identifier to a command issued to the external apparatus, wherein the I/O device includes a collision detection unit defined a partial command identifier space which is a subspace of a command identifier space that is a set of a plurality of command identifiers, and wherein the collision detection unit is configured to: shift an arrangement of the partial command identifier space within the command identifier space; and determine whether or not the assigned command identifier collides with another command identifier that is in use.
US10162529B2 Dynamic three-tier data storage utilization
A system for dynamically utilizing data storage comprises a processor and a memory. The processor is configured to determine whether a data storage criterion is satisfied; and, in the event that the data storage criterion is satisfied: determine a new archiving threshold based on a target data storage usage level; and set the archiving threshold. The memory is coupled to the processor and is configured to provide the processor with instructions.
US10162524B2 Determining whether to compress a data segment in a dispersed storage network
A method for execution by a computing device of a dispersed storage network (DSN). The method begins by receiving a data segment of a data object for dispersed storage error encoding. Prior to the dispersed storage error encoding, the method continues by determining whether to compress the data segment by predicting a first estimated processing cost based on estimated processing costs to compress the data segment to produce a compressed data segment and estimated processing costs to dispersed storage error encode the compressed data segment and predicting a second estimated processing cost based on estimated processing costs to dispersed storage error encode the data segment. When the first estimated processing cost compares favorably to the second estimated processing cost, the method continues by compressing the data segment to produce the compressed data segment and dispersed storage error encoding the compressed data segment to produce a set of encoded data slices.
US10162515B2 Method and electronic device for controlling display objects on a touch display based on a touch directional touch operation that both selects and executes a function
The present disclosure discloses an information processing method and an electronic device. The method comprises: detecting and acquiring a first touch operation on a touch display unit of the electronic device when M display objects are displayed on the touch display unit, wherein M is an integer greater than or equal to 1; and controlling N of the M display objects to be in a selected state in response to the first touch operation, and generating and executing a first operation instruction for implementing a first operation on the N display objects, wherein N is a positive integer less than or equal to M.
US10162513B2 Method and system for adjusting item relevance based on consumer interactions
Embodiments provide a computer-executed method, a computing device, and computer program product for enabling indication of a relevance of an item. The method includes displaying a consumer interface on a visual display of a computing device associated with a consumer, the consumer interface rendering representations of one or more items. The method also includes receiving, at the computing device, an indication of consumer input with respect to at least one of the items. The method also includes, based on a determination that the consumer input corresponds to a relevance command, adjusting the display of the representations of the one or more items on the consumer interface. The method further includes, based on the relevance command, determining a relevance indication of a characteristic of the at least one item to the consumer.
US10162511B2 Self-revelation aids for interfaces
Systems and/or methods are provided that facilitates revealing assistance information associated with a user interface. An interface can obtain input information related to interactions between the interface and a user. In addition, the interface can output assistance information in situ with the user interface. Further, a decision component that determines the in situ assistance information output by the interface based at least in part on the obtained input information.
US10162508B2 Content items stored in electronic devices
The present disclosure provides a portable terminal and a method for managing content stored in a plurality of devices. The method includes displaying information associated with a plurality of electronic devices registered under a user identifier; searching content items stored across the plurality of electronic devices; and displaying content items found across the plurality of electronic devices.
US10162507B2 Display control apparatus, display control system, a method of controlling display, and program
A display control apparatus includes an acquiring unit that acquires object information to be displayed on a screen; a storing unit that stores the acquired object information, time information, and a priority related to a display of an object corresponding to the acquired object information while associating the acquired object information, the time information, and the priority for each acquired object information; and a display controlling unit that controls a display position of the object based on the time information and the priority associated with the object information when the object is displayed on a screen.
US10162506B2 Systems and methods for selecting portions of media for a preview
The present disclosure relates to selecting individual tracks within a time-based media for a preview. In certain embodiments, a playhead spans the tracks that a user desires to include in the preview. In one such implementation, the user may adjust the position of handles on the playhead such that the playhead vertically spans the desired tracks. Playback using the playhead may play a preview of those tracks vertically spanned by the playhead.
US10162500B2 Dynamically render large dataset in client application
Dynamic rendering of a large dataset is provided. A client application initiates operations to dynamically render the large dataset by identifying and retrieving an initial page of items from the large dataset to render in a visible area. The initial page of items is dynamically sized while rendering. A consumed section of the visible area is measured to determine utilization by the initial page of items. Adjacent pages of items are also retrieved from the large dataset to render in a remaining section of the visible area determined based on the consumed section. The adjacent pages of items are rendered in the remaining section of the visible area.
US10162489B2 Multimedia segment analysis in a mobile terminal and control method thereof
A mobile terminal and a method for controlling the same are disclosed. The mobile terminal includes a display and a controller configured to display at least one piece of video content on the display, to extract at least one text from at least one of an image and sound included in at least a portion of the video content and to display the at least one text on at least one specific position of the display, wherein the at least one specific position is related to at least one point of the video content, from which the at least one text is extracted. According to the present invention, video content can be manipulated more conveniently by displaying images and sound included in the video content as text.
US10162488B1 Browser-based media scan
Disclosed are various embodiments for browser-based scanning and matching of media items. Files identified by a user via a user interface element rendered by a browser are read by the browser, which can generate a fingerprint associated with the files. The fingerprint can be transmitted to a media scan service, which can provide an indication of whether the files match a media item maintained by a media storage service.
US10162487B2 Adaptive content control and display for internet media
This disclosure relates to adaptive content control and display for internet media. A playback component provides for playback of media content. An input component detects user inputs during playback of the content. In response to the user inputs being detected, a menu component displays a level of a pivot menu during playback of the content. The pivot menu is displayed on top, or in front, of a portion of the content during playback, and the pivot menu can be at least partially transparent to enable consumption of the content to continue without complete obstruction.
US10162486B2 Generating a playlist based on content meta data and user parameters
Systems and methods to generate a playlist based on content meta data. In one embodiment, a method includes: receiving user-defined parameters; generating a playlist comprising a plurality of content portions, the generating comprising selecting the plurality of content portions from a data repository based on the user-defined parameters and further based on meta data for content stored in the data repository; and providing the playlist for display on a user device.
US10162481B2 Method and system for creating a food or drink recipe
Disclosed herein are methods for creating a food or drink recipe and systems for implementing the same. Ingredients in the food or drink recipe are combined to create a desired characteristic of the end food or drink product. Some or all of the ingredients can be subject to one or more methods of preparation. The ingredients are selected based on compatibility between pairs of ingredients.
US10162477B2 System and method for personalized fast navigation
A system for personalized navigation of computer screens. The system can comprise electronic data processors. The system can also include a module configured to execute on the electronic data processors, where the module can be configured to display a plurality of icons retained in a file associated with a particular user on a computer screen. The icons can comprise one or more assigned icons from an assigned icons list and candidate icons from a candidate icons list, where both the assigned and candidate icons are derived from a pool of icons. Also, the module can be configured to assign an icon to a currently displayed screen by utilizing a selection tool and placing the icon in the assigned icons list, where the icon is selected from the candidate icons list. The module can be further configured to return to the assigned screen when the assigned icon is selected.
US10162472B1 Specifying sizes for user interface elements
Techniques for displaying a user interface are described. A first plurality of property files specify property values of user interface elements for a first code entity of an application. The first plurality of property files includes a first property file and a common property file. The common property file specifies a first value for a first property of a first type of user interface element. A second plurality of property files specify property values for a second code entity of the application. The second plurality of property files includes a second property file and the common property file. First processing is performed to render a user interface element of the first type when executing the first code entity. A current value for the first property for the first code entity is determined in accordance with a first lookup chain specifying a prioritized ordering of the first plurality of property files.
US10162468B2 Method and controller for detecting touch or proximity
When at least one external object approaches or touches a touch sensor, profiles in a scanning signal corresponding to each external object will appear. The smallest value between the profiles corresponding to a first and a second external object is designated as a division value when the profiles corresponding to the first and the second external objects overlap. The overlapping profiles can be divided into the portion of the first external object and the portion of the second external object, respectively.
US10162465B2 Methods and devices for determining touch locations on a touch-sensitive surface
A method is performed at a touch sensing system that includes a two-dimensional capacitive sense array. The process measures the capacitance of the capacitive sensors, and identifies a first sensor whose measured capacitance is a local peak. The local peak is within a local rectangular array. The process computes column sums for each column of the rectangular array and determines whether to apply a smoothing algorithm. When the smoothing algorithm is not applied, the process computes an x-coordinate of a touch using a plurality of the column sums. When applying the smoothing algorithm, the process computes the x-coordinate of the touch as an average of two x-coordinate calculations. Each of the two x-coordinate calculations conditionally performs a horizontal shift of the local rectangular array based on comparing the peak measured capacitance to an adjacent measured capacitance and computes a respective x-coordinate using a respective plurality of the column sums.
US10162463B2 Liquid crystal display device
To provide a liquid crystal display device with a touch detection function in which any drive method can be adopted. The liquid crystal display device is provided with: a liquid crystal element arrangement that has a plurality of liquid crystal display elements arranged in a matrix shape; a plurality of scanning lines that are arranged in each row of the liquid crystal element arrangement, and supply scanning signals to a plurality of liquid crystal display elements arranged in a corresponding row; a plurality of signal lines that are arranged in each column of the liquid crystal element arrangement, and supply an image signal to a plurality of liquid crystal display elements arranged in a corresponding column; a plurality of touch detection drive electrodes which are arranged in a column of the liquid crystal element arrangement, and to which a drive signal for detecting a touch is supplied; and a touch control part that specifies a touch detection drive electrode from the a plurality of touch detection drive electrodes. Here, the drive signal is supplied to the touch detection drive electrode specified by the touch control part.
US10162462B2 Integrating capacitive sensing with an optical sensor
Embodiments herein provide a dual optical and capacitance sensor. During a first time period, the dual sensor uses optical sensing to capture a fingerprint (e.g., to identify or verify the fingerprint). During a second time period, the dual sensor uses one or more capacitive sensor electrodes to perform capacitive sensing. The capacitive sensing may be absolute capacitive sensing or transcapacitive sensing.
US10162461B2 Capacitive sensing patent
An electronic device that includes a first switch, a second switch, a capacitive sensing circuit, and control circuitry. The first switch is electrically coupled between a first terminal of a load and a first terminal for a power source. The second switch is electrically coupled between a second terminal of the load and a second terminal for a power source. The control circuitry is configured to perform operations including connecting the load to the first and second power source terminals by controlling the first and second switches to close during a first portion of a switching cycle, disconnecting the load from the first and second power source terminals by controlling the first and second switches to open during a second portion of the switching cycle, and detecting the capacitance of the load based on the output signal of the capacitive sensing circuit during the second portion of the switching cycle.
US10162460B2 Touch device
A touch device includes a substrate, a touch electrode layer, a first wire, and at least one second wire The substrate includes a touch region and a peripheral region. The peripheral region is surrounding the touch region. The touch electrode layer is disposed at the touch region. The first wire is disposed at the peripheral region and is configured to receive a touch driving signal. The at least one second wire is disposed at the peripheral region and is configured to receive a synchronization signal corresponding to the touch driving signal. The first wire is disposed between the touch region and the at least one second wire.
US10162455B2 FPC of a capacitive touchscreen and a method for mounting the FPC
An FPC of a capacitive touchscreen and a method for mounting the FPC. The FPC comprises a sensing circuit and a driving circuit which respectively matches with a sensing circuit layer and a driving circuit layer of a capacitive touchscreen panel and have several contacts for matching the sensing circuit layer and the driving circuit layer for corresponding connection; an IC driving chip, disposed between the sensing circuit and the driving circuit. The sensing circuit and the driving circuit are disposed in parallel or on the same line. The sensing circuit or the driving circuit is provided with a bending area, and the sensing circuit or the driving circuit is able to be turned towards the driving circuit or the sensing circuit, so as to allow the sensing circuit to match the sensing circuit layer and allow the driving circuit to match the driving circuit layer. According to the present invention, the FPCs of the capacitive touchscreen can be compactly arranged on a substrate, so that the utilization rate of the substrate is greatly increased and the cost is reduced.
US10162453B2 Sensor side charge cancellation
An input device includes a receiver electrode, a transmitter electrode and a processing system coupled to the receiver electrode and transmitter electrode. The processing system is configured to transmit a transmitter signal with the transmitter electrode during a first time period, inject a charge onto the receiver electrode during a second time period, and receive a resulting signal from the receiver electrode during a third time period. The resulting signal includes effects corresponding to the injected charge. The second time period and the third time period are non-overlapping.
US10162450B2 Array substrate, display panel and display device
An array substrate includes a plurality of data lines; a plurality of scanning lines intersecting the data lines to define pixel units; a plurality of pixel electrodes within the pixel units; and a plurality of touch electrodes having a grid shape and formed by a plurality of first sub-electrodes and a plurality of second sub-electrodes intersecting each other. Projections of the first sub-electrodes and the second sub-electrodes onto a layer containing the pixel electrodes are respectively located between adjacent pixel electrodes, or the first sub-electrodes and the second sub-electrodes are respectively located between adjacent pixel electrodes. The product of the resistance of the touch electrode and the load capacitance between the touch electrode, the source electrode and the first metal is reduced, which reduces the charging time of the touch driving signal and enables the touch state and the display state to operate in a time division manner.
US10162445B2 Electrode sheet for pressure detection and pressure detecting module including the same
An electrode sheet including an electrode layer and a support layer may be provided. The electrode layer includes a first electrode and a second electrode. The electrode sheet is used to detect a capacitance change between the first electrode and the second electrode, which is changed according to a relative distance change between the electrode layer and a reference potential layer disposed apart from the electrode sheet. The support layer is made of a material which is bent when a pressure is applied thereto and which is restored to its original state when the pressure is released therefrom.
US10162440B2 Array substrate, touch display apparatus and test method thereof
An array substrate, a touch display apparatus and a test method thereof are provided. The array substrate can include a substrate, a common electrode structure and a conductive structure for testing. The common electrode structure and conductive structure can be arranged on a same side of the substrate. The common electrode structure can be insulated from the conductive structure for testing. There can be an overlapping area between a projection of the common electrode structure and a projection of the conductive structure for testing in a direction perpendicular to the substrate. Laser melting may be performed on the overlapping area to electrically connect the common electrode structure to the conductive structure for testing.
US10162435B2 Input device and input method using the same
An input device and an input method using the same are provided. The input device is adapted to a computing device and includes a stylus body, a tip sensing module, a gesture sensing module, a processor and a wireless module. The tip sensing module is configured to detect a touch event on a touch screen of the computing device. The gesture sensing module is configured to detect an orientation of the stylus body. The processor is coupled to the tip sensing module and the gesture sensing module, and is configured to generate a command when the touch event on the touch screen and the orientation are detected. The wireless module is coupled to the processor and is configured to transmit the command to the computing device to trigger a function on the computing device.
US10162431B2 Input device and identification system including the same
An identification system includes an input device and a verification device. A plurality of photovoltaic panels of the input device cooperatively receive light reflected off an object that is illuminated by a lighting module. Each photovoltaic panel converts light energy of the light received thereby into electricity. The input device further includes an electrical measurement unit to measure electrical quantities of the electricity generated by the photovoltaic panels, and an encoding unit to convert the electrical quantities into code parameters and to compose an input code using the code parameters. The verification device communicates with the input device, and verifies the input code.
US10162430B2 Mobile imaging device
One example of a mobile Imaging device includes a single ion source, a ground connector, and an interface. The single ion source is to erase and write to an electronic paper display by depositing charges onto an imaging surface of the electronic paper display as the imaging device and the electronic paper display are moved relative to each other. The electronic paper display includes a ground return path. The ground connector maintains an electrical connection to the ground return path as the imaging device and the electronic paper display are moved relative to each other during erasing or writing to the electronic paper display. The interface is for transferring data between the imaging device and a computing devise.
US10162428B2 KVM switch
A KVM (K: keyboard, V: Video, M: Mouse) switch connectable between a plurality of computers and a display, including: a plurality of input terminals that input analog image signals from the computers, respectively; a storage that stores an adjustment value that adjusts an image quality of each of the analog image signals for each input terminal; a processor that selects any one of the plurality of input terminals in accordance with an operation of an keyboard; and an adjustment circuit that adjusts the image quality of an analog image signal input to the selected input terminal based on the adjustment value corresponding to the selected input terminal.
US10162423B2 Image display apparatus and operation method thereof
A method of operating the video display device according to the embodiment of the present invention comprises acquiring a video of a video display device associated with a user; recognizing a gesture of the user in the acquired video; calculating a control amount with regard to the gesture based on the recognized gesture; and performing the control operation corresponding to the recognized gesture and the calculated control amount.
US10162419B2 Method of providing tactile feedback and apparatus
A method includes detecting a query gesture and actuating, in response to the query gesture, an actuator to provide tactile feedback including information associated with the query gesture. The query gesture may be detected on a touch-sensitive display of a portable electronic device.
US10162418B2 Haptic feedback wire mount
An input device may include a wire element and a moveable substrate coupled to the wire element. The moveable substrate may include various wire alignment features. The input device may further include an input surface disposed above the moveable substrate. The input device may further include various sensor electrodes coupled to the input surface. The input device may further include a haptic actuator coupled to the moveable substrate. The haptic actuator may displace the moveable substrate in a direction substantially parallel to a plane of the input surface. The wire element may return the moveable substrate to an original position. The wire alignment features may allow, in response to an applied force by the haptic actuator and to the moveable substrate, a displacement of the moveable substrate in the direction that is substantially parallel to the plane of the input surface.
US10162416B2 Dynamic haptic conversion system
A system is provided that dynamically converts an input signal into a haptic signal. The system generates effect objects, where an effect object includes an instruction to perform a haptic conversion algorithm on the input signal to convert the input signal into an output signal, and where an order of the effect objects is defined. The system further receives the input signal. The system further applies the effect objects to the input signal in the defined order, where the output signal of an effect object forms the haptic signal. The system further sends the haptic signal to a haptic output device, where the haptic signal causes the haptic output device to output haptic effects.
US10162415B2 System implantable under skin of a living organism
Disclosed is a system for enhancing features of a living organism and further communicating the features with an external device. The system includes a flexible printed circuit implanted under the skin of a living organism and a host placed in proximity of the living organism for powering the flexible printed circuit implant wirelessly utilizing alternating charges. The living organism generates biological signals. The host further includes a memory unit connected to a controller for storing media data and operating instructions, a first electrode for emitting alternating charges with variable frequency, a second electrode floats against the ground; and an interface which wirelessly communicates with an external device. The flexible printed circuit includes a third electrode which mirrors said alternating charges received from the first electrode, and an energy convertor for changing the alternating charges to DC power. The flexible printed circuit includes a bi-directional communication unit to communicate signals with a modem for modulating and demodulating the generated modulated alternating frequency, and an analog I/O unit which processes biological signals received from the bi-directional communication unit. An electro-mechanic coupler enhances the biological signals, further the electro-mechanic coupler generates mechanical waves utilizing a fixed structure of said living organism. Further, the coupler converts mechanical waves into electrical signals and furthermore communicates the electrical signals containing processed biological signals with an analog I/O unit, and further the electro-mechanic coupler emits and receives alternating charges. Further, the analog I/O unit processes the electrical signals and communicates the information to the bi-directional communication unit.
US10162414B2 Wireless control device, position calibrator and accessory
A wireless control device adapted to detect a signal from a signal source for generating a corresponding first sensing signal and wirelessly transmit the first sensing signal to a host is provided. The wireless control device includes a position calibrator and an accessory. The position calibrator includes a first main body, a first coupling structure disposed on the first main body, at least one position sensing element adapted to detect the signal, a first microprocessor electrically connected to the position sensing element and a wireless transmitting module electrically connected to the first microprocessor and wirelessly transmitting the first sensing signal to the host. The accessory includes a second main body and a second coupling structure disposed on the second main body. A position calibrator and an accessory detachably assembled with the position calibrator to form a wireless control device are also provided.
US10162410B1 Head tracker for dismounted users
A head-tracking system for dismounted users comprises an inertial georeferenced head tracker (IGHT) having a time-cumulative drift error, an azimuth-referenced head-tracker (ARHT), and a controller. The ARHT comprises a data link with an angle of arrival antenna, differential global position satellite receivers, and a processor configured to determine the head position of the user and initialize the IGHT. The controller may compare a current drift error of the IGHT with a predetermined drift error threshold. If the current drift error is below the predetermined drift error threshold, the IGHT data may accurately represent the head position of the user. If the current drift error is above the predetermined drift error threshold, the IGHT may be updated with the ARHT data to accurately represent the head position of the user.
US10162409B2 Locating a head mounted display in a vehicle
A head mounted display is configured to determine the posture of the head mounted display relative to a vehicle. The head mounted display includes a display, a camera and an electronic computing unit; and is set up to: create recordings of the environment of the head mounted display with the aid of the camera; receive details relating to the position and/or orientation of a movable object in the interior of the vehicle; detect the image of the object in the recordings from the camera; and determine the posture of the head mounted display taking into account the image of the object in the recordings relative to the vehicle. The posture of the head mounted display indicates the position of the pair of data glasses and the alignment of the pair of data glasses.
US10162399B2 Power supply voltage and load consumption control
In some examples, a power adapter includes a voltage regulator, first and second resistors, a switch to alternately connect the first and second resistors to a signal node coupled to a load circuit external of the power adapter, and a voltage controller to control the switch to set a first mode of operation, and responsive to the switch setting the first mode of operation, determine a power requirement of the load circuit, and control the voltage regulator to provide a supply voltage to a power node in accordance with the power requirement of the load circuit, and control the switch to set the second mode of operation that causes the load circuit to determine a power rating of the power adapter and to operate a load of the load circuit according to the power rating of the power adapter.
US10162395B2 Device sandwich structured composite housing
The description relates to devices, such as computing devices. One example can include a sandwich structured composite housing. The example can also include a set of electronic components positioned over the sandwich structured composite housing. The set of electronic components can have a profile against the sandwich structured composite housing. The sandwich structured composite housing can have a corresponding negative profile.
US10162391B2 Motion-based message display
Computer-implemented methods, apparatus, and computer program product, the method comprising: receiving a reading from a sensor associated with a mobile computing device used by a user; determining based on the reading whether the device is in movement exceeding a threshold; responsive to the movement exceeding the threshold, displaying a message in a first manner; and responsive to the movement not exceeding the threshold, displaying the message in a second manner. The first manner may be associated with the message obstructing content displayed on the device; and the second manner may be associated with content displayed on the device being obstructed less than when the movement exceeds the threshold. The first manner may be associated with the message being bolder and the second manner may be associated with message being less bolder than when the movement exceeds the threshold.
US10162390B2 Hybrid acoustic EMI foam for use in a personal computer
The described embodiments relate to an electronic assembly that includes multiple varied electrical components. In some embodiments, the electronic assembly can include electrical components susceptible to electromagnetic interference (EMI). In one particular embodiment, an antenna can be positioned along an exterior surface of an enclosure of the electronic assembly and another electrical component can be disposed within the enclosure. When the other electrical component is a speaker component, a port or opening for emitting audio output can be protected from EMI by surrounding the port with a conductive gasket that includes a closed cell foam substrate wrapped in an electrically conductive fabric. In some embodiments, the closed cell foam substrate defines a number of perforations that are plated with an electrically conductive material.
US10162389B2 Covered multi-axis hinge
The description relates to devices, such as computing devices that have hinged portions. One example can include a first portion and a second portion. This example can also include multiple interconnected friction engines that secure the first portion and the second portion. An individual friction engine can define an axis of rotation of the first portion relative to the second portion. The example can also include sequencing elements that control a relative order of rotation of the multiple interconnected friction engines and overlapping hinge covers that protect the multiple interconnected friction engines and stabilize the timing elements.
US10162386B2 Display apparatus
A display apparatus includes a display panel and a folding part. The display panel includes an edge part curving in a first direction and a flat part connected the edge part. The folding part is below the flat part and is used to fold the display panel. The edge part includes a groove in a central portion of the edge part in a second direction crossing the first direction, and the groove extends in the first direction.
US10162385B2 Conductive material, method of fabricating electrode, and display device having the same
Disclosed is a conductive material fabricated with a reduced fabrication cost and through simplified processes. The conductive material comprises: liquid graphene including flakes; and a conductive monomer including an aromatic benzene ring, the conductive monomer being mixed with the liquid grapheme to form cross-linkages among the flakes.
US10162382B2 Apparatus, systems and methods to remove heat from a device
Methods, apparatus, systems are disclosed for using a movable heat sink to cool an electrical device during an ejection cycle of the electrical device from a dock. In accord with these concepts, the heat sink is moved from a first position, not in contact with the electrical device, to a second position in physical contact with the electrical device to conduct heat from the electronic device prior to an ejection of an electronic device from the dock.
US10162380B2 System and method for synchronizing networked components
A method for synchronizing a plurality of components that are networked via a plurality of high speed switches, the method includes frequency-locking to a master clock component clocks of the plurality of components, and synchronizing to a master counter, driven by the master clock, component counters of the plurality of components, so that the frequency-locked component clocks drive the component counters in synchrony with the master counter.
US10162379B1 System clock distribution in a distributed computing environment
A system clock signal distributed to electronic configurable and reconfigurable computing devices within a distributed computing system. The distributed computing devices, which may be dual-die chip carriers (DDCC), include input addressable data/clock ports on which system clock signals are accepted and may be propagated on one or more data/clock output ports. The input and/or output ports of various distributed computing devices may be configured and reconfigured according to system preferences or requirements.
US10162377B2 Apparatuses and methods for providing reference voltages
A reference voltage generator is disclosed that may provide a plurality of reference voltages. A reference voltage generator may include a voltage divider, a multiplexer coupled to the voltage divider, an operational amplifier that may receive a voltage from the multiplexer, and a plurality of resistors that may receive an output from the operational amplifier. The reference voltages may be provided from output terminals coupled to the resistors. A reference voltage generator may include a voltage divider, two multiplexers coupled to the voltage divider, an operational amplifier coupled to each multiplexer, and a plurality of resistors coupled between the outputs of the two operational amplifiers. Reference voltages may be provided from output terminals coupled to the resistors.
US10162376B2 Charge pump with temporally-varying adiabaticity
Operation of a charge pump is controlled to optimize power conversion efficiency by using an adiabatic mode with some operating characteristics and a non-adiabatic mode with other characteristics. The control is implemented by controlling a configurable circuit at the output of the charge pump.
US10162364B2 Robot and control method thereof
A robot includes a distance sensor configured to measure a distance to an object existing within a movement environment of the robot and autonomously operates based on the distance information measured by at least one of the distance sensor and a distance sensor installed within the movement environment. The robot includes an acquiring unit configured to acquire an operation region through which the robot passes when the robot performs an operation, a setting unit configured to set a measurement position of the distance sensor at which the operation region acquired by the acquiring unit is covered by a measurement region of the distance sensor, and a control unit configured to control the robot to operate based on the distance information measured by the distance sensor at the measurement position set by the setting unit.
US10162362B2 Fault tolerance to provide robust tracking for autonomous positional awareness
The described positional awareness techniques employing visual-inertial sensory data gathering and analysis hardware with reference to specific example implementations implement improvements in the use of sensors, techniques and hardware design that can enable specific embodiments to provide positional awareness to machines with improved speed and accuracy.
US10162360B2 Vehicle environment imaging systems and methods
A vehicle includes at least one image capture device and a user display configured to display images receive from the at least one image capture device. The vehicle also includes a controller programmed to generate a user prompt to set a home vehicle position in response the vehicle entering a first parked state. The controller is also programmed to store at least one reference image indicative of an area in a vicinity of the vehicle corresponding to the home vehicle position. The controller is further programmed to collect a current image corresponding to a current vehicle position in response to a subsequent approach toward the vicinity, and compare the current image to the reference image. The controller is further programmed to generate a user display depicting the vicinity, the current vehicle position, and the home vehicle position.
US10162354B2 Controlling error corrected planning methods for operating autonomous vehicles
In one embodiment, motion planning and control data is received, indicating that an autonomous vehicle is to move from a first point to a second point of a path. The motion planning and control data describes a plurality of routes from the first point to the second point within the path. For each of the routes, a simulation of the route is performed in view of physical characteristics of the autonomous vehicle to generate a simulated route. A controlling error is calculated, the controlling error representing a discrepancy between the route and the simulated route. One of the routes is selected based on controlling errors between the routes and associated simulated routes. The autonomous vehicle is operated to move from the first point to the second point according to the selected route.
US10162352B2 Remotely operated mobile stand-off measurement and inspection system
Self-contained, remotely operated, mobile measurement and inspection systems for stand-off inspection of large target objects located at sites distant from an operations center. The systems comprise a mobile platform with on-board instrumentation capable of making dimensional measurements in the local coordinate system of the target object. The systems comprise multiple hardware and software components networked to a control interface that enables the operator at the operations center to teleoperate the equipment. Various embodiments include rough-terrain and floatable mobile measurement and inspection systems.
US10162350B2 Systems and methods for controlling the transportation of vehicles
A system may include a plurality of grid elements, an analytic system, and a control system. The plurality of grid elements are installed in a dynamic driving area in an attraction and are configured to perform based on command instructions received from the control system to control the movement of a vehicle disposed on the plurality of grid elements. The analytic system may be configured to track, via one or more sensors, vehicle information and to send the vehicle information to the control system via a communication module, and the control system may be configured to receive the vehicle information, to determine, via one or more processors, which of the grid elements to actuate and a corresponding manner of actuation based on a desired movement of the vehicle, and to send command instructions including performance data to each of the grid elements identified for actuation.
US10162349B2 Snow blowing apparatus
An improved snow blower apparatus is a snow blower that is able to be remotely controlled by a user located at a remote location. At least one video camera located on the snow blower allows the user to view the environment around the snow blower for safety purposes and to control the direction of travel and speed of the apparatus.
US10162348B1 Unmanned vehicle morphing
Unmanned vehicles may be terrestrial, aerial, nautical, or multi-mode. Unmanned vehicles may accomplish tasks by breaking out into sub-drones, re-grouping itself, changing form, or re-orienting its sensors. This morphing of the unmanned vehicle may happen based on the unmanned vehicle sensing certain conditions.
US10162345B2 Enhanced emergency reporting system
A method enhances an emergency reporting system for controlling equipment. A message receiver receives an electronic message from a person. The electronic message is a report regarding an emergency event. One or more processors identify a profile of the person who sent the electronic message, and determine a bias of the person regarding the emergency event based on the person's profile. One or more processors amend, based on the bias of the person, a content of the electronic message to create a modified electronic message regarding the emergency event. The modified electronic message is consolidated with other modified electronic messages into a bias-corrected report about the emergency event. One or more processors then automatically adjust equipment based on the bias-corrected report about the emergency event.
US10162342B2 System and methods for managing changes to a product in a manufacturing environment including an anytime design check
A manufacturing process management (MPM) computer device is provided. The MPM computer device includes a processor and at least one memory device. The MPM computer device is configured to receive a first engineering design for a first configuration of a product to be assembled including an engineering bill of materials and a plurality of requirements, receive a first manufacturing process plan for the first configuration of the product including a plurality of operations, compare the plurality of operations with the plurality of requirements to determine whether each requirement of the plurality of requirements is met by at least one of the plurality of operations, associate each requirement with one or more of the plurality of operations based on the comparison, receive a notification from a user indicating that a first operation is complete, and store an indication that one or more requirements associated with the first operation are complete.
US10162341B2 Method for sequencing a plurality of tasks performed by a processing system and a processing system for implementing the same
A method for sequencing a plurality of tasks performed by a processing system and a processing system for implementing the same are disclosed herein. In one embodiment, a method for sequencing a plurality of tasks performed by a processing system is provided that includes generating a schedule by iteratively performing a scheduling process and processing a plurality of substrates using the plurality of semiconductor processing equipment stations according to the schedule. The scheduling process uses highly constrained tasks and determines whether a portion of the first list of the highly constrained tasks exceeds a capacity of the processing system. The scheduling process further includes updating the latest start time and the earliest start time associated with each of the plurality of tasks yet to be scheduled based on the assigned task.
US10162330B2 Methods and systems for generating a continuous helical tool path for parts having multiple central axes
A computer-implemented method for generating a continuous helical tool path for forming a part having a plurality of central axes is provided. The method includes performing a tool path algorithm modeling and a tool path algorithm execution using a computer system. The tool path algorithm modeling includes defining a starting point location within a computer-generated three-dimensional part geometry model, defining a vector, defining a helix, defining a sweeping surface three-dimensional geometry element, and generating an intersection curve from tracing a continuous curved line of an intersection between the sweeping surface geometry element and the part geometry model. The tool path algorithm execution includes defining data for a forming tool stylus, selecting the intersection curve as a guiding element for the forming tool stylus, and generating the continuous helical tool path for the forming tool stylus. The continuous helical tool path includes a forming tool stylus centerline path in graphical space.
US10162329B2 Automated toolpath generation method for double sided incremental forming
An automated method for generating toolpaths in double sided incremental forming (DSIF) operations is disclosed which uses a geometrically constructed map to build a structure of all the geometric features that is capable of tracking and forming the features in the correct order while simultaneously keeping track of the location of the virgin material. The aforementioned method allows toolpaths for complex geometries in the DSIF process to be generated automatically.
US10162316B2 System and method for providing an adaptive user interface on an electronic appliance
A controllable device, such as a set top box, responds to a transmission received from a one of a plurality of controlling devices of differing capabilities by entering into a one of a plurality of operating modes wherein the one of the plurality of operating modes entered into corresponds to the capabilities of the controlling device from which the transmission originated.
US10162313B2 Equipment isolation system
An equipment isolation system (10) for remotely isolating equipment (20, 21, 210, 250) in a plant comprising equipment (20, 21, 210, 250) energisable by an energy source and a control system (50) for controlling operation of said equipment (20, 21, 210, 250) and isolation of said equipment from said energy source to an isolated state by an operator, wherein said control system (50, 260, 700) includes an identification device (790) for an operator to provide operator identification data; and a processor for comparing said operator identification data with stored identification data (261) for operators authorised to use the equipment isolation system (10) wherein said control system (50, 260, 700) is configured to enable use of the equipment isolation system (10) by said operator only where the processor matches operator identification data provided to the identification device (790) and said stored identification data (261).
US10162310B2 Method of forming a decorative surface on a micromechanical timepiece part and said micromechanical timepiece part
A method of forming a decorative surface on a micromechanical timepiece part including a silicon-based substrate, including at least one step a) of forming pores (2) on the surface of the silicon-based substrate over a zone of the silicon-based substrate which corresponds to the decorative surface to be formed, the pores being designed to open out at the external surface of the micromechanical timepiece part. A micromechanical timepiece part including a silicon-based substrate, and having, over at least one zone of the silicon-based substrate, pores which are formed in the zone of the silicon-based substrate and open out at the external surface of the micromechanical timepiece part in order to form a decorative surface over the zone.
US10162309B2 Mechanical timepiece movement with power reserve detection
The mechanical timepiece movement with power reserve indication comprises at least one barrel system connected to a winding wheel of a differential gear and an unwinding wheel of the differential gear. An intermediate wheel of the differential gear is connected to a cam wheel set to drive it in rotation via a reducing stage. A rack, which acts on a power reserve indicator, is in contact with the cam wheel set. When the power reserve is at zero, a locking part of the rack comes into contact with a locking member to lock the movement at an unwinding output of the barrel system or in contact with the unwinding wheel of the differential gear.
US10162307B2 System and method for generating a lithographic image with the use of a reflective concave curvilinear surface and a digital hologram in a diverging beam
A system for generating a lithographic image contains a light source that emits a diverging light beam and a reflective concave curvilinear surface onto which the diverging light beam falls and which reflects the diverging beam in the form of a converging beam. A digital hologram, which is placed into a diverging beam between the light source and the reflective surface, is coded in accordance with the lithographic image either preliminarily or dynamically, with the use of a spatial light modulator. From the curvilinear surface the spatially modulated beam is reflected in the form of a converging beam which falls onto an image-receiving substrate that is located in the image restoration plane and on which the lithographic image is generated.
US10162302B2 Developing cartridge having contact surface
A developing cartridge includes a storage medium and a holder. The developing cartridge may be configured to move from a first position to a second position and further from the second position to a third position. The holder may include a first outer surface, a second outer surface, and an engaging portion. The second outer surface may have a guide surface out of contact with part of an image forming apparatus in a case where the developing cartridge is at the first position. The guide surface may contact with the part of the image forming apparatus in a case where the developing cartridge is at the second position. The engaging portion may be configured to allow the holder to engage with the image forming apparatus in a state where an electric contact surface contacts with an electric connector in a case where the developing cartridge is at the third position.
US10162299B2 Image forming apparatus
An image forming apparatus includes an image carrier, a developing section, a transfer section, a pre-transfer conveyance passage, and a guide member. The pre-transfer conveyance passage allows conveyance of the sheet from the developing section to the transfer section. The guide member defines a side of the pre-transfer conveyance passage that faces the transfer surface. The guide member includes: a guide body having a guide surface that faces the transfer surface of the sheet; and a tip section having a curved portion joining an end edge of the guide body, and a distal edge that is on a downstream side in the conveyance direction and faces the image carrier. The distal edge is located at such a position as to allow the transfer surface of the sheet to lie at a space therefrom when a leading end of the sheet is in contact with the image carrying surface.
US10162298B2 Image forming apparatus with image two-dimensional correction
An image forming apparatus includes: an image forming part that forms an image on a sheet; a conveyor that conveys the sheet on which the image is formed by the image forming part; a corrector including a swing member that moves the sheet conveyed by the conveyor in a main scanning direction of the image; and a hardware processor that rotates the image formed on the sheet after timing at which the swing member loses contact with the sheet when the swing member separates from the sheet or the sheet is conveyed to pass through the swing member in accordance with a bending amount of the sheet.
US10162294B2 Fixing device and image forming apparatus to adjust rotational speed of rotator due to thermal expansion
A fixing device includes an endless belt, a drive rotator, a driven rotator, a rotation detector, and circuitry. The drive rotator contacts and rotates the endless belt. The driven rotator contacts an inner circumferential surface of the endless belt. The rotation detector detects a rotational speed of the driven rotator. The circuitry is operatively connected to the rotation detector to control a rotational speed of the drive rotator based on the rotational speed of the driven rotator detected by the rotational detector. The circuitry changes the rotational speed of the drive rotator when a recording medium bearing a toner image is not conveyed over the endless belt.
US10162293B2 Fixing device and image forming apparatus having a curved belt moving path and a curved recording material transporting path
A fixing device includes: a belt member having a substantially loop shape and an outer circumferential surface and moving along a belt moving path; a downstream side pressing member pressed against the outer circumferential surface and pressing a recording material transported along a recording material transporting path; and an upstream side pressing member disposed on an upstream side of the downstream side pressing member, pressed against the outer circumferential surface, and pressing the recording material, wherein in a contact portion where the outer circumferential surface and the downstream side pressing member are in contact, the belt moving path and the recording material transporting path are curved toward an inner side in a radial direction of the belt member, and wherein on an upstream side of the contact portion, the belt moving path and the recording material transporting path are curved toward a side opposite to the inner side.
US10162292B2 Image forming apparatus that controls a sheet feeding interval based on an abnormal state in which a heat absorption member remains in contact with a pressing member
An image forming apparatus includes an image forming station for forming a toner image on a sheet; a heating member and a pressing roller that form a nip for fixing the toner image on a sheet; a heat absorption roller for absorbing heat by contacting the pressing roller; a moving mechanism for moving the heat absorption roller to and away from the pressing roller; a detector for detecting an abnormal state that heat absorption roller remains contacted the pressing roller; and a controller for controlling an interval between adjacent sheets when image forming operation is continuously carried out for a plurality of sheets, wherein when the detector does not detect the abnormal state, the controller supplies the sheets at a first feeding interval, and, when the detector detects the abnormal state, the controller supplies of the sheets at a second feeding interval longer than the first interval.
US10162290B2 Image forming apparatus
To efficiently transmit drive through couplings on one and another sides during forward rotation and reverse rotation.When first and second couplings are brought into engagement with each other and rotated in a forward direction, first and third drive transmission surfaces are brought into contact with each other to be rotated in the forward direction while producing components of force in directions in which the first and second couplings are drawn to each other in the rotational axis direction.When the first and second couplings are brought into engagement with each other and rotated in a reverse direction, second and fourth drive transmission surfaces are brought into contact with each other to be rotated in the reverse direction without producing components of force in directions in which the first and second couplings are separated from each other in the rotational axis direction.
US10162289B2 Developer accommodating container, developer accommodating unit, process cartridge, electrophotographic image forming apparatus
A fixing portion 18c for suppressing movement of a developer bag 16 when the developer bag 16 is unsealed by moving a sealing member 19 is provided. By this, unsealing becomes easy.
US10162288B2 System and method of remanufacturing a toner container
A method of refilling a used flexible toner container having a plurality of toner openings configured to discharge toner during a print operation. The method including forming a fill opening in the used flexible toner container. The fill opening may be formed separately from the toner openings. The method further including attaching a toner seal to the flexible toner container to cover the plurality of toner openings. The method further including, after attaching the toner seal, refilling the flexible toner container via the fill opening. The method further including sealing the fill opening.
US10162281B2 Liquid developer and manufacturing method of liquid developer
A liquid developer comprising a toner particle containing a binder resin and a carbon black, a toner particle dispersing agent, and a carrier liquid, wherein amounts of group 15 elements, group 16 elements, and group 17 elements on a surface of the carbon black are respectively 0.1 atomic percent or less with respect to a total amount of elements on the carbon black surface.
US10162279B2 Solvent free emulsification processes
Provided is an emulsion that includes a water phase and a resin containing phase. The emulsion is prepared from a mixture comprising water, a surfactant, a resin that includes an acidic moiety, and an organic compound having at least two different moieties. Each of the two moieties have a single functionality or dual functionality. The single functionality and the dual functionality are selected from a capability to neutralize the acidic moiety of the resin, a capability to form a hydrogen bond, or both.
US10162278B2 Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
Disclosed herein is an electrophotographic photosensitive member in which leakage hardly occurs even in the case of using a layer containing metal oxide particles as an electrically conductive layer in the electrophotographic photosensitive member, and which is compatible with definition in output images, the electrophotographic photosensitive member sequentially including: a support, an electrically conductive layer, and a photosensitive layer, the electrically conductive layer containing a binder material and particles represented by General Formula (1). Nb2.00O5.00-XNY  (1) (In Formula (1), Nb is a niobium atom, O is an oxygen atom, N is a nitrogen atom, and 0.00
US10162277B2 Extreme ultraviolet lithography system with debris trapper on exhaust line
An extreme ultraviolet (EUV) lithography system includes a collector designed to collect and reflect EUV radiation, a cover integrated with the collector, a first exhaust line connected to the cover and configured to receive debris vapor from the collector, a debris trapper connected to the first exhaust line and configured to trap the debris vapor, and a second exhaust line connected to the debris trapper.
US10162275B2 Homogeneous thermal equalization with active device
A system and method is provided for providing a thermal distribution on a workpiece during a lithographic process. The system provides a source of lithographic energy to workpiece, such as a workpiece having a lithographic film formed thereover. A workpiece support having a plurality of thermal devices embedded therein is configured to support the workpiece concurrent to an exposure of the workpiece to the lithographic energy. A controller individually controls a temperature of each of the plurality of thermal devices, therein controlling a specified temperature distribution across the workpiece associated with the exposure of the workpiece to the lithographic energy. Controlling the temperature of the thermal devices can be based on a model, a measured temperature of the workpiece, and/or a prediction of a temperature at one or more locations on the workpiece.
US10162270B2 Projection exposure apparatus comprising a measuring system for measuring an optical element
A projection exposure apparatus (10) for microlithography has a measuring system (50) for measuring an optical element of the projection exposure apparatus. The measuring system (50) includes an irradiation device (54), which is configured to radiate measuring radiation (62) in different directions (64) onto the optical element (20), such that the measuring radiation (62) covers respective optical path lengths (68) within the optical element (20) for the different directions (64) of incidence, a detection device (56), which is configured to measure, for the respective directions (64) of incidence, the respective optical path lengths covered by the measuring radiation (62) in the optical element (20), and an evaluation device, which is configured to determine a spatially resolved distribution of refractive indices in the optical element (20) by computed-tomographic back projection of the respective measured path lengths with respect to the respective directions of incidence.
US10162268B2 Twisted kaleido
Implementations disclosed herein generally relate to a light pipe, or kaleido, for homogenizing light such that the light is uniform once the light exits the light pipe. By reflecting the light inside the light pipe, light uniformity is increased. In one implementation, a light pipe for an image projection apparatus is provided. The light pipe comprises an elongated rectangular body having a refractive index that provides total internal reflection within the elongated rectangular body. The elongated rectangular body has an input face for accepting light into the elongated rectangular body. The input face disposed substantially orthogonal to a longitudinal axis of the elongated rectangular body. The elongated rectangular body has an output face for releasing light from the elongated rectangular body. The output face is disposed substantially orthogonal to the longitudinal axis. The elongated rectangular body has a twist along the longitudinal axis.
US10162267B2 Projection exposure apparatus including mechanism to reduce influence of pressure fluctuations
The invention relates to a projection exposure apparatus for semiconductor lithography, comprising an illumination system for illuminating a mask arranged on a movable mask stage, and comprising a projection lens for imaging the mask onto a semiconductor substrate, wherein at least one means is present for at least partly decoupling at least parts of the illumination system and/or of the projection lens from the influence of pressure fluctuations in the medium surrounding the projection lens or the illuminated system, the pressure fluctuations being attributed to movements of the mask stage during the operation of the apparatus.
US10162264B2 Liquid deposition photolithography
Systems and methods for liquid deposition photolithography are described. In particular, some embodiments relate to systems and methods for using photolithography to control the 2D structure of a thin layer of material (e.g., photopolymer) using various masks, projection optics and materials. In one or more embodiments, this thin layer can be manipulated by micro-fluidic techniques such that it can be formed, patterned and post-processed in a liquid environment, vastly simplifying the creation of multi-layer structures. Multiple layers are rapidly built up to create thick structures of possibly multiple materials that are currently challenging to fabricate by existing methods.
US10162261B2 Negative photoresist composition for KrF laser for forming semiconductor patterns
Provided is a negative photoresist composition for a KrF laser for semiconductor pattern formation, which includes a predetermined compound in order to improve the properties of a conventional negative photoresist, thereby realizing high transparency, high resolution and an excellent profile, even in the presence of an exposure source having a short wavelength compared to the conventional negative photoresist, and is thus suitable for use in semiconductor processing.
US10162254B1 Compact light projection system including an anamorphic reflector assembly
A compact light projection system. The light projection system includes a light source, an anamorphic reflector assembly, and a correction element that is configured to mitigate aberration. The light source is configured to emit image light. The anamorphic reflector assembly includes a first surface and a second surface. The first surface is configured to reflect the image light toward the second surface which reflects the reflected image light to output it from the anamorphic reflector assembly. And the first surface and the second surface are both curved and non-rotationally symmetric such that the light output from the anamorphic reflector assembly is collimated image light. The collimated image light is optically corrected based in part on mitigation of aberration by the correction element.
US10162253B2 Illumination device and projector
An illumination device includes a first light source section adapted to emit first colored light having a peak wavelength at a first wavelength, a second light source section adapted to emit second colored light having a peak wavelength at a second wavelength, a wavelength conversion element adapted to convert a part of the first colored light and a part of the second colored light into third colored light, and then emit another part of the first colored light, another part of the second colored light, and the third colored light, and a control section adapted to individually control an amount of light per unit time of the first colored light emitted from the first light source section, and an amount of light per unit time of the second colored light emitted from the second light source section.
US10162252B2 Phosphor disc, phosphor wheel, light source device, projection display apparatus, and manufacturing method of phosphor disc
The phosphor disc disclosed here includes the following structural elements: a disc-shaped metal plate; a phosphor layer disposed circumferentially on the metal plate; and a bonding layer for bonding the phosphor layer to the metal plate. The metal plate curves convexly toward the phosphor layer.
US10162251B1 Light integrating system and projection apparatus thereof
A light integrating system includes an integrator rod, a triangular prism, and first and second light sources misaligned with each other. The integrator rod has a light-integrating axis, first and second light-entrance surfaces, a first reflection inclined surface and a first light-exit surface. The triangular prism adjacent to the second light-entrance surface has a third light-entrance surface, a second light-exit surface, and a second reflection inclined surface. Light of the first light source is incident into the integrator rod through the first light-entrance surface and is reflected by the first reflection inclined surface to emit out of the first light-exit surface along the light-integrating axis. Light of the second light source is incident into the triangular prism through the third light-entrance surface and is reflected by the second reflection inclined surface to emit out of the first light-exit surface through the second light-exit surface and the second light-entrance surface sequentially.
US10162245B2 Distributed acoustic sensing system based on delayed optical hybrid phase demodulator
A sensing system adapted to receive backscattered signal from a sensing fiber includes a first Faraday rotator mirror; a second Faraday rotator mirror; an optical hybrid coupled to the Faraday rotator mirrors, wherein one of the mirrors is coupled with an optical path difference; a 3-port optical circulator coupled to the sensing fiber and the optical hybrid; a first photodetector coupled to the circulator; and three photodetectors coupled to the optical hybrid.
US10162239B2 Array substrate, preparation method therefor, display panel, and display device
An array substrate, a preparation method therefor, a display panel, and a display device. A color film layer of the array substrate comprises filtering patterns of multiple different colors. The filtering pattern of each color comprises multiple filtering units. The filtering patterns of at least two different colors are provided with overlapped portions at the positions corresponding to multiple gate lines, multiple data lines and multiple thin-film transistors. The overlapped portions are used for partitioning the filtering units. One of the filtering patterns of at least two different colors and having the overlapped portions at the positions corresponding to the multiple gate lines and the multiple thin-film transistors is the filtering pattern with the lowest light transmittance in the filtering patterns of the multiple different colors.
US10162237B2 Display device being resistant to short-circuiting
A display device includes a first substrate including a display area and a peripheral area disposed in a periphery of the display area. A gate line is disposed in the display area. A data line is insulated from the gate line and intersects the gate line. The data line includes a first portion and a second portion. The first portion is disposed in the display area, and the second portion is connected to the first portion and is disposed in the peripheral area. A thin-film transistor (TFT) is disposed in the display area of the first substrate and is connected to the gate and data lines. A first insulating pattern is disposed on the TFT. A second insulating pattern is disposed in the peripheral area and covers a part of the second portion of the data line. The second insulating pattern includes a same material as the first insulating pattern.
US10162236B2 Array substrate and liquid crystal display device comprising the same
An array substrate and a liquid crystal display device comprising the array substrate are disclosed. The array substrate comprises a pixel unit having a thin film transistor region and a through-hole region. The pixel unit comprises a glass substrate, a first insulation layer, a second insulation layer, a third insulation layer, a fourth insulation layer, and a fifth insulation layer stacked from bottom up in sequence. In the thin film transistor region, the glass substrate is provided with a light-shading metal member that is covered by the first insulation layer, the first insulation layer is provided with an active layer that is covered by the second insulation layer, two ends of the active layer are respectively connected with a source and a drain formed between the third insulation layer and the fourth insulation layer, the second insulation layer is provided with a gate that is covered by the third insulation layer, and the fourth insulation layer is provided with a common electrode that is covered by the fifth insulation layer. In the through-hole region, a pixel electrode is arranged on the fifth insulation layer and a through hole is configured in the fourth insulation layer, so that the pixel electrode is connected with the source or the drain after passing through the fifth insulation layer. A cushion layer is arranged under the through hole in an insulated manner.
US10162232B2 Liquid crystal display device
The liquid crystal display device includes: a TFT substrate including scanning lines extending in a first direction and being arranged in a second direction, Video signal lines extending in the second direction and being arranged in the first direction, pixel electrodes arranged in regions surrounded by the scanning lines and the video signal lines, and common electrodes formed with an insulating film arranged between the common electrodes and the pixel electrodes; a counter substrate opposed to the TFT substrate; and a liquid. crystal. The first common electrode extends between the first and second scanning lines in the first direction, and the second common electrode extends between the second and third scanning lines in the first direction. The first and second common electrodes are electrically connected by a bridge. The bridge covers the first video signal line without covering the second video signal line, when seen in a plan view.
US10162225B2 Image controlling panel for display device displaying one of two dimensional image and three dimensional stereoscopic image
An image control panel for a display device includes a first substrate and a second substrate facing each other, a lens electrode formed on the first substrate, a common electrode formed on the second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate. The common electrode includes a first common electrode and a second common electrode separated from each other.
US10162224B2 Transmission-reflection blue phase liquid crystal panel
A transmission-reflection blue phase liquid crystal panel is disclosed. The transmission-reflection blue phase liquid crystal panel comprises an upper substrate and a lower substrate that are arranged facing each other, and blue phase liquid crystal that is arranged between the upper substrate and the lower substrate. The upper substrate, on a surface thereof facing the blue phase liquid crystal, is provided with a first electrode base layer which has a plurality of first protrusions, and the lower substrate, on a surface thereof facing the blue phase liquid crystal, is provided with a second electrode base layer which has a plurality of second protrusions. The first protrusions each extend to a position between two adjacent second protrusions, and the second protrusions each extend to a position between two adjacent first protrusions. According to the present disclosure, a consistent photoelectric property in the transmission region and the reflection region can be obtained and the driving voltage of the blue phase liquid crystal can be reduced.
US10162221B2 Display device and manufacturing method thereof
In a display device having high reliability, even if being a narrow framing type, and a method for manufacturing thereof, having a display panel, being made up with a first substrate 101 and a second substrate 201, which are adhered with using a seal 301, a main SOC 302 is disposed like a wall, on a peripheral end portion of the first substrate 101 and the second substrate 201, and the seal 301 is disposed inwardly of the main SOC 302. Also, in a method for manufacturing thereof, the main SOC 302 is formed in a region including a cutting plane between the display panel regions neighboring with, and on the cutting plane is made the cutting thereof.
US10162218B2 Illumination systems with sloped transmission spectrum front reflector
A backlight includes a front and back reflector forming a light recycling cavity and one or more light source members disposed to emit light into the light recycling cavity. The front reflector being partially reflective to provide an output illumination area. The front reflector has a blue sloped transmission spectra, at normal incidence with a range among bin values from 15% to 100%.
US10162217B2 Liquid crystal display device having improved cooling efficiency
A liquid crystal display device includes a liquid crystal display panel, a light guide plate disposed on a lower part of the liquid crystal display panel, an LED circuit substrate disposed along at least one side of the light guide plate to accommodate an LED on a front surface thereof, and a heat transmission member having a first part that faces a lower surface of the light guide plate and a second part that is extendedly bent from the first part and faces the LED circuit substrate.
US10162215B2 Automatic backlight control system and method thereof
An automatic backlight control system and a method thereof, for receiving and analyzing an image dataset to control the backlight module of a display device are provided. Firstly, a first backlight intensity value generated by using the analysis and control module to analyze a first frame data is stored in the storage module. Then, the analysis and control module generates a translation vector value according to a first vector component and a second vector component of an equivalent translation vector corresponding to a second frame data of the image dataset. When the translation vector value is smaller than the threshold value, the selection module transmits the first backlight intensity value to the backlight control module for controlling the backlight module according to first backlight intensity value. When the translation vector value is greater than the threshold value, the backlight control module controls the backlight module according to the second backlight intensity value.
US10162214B2 Liquid crystal display device, optical control member, and base material for manufacturing optical control member
A liquid crystal display device according to one aspect of the present invention includes a liquid crystal panel of a vertical alignment mode, and an optical control member disposed on a light-exiting side of the liquid crystal panel. The liquid crystal panel includes a plurality of pixels having at least two domains (50a, 50b), in which directors of liquid crystal molecules are in a first direction. An absorption axis of a first polarizing sheet and an absorption axis of a second polarizing sheet are a mutually orthogonal and form angle that is approximately 45°. The optical control member includes a base, a light diffusion part, a light blocking layer and a low refractive index part. A planar shape of the light blocking layer (40) when seen from a normal line direction of the base has a straight line part parallel to the absorption axis (P1, P2) of one of the first polarizing sheet and the second polarizing sheet and a straight line part forming an angle of less than 45° with the absorption axis (P1, P2) of one polarizing sheet.
US10162211B2 Display control in display devices
The present subject matter relates to display devices. In an example implementation, a display device comprises a display unit having color pixels and tracks of a black matrix covering spaces between the color pixels. The display device also comprises a display control layer over the display unit. The display control layer has longitudinal channels separated by transparent substrates and overlapping the tracks of the black matrix in one direction. The longitudinal channels comprise a first set of channels filled with undoped bi-stable liquid crystals to control a view angle of a display from the display unit, and a second set of channels filled with doped bi-stable liquid crystals to control absorption of blue/ultraviolet (UV) light from the display unit.
US10162207B2 Ultra high resolution liquid crystal display
The present disclosure relates to an ultra high resolution liquid crystal display having a compensation thin film transistor. The present disclosure provides an ultra high density liquid crystal display comprising: a gate line on a substrate; a first gate insulating layer on the gate line; a first semiconductor layer crossing the gate line on the first gate insulating layer; a second gate insulating layer on the first semiconductor layer; a second semiconductor layer crossing the gate line on the second gate insulating layer; an intermediate insulating layer on the second semiconductor layer; a data line connected to the first semiconductor layer on the intermediate insulating layer; and a drain electrode connected to the second semiconductor layer on the intermediate insulating layer.
US10162205B2 Display device comprising a display panel fixed to a lower chassis by a metal line
Provided is a display device capable of reducing a bezel space. The display device includes: a display panel; a lower chassis receiving the display panel; and a metal line fixed to one edge of the display panel and the lower chassis.
US10162204B2 Display with telescopic member
The present disclosure proposes a display. The display includes a first display panel, a second display panel, and a connecting mechanism, connecting the first display panel and the second display panel, for adjusting relative positions of the first display panel and the second display panel. By means of the connecting mechanism, relative positions of the first display panel and the second display panel are adjustable. Therefore, the display can be applied to a plurality of scenarios and saves material cost.
US10162202B2 Transfer plate for forming alignment films on motherboard having unit display screens
The disclosure provides a transfer plate, a display screen, a display device and a method for manufacturing a display device. The transfer plate includes a print region and a non-print region, and the print region includes multiple print sub-units which are arranged in a one-to-one correspondence with multiple unit display screens of a motherboard. Each print sub-unit is provided with a mark region, and the mark regions are for forming marks on the respective unit display screens while forming alignment films on the respective unit display screens of the motherboard, to identify the respective unit display screens of the motherboard.
US10162201B2 Optical modulator
Provided is an optical modulator in which low-voltage drive and a stable modulation characteristic are secured over a wide bandwidth. An optical modulator includes: a substrate 10; an optical waveguide (not shown) formed in the substrate 10; a modulation electrode (a signal electrode 11 and a ground electrode 12) for modulating light waves propagating through the optical waveguide; and an external signal line (not shown, only a connection connector 4 is shown) which is provided outside the substrate and supplies a modulation signal to the modulation electrode, in which an impedance value of the modulation electrode in an active region S in which an electric field formed by the modulation electrode is applied to the optical waveguide is set to be lower than an impedance value of the external signal line, and an impedance adjustment part 21 having an impedance adjustment function with respect to mainly a modulation signal in a low-frequency area and configured of a lumped-constant circuit, and an impedance matching line L having an impedance adjustment function with respect to mainly a modulation signal in a high-frequency area are disposed between the external signal line and the active region of the modulation electrode.
US10162200B1 Electro-optic phase modulator and method of manufacturing the same
An electro-optic (EO) phase modulator is disclosed. The EO phase modulator includes: an insulating layer; a central optical waveguide over the insulating layer; a first region having a first type doping adjacent to a first sidewall of the central optical waveguide; a second region having a second type doping opposite to the first type doping adjacent to a second sidewall of the central optical waveguide opposite to the first sidewall; and a first dielectric layer passing through the central optical waveguide from a top surface of the central optical waveguide to a bottom surface of the central optical waveguide. A method of manufacturing the same is disclosed as well.
US10162199B2 Wavelength-tunable III-V/Si hybrid optical transmitter
An optical transmitter includes a reflective semiconductor optical amplifier (RSOA) coupled to an input end of a first optical waveguide. An end of the first optical waveguide provides a transmitter output for the optical transmitter. Moreover, a section of the first optical waveguide between the input end and the output end is optically coupled to a ring modulator that modulates an optical signal based on an electrical input signal. A passive ring filter (or a 1×N silicon-photonic switch and a bank of band reflectors) is connected to provide a mirror that reflects light received from the second optical waveguide back toward the RSOA to form a lasing cavity. Moreover, the ring modulator and the passive ring filter have different sizes, which causes a Vernier effect that provides a large wavelength tuning range for the lasing cavity in response to tuning the ring modulator and the passive ring filter.
US10162191B2 Mirror tilt actuation
Some embodiments include an image sensor and a zoom lens assembly including a plurality of movable lens elements arranged to be moved independent of one another. In some embodiments, the plurality of movable lens elements share an optical axis. Some embodiments include a lens and mirror assembly for admitting light to the miniature camera. The lens and mirror assembly includes a folded optics arrangement such that light enters the lens and mirror assembly through a first lens with an optical axis of the first lens orthogonal to the plurality of moveable lens elements. The lens and mirror assembly includes a mirror for folding the path of light from the optical axis of the first lens to the optical axis of the plurality of movable lens elements, and the lens and mirror assembly further includes an actuator for tilting the mirror.
US10162190B2 Electromagnetic driving module and lens driving device using the same
An electromagnetic driving module is provided which includes a frame, a magnetic element, a base, and an OIS driving coil. The frame surrounds a main axis. The magnetic element is disposed on the frame and has an engaging surface in contact with the frame. The base is arranged to be adjacent to the frame. The OIS driving coil for driving the movement of the frame in a direction that is perpendicular to the main axis is disposed on the base and arranged to correspond to the magnetic element.
US10162189B2 Device, system and method for the visual alignment of a pipettor tip and a reference point marker
The present invention is directed to a device, system and method for the visual alignment of a pipettor tip and a reference point marker. The invention also relates to a use of the device. The device comprises a mirror and two lenses inside the device and four windows, wherein two first windows are perpendicular to each other, the mirror is arranged behind one of the two first windows, the two lenses are each arranged behind two second windows, one of the first windows and one of the second windows are arranged parallel to each other, and one of the first windows and one of the second windows are arranged perpendicular to each other.
US10162185B2 Head-mounted display and brightness control method
In a head-mounted display for presenting a video by shielding an outside world from a field of view of a user when mounted on the user, an information presentation block presents information including audio and a moving image to the field of view of the user; a video reproduction block reproduces a video of content; a camera takes a video of the outside world; a switching block selectively switches between the video of the content and the video of the outside world and causes the selected video to be presented onto the information presentation block; and a gain control block, when the switching block switches from the video of the content to the video of the outside world, gradually increases a brightness of the video of the outside world.
US10162183B2 Head mounted display device
A head mounted display device includes a scanning section that forms a scan image by scanning a light beam emitted from a light source, a light guiding optical system that guides the light beam emitted from the scanning section, and a deflection member that deflects the light beam guided by the light guiding optical system toward the eye. The light guiding optical system includes an optical correction system in which a first light path length of a light beam from the scanning section to a first end portion on a nose side of the deflection member is longer than a second light path length of a light beam from the scanning section to a second end portion on an ear side of the deflection member, and that corrects scanning distortion in the scan image which cause a virtual image to have different magnifications in a horizontal direction.
US10162180B2 Efficient thin curved eyepiece for see-through head wearable display
An eyepiece for a head wearable display includes a curved lightguide component, an input coupler, and an output coupler. The curved lightguide component guides display light received at an input region peripherally located from a viewing region and emits the display light along an eye-ward direction in the viewing region. The curved lightguide component includes an eye-ward facing surface that is concave and a world facing surface that is convex. The input coupler is disposed at the input region to couple the display light into the curved lightguide component. The output coupler is disposed at the viewing region to redirect the display light towards the eye-ward direction for output from the curved lightguide component. The output coupler is partially transmissive to ambient light incident through the world facing surface. The display light is guided between the input coupler and the output coupler entirely by total internal reflection.
US10162177B2 Method and apparatus for self-relative body tracking for virtual reality systems using magnetic tracking
A method and apparatus for self-relative body tracking in virtual reality systems using magnetic tracking is disclosed, which allows more accurate tracking of a user's body relative to the user's field of vision. A head-mounted magnetic tracking (HMMT) system is used, in which other parts of a user's body are tracked relative to the HMD on the user's head, rather than relative to a base station. This results in less distortion of the magnetic field used for tracking and thus allows for more accurate determination of the position and orientation of a user's body parts relative to the user's field of vision, so that a more accurate avatar may be presented on the HMD to the user. This allows the avatar of the user's body part to be shown in a location that corresponds closely to its physical position. In an alternative embodiment, multiple portions of the user's body may be tracked.
US10162175B2 Dual head-up display apparatus
The present disclosure relates to a head-up display apparatus (1). An image source (3) is provided for generating a composite image comprising a first image (IMG1) and second image (IMG2). An image splitter configured to separate the first image (IMG1) from the second image (IMG2). A first imaging assembly (5) is arranged to project the first image (IMG1) generated by the image source (3) to produce a first virtual image (VIMG1); and a second imaging assembly (7) is arranged to project the second image (IMG2) generated by the image source (3) to produce a second virtual image (VIMG2). The present disclosure also relates to a vehicle (V) incorporating a head-up display apparatus (1).
US10162174B2 Transmissive display apparatus
A display apparatus comprises a display device including an imagewise light emitting unit that emits imagewise light for displaying an input image, and a display surface member that includes a display surface that displays the input image as a displayed image, and transmits backside ambient light or reflects ambient light; an observation distance detecting section that detects an observation distance between the display surface and an observer; a display brightness acquiring section that acquires display brightness of the display device; an ambient light detecting section that detects the ambient light; and an image processing unit that performs image processing to adjust input spatial frequency characteristics of the input image based on the display brightness, the observation distance, and the ambient light such that display spatial frequency characteristics of the displayed image agree with target spatial frequency characteristics.
US10162173B2 Imaging lens and imaging apparatus
An imaging lens is constituted by, in order from the object side to the image side: a negative first lens having a concave surface toward the image side; a positive second lens having a convex surface toward the image side; a negative third lens having a concave surface toward the image side; a positive biconvex fourth lens; a positive biconvex fifth lens; and a negative sixth lens having a concave surface toward the object side. Conditional Formula (1) related to the combined focal length f12 of the first lens and the second lens and the focal length f of the entire lens system is satisfied: −5
US10162171B2 Scanning optical system and light projecting and receiving apparatus
A scanning optical system, includes a mirror unit having a first mirror surface and a second mirror surface which incline to a rotation axis; and a light projecting system having a light source. A light flux emitted from the light source is reflected on the first mirror surface of the mirror unit, thereafter, reflected on the second mirror surface, and then, projected so as to scan in a main scanning direction onto an object in accordance with rotation of the mirror unit. In the case where a virtual plane is set in a range including the object, a light flux reflected on the second mirror surface has, upon entering the virtual plane, a cross sectional shape in which a length in a direction orthogonal to the main scanning direction is longer than a length in the main scanning direction.
US10162170B2 Optical device
An optical device includes: an excitation light source; a first light transmitter that transmits excitation light emitted from the excitation light source; a fluorescent light part that is disposed on a surface of the first light transmitter opposite a surface through which the excitation light enters, and emits fluorescent light from the excitation light; a second light transmitter that interposes the fluorescent light part with the first light transmitter, and transmits light emitted from the fluorescent light part; a light transmission fiber that guides the light exiting from the second light transmitter; and a microfabricated film that is disposed on a side of the second light transmitter closer to the light transmission fiber, and collects, toward the light transmission fiber, the light emitted from the fluorescent light part.
US10162169B2 Endoscopy system
The present disclosure relates to an endoscopy system. The endoscope system includes: a first light source unit configured to be provided on a substrate, and to have a first terminal to which power is supplied; a second light source configured to be provided on the substrate, and to have a second terminal to which power is supplied; a light guide unit configured to guide a light of the first light source unit and the second light source unit to the inside of a target object; an image sensing unit configured to sense the light reflected and reached from the target object to convert into an image signal; and an image signal processing unit configured to process the image signal to display on a display unit.
US10162164B2 Flexion arm mount
A method for attaching camera filters and other light transmissive elements using flexural rigidity. A flexion arm enables coupling with cameras and other devices in areas non-proximate to a lens. A frame conjoined with the flexion arm enables attachment of the camera filter to a camera lens or lens housing.
US10162163B2 Image pickup apparatus and image pickup system
An image pickup apparatus includes an image pickup element and an optical system. The image pickup element includes a plurality of pixels, and the plurality of pixels is arranged in rows two-dimensionally. The optical system includes in order from an object side, a first lens unit which includes a plurality of lenses, a stop, and a second lens unit which includes a plurality of lenses. The first lens unit includes a first object-side lens which is disposed nearest to an object, and the second lens unit includes a second image-side lens which is disposed nearest to an image. The following conditional expressions (1), (2), (3), (4), and (5) are satisfied: 3250<2Y/p  (1), −1.0<β  (2), CRAobj<10 deg  (3), 2.0
US10162158B2 Projection lens with peripheral thick part and vehicle lamp provided with the same
A projection lens formed of a light-transmitting resin including an incidence part on which light is incident, an emission part, a peripheral edge portion, and a thick part. Light is incident on the incidence part. The emission part emits the light incident from the incidence part. The peripheral edge portion is provided at a boundary between the incidence part and the emission part. The thick part is provided at a part of the peripheral edge portion, made thicker in an optical axis direction than other parts of the peripheral edge portion and having a gate mark formed at least on a part of an outer peripheral surface of the thick part.
US10162150B2 Lens driving apparatus
A lens driving apparatus includes a holder, a cover, a carrier, a first magnet, a coil, a spring, two second magnets and a hall sensor. The holder includes an opening hole. The cover is made of metal material and coupled to the holder. The carrier is movably disposed in the cover, and for coupling to a lens. The first magnet is connected to an inner side of the cover. The coil is wound around an outer side of the carrier, and adjacent to the first magnet. The spring is coupled to the carrier. The second magnets are disposed on one end of the carrier which is toward the holder. The hall sensor is for detecting a magnetic field of any one of the second magnets, wherein the magnetic field is varied according to a relative displacement between the hall sensor and the second magnet which is detected.
US10162149B1 Methods and apparatus for focus control in an imaging system
Various embodiments of the present technology may comprise methods and apparatus for focus control in an imaging system. The methods and apparatus may comprise various circuits and/or systems configured to measure the ambient temperature of the lens module and compute a corrected target position based on known thermal characteristics of the lens and/or the lens barrel. Factors used to obtain the corrected target position may comprise the material the of the lens barrel, the thermal time constant of the lens barrel, the linear expansion coefficient of the lens barrel, the effective focal length (EFL) of the lens, the thermal response of the lens, and/or the temperature characteristic coefficient of the EFL.
US10162144B2 Fiber optic cable assembly
A cable assembly includes a distribution cable, a tether cable, and a network access point (NAP) assembly having a cavity defined therein. The distribution cable includes optical fibers and the tether cable includes an optical fiber. The optical fiber of the tether cable is tightly constrained within the tether cable and portion thereof extends from the tether cable into the cavity of the NAP assembly and is spliced to a portion of one of the optical fibers of the distribution cable extending into the cavity of the NAP assembly from a side of the distribution cable. The splice is positioned in the cavity. Tight constraint of the optical fiber of the tether cable within the tether cable limits transmission of fiber movement to the portion of the optical fiber of the tether cable extending into the cavity of the NAP assembly, thereby protecting the splice.
US10162132B2 Pull part and optical module
A pull part for coupling to a connector includes a latch configured to be coupled to a housing of the connector and a tab configured to be coupled to the latch, wherein the latch has two support parts, a beam, and connecting portions, the beam connecting the two support parts, the connecting portions being situated between the support parts and the beam, and the two support parts configured to be attached to the housing, wherein the tab includes a body and a handle, the body having connection grooves formed at one side thereof and having the handle at an opposite side thereof, and wherein the connecting portions situated between the support parts and the beam are inserted into the connection grooves so as to couple the latch and the tab to each other.
US10162127B2 Expanded beam array for fiber optics
An expanded beam fiber optic array connector includes a ferrule holding ends of optical fibers in a first ordered array. A plurality of lenses packaged into a unitary structure, formed of an optical grade material, different than a material used to form the ferrule, is attached to the ferrule. The lenses are arranged into a second ordered array matching the first ordered array of the ends of the optical fibers. The lenses of the expanded beam connector associated with transmit channels can be constructed with a prescription geared specifically for transmitting light, whereas the lenses of the expanded beam connector associated with receive channels can be constructed with a prescription geared specifically for receiving light.
US10162124B2 Fiber optic end-face transparent protector system and method
A protective assembly method using a transparent layer within the fiber interconnect system aids in optical coupling by preventing an air gap from forming between the fiber cores within a connector. A thin transparent film (or with adhesive) is placed over the fiber end-faces at the connector interface, the film having characteristics which allows it to conform to the fiber end and minimize coupling loss between fibers. The film is sized to fit connectors faces and can be temporary, being replaced with each installation. A coating can also applied to the connector surface, providing a similar effect, as well as structurally enhancing the connector surfaces.
US10162122B2 Apparatus for and method of terminating a multi-fiber ferrule
An apparatus allows a plurality of optical fibers to be held together during the termination process. A handling device holds the optical fibers while a cleaving device allows for consistent cleaving of the optical fibers to ensure the ends are cleaved consistently. The handling device may also be used during the fixation of the optical fibers in the fiber optic ferrule. A method for terminating the plurality of optical fiber is also provided.
US10162118B2 Optical coupling element
A method of manufacturing a coupling element configured to couple light between an optical device and one or more optical fiber comprises forming one or more waveguide in the silica. The one or more waveguide having a refractive index configured to guide the light between the optical device and the optical fiber. The forming of the one or more waveguide comprises photo-inducing a refractive index variation of the silica material.
US10162117B2 Uncooled operation of microresonator devices
This invention removes the need to provide temperature control for an optical time delay chip, which is usually provided by a thermo-electric-cooler, in order to significantly reduce the power dissipation of the device and allow ‘uncooled’ operation. Uncooled operation is achieved by monitoring the temperature of the chip, and changing the tuning of each microresonator within the device in order to continue providing the required time delay as the temperature is varied. This invention takes advantage of the fact that microresonators provide a series of resonant wavelengths over a wide wavelength range, so that the closest resonance wavelength below the operating wavelength can always be tuned up to that wavelength. When the device temperature changes, this is accounted for by both the choice of resonance wavelengths and the tuning for each of the microresonators in the device, in order to keep the correct tunable delay.
US10162114B2 Reflective optical coherence tomography probe
A beam-shaping optical system suitable for use with optical coherence tomography includes a beam-shaping body having a beam-shaping element and an alignment feature. An optical fiber is coupled to the alignment feature. The fiber has a fiber end configured to emit an electromagnetic beam. The fiber and the body are configured to direct the beam into the beam-shaping element such that the beam is shaped solely by reflection into an image spot.
US10162112B2 Optical wire bond apparatus and methods employing laser-written waveguides
An optical wire bond apparatus for optically connecting an optical-electrical integrated circuit (OE-IC) to an optical-electrical printed circuit board (OE-PCB) is formed by laser writing cores in a flexible glass support member to define an array of optical waveguides. The support member has a bend section and the waveguides reside close to either a top or bottom surface of the support member at the bend section. The cores have a front-end portion that can be laser written after the front end of the support member is coarse-aligned to optical waveguide structures in the OE-PCB to obtain fine alignment. The support members can be formed from flexible glass sheets or by drawing a glass preform. A photonic assembly that includes the OE-IC and the OE-PCB optically connected using the optical wire bond apparatus is also disclosed.
US10162109B2 Multimode optical fibers for attenuators
According to embodiments, an optical fiber may include a core portion comprising a radius rC, a centerline CL, a numerical aperture NA greater than or equal to 0.15 and less than or equal to 0.25, a graded relative refractive index profile having a maximum relative refractive index ΔCmax and an α value greater than or equal to 1 and less than or equal to 3. The core portion may include an up-dopant with a graded concentration from the radius rC to the centerline CL and an attenuation dopant with a constant concentration from the centerline CL of the core portion to the radius rC of the core portion. The optical fiber is multi-moded for wavelengths of light within a range from 800 nm to 1350 nm and an attenuation of the optical fiber wavelengths between 800 nm and 1000 nm is greater than or equal to 0.5 dB/m.
US10162108B2 Optical fiber
An optical fiber includes an optical transmission medium having a core and a cladding, a primary resin layer disposed in contact with the optical transmission medium to coat the optical transmission medium, and a secondary resin layer coating the primary resin layer, wherein a Young's modulus of the primary resin layer is 0.5 MPa or less at 23° C., and the primary resin layer comprises a cured product of an ultraviolet light curable resin composition containing a urethane (meth)acrylate oligomer, a monomer, a photopolymerization initiator and a β-diketone compound, and tin.
US10162104B2 Display panel fixing frame and display device
A display panel fixing frame includes a front housing for surrounding the front edge part of the display panel and a back housing for covering the rear side of the display panel. A lateral part of the front housing is adjacent to a lateral part of the back housing, and the lateral part of the front housing and the lateral part of the back housing are fixed with each other by snap-fit.
US10162103B2 Flexible backlight illumination carrier
A display includes a light guide plate, a plurality of light sources disposed along an edge of the light guide plate, and a flexible carrier to which the plurality of light sources are secured. The flexible carrier includes a plurality of flexures, each flexure of the plurality of flexures disposed between a respective pair of adjacent light sources of the plurality of light sources to allow a spacing between the pair of adjacent light sources to change.
US10162097B2 Optical system, and assembly for emitting light
An optical system for influencing a light has a first optical element (1), by means of which a plane (E) is defined, wherein the first optical element (1) has a lateral edge region (11) designed for the entry of the light, and a second optical element (2), wherein the second optical element (2) is arranged parallel to the first optical element (1) and has a light outlet region (21) for the exiting of the light. The lateral edge region (11) of the first optical element (1) is designed to reduce the glare of or bundle the light in the plane (E), and the second optical element (2) has a elongate lens element (3), which extends along a longitudinal axis (L) and is designed to reduce the glare of or bundle the light in an additional plan (E′), which is oriented at least substantially perpendicularly to the plane (E) mentioned first.
US10162095B2 Backlighting for a button assembly and method
A button assembly is described. The button assembly includes a button that includes a translucent interior material and an opaque front surface with at least one aperture through which light can pass. The button assembly also includes a light guide that includes a light transmitting material and a reflector. The light guide is a molded part where the light transmitting material is molded with the reflector as an integral part of the light guide. The light guide provides illumination to a back surface of the button.
US10162089B2 Light amount adjustment device and optical device
A light amount adjustment device of this invention includes a light path forming member including an aperture which forms a light path, a plurality of light amount adjustment members which adjust the amount of light which passes through the aperture, and a plurality of movement units linearly advancing and retracting the light amount adjustment members with respect to the aperture.
US10162088B2 Image display apparatus
An image display apparatus including an image display panel that includes: a first color filter for passing light of a first primary and first auxiliary pixels for displaying the first primary; a second color filter for passing light of a second primary and second auxiliary pixels for displaying the second primary; a third color filter for passing light of a third primary and third auxiliary pixels for displaying the third primary; and fourth auxiliary pixels for displaying a fourth color; the first auxiliary pixels, the second auxiliary pixels, the third auxiliary pixels, and the fourth auxiliary pixels being arranged in a two-dimensional matrix, and a light shielding region disposed at least partly around the peripheral edge of each of the fourth auxiliary pixels.
US10162080B2 Method for predicting fluid flow
A method of enhancing a geologic model of a subsurface region is provided. A bed topography of the subsurface region is obtained. The bed topography is defined by a plurality of cells with an elevation associated with each cell center. The bed topography is represented as a cell-centered piecewise constant representation based on the elevations associated with the cells. The bed topography is reconstructed to produce a spatially continuous surface. Flux and gravitational force-related source terms are calculated based on the reconstructed bed topography. Fluxes are calculated between at least two of the cells. Fluid flow, deposition of sediments onto the bed, and/or erosion of sediments from the bed are predicted using the fluxes and gravitational force-related source terms. The predictions are inputted into the geologic model to predict characteristics of the subsurface region, and the predicted characteristics are outputted.
US10162079B2 Neutron-gamma density through normalized inelastic ratio
Systems, methods, and devices for determining a neutron-gamma density (NGD) measurement of a subterranean formation that is accurate in both liquid- and gas-filled formations are provided. For example, a downhole tool for obtaining such an NGD measurement may include a neutron generator, a neutron detector, two gamma-ray detectors, and data processing circuitry. The neutron generator may emit neutrons into a formation, causing a fast neutron cloud to form. The neutron detector may detect a count of neutrons representing the extent of the neutron cloud. The gamma-ray detectors may detect counts of inelastic gamma-rays caused by neutrons that inelastically scatter off the formation. Since the extent of the fast neutron cloud may vary depending on whether the formation is liquid- or gas-filled, the data processing circuitry may determine the density of the formation based at least in part on the counts of inelastic gamma-rays normalized to the count of neutrons.
US10162076B2 Method and apparatus for correction of transient electromagnetic signals to remove a pipe response
Methods and systems for estimating properties of formations penetrated by boreholes are provided, including conveying a carrier through a borehole having a transmitter, a first receiver, and a second receiver, the first receiver positioned a first distance from the transmitter and the second receiver positioned a second distance from the transmitter, generating a transient electromagnetic field with the transmitter, obtaining a total signal from signals received by the first receiver and the second receiver, performing a bucking calculation to obtain a pipe signal, applying a correction scheme to the total signal to generate a corrected formation property signal, wherein the correction scheme is Vcorr=Vmeas−P*Vmeas, wherein Vcorr is a correction signal, Vmeas is the total signal, and P is the pipe signal, estimating a formation property from corrected formation property signal to select a model of the formation, and adjusting a drilling operation based on the estimated property of the formation.
US10162073B2 Marine surveys conducted with multiple source arrays
Marine surveys carried out with multiple source arrays comprising three or more sources are discussed. Each source of a multiple source array is an array of source elements, such as air guns. The sources of a multiple source array may be arranged in particular type of configuration that is effectively maintained while the survey vessel travels a sail line. The sources of the multiple source array are activated to acoustically illuminate a subterranean formation with acoustic signals. Two or more sources of a multiple source array may be activated to create blended seismic data. Methods to deblend, source deghost, and attenuate noise in the blended seismic data obtained by using a multiple source array are also discussed.
US10162070B2 Converting a first acquired data subset to a second acquired data subset
Acquired data that corresponds at least in part to a target structure is received. One or more subsets of a first type are formed from the acquired data. The one or more subsets of the first type are converted to one or more subsets of a second, different type.
US10162066B2 Coincidence-enabling photon-counting detector
The present approach relates to the use of energy-resolved, photon-counting detectors, such as CZT- or CdTe-based detectors, to acquire spectral information that is not available with conventional energy-integrating detectors. In certain embodiments, the present approach discussed reduces or eliminates spectral contamination incurred by transient signals in neighboring pixels in designs employing coincidence logic and shaping amplifiers with short shaping times.
US10162064B2 Scintillator array and methods of forming a scintillator array and a radiation detector
Embodiments of the present disclosure relate to a scintillator array including a reflector disposed between the scintillator pixels, and methods of forming the scintillator array and radiation detector. In an embodiment, the reflector can be used in the scintillator array without an adhesive. In another embodiment, the reflector can be disposed in a zigzag pattern between the scintillator pixels.
US10162063B2 Radiation dose detector with embedded optical fibers
An embedded optical fiber radiation dose detector, includes: a first optical fiber probe, wherein a first end of the first optical fiber probe is connected to a first light intensity detector, and a second end of the first optical fiber probe is a detecting end, wherein a first fluorescent material is embedded in a terminal of the detecting end of the first optical fiber probe. Advantages are as follows: the optical fiber probes of the present invention have an embedded structure, wherein an optical fiber probe, whose core is hollow inside, is produced with a micro processing technology, and the fluorescent material is embedded therein, so as to significantly improve an efficiency of coupling radiation-generated fluorescent signals into the cores of the optical fibers, and significantly decreases a size of an optical fiber sensor.
US10162057B2 Portable distance measuring device and method for capturing relative positions
Some embodiments of the invention relate to a method for capturing a relative position of at least one first spatial point by means of a portable distance measuring device, the method comprising positioning a known reference object, which has known features which may be captured by optical means, said features being arranged in a pattern designed for a resection, at least one first measuring process, comprising measuring a first distance to the first spatial point, and recording a first reference image linked in time with measuring the first distance, the reference object being imaged in the first reference image, and ascertaining the position and orientation of the distance measuring device relative to the reference object comprising identifying the reference object, recalling stored information about the known features of the identified reference object and identifying positions of known features of the reference object in the first reference image.
US10162052B2 Pre-warning method and vehicle radar system
A pre-warning method utilized in a vehicle radar system includes a first and a second millimeter-wave detection modules detecting dynamic information of a plurality of first targets and a plurality of second targets corresponding to the vehicle radar system in different dimensions of an area and obtaining a first and a second detection results, determining whether there are identical targets within the plurality of first targets and the plurality of second targets according to the first and the second detection results, determining 3-D dynamic information of at least an identical target after determining that the plurality of first targets and the plurality of second targets include the at least an identical target, and determining whether to trigger an alarm signal according to the 3-D dynamic information of the at least an identical target.
US10162045B2 Radar unit and method for operating a radar unit
The invention relates to a radar unit for transmitting and receiving a signal in a frequency band. The invention includes a control means and each of a transmission path and a receiving path. The transmission path includes an output unit for generating a transmission signal and a transmission antenna for emitting a transmission signal. The receiving path receives, processes, and relays a received signal, and has at least one receiving antenna for receiving the received signal. The control means is configured to activate the transmission path and to process the received signal. The transmission path, the receiving path, and the control means are configured to toggle the transmission output by means of a mono-frequency switching sequence, and to detect the frequency of the switching sequence in the receiving path. Furthermore, the invention provides a method for operating a radar unit, in particular, a method for monitoring a transmission output of the radar unit.
US10162039B2 Systems and methods for object detection
A detection apparatus with a self-test is presented. A detection apparatus such as a cable locator has an array of sensors in the form of ferrite antennas to detect an electromagnetic field produced by an object such as a buried cable. The signals are amplified, digitized and fed to a processing unit that outputs a detection signal to a display to indicate the detection of a cable. A programmable signal generator outputs a self-test signal via a voltage-current converter that is used to check the balance between the sensors. The self-test signal is directly coupled into each of the sensors through a wired connection and the processing unit uses the self-test signal to accurately determine the magnitude and phase balance of the sensors. The magnitude and phase data may be used to calibrate the instrument, apply data corrections or flag errors.
US10162038B2 Method of interfacing a LC sensor and related system
A method of interfacing a LC sensor with a control unit is provided. The control unit may include first and second contacts, where the LC sensor is connected between the first and the second contact. A capacitor is connected between the first contact and a ground. To start the oscillation of the LC sensor, the method may include during a first phase, connecting the first contact to a supply voltage and placing the second contact in a high impedance state such that the capacitor is charged through the supply voltage. During a second phase, the first contact may be placed in a high impedance state, and the second contact connected to the ground such that the capacitor transfers charge towards the LC sensor. During a third phase, the first contact and the second contact may be placed in a high impedance state so the LC sensor is able to oscillate.
US10162032B2 Magnetic resonance apparatus and operating method
In a magnetic resonance apparatus and an operating method therefor in which magnetic resonance data are acquired from a patient, a measurement process is used in which a number of magnetic resonance sequences are carried out sequentially, and a maximum measurement time parameter, describing a maximum possible measurement time for undershooting a threshold value for the overall energy input into the patient during the measurement process, is established, taking into account other known recording parameters of the measurement process. The maximum measurement time parameter is used to restrict the ability of an operator to set a measurement time parameter describing the measurement time as a recording parameter, and/or is used as the measurement time parameter.
US10162029B2 Magnetic lensing for beta emission imaging
In beta emission imaging, magnetic lensing allows a lower resolution detector to detect the spatial distribution of emissions at a higher resolution. The sample is placed in a magnetic field with field lines at a given density, and the detector is placed away from the sample where the magnet field lines diverge, resulting in a lesser density. Since the beta emissions travel along the field lines, the divergence of the field lines from the sample to the detector result in lensing or magnification. Using positron attenuation tomography to detect annihilation in the detector allows for correction due to self-absorption by the sample. The correction and lensing are used together or may be used independently.
US10162023B2 Apparatus for reducing vibrations in a pulse tube refrigerator such as for magnetic resonance imaging systems
A pulse tube refrigerator (PTR) comprising a pedestal head and a regenerator tube assembly is provided having particular application in cooling a Magnetic Resonance Imaging system. The PTR comprises a pedestal head and at least one cooled stage, the at least one cooled stage being mounted to a distal end, with respect to the pedestal head, of each of an associated regenerator tube and an associated pulse tube, the associated regenerator tube and associated pulse tube together providing pressurized coolant gas to the at least one cooled stage, wherein the associated regenerator tube and the associated pulse tube are elongate along substantially parallel axes; and further arranged, wherein, the displacements of the distal ends of each of the associated regenerator tube and the associated pulse tube in response to the cyclical changes in coolant pressure, are substantially the same when the pulse tube refrigerator is in use.
US10162020B2 Hall effect sensing element
In one aspect, a Hall Effect sensing element includes a Hall plate having a thickness less than about 100 nanometers an adhesion layer directly in contact with the Hall plate and having a thickness in a range about 0.1 nanometers to 5 nanometers. In another aspect, a sensor includes a Hall Effect sensing element. The Hall Effect sensing element includes a substrate that includes one of a semiconductor material or an insulator material, an insulation layer in direct contact with the substrate, an adhesion layer having a thickness in a range of about 0.1 nanometers to 5 nanometers and in direct contact with the insulation layer and a Hall plate in direct contact with the adhesion layer and having a thickness less than about 100 nanometers.
US10162019B2 Method and apparatus for determining a stray magnetic field in the vicinity of a sensor
An apparatus (10) for determining a stray magnetic field in the vicinity of a sensor is described. The apparatus (10) has a multipole permanent magnet (60) with four or more poles and an axis of rotation (70). The multipole permanent magnet (60) produces a magnetic field (65) with magnetic field vectors (67). Two vertical Hall sensors (40a and 40) are so arranged in two positions on a circular path (50) about the axis of rotation, such that the sum of the magnet field vectors (67) measured at the two positions is substantially zero.
US10162016B2 Reduction of magnetic sensor component variation due to magnetic materials through the application of magnetic field
A microelectronic device, possibly a packaged microelectronic device, contains a magnetic sensor component and magnetizable structural features. Magnetic moments of the magnetizable structural features are aligned parallel to each other. The microelectronic device is formed by applying a magnetic field so as to align magnetic moments of the magnetizable structural features with the applied magnetic field. Application of the magnetic field is subsequently discontinued. The magnetic moments of the magnetizable structural features remain aligned parallel to each other after the applied magnetic field is discontinued.
US10162012B2 Determining of a spatial distribution of the electrical contact resistance of an electrochemical cell
A method for determining a spatial distribution (Rcx,yf) of a parameter of interest (Rc) representative of a contact resistance between a bipolar plate and an adjacent electrode of an electrochemical cell, in which a spatial distribution (Rcx,yf) of the parameter of interest (Rc) is determined depending on the spatial distribution (Qx,ye) of a second thermal quantity (Qc) estimated beforehand from the spatial distribution (Tx,yc) of a set-point temperature (Tc) and from the spatial distribution (Dx,yr) of a first thermal quantity (Dr).
US10162009B2 Method for determining a fault in an electronically commutated electric motor
The invention relates to a method for determining a fault in an electronically commutated electric motor, in which at least one stator coil of the electric motor is connected in parallel in each motor phase, in which a motor phase is energized and the current flowing through this motor phase is measured. In a method in which a defect in the electric motor is identified reliably, the three motor phases are energized one after the other and the current occurring during this energization of the individual motor phases is measured, wherein the currents measured in the three motor phases are compared with one another and a defect in the electric motor is identified if the measured currents differ from one another.
US10162007B2 Test architecture having multiple FPGA based hardware accelerator blocks for testing multiple DUTs independently
Automated test equipment (ATE) capable of performing a test of semiconductor devices is presented. The ATE comprises a computer system comprising a system controller communicatively coupled to a tester processor. The system controller is operable to transmit instructions to the processor and the processor is operable to generate commands and data from the instructions for coordinating testing of a plurality of devices under test (DUTs). The ATE further comprises a plurality of FPGA components communicatively coupled to the processor via a bus. Each of the FPGA components comprises at least one hardware accelerator circuit operable to internally generate commands and data transparently from the processor for testing one of the DUTs. Additionally, the tester processor is configured to operate in one of several functional modes, wherein the functional modes are configured to allocate functionality for generating commands and data between the processor and the FPGA components.
US10161998B2 Test lead wire structure and test apparatus
A test lead wire structure for connecting signal lines in a display device with test lines outside, includes a first insulating layer, a second insulating layer, first lead wires, and second lead wires. The projections of the first lead wires on the second insulating layer and the projections of the second lead wires on the second insulating layer are alternately disposed. During the cutting operation, short circuits are effectively prevented from occurring between the different test lead wires.
US10161995B2 Temperature control system and method thereof
A temperature control system and method are provided. The system includes a first channel, a second channel, a heating element, a DUT chamber, a converter, a first PID controller, and at least one switching regulator. The heating element is disposed downstream of the first and the second channels to heat the first air from the first channel or the second air from the second channel according to an input power so as to provide mixing air with a temperature into the DUT chamber. The converter converts an AC power to a DC power. The first PID controller provides a first input signal according to a first set point and an amount of power consumed by the heating element. The input power is adjusted by the switching regulator to drive the heating element according to the first input signal. Thus, the use of electrical power is more efficient.
US10161987B2 Insulation degradation monitoring device
An insulation degradation monitoring device by which a degradation state of an insulator can be constantly monitored by a simple configuration, and a degradation degree can be decided. An insulation degradation monitoring device for an insulator, by which a high-voltage charging portion of an electric instrument is insulated from and supported to a grounding metal component, includes a penetration-type electric current sensor which is inserted to a connecting portion of the insulator and the grounding metal component, and detects a leakage electric current which is passed from the high-voltage charging portion through the insulator and is flowed to the grounding metal component; and a decision means which is connected to an output side of the electric current sensor, and decides a degradation degree of the insulator in accordance with a value of the leakage electric current.
US10161985B2 Fault location detection system and method
A fault location detection method includes detecting an EMI signal and analyzing the spectral content of the electrical signal to identify a fault. A location recorder records the location of the system when the EMI signals are detected and a processor analyses the EMI signals and records the location of the system to determine a location of the fault. A memory includes an aerial photograph of a geographic location within which faults are to be detected and wherein the processor overlays the position of the faults on the aerial photograph. In addition, a transparent intensity map is superimposed onto a satellite photo of a geographic location and this is displayed to a user.
US10161974B1 Frequency to current circuit
Aspects of the present disclosure include a frequency-to-current (F2I) circuit and systems, methods, devices, and other circuits related thereto. The F2I circuit is implemented with a delta-modulator-based control loop to settle and maintain an operating point on a bias node. The control loop provides an integral of an output of a comparator, and the comparator compares it to a self-built voltage reference. Upon powering on the circuit, an integrator in the control loop starts to integrate the charge on both a bias voltage and an internal voltage to provide a settling process for the internal voltage to approximate the reference voltage and for the bias voltage to approximate a predetermined operating point of the bias node. After the circuit has settled, the comparator's output charge toggles and the internal voltage and bias voltage become sawtooth-like waveforms at the reference voltage and operating points, respectively.
US10161972B2 Current and/or voltage sensor device with a memory element
A voltage and or current sensor device for use in medium- or high voltage application, wherein a sensor or sensors of the sensor device is or are arranged in a housing. To enhance communication between the sensor and an electronical device, in order to use maximum possible accuracy potential of the voltage and current sensors, a signal and/or data memory element is integrated in the sensor housing, or placed near the sensor such that the sensor device output signal can be directly evaluated.
US10161963B2 Electrical contact and testing apparatus
An electrical contact device includes a tubular element, a crown spring in the tubular element, a solid or hollow cylinder slideably received in the crown spring and a coil spring engaged with the cylinder for applying force while the cylinder is pressed against a test item and for returning the cylinder to a relaxed position. The crown spring holds the cylinder in the tubular element and allows the cylinder to slide back and forth while providing electrical connectivity between the cylinder and the tubular element. An electrical contact device includes a rod-shaped probe having a contact end and a contact sheet fixed to the probe, where the contact sheet has a plurality of prongs bent over the contact end of the probe for providing a plurality of contact points between the probe and a test item.
US10161955B2 Multi-directional sensor
A multi-directional sensor includes a housing unit having a surrounding wall that defines a housing space, a first magnetic component disposed on the housing unit, a conductive body disposed in the housing space and magnetically attracted to the first magnetic component, and a plurality of spaced-apart electrically conductive terminals surrounding the conductive body. When the multi-directional sensor is subjected to an impact, the conductive body is forced to move toward two adjacent conductive terminals which are opposite to the direction of impact due to inertia so as to bridge and electrically interconnect the two adjacent conductive terminals so that a signal can be generated.
US10161954B2 Motion detecting device and detecting method for repetitive motion
A detecting method for repetitive motion includes receiving a plurality of accelerated velocities, receiving a plurality of angular velocities, determining a plurality of stationary points according to the accelerated velocities, determining a plurality of motion periods according to the stationary points, wherein the motion periods separately correspond to different sets of the angular velocities, and clustering the motion periods according to differences among the different sets of angular velocities corresponding to the motion periods.
US10161952B2 Diode noise filter for a speed sensor with mechanically-induced electrical noise
A system for filtering mechanically-induced signal noise from a speed sensor may include a rotating member having at least one target group radially oriented about a center of the rotating member, an inductive speed sensor configured to sense the at least one target group, and two diode pairs each having a first diode and a second diode. The two diode pairs may be operatively connected to the inductive speed sensor and configured to receive a signal having the mechanically-induced signal noise. The system may also include a resistor connecting the diode pairs, a processor connected in parallel with the resistor and configured to receive a signal from the inductive speed sensor. The processor may be configured to receive a signal having reduced signal noise via the diode pairs, and determine a rotational speed of the rotating member based on the signal having reduced signal noise.
US10161951B2 Specimen processing apparatus for genetic testing
Disclosed is a specimen processing apparatus for genetic testing. The apparatus includes: a mode setting section configured to receive a setting of an operation mode from: an emulsion preparation mode for preparing a water-in-oil type (W/O type) emulsion having dispersed therein a plurality of droplets, each droplet containing a specimen which contains DNA and a bead to which a reagent component necessary for amplifying a target DNA molecule is bound; and an emulsion breaking mode for breaking the emulsion and collecting beads from the droplets; and a controller programmed to control the transfer unit and the dispensing unit in accordance with the operation mode set by the mode setting section.
US10161950B2 Reagent preparing device, reagent preparing method, and specimen processing system
A reagent preparing device capable of supplying a predetermined reagent, which includes a first liquid and a second liquid different from the first liquid, to a measurement section for measuring a specimen using the reagent, comprising: a pressure generator for generating pressure to transfer liquid; a reagent preparing section for executing a preparation operation of the predetermined reagent using the pressure generated by the pressure generator; and a controller configured for performing operations comprising: determining whether or not the reagent preparing section is executing the preparation operation, and controlling the generation of the pressure by the pressure generator according to the determination result, is disclosed. A reagent preparing method and a specimen processing system are also disclosed.
US10161942B2 Crossmatching blood samples
The present invention provides novel methods for the detection of antibodies, in particular, blood group antibodies. The methods of this invention may be applied to pre-transfusion blood compatibility testing for the detection of incompatibility between donor units (comprising donor red blood cells (erythrocytes)) and a recipient.
US10161936B2 Method and kit for cytokine analysis from a human whole blood sample
The invention relates to a method for prognostic evaluation of the disease progression of rheumatoid arthritis, in particular prognostic evaluation of the disease progression during treatment, and for the diagnosis and/or activity determination of rheumatoid arthritis by analysing cytokines from a human full blood sample. In the method according to the invention, a volume of a full blood sample of a human is transferred into at least one test tube containing a stimulating agent. As control samples, the same volume of a full blood sample of the human in each case is transferred into an empty test tube as a negative control and a test tube containing lipopolysaccharide as a positive control respectively. After incubation, the concentration of at least one proinflammatory cytokine is determined from the cell-free residue of each test tube. By way of an altered concentration of the at least one cytokine in the at least one test tube comprising the stimulating agent, the prognostic evaluation of the disease progression or the diagnosis is subsequently made.The invention further relates to an associated diagnostic kit and to the use thereof. The invention is applied in medical diagnostics and medical research.
US10161935B2 Test substance measurement kit and test substance measurement method
To provide a test substance measurement method and a test substance measurement kit adapted to improve the accuracy of the measurement of a test substance. A test substance measurement kit includes: fluorescent particles which are modified with a first binding substance having specific bindability to a test substance; non-fluorescent particles which are modified with a second binding substance having no specific bindability to the test substance; and a substrate on which a first metal film to which a third binding substance having specific bindability to the test substance is fixed, and a second metal film to which a fourth binding substance having no bindability to the test substance, but having bindability to the first binding substance is fixed, and which has a smaller thickness than the first metal film are formed.
US10161932B2 Azetidine-substituted fluorescent compounds
The presently-disclosed subject matter includes azetidine-substituted fluorescent compounds, where the compounds may be used as probes, dyes, tags, and the like. The presently-disclosed subject matter also includes kits comprising the same as well as methods for using the same to detect a target substance.
US10161931B2 Methods for determining susceptibility to coreceptor inhibitors
The invention provides a method for determining whether a human immunodeficiency virus is likely to be have enhanced ability to enter a cell expressing CD4 and CXCR4 relative to a reference HIV. In certain aspects, the methods comprise detecting one or more amino acids in an envelope protein of the HIV associated with enhanced ability to enter CD4- and CXCR4-expressing cells and determining that the HIV's ability to enter such cells is enhanced relative to a reference HIV, e.g., an HIV that does not comprise such amino acid(s).
US10161930B2 Antigen binding protein and its use as addressing product for the treatment of cancer
The present invention relates to a novel antigen binding protein, in particular a monoclonal antibody, capable of binding specifically to the protein Axl as well as the amino and nucleic acid sequences coding for said protein. From one aspect, the invention relates to a novel antigen binding protein, or antigen binding fragments, capable of binding specifically to Axl and, by inducing internalization of Axl, being internalized into the cell. The invention also comprises the use of said antigen binding protein as an addressing product in conjugation with other anti-cancer compounds, such as toxins, radio-elements or drugs, and the use of same for the treatment of certain cancers.
US10161924B2 Sensor system that uses embedded optical fibers
Sensor systems including an interferometer system are disclosed herein. In a general embodiment, the sensor system includes an optical fiber that is embedded into a sample, where the optical fiber has a reflective tip. The optical fiber is optically coupled to a sensor and a detector of the laser interferometer system. The sensor system further includes a computing device or circuit that is configured to receive electrical signals generated by the detector. The laser source is configured to emit light, which is coupled into the optical fiber. The light travels through the optical fiber until the light reaches the reflective tip, where it is reflected back through the optical fiber. The detector is impacted by the reflected light, and generates an electrical signal based upon the reflected light. The computing device generates a value that is indicative of a behavior of the sample based upon the electrical signal.
US10161920B2 Analytical system and method for detecting volatile organic compounds in water
An analytical system and method for detecting volatile organic chemicals in water including a coated SAW detector that provides for improved reduction of moisture at the coating of the SAW detector. A stabilized SAW sensitivity and long lasting calibration is achieved. The analytical system further includes an improved sample vessel and sparger that allow for easy grab sample analysis, while also providing efficient purging of the volatile organic compounds from the water sample. In addition, an improved preconcentrator provides a stabilized sorbent bed.
US10161917B2 Method and device for ultrasound inspection of welds, particularly welds of blades on the disk of a bladed disk
A method and device for ultrasound testing of welds is provided. For testing element welds on a body forming a single-piece assembly with these elements, the free end of a poly-articulated robot is fitted with an ultrasound probe which is fitted with an ultrasonic multi-element array transducer; the probe is inserted into the space between two adjacent elements of the assembly; the probe is moved along three-dimensional trajectories along the profile of the element; sectorial electronic scanning is performed in at least two non-parallel testing planes; and ultrasound signals output by the transducer in order to test the welds are processed. The method and device may be applied to welds of blades on the blisk of a bladed disk.
US10161915B2 In-situ contactless monitoring of photomask pellicle degradation
A method and apparatus for detecting changes in the vibrational mode spectra and/or elasticity of a pellicle without reliance upon visual inspection are provided. Embodiments include providing a pellicle, a lower surface of the pellicle attached to a photomask; directing light from a light source onto an upper surface of the pellicle at an angle to the upper surface; causing a deflection of the pellicle concurrently with the light being directed onto the pellicle; detecting light reflected off of the deflected pellicle; and characterizing a vibrational mode of the pellicle based on the detection.
US10161913B2 Metal weld inspection device, associated system and method
A portable device for inspecting a weld of metal tubes, comprises: at least one clamp formed from two jaws, each jaw including a circularly arcuate void defining, once the clamp has been closed, a substantially circular slot suitable for receiving a tube the weld of which is to be inspected; at least two multielement ultrasound probes that are mounted to be movable relative to the inspecting device and to be able to rotate relative to an axis passing through the center of the two lateral portions of the substantially circular slot of a clamp; a means configured to drive the ultrasound probes to rotate to pass around the entire circumference of the weld to be inspected; and an angular sensor configured to deliver a signal representative of the angular position of at least one sensor relative to an initial position.
US10161910B2 Methods of non-destructive testing and ultrasonic inspection of composite materials
A method of non-destructive testing includes locating an ultrasonic transducer with respect to a component having a visually-inaccessible structure to collect B-scan data from at least one B-scan of the component and to collect C-scan data from at least one C-scan of the component. The method also includes filtering the B-scan data and the C-scan data to remove random noise and coherent noise based on predetermined geometric information about the visually-inaccessible structure to obtain filtered data. The method further includes performing linear signal processing and nonlinear signal processing to determine a damage index for a plurality of voxels representing the visually-inaccessible structure from the filtered B-scan data and the filtered C-scan data to generate a V-scan image. A method of non-destructive testing of a wind turbine blade and an ultrasound system are also disclosed.
US10161909B2 Steady state fluid flow verification for sample takeoff
A system and method for substantially coincidental sample takeoff flow rate verification which detects unstable flow conditions in a pipeline, terminates fluid sample analysis during flow instability, and resumes sample takeoff when a steady flow state is re-established.
US10161902B2 Method for determining phenolics concentration
A method of determining a concentration of phenol and/or a phenol derivative in a first solution. The method includes (a) subjecting a graphite pencil electrode system comprising a graphite pencil working electrode, a counter electrode, and a reference electrode to cyclic voltammetry in a second solution such that a surface of the graphite pencil working electrode is charged by the cyclic voltammetry to form a charged surface, (b) contacting the charged surface of the graphite pencil working electrode with the first solution for sufficient time to electropolymerize the phenol and/or the phenol derivative on the charged surface in open circuit fashion, and (c) determining the concentration of the phenol and/or the phenol derivative in the first solution, wherein the amount of the electropolymerized phenol and/or the electropolymerized phenol derivative formed on the charged surface correlates with the concentration of the phenol and/or the phenol derivative in the first solution.
US10161899B2 Oxygen sensor with electrochemical protection mode
A process analytic instrument includes a measurement cell and an analyzer circuit. The measurement cell includes a solid state electrochemical oxygen sensor configured for exposure to a process gas. The analyzer circuit is coupled to the solid state electrochemical sensor to measure an electrical parameter of the solid state electrochemical sensor and provide an output indicative of oxygen in the process gas. A DC bias circuit is configured to selectably bias the solid state electrochemical oxygen sensor with a direct current when the solid state electrochemical sensor is in a reducing environment.
US10161895B2 Electronic moisture sensor
Moisture sensors that include a resonant circuit having a capacitive element and an inductive element, wherein the inductive element acts as an antenna; a conditionally conductive polymeric layer, wherein the conditionally conductive polymeric layer has a first level of conductivity when exposed to a first set of moisture conditions and has a second level of conductivity when exposed to a second set of moisture conditions; and an insulative layer disposed between the resonant circuit and the conditionally conductive polymeric layer.
US10161893B2 Characterization of material under test (MUT) with electromagnetic impedance spectroscopy
Methods of extracting complex impedance from selected subsurface volumes of a material under test (MUT) using various embodiments of electrode sensor pairs are provided. The electrode pairs can penetrate into a subsurface of the MUT, and operate below the surface of the MUT. Configurations of electrode pair sensors provide measured data of complex impedance of selected subsurface volumes of the MUT using electromagnetic spectrographic signals over a frequency range. The complex impedance characteristics of the subsurface volumes may be used to identify variations in the properties of the MUT, or be correlated to physical properties of the MUT.
US10161891B1 Method for characterizing rock physical characteristics of deeply buried carbonate rocks
The invention relates to the technical field of oilfield exploration and development, and particularly relates to a method for characterizing the rock physical characteristics of deeply buried carbonate rocks, comprising the following steps: determining a rock type of a rock thin section by identifying the surface structure characteristics of the rock thin section corresponding to a core plunger sample; performing a normal pressure nuclear magnetic resonance test and rock physical characteristic tests on the core plunger sample; establishing an identification plate, a first relation, a second relation and a third relation; characterizing the rock physical characteristics of a target rock sample under normal pressure and its buried depth according to the normal pressure nuclear magnetic resonance test result and the overburden pressure nuclear magnetic resonance test result of the target rock sample respectively.
US10161890B2 Cathodoluminescence-activated nanoscale imaging
Provided herein are non-invasive methods of nanoscale imaging of a sample using an illumination layer and an electron beam. For example, the electron may activate the illumination layer without activating the sample, and the illumination layer may emit cathodoluminescence to produce a nanoscale image of the sample.
US10161889B2 X-ray fluorescence spectrometer
A quantitative analysis condition setting unit (13) included in a sequential X-ray fluorescence spectrometer according to the present invention: performs qualitative analyses of a plurality of standard samples (14); sets, on the basis of the qualitative analysis results, a peak measurement angle of each measurement line for analytical samples (1) in quantitative analysis conditions; and obtains a single virtual profile by synthesizing peak profiles of the plurality of standard samples (14) subjected to the qualitative analyses and sets, on the basis of the virtual profile and a preset half value width of the peak profile, background measurement angles of each measurement line for the analytical samples (1) in the quantitative analysis conditions.
US10161888B2 Crystalline phase identification method, crystalline phase identification device, and X-ray diffraction measurement system
A crystalline phase contained in a sample is identified, from X-ray diffraction data of the sample which contain data of a plurality of ring-shaped diffraction patterns, using a database in which are registered data related to peak positions and peak intensity ratios of X-ray diffraction patterns for a plurality of crystalline phases. Peak positions and peak intensities for a plurality of the diffraction patterns are detected from the X-ray diffraction data (step 102), and the circumferential angle versus intensity data of the diffraction patterns is created (step 103). The diffraction patterns are grouped into a plurality of clusters on the basis of the circumferential angle versus intensity data (step 105). Crystalline phase candidates contained in the sample are searched from the database on the basis of sets of ratios of peak positions and peak intensities of the diffraction patterns grouped into the same cluster (step 106).
US10161887B2 Systems and methods for materials analysis
A system for the x-ray topography analysis of a sample, comprising in combination, a goniometer having a base, a tube arm rotatably associated with the base, a detector arm rotatably associated with the base, and a sample stage operatively associated with the base. The system also includes an x-ray source operatively coupled with the tube arm and is capable of emitting a non-collimated beam of x-rays. A collimator is operatively associated with the x-ray source and converts the non-collimated beam of x-rays into a collimated beam of x-rays having a quasi-rectangular shape with a divergence less than three degrees in all directions. A detector operatively coupled to the detector arm.
US10161886B2 Detection of surface contamination
A device implements a method for detecting contamination of an FTIR-based panel. The apparatus generates projection signals representing detection lines that have propagated on a plurality of propagation paths by total internal reflection (TIR) inside a transmissive panel such that contamination on the panel surface causes attenuation (frustration) of at least one of the projection signals. The device generates a transmission value for each detection line in the transmissive panel, and determines the presence of contamination on the surface of the panel by comparing the transmission values according to at least one of the presented comparison techniques.
US10161883B2 Wafer inspection method and wafer inspection apparatus
Provided is a wafer inspection method capable of examining whether pits are formed in wafer surfaces. The wafer inspection method includes the steps of: choosing defects of a wafer using a first optical system; selecting potential pits from the chosen defects; and classifying the potential pits into pits and defects other than the pits using a second optical system.
US10161882B1 Method of examining locations in a wafer with adjustable navigation accuracy and system thereof
A method, computerized system and computer program product for examining an object using a processor operatively connected to a memory, the method comprising: accommodating in the memory data indicative of a plurality of alignment targets, each alignment target associated with a target location on an object; accommodating in the memory a plurality of locations to be captured; and selecting by the processor an alignment target subset of the plurality of alignment targets, such that each of the plurality of locations is associated with and is within a determined distance from a single alignment target from the alignment target subset, the distance determined in accordance with a provided field of view, and wherein the alignment target subset comprises fewer targets than locations to be reviewed, the alignment target being usable for aligning the object relative to an examination tool for capturing the locations associated with the single alignment target.
US10161879B1 Measurement of thickness, surface profile, and optical power of a transparent sheet
This present invention relates to an apparatus and method for measuring the profile and reflective optical power of one or more surfaces of transparent sheets and transmissive optical power and thickness of one or more transparent sheets at a plurality of locations over the complete transparent sheet. The measurement results are presented to a user graphically and all data is stored for further processing, process control, and quality assurance.
US10161874B2 Polarization dependent surface enhanced Raman scattering system
A surface enhanced Raman scattering (SERS) active nanoassembly comprising anisotropically assembled gold nanoparticles in a monolayer double row immobilized on a glass layer is disclosed. The discrete gold nanoparticles are separated by interparticle gaps of 0.5-10 nm that provide hotsites where appropriate excitation creates surface plasmon resonaces and regions of strong and localized electromagnetic fields that enhance Raman signal substantially, 104-1015 fold. An appropriate SERS apparatus comprising the nanoassembly for detecting an analyte is also disclosed. In addition, a method for producing the nanoassembly as well as the application of the nanoassembly or the apparatus comprising the nanoassembly in a method for measuring the SERS signal of an analyte is disclosed.
US10161873B2 Fluorescent microscopic imaging method and apparatus
A fluorescence microscopic imaging method includes: after a to-be-detected sample plate is placed, lightening, according to experimental requirements, at least one monochromatic fluorescence excitation light source with a same color among multiple monochromatic fluorescence excitation light sources as a target light source, where monochromatic fluorescence excitation light emitted by each monochromatic fluorescence excitation light source obliquely enters a preset detection region of the to-be-detected sample plate; collecting, at a side of the to-be-detected sample plate facing away from the target light source, fluorescence of particles within the preset detection region excited by irradiation of monochromatic fluorescence excitation light emitted by the target light source, and magnifying the preset detection region a preset number of times; filtering the excited fluorescence of the particles within the preset detection region; and acquiring a fluorescence image of the preset detection region.
US10161871B2 Chemically stable sensing unit with protector element
The invention relates to a sensing unit (1) comprising a housing (2) that has a first housing opening which can be oriented towards a medium (M) to be analyzed, and a second housing opening on which at least one means for detachably rigidly connecting to a sensor shaft or sensor housing are arranged, or may be arranged, on the inner and/or outer side; at least one sensor element (3) that is arranged in the housing (2) and comprises indicators and, optionally, indicator protectors, said sensor element (3) having a first side facing the first housing opening and a second side lying opposite the first housing opening; and at least one protector element (4) which is arranged in the region of the first housing opening between the at least one sensor element (3) and the medium (M) which surrounds the sensing unit (1), particularly in the region of said housing opening, such that the sensor element (3) does not come into direct contact with the medium (M).
US10161867B2 Method and measuring device for determining a property of a medium
A method for determining a property of a medium, wherein an excitation signal is generated and transmitted into the medium, a measuring signal is generated from the excitation signal transmitted into the medium, the measuring signal is measured, an amplitude of the excitation signal and an amplitude of the measuring signal are determined, and the property of the medium is determined using the amplitude of the excitation signal and the amplitude of the measuring signal. To provide a method in which the accuracy of determination of the property of the medium is improved, the amplitude of the excitation signal is determined by digitizing the excitation signal and applying a lock-in method to the digitized excitation signal and determining the amplitude of the measuring signal by digitizing the measuring signal and applying the lock-in method to the digitized measuring signal.
US10161862B2 Method for analyzing molecular weight of the poly-p-phenylene terephthalamide
A method for analyzing molecular weight of the poly-p-phenylene terephthalamide (PPTA) utilizing near infrared spectrum is provided for reducing the time required to analyze the molecular weight of PPTA. The method uses PPTA samples to build a spectrum-viscosity fitting curve. The molecular weight of an unknown PPTA is analyzed via a near infrared analysis software and the spectrum-viscosity fitting curve. The method is beneficial in that it has a short process time and high reliability.
US10161860B2 Fog detection method
The present disclosure relates to a fog detection method in a vehicle comprising the steps of: providing a first fog sensor with a first transmitter emitting a first encoded optical signal into a vehicle's surroundings, and an associated first receiver for receiving an optical signal reflected from the vehicle's surroundings, and a first analyzing unit for decoding, analyzing and providing a first detection result related to the reception, wherein, for encoding, a code is selected among a plurality of possible codes (A,B,C) by the first transmitter in a code selection, and the code selection is communicated from the first transmitter to the first receiver and/or the analyzing unit, wherein, upon analyzing the signal received from the first receiver by the first analyzing unit, the code selection is used for identifying the first encoded optical signal in the received signal.
US10161854B2 Device for handling liquid comprising two or more optical features defining an optical path through a detection chamber
A device configured for rotation about an axis of rotation to drive liquid flow within the device. The device includes a detection chamber having opposed first second ends and two optical features defining an optical path through the detection chamber, between the first and second ends. The detection chamber includes a first liquid inlet disposed at the first end on a first side of the optical path, a first liquid outlet disposed at the second end of the detection chamber on the first side of the optical path and a second liquid outlet disposed at the second end of the detection chamber on a second side of the optical path. The first side of the optical path is radially outwards of the second side of the optical path.
US10161852B2 Special purpose cuvette assembly and method for optical microscopy of nanoparticles in liquids
A system for emitting and detecting electromagnetic radiation of multiple wavelengths to observe the motion of particles in a polydisperse solution in order to size the particles is provided. The system includes a first and second light sources constructed to emit a first and second beams of electromagnetic radiation at substantially a first and second wavelength, respectively. The beams are directed to a specimen chamber such that a portion of the beams scatter when illuminating the particles, and wherein the scattered portion of the beams are directed to a sensor. The first and second wavelengths are different from each other and a recorder is connected to the sensor. At processor controls the light sources in a time-division fashion, and from the resulting images the size of particles can be determined by tracking the motion of the particles.
US10161848B2 Methods for aligning a light source with a flow stream and systems thereof
Aspects of the present disclosure include methods and systems for assessing alignment of a light source with a flow stream. Methods according to certain embodiments include detecting first and second light signals along a vertical axis of the a light irradiated flow stream and calculating a differential signal amplitude between the first light signal and second light signal to assess the alignment of the light source with the flow stream. Systems for practicing the subject methods are also described.
US10161847B2 Method and system for detecting an airborne trigger
A method includes receiving multiplexed sensor data from a sensor array. The multiplexed sensor data includes first data from a first sensor of the sensor array and second data from a second sensor of the sensory array. The first data includes first frequency information of a first cantilevered element, the first cantilevered element including a coating material having an affinity for a compound and no diffusion barrier. The second data includes second frequency information of a second cantilevered element, the second cantilevered element including the coating material and a diffusion barrier. The diffusion barrier inhibits mass transfer to the second cantilevered element. The method also includes conditionally generating, based on an analysis of the first data and the second data, an output. The output is conditioned on the first frequency information and the second frequency information indicating more than a threshold amount of the compound present at the sensor array.
US10161839B2 Apparatus for measuring coefficient of restitution and hardness tester
An apparatus for measuring for measuring coefficient of restitution which is capable of reducing a mass effect and performing tests in free directions, is disclosed. The apparatus for measuring coefficient of restitution includes a holder for holding a spherical indenter, an ejection mechanism configured to eject the indenter held by the holder from the holder to a specimen, a speed measuring unit configured to measure an impact speed that is a speed of the indenter before the indenter impacts against the specimen, and a rebound speed that is a speed of the indenter after the indenter is rebounded from the specimen; and an arithmetic unit configured to calculate a coefficient of restitution that is a ratio of the rebound speed to the impact speed.
US10161838B2 Sensor assembly, method, and device for monitoring shear force and pressure on a structure
Shear force and pressure on a structure are simultaneously monitored using signals received from sensors with antennas on the structure. For example, sensors and systems for monitoring shear force and pressure have applications including ulcer prevention associated with structures including shoes, prosthetics, wheel-chairs, and beds of bed-bound patients.
US10161834B1 Method to determine performance of a chiller and chiller plant
A chiller and chiller plant monitoring method that provides real time performance and benchmark parameters using condenser water temperatures and flow rates to determine crucial performance metrics. A customized chiller model developed with algorithms to make comparative analysis for different operating scenarios. By applying a customized model for the supporting equipment, the entire plant can be monitored for performance. Actual operational metrics are compared with bench mark models to provide real time analysis of energy demand. The model also produces a control formula for condenser water reset. And defining the plant as a chilled water production system separate from the distribution system allows comparison with many with dissimilar operations.
US10161833B2 Building environment data collection systems
Building environment data collection systems and methods are described. According to one aspect, a system includes a plurality of sensor devices which store different types of environment data, a base system comprising a plurality of interface devices configured to receive the environment data from the sensor devices, storage circuitry configured to store the environment data, and communications circuitry configured to implement communications, and a user interface apparatus comprising communications circuitry configured to communicate with the communications circuitry of the base system, a user interface configured to receive user inputs during installation of the sensor devices, and processing circuitry configured to control the user interface to generate the displayed information and to process the user inputs received via the user interface, and wherein different ones of the sensor devices are configured to generate the different types of environment data as a result of the user inputs.
US10161831B2 Vehicle sensor with a plurality of lead wires
A sensor for a vehicle 1 is provided with a sensor element, plurality of lead wires electrically connected to the sensor element, a metallic cylindrical cover and a rubber bush positioned in a partial inner-space of a base end of the cylindrical cover. Radial contraction of the cylindrical cover and compression of bush, deforming the bush radially inward thereof, supports the leads wires inserted through each of the respective through-holes. The cylindrical cover is provided with a curved portion having a base end of which a whole circumferential edge is bent radially inward, thereby producing the curved portion opposing a rim of the bush in an axial direction.
US10161830B2 Method for characterization of photonic devices, and associated device
An intermediate signal is separated into a first sub-signal and a second sub-signal according to a separation coefficient having a known real value. The first sub-signal is delivered to a first photonic circuit containing at least one photonic device to be characterized and a first photonic part. The second sub-signal is delivered to a second photonic circuit containing a second photonic part having a same transfer function as the first photonic part but lacking the at least one photonic device. Optical output signals from the first and second photonic circuits are converted into first and second electrical signals. Losses of the at least one photonic device are determined from processing the electrical signals and from the known real value of the separation coefficient.
US10161828B2 Method for calibrating a polarisation axis measuring device and method for determining polarisation axes of spectacle lenses for a polarisation axis measuring device
In a method for calibrating a polarization axis measuring device, both flat sides of a calibration element in a polarization axis measuring device are irradiated with polarized light, wherein the method involves aligning in each case at least one polarization direction of the light in a first and/or second rotational position with a principal axis in a predefined angular relationship with respect to a polarization axis of the calibration element. Determining the rotational position of an axis of the calibration element is carried out by determining an angle bisector between the first and second rotational positions of the polarization direction of the incident light. The method involves assigning a predefined angle value for the rotational position of the principal axis of the polarization direction for which the latter is in the predefined angular relationship with respect to the axis of the calibration element inserted as intended. Furthermore, the invention relates to a method for determining polarization axes of spectacle lenses, to a calibration element, and to a polarization axis measuring device comprising a calibration element.
US10161827B2 Method and apparatus for inducing multiaxial excitation
An apparatus and method for inducing multiaxial vibrations to simulate an environment for transporting a stack of products is provided. A lower platform is provided for inducing uniaxial vibrations. A link is connected to the lower platform by a lower end of the link. The upper end of the link has a universal joint, through which the link is connected to an upper platform. The upper platform has a top surface, on which the stack of products can be placed. In operations, the uniaxial vibrations of the lower platform are transferred to the upper platform through the link and the universal joint, to induce pivotal movement of the upper platform with respect to the shaft of the link. As a result, multiaxial vibrations can be induced to the stack of products placed on the top surface of the upper platform.
US10161826B2 Method and apparatus for inducing multiaxial excitation
An apparatus and method for inducing multiaxial vibrations to simulate an environment for transporting a stack of products is provided. A lower platform is provided for inducing uniaxial vibrations. A link is connected to the lower platform by a lower end of the link. The upper end of the link has a universal joint, through which the link is connected to an upper platform. The upper platform has a top surface, on which the stack of products can be placed. In operations, the uniaxial vibrations of the lower platform are transferred to the upper platform through the link and the universal joint, to induce pivotal movement of the upper platform with respect to the shaft of the link. As a result, multiaxial vibrations can be induced to the stack of products placed on the top surface of the upper platform.
US10161824B2 Hydrostatic pressure test method and apparatus
A method of pressure testing a closed hydraulic system for leaks includes heating or cooling pressure intensification fluid before it enters the closed hydraulic system under pressure. The closed hydraulic system may be for example a blowout preventer for an oil/gas well, a manifold system or tubulars. The intensification fluid is heated or cooled to a temperature at or near the temperature of the fluid within the closed hydraulic system.
US10161823B2 Piezoelectric pressure sensor
A piezoelectric pressure sensor includes a sensor housing that accommodates a membrane, a piezoelectric sensor, a charge pick-off and a pre-stressing assembly. The membrane captures a pressure profile, and polarization charges are generated accordingly on the piezoelectric sensor by the captured pressure profile. The pre-stressing assembly includes a pre-stressing body and a pre-stressing sleeve and mechanically pre-stresses the piezoelectric sensor. The charge pick-off receives the polarization charges and is electrically insulated from the pre-stressing sleeve by a second gap. The charge pick-off is mechanically connected to the pre-stressing body via a first electric insulation body on a side of the pre-stressing body that faces away from the membrane and seals the second gap in a pressure-tight manner from an environment of the second gap.
US10161815B2 Rotor, and torque sensor and electronic power steering system including the same
The present invention relates to a rotor including a shaft sleeve having a shaft sleeve main body and a stopper formed to protrude outward from an end portion of the shaft sleeve main body; a magnet disposed on an outer circumferential surface of the shaft sleeve and a lower portion thereof is supported by the stopper; and a fixing part which fixes an upper portion of the magnet, and a torque sensor and an electronic power steering system including the same. Due to the above structure, a broken magnet is prevented from deviating even when a magnet is broken.
US10161813B2 Energy efficiency measurement system for four-wall structures
A system to determine thermal properties of wall assemblies under dynamic weather conditions is presented. The system comprises a house-like structure with a suite of measurement devices to measure temperatures, heat fluxes, and weather conditions. The data is recorded over several days, and employed in the calculations for the thermal transmittance and thermal resistance of the wall assembly.
US10161805B2 Laser frequency measurement method using optical frequency comb
To measure the frequency of a laser, the frequency of a beat signal that is generated by the interference between an optical frequency comb, used as the reference of measurement, and the laser to be measured is measured. In such a laser frequency measurement using the optical frequency comb, at least one of a repetition frequency and a CEO frequency of the optical frequency comb is changed so that the frequency of the beat signal becomes a predetermined value, and the frequency of the beat signal is measured, so that the frequency of the laser is measured. This allows measurement of the frequency of laser having large frequency variation and low stability.
US10161804B2 Electromagnetic wave oscillator, plasma wave power extractor and electromagnetic wave detector
An electromagnetic wave generator includes a 2DEG plate, a first resistor, a second resistor, a source and a floating plate and a dielectric body. The 2DEG plate is configured to form a 2DEG channel. The first resistor is connected to one side node of the 2DEG plate. The second resistor is connected to an opposite side node of the 2DEG plate. The source is disposed between the second resistor and a ground and configured to apply electric power to the 2DEG plate. The floating plate is configured to generate an electromagnetic wave using electric dipoles formed by the 2DEG channel. The dielectric body is formed between the 2DEG plate and the floating plate.
US10161803B2 Wafer level packaging of infrared camera detectors
An infrared detector useful in, e.g., infrared cameras, includes a substrate having an array of infrared detectors and a readout integrated circuit interconnected with the array disposed on an upper surface thereof, for one or more embodiments. A generally planar window is spaced above the array, the window being substantially transparent to infrared light. A mesa is bonded to the window. The mesa has closed marginal side walls disposed between an outer periphery of a lower surface of the window and an outer periphery of the upper surface of the substrate and defines a closed cavity between the window and the array that encloses the array. A solder seal bonds the mesa to the substrate so as to seal the cavity.
US10161802B2 Thermal pile sensing structure integrated with capacitor
The present invention discloses a thermal pile sensing structure integrated with one or more capacitors, which includes: a substrate, an infrared sensing unit and a partition structure. The infrared sensing unit includes a first and a second sensing structure. A hot junction is formed between the first and the second sensing structures at a location where the first and the second sensing structures are close to each other. A cold junction is formed between the partition structure and the first sensing structure at a location where these two structures are close to each other. Another cold junction is formed between the partition structure and the second sensing structure at a location where these two structures are close to each other. A temperature difference between the hot junction and the cold junction generates a voltage difference signal. Apart of the partition structure forms at least one capacitor.
US10161801B2 Method and apparatus for detecting direction of motion with a passive sensor
A passive infrared sensor system for detecting the direction of movement by a warm object includes a passive infrared sensor and a lens having multiple lenslets. Different lenslets may have different lens characteristics, for example, different focal lengths or thicknesses, to produce focused infrared beams of different intensities for the sensor. As a warm object, such as a person or an animal, moves from one location to another in the field of view of the sensor, the infrared energy emitted by the warm object may be focused by different lenslets having different focal lengths or thicknesses, and the sensor may detect different intensities at different times. A processor may estimate the direction of movement by performing pattern matching of the detected intensities with a database of patterns based on actual statistics or simulations of movements by warm objects in the environment monitored by the sensor, or known characteristics of the environment and the sensor.
US10161795B2 Irregular motion compensation for three-dimensional spectroscopy
Methods and media for compensating for irregular motion in three-dimensional spectroscopy are provided herein. Exemplary methods include: receiving a plurality of spectrographs for a series of respective locations and corresponding images of the respective locations, each spectrograph of the plurality of spectrographs being produced using a spectrographic data set of a plurality of spectrographic data sets, each of the plurality of spectrographic data sets being measured by a spectrometer and each of the corresponding images being captured by a camera at substantially the same time, the spectrometer being coupled to the camera such that the spectrometer and camera move in tandem and at least partially share the same point of view; generating a continuous image using the images; identifying a respective corresponding position in the continuous image for each spectrograph, such that each spectrograph is a measurement of the respective position; and associating each spectrograph with the respective position.
US10161792B2 Device and method for realizing spectral polarization-independent measurement based on frequency domain depolarization structure
The present invention discloses a device and a method for realizing spectral polarization-independent measurement based on a frequency domain depolarization structure. The device comprises a pump light source module, a depolarization module, an SBS effect generation module and a data acquisition and spectrum reconstruction module. The method comprises: emitting laser light having a fixed polarization state from the pump light source module; the laser light from an output end of the pump light source module passing through the depolarization module to become depolarized light; inputting the depolarized light as pump light into the SBS effect generation module to interact with signal light under test input from the outside into the SBS effect generation module; and after amplifying the signal light under test through the SBS effect generation module, performing data acquisition processing through the data acquisition and spectral reconstruction module and finally obtaining a spectrum of a signal under test. The present invention can eliminate the problems that the acquired spectral information is not accurate, the power measurement is not stable and the like when a spectral measurement device based on an SBS effect measures an input signal light having arbitrary polarization state, and has an important application prospect.
US10161791B2 Measurement of display characteristics of electronic display panel using optical tapers
An apparatus for measuring characteristics of an electronic display panel includes an array of optical elements. Each optical element has a first surface and a second surface. The first surface faces the electronic display panel and receives light from pixels of the electronic display panel. The second surface faces away from the electronic display panel and has an area smaller than the area of the first surface. The second surface emits a combined version of the light received by the first surface. The apparatus further includes a light sensor facing the second surface to measure one or more parameters of the emitted light.
US10161790B2 Delay line device and terahertz time-domain spectrometer system
A delay line device and a terahertz time-domain spectrometer system include: a baseplate, a slide rail component, in which the slide rail component includes a slide, a reflector, a grating ruler component, and an electric-magnetic induction component. When the electric-magnetic component, after being applied a current, cuts the magnetic induction coil to generate power to push the slide moving, the grating ruler component placed on the slide rail component collects the movement information of the slide. The slide's movement drives the reflector placed on the slide to move together to change the optical distance of a pump light, so as to generate the delay between the pump light and a probe light.
US10161786B2 Emitter module for an LED illumination device
An illumination device comprises one or more emitter modules having improved thermal and electrical characteristics. According to one embodiment, each emitter module comprises a plurality of light emitting diodes (LEDs) configured for producing illumination for the illumination device, one or more photodetectors configured for detecting the illumination produced by the plurality of LEDs, a substrate upon which the plurality of LEDs and the one or more photodetectors are mounted, wherein the substrate is configured to provide a relatively high thermal impedance in the lateral direction, and a relatively low thermal impedance in the vertical direction, and a primary optics structure coupled to the substrate for encapsulating the plurality of LEDs and the one or more photodetectors within the primary optics structure.
US10161785B2 Method of monitoring rubbing between a rotary party and a stationary part in a rotating turbomachine, monitoring arrangement and turbomachine
The arrangement for monitoring rubbing between a rotary part and a stationary part in a rotating turbomachine comprises at least one mechanical oscillations detector for measuring mechanical oscillations at at least one point of the turbomachine, at least one particles detector for measuring debris passing in at least one section of a flow path of the turbomachine, and an electronic monitoring unit electrically or electromagnetically connected to the oscillations detector and the particles detector, and arranged to acquire and process signals generated by the oscillations detector and the particles detector. The electronic monitoring unit uses the oscillations measurement primarily for estimating presence of rubbing and the debris measurement primarily for estimating severity of rubbing.
US10161780B2 Method and device for the automated classification of a liquid as well as method and device for the automated adaption of presettings for a capacitive liquid level measurement
A device (100) which comprises a deliverable sensor (202), a container (101) for receiving a liquid (1), a container environment (103) and a signal processing circuit (2), the input side (11) of which can be connected circuitry-wise to the sensor (102). The device (100) is designed to perform a capacitive liquid level measurement in normal operation using the sensor (102), wherein a threshold value can be predefined for the signal processing circuit (2) for normal operation, the device (100) comprises a classification module (104), i. which can be connected with an input side or line connection (105) circuitry-wise to the sensor (102), ii. which is designed to make a capacitive measurement of the liquid (1) in the container (101) using the sensor (102), and iii. which can be connected circuitry-wise (106) to the signal processing circuit (2) in order to trigger the specification of a threshold value using the sensor (102) for capacitive measurement of the liquid (1).
US10161775B2 Method for determining fuel consumption of an internal combustion engine
A method can be used for determining fuel consumption of an internal combustion engine of a vehicle, in real time. The method includes determining a fuel injection quantity of the internal combustion engine based on an oxygen concentration signal from an oxygen sensor and a MAF signal from a mass airflow (MAF) sensor. The MAF sensor is coupled to the intake line and is configured to measure and monitor the mass flow rate of intake air flowing through the intake line. The method further includes determining, via an engine control module (ECM), an instantaneous fuel flow of the internal combustion engine based on the fuel injection quantity. The method further includes communicating, via the ECM, the instantaneous fuel flow to a body control module (BCM) and determining, via the BCM, an average fuel economy of the internal combustion engine based on the fuel flow.
US10161772B1 Variable orifice flow sensor
A fluid flow sensor is provided that includes a flow sensor cartridge that is insertable within the fluid flow sensor and that provides greatly enhanced repeatability for the movement of the flow element without undesired engagement of the flow element with the flow body. The cartridge includes a saddle carrier and frame structure that forms a housing for the flow element to enable the flow element to be consistently positioned within the cartridge during manufacture. The flow element cartridge also includes non-uniform fulcrums to enable different but repeatable flexing properties for the flow element within the flow body and non-vertical hinge geometries that reduce stress on the flow element when bending, thereby increasing the useful life of the flow element and fluid flow sensor. The cartridge can also include an over-molded connection between the cartridge and the pressure measurement tubes to provide elastic strain relief on the tubes connected to the cartridge.
US10161770B2 Flow meter with adaptable beam characteristics
An embodiment provides a device for measuring a fluid parameter of fluid flow in a channel, including: a transmitter; at least one receiver; a processor operatively coupled to the at least one transmitter and the at least one receiver; a memory device that stores instructions executable by the processor to: transmit, using the transmitter, directed energy carrying a signal toward a surface of a fluid in a fluid channel, so as to produce one or more reflections from the fluid surface; detect, by the at least one receiver, one or more received signals associated with the one or more reflections so produced; determine, based upon a measurement beam comprising characteristics of the transmitted and received signals, one or more fluid parameters to be measured using a processor of the device; and associate, using a processor of the device, the one or more fluid parameters with a channel segment. Other embodiments are described and claimed.
US10161768B2 Methods and apparatus for interferometric interrogation of an optical sensor
A high-speed interrogation system is provided for interferometric sensors, one example of which is an EFPI sensor, that operates based on spectral interference. The system uses a two mode operation that includes a lower speed, accurate absolute measurement mode and a higher speed, relative measurement mode. The system achieves greater overall measurement accuracy and speed than known sensor interrogation approaches.
US10161767B2 Diagnostic and measurement system comprising a branched optical fiber embedded in a structural element
The system with branched optical fibers provides diagnostics and measurement of static and/or dynamic parameters in structures and structural elements. The system includes a structural material or element having a branched optical fiber embedded therein. The branched optical fiber includes a primary optical fiber segment and at least one secondary optical fiber segment branching therefrom. One or more fiber Bragg grating sensors are arranged on, and are in optical communication with, the primary optical fiber segment and the at least one secondary optical fiber segment. A signal analyzer receives signals generated by the fiber Bragg grating sensors representative of a magnitude of the physical parameter of the structural element.
US10161764B2 Tractor device utilizing an inductive sensor for motion control feedback
Apparatus and methods have been developed to provide speed, location, and direction detection of a moving object or moving component using a single inductive sensor system. Direction detection, speed detection, and location detection may be provided by the same inductive sensor and used as feedback in a motion control systems. Control systems of tractors, draglines, power shovels, and cranes may be easily upgraded with added safety, precision control, and automation using the inductive sensor system described herein.
US10161761B2 Map application with improved search tools
Some embodiments provide a mapping application that provides a variety of UI elements for allowing a user to specify a location (e.g., for viewing or serving as route destinations). In some embodiments, these location-input UI elements appear in succession on a sequence of pages, according to a hierarchy that has the UI elements that require less user interaction appear on earlier pages in the sequence than the UI elements that require more user interaction. In some embodiments, the location-input UI elements that successively appear in the mapping application include (1) selectable predicted-destination notifications, (2) a list of selectable predicted destinations, (3) a selectable voice-based search affordance, and (4) a keyboard. In some of these embodiments, these UI elements appear successively on the following sequence of pages: (1) a default page for presenting the predicted-destination notifications, (2) a destination page for presenting the list of predicted destinations, (3) a search page for receiving voice-based search requests, and (4) a keyboard page for receiving character input.
US10161759B2 Electric vehicle charging network services
To provide remote services, including dynamic, interactive assistance to electric vehicle (EV) users, a central server is arranged for electronic communications with EVs (15) and with client devices (11). The server also communicates with at least one EV charging station network, which in turn communicate with individual charging stations (30). Remote services may include trip planning, locating charging stations, checking availability and suitability of charging stations, making reservations at charging stations, and updating plans en route. The server collects data from the EV and analyzes the data to determine various statistics. The system advises a user on readiness of the EV to complete a proposed trip before recharging the EV batteries. Client devices may include smart phones, computers, or a head unit in the EV. Application software programs are executable on the client devices to provide user interfaces for accessing the remote services and for communicating with the central server.
US10161756B2 Navigation method and device
A navigation method includes: obtaining status information of one or more tires of a vehicle; obtaining road condition information in real time; and performing a route navigation for the vehicle according to the status information, the road condition information, and a preset navigation strategy.
US10161755B2 Navigation device and method
This invention relates to a navigation device (200) comprising a processor (210); and a store (230) containing map data, wherein the map data comprises a temporally-variable feature and the processor (210) is arranged, in a route planning process, to determine a status of the temporally-variable feature according to temporal information.
US10161753B2 In-vehicle apparatus and map data management system
An in-vehicle apparatus and a map data management system are provided that can appropriately update a map. The in-vehicle apparatus 3 includes a storage unit 16 that stores parcel data PD constituted by a plurality of files in accordance with meshes of the map, and a control unit 10 that, when a vehicle 2 enters a single mesh of the map, updates the version of lower-level parcel files DPF corresponding to meshes at the periphery of the single mesh.
US10161752B1 Method and system for locating resources and communicating within an enterprise
A method and system of tracking and reporting locations of entity employees, the method for use with at least a first interface device including a display screen, the method comprising the steps of, providing a processor programmed to perform the steps of, storing schedules of entity employees where the schedules indicate scheduled locations of employees during time slots, receiving an indication from a first employee indicating at least a first future time slot, identifying locations of the entity employees during the future time slot, using the schedules of entity employees to generate a location representation indicating the locations of at least a subset of the entity employees during the at least a first future time slot and presenting the location representation via the first interface device.
US10161751B2 Vibration-type angular rate sensor
This vibration-type angular rate sensor corrects a sensor output from a secondary-side control circuit by adding, to a closed control loop of the secondary-side control circuit, an offset value based on the output of a closed control loop of a primary-side control circuit dependent on temperature.
US10161747B2 Surface texture measuring apparatus and method
A surface texture measuring apparatus includes: a measurement sensor measuring, without contact, a surface texture of an interior wall of a cylinder portion of a measurable object while displacing in a normal direction of the interior wall at each measurement region into which the interior wall is divided in a circumferential direction of the cylinder portion; a W axis displacer displacing the measurement sensor in a W axis direction; a θ axis displacer displacing the measurement sensor in the circumferential direction, after measurement of the surface texture of a first measurement region, such that the measurement sensor faces a second measurement region adjacent to the first measurement region in the circumferential direction; and a controller adjusting a W axis direction measurement position for measuring the surface texture of the second measurement region while displacing the measurement sensor in the W axis direction.
US10161746B2 Systems and methods for cargo management
A system for use with a vehicle comprising a tractor and a trailer includes one or more image capture devices. The one or more image capture devices capture images of the interior of a trailer and/or cargo items of the trailer. An image processor estimates available cargo space within the trailer based on the captured images.
US10161739B2 Coordinate-measuring machine
A coordinate measuring machine comprising an optical sensor for optically capturing a workpiece; an illumination device for illuminating the workpiece; a pose determination unit for determining data relating to a workpiece pose including a position and orientation of the workpiece; a storage unit for storing (i) data relating to a reference pose including a position and orientation of a reference workpiece, and (ii) data relating to a reference light setting of the illumination device used for a measurement of the reference workpiece; and a control unit which is configured to control a light setting of the illumination device for a measurement of the workpiece by adapting the reference light setting based on a comparison of the stored data relating to the reference pose with the determined data relating to the workpiece pose.
US10161737B2 Flexible sensor apparatus
A sensor apparatus including a flexible substrate and a wrinkled conductor disposed on the flexible substrate. In some embodiments, the conductor includes micro-scale invaginations. Also disclosed are methods of making a sensor apparatus, including: placing a mask over a polymeric sheet, wherein the mask is configured to block regions of the polymeric sheet, depositing a conductive structure on the polymeric sheet at regions exposed through the mask, shrinking the polymeric sheet with conductive structure patterned on its surface by heating, and transferring the conductive structure to a flexible substrate. Also disclosed are methods of sensing a health condition of a user or patient. The methods include coupling a sensor apparatus to a surface of a user or patient overlying structures to be monitored. The sensor apparatus may include a crumpled conductor capable of detecting strain. Strain is detected by directing current through the sensor apparatus during flexing of the surface and measuring a characteristic of the sensor apparatus based on the strain to generate an output for a user, indicative of the condition of the user or patient.
US10161736B2 Printed stretch sensor
Disclosed is a patterned article comprising: (1) a deformable nonconductive substrate; (2) an imagewise pattern thereon of a conductive stretchable ink; and (3) an external circuit connecting the imagewise pattern, the external circuit being capable of measuring the electrical resistance across regions of the deformable nonconductive substrate and determining the degree of deformation thereof.
US10161735B2 Apparatus for determining the angular position of the rotor of an electric machine
An apparatus for determining the position of the rotor of an electric machine in relation to the stator. The machine has multiple phases, each of which includes at least one pole winding with a magnetizable core. The apparatus includes devices for detecting measurement signals that are characterized by the momentary degrees of magnetization of the pole winding cores. The degrees of magnetization are influenced by the angular position of the magnetic field of the rotor. The devices are also used to detect the currents in the phases and determine the angular position of the rotor from the detected measurement signals, taking into account a contribution of the phase currents to the degrees of magnetization of the pole winding cores.
US10161734B2 Measurement fixture for measuring dimensions of a blade server
A measurement fixture includes a base, a lateral plate, a top plate, a movable measurement plate and a dimensional measurement component. The lateral plate has a piercing hole and a plurality of guiding pillars. The base and the top plate are respectively disposed on opposite sides of the lateral plate. The movable measurement plate utilizes a plurality of guiding holes to movably connect with the plurality of guiding pillars. The movable measurement plate includes an opening portion and an indicating portion adjacent by the opening portion. The dimensional measurement component movably passes through the piercing hole. A first end of the dimensional measurement component protrudes from a surface of the lateral plate facing a blade server to touch the blade server, and a second end of the dimensional measurement component protrudes from the other opposite surface of the lateral plate to partly protrude from the opening portion.
US10161728B2 Lighted nock
A lighted nock assembly may include an LED/battery assembly, a nock housing and a nock body. The LED/battery assembly can include an LED and a battery. The nock housing can include a cylindrical structure so that an outer surface is inserted into a rear end of an arrow, wherein a portion of the LED/battery assembly is disposed within the nock housing. The nock body can be linearly movable towards and away from the nock housing. A portion of the LED/battery assembly is secured within the nock body such that moving the nock body away from the nock housing along a straight line turns the LED from a lighted state to an unlighted state.
US10161727B2 High straightness arrow and method of manufacture
The high straightness arrow in the present invention is designed to improve the straightness of the archery arrow by adopting new manufacturing technique and method. Chamber and post are made of dissimilar metals and the chamber includes a wall that creates an external housing and defines an internal airspace. Once the post with shaft is positioned through chamber, nuts are tightened securely, forming an assembly, to straighten post. Due to the different coefficients of thermal expansion of chamber and post, when they are heated simultaneously, the chamber expands more than the post, creating a natural tension along post which results in a near perfectly straight shaft. As the assembly cools, the post and chamber return to their original length, yet the shaft retains its straightened form and thus this manufacturing process yields an arrow shaft that is straighter than shafts made of the same materials but with a traditional manufacturing technique.
US10161722B1 Systems and methods for an electrode for a conducted electrical weapon
A conducted electrical weapon (“CEW”) impedes locomotion of a human or animal target by providing a stimulus signal through one or more electrodes and through the target. The CEW includes a high voltage signal generator, a propulsion system, one or more electrodes, and a filament coupled to each electrode. The signal generator provides the stimulus signal, the propulsion system provides a force that launches the electrodes toward the target, and the filament delivers the stimulus signal from the signal generator to the electrode and through the target. The electrode of the CEW includes a body, detachably coupled to a front wall, a spear, a rear wall with an opening, and a filament. The spear and an end portion of the filament are coupled to the front wall. The filament is wound into a winding positioned in a cavity within the body of the electrode. As the electrode flies toward the target, the filament deploys through the opening in the rear wall. The spear mechanically couples to the target upon impact with the target and the body detaches from the front wall. The end portion of the filament remains coupled to the front wall and the stimulus signal is delivered through the target via the filament and spear.
US10161721B2 Polymer coatings with embedded hollow spheres for armor for blast and ballistic mitigation
A lightweight armor system providing blast protection and ballistic protection against small arms fire, suitable for use in helmets, personnel or vehicle protection, and other armor systems. A hard substrate is coated on the front surface with a thin elastomeric polymer layer, in which hollow ceramic or metal spheres are encapsulated. The coating layer having a thin elastomeric polymer layer with encapsulated metal or ceramic hollow spheres can be stand-alone blast protection, or can be added to an underlying structure. The glass transition temperature of the polymer is preferably between negative fifty Celsius and zero Celsius.
US10161719B2 Viewfinder for bow strings
Viewfinder for bow strings, aimed to be connected to a bow string such that a user may look through it and obtain a precise shot, which comprises an elongated body with a through-hole defined between a front side and a rear side, wherein the hole further comprises a first sector, a second sector and a third sector, designed to prevent the reflections produced inside the hole by the light beams hitting it from the exterior from propagating to the user.
US10161716B2 Aim enhancing system
Aim enhancing systems are provided for deterrent devices. In one aspect an aim enhancing system has a light emitting system; an optical element, a housing holding the laser system and the light emitting system and having an opening through which a light from the light emitting system can pass from inside the housing to outside the housing and an optical element receiving surface against which an outer surface of the optical element can be positioned, resilient biasing member having an opening through which the light can pass, an outer surface arranged to confront an inner surface of the optical element, and an inner surface; and a pressure surface pressing the inner surface of the resilient biasing member toward the optical element to resiliently hold the inner receiving surface against the outer surface of the optical element. The optical element is resiliently pressed against the housing and the housing and resilient element are shaped to cooperate when pressed together define a first barrier to contaminant travel into the housing through the opening and wherein the resilient biasing member is arranged to provide a second barrier to contaminant travel between the opening and the light emitting system.
US10161712B2 Rifle stock assembly for different barreled receivers
A rifle stock assembly adapted to receive and support a bolt action rifle barreled receiver is disclosed. The assembly includes a rifle stock/chassis having an elongated recess and a cage removably fastened to the chassis in the recess to receive a bolt action rifle receiver therein. The assembly may also have a pair of magazine collets fastened to the bottom of the forward portion of the chassis defining a magazine well beneath the cage. Cages having different internal surface shapes may be utilized to accommodate different barreled receivers in the same rifle stock/chassis. Different magazine collets may also be utilized to accommodate different caliber magazines used with the different barreled receivers.
US10161711B2 Portable firearm with quick coupling removable stock
A portable firearm with quick coupling removable stock comprising a firearm body, provided with a grip, and a removable stock, which can be associated with the firearm body by means of a quick coupling device; the quick coupling device includes a hollow body, which is fixed to the firearm body, and an elongated body, which is integral with the stock and can be at least partially inserted in the hollow body; the device includes an interference member adapted to lock the elongated body in the hollow body in a locking position; the interference member is movable from the locking position to a release position in which the elongated body is movable and can be extracted from the hollow body. The interference member can be actuated easily by using a component of the firearm itself as a tool.
US10161710B2 Weapons embedded in a wearable item
This invention is characterized by its appearance as a bracelet or a wrist watch, for example. The distinctive features of this device are its micro size, stealth-ness, and light weight. The object of this invention is to a provide state-of-the-art personal protection in two forms, a firearm and a knife, both of which are totally concealable even if the wearer is not wearing clothes. They are both instantly available and easily deployed to protect oneself from an imminent threat.
US10161708B1 Bowstring constrictor
This bow constrictor allows a peep sight or other device to be easily served in to a bowstring or bow cable without the expense and time-consuming services of a professional. A user simply splits the bowstring strands then inserts the bowstring constrictor with an associated device, guiding the bowstring through the grooves of the constrictor. The grooves couple the constrictor tightly to the bowstring applying minimal stress with minimal resultant wear. The attachment mechanism may be incorporated as a single unit into peep sights, knotting devices, cable weights or other devices of use to an archer or bow hunter. An independent, standalone version may also be used to spread and then constrict cable strands to support other items. Though designed to meet the needs of an archer or bow hunter with regard to a bowstring or bow cable, the described mechanism is scalable for other uses as well.
US10161702B2 Multifunctional and detachable trigger safety device for a firearm
Provided are trigger safety devices for a gun configured to conveniently lock/unlock the trigger. Generally, the trigger safety device comprises a first component, a second component, means for releasably limiting the positions of the second component and an alarm module. The first component is attached to the barrel portion of a gun. The second component is either hingedly attached to the first component or slidably attached to the outer surface of the first component. The alarm module is disposed in the first component and is configured to alert a user when the trigger safety device is unlocked. In general, the alarm module comprises one or more sensors, a power supply, an alarm notice generator and a control system in electrical communication with the sensors, power supply and the alarm notice generator.
US10161691B2 Multi-channel cooling plenum
A cooling bond pad and methods are disclosed. A plurality of internal-cooling channels cool the cooling bond pad, and an internal-flow channel is coupled to the internal-cooling channels, and directs an internal-coolant flow to the internal-cooling channels. An external-flow channel directs a through-coolant flow through the cooling bond pad.
US10161687B2 Plate heat exchanger and heat pump outdoor unit
A plate heat exchanger can reduce thermal contact between a second fluid (water and a third fluid (low-temperature, low-pressure two-phase refrigerant) to enhance thermal efficiency. A plate heat exchanger includes a heat transfer plate group that performs heat exchange between a first fluid of high-temperature, high-pressure gas refrigerant and a second fluid of a heating target fluid; and a heat transfer plate group that performs heat exchange between a first fluid of low-temperature, high-pressure liquid refrigerant and a third fluid of low-temperature, low-pressure two-phase liquid refrigerant. The heat transfer plate group forms refrigerant channels including a stack of plates, has a configuration that a flow of the first fluid of high-temperature, high-pressure gas refrigerant and a flow of the second fluid are alternately aligned in the refrigerant channels, and causes the second fluid to flow in the outermost refrigerant channel.
US10161686B2 Microchanel heat exchanger evaporator
An evaporator heat exchanger includes a first tube bank having an inlet manifold and a plurality of first heat exchanger tubes arranged in a spaced, parallel relationship. A second tube bank includes an outlet manifold and a plurality of second heat exchanger tubes arranged in a spaced, parallel relationship. An intermediate manifold fluidly coupled the first tube bank and the second tube bank. A distributor insert arranged within the inlet manifold includes a first dividing element configured to define a plurality of first refrigerant chambers therein. A second dividing element is arranged within the intermediate manifold and is configured to define a plurality of second refrigerant chamber therein. Each second dividing element is arranged at a position substantially identical to a corresponding first dividing element. Each second refrigerant chamber is fluidly coupled to the same portion of the first heat exchanger tubes and a corresponding first refrigerant chamber.
US10161685B2 Heat exchanger with partitioned inlet header for enhanced flow distribution and refrigeration system using the heat exchanger
Embodiments of a heat exchanger, e.g. a micro-channel heat exchanger are disclosed. The heat exchanger may include a plurality of rows of micro-channel tubes, each of which can be configured to direct a working fluid in a specific direction. The heat exchanger may include one or more distributors in a distribution header of the heat exchanger, each of which can be connected to a different application circuit (e.g. a refrigeration circuit) so that a capacity of the heat exchanger may be regulated. The heat exchanger as disclosed herein can be used as an evaporator and/or a condenser in a refrigeration system.
US10161684B2 Air cooling unit
An air cooling unit is an air cooling unit used in a Rankine cycle system and includes an expander and a condenser. The expander recovers energy from a working fluid by expanding the working fluid. The condenser cools the working fluid using air. The air cooling unit includes a heat-transfer reducer that reduces heat transfer between the expander and an air path.
US10161680B2 Method and system for the thermal processing of a material
A method and system for thermal processing of a material conveyed in a rotary kiln with a rotatable kiln drum, the drum wall of which delimits a heatable drum chamber, from a drum inlet to a drum outlet of the kiln drum. The drum chamber is heated directly by conducting a heating gas into the drum chamber. The drum chamber is also heated indirectly by warming the drum wall at least in areas.
US10161677B2 Dryer
A dryer dries a strip-shaped object to be dried by directing stream of air toward the object while conveying the object in a conveyance direction. The dryer includes a loading and conveying unit that conveys the object and a blowing box arranged above the loading and conveying unit and including an outlet through which the stream of air is blown toward the loading and conveying unit. The loading and conveying unit includes a roller, supporting portions rotatably supporting the roller. The blowing box is positioned above the loading and conveying unit and formed in a box shape extending in the width direction, the blowing box including a box body that forms the outlet and accommodates air and positioning portions that determine a position of the box body in the vertical direction.
US10161675B2 Natural gas liquefaction system
A natural gas liquefaction system includes a piping rack for supporting a raw material gas transporting pipe for transporting the raw material gas; a pre-cooling heat exchanger for pre-cooling the raw material gas with a first refrigerant; a first refrigerant compressor for compressing the first refrigerant; a plurality of first air-cooled heat exchangers disposed on a top of the piping; a liquefier for liquefying the raw material gas which has been cooled by the pre-cooling heat exchanger, wherein the piping rack has a widened section along a part of a length of the piping rack, wherein the pre-cooling heat exchanger and the first refrigerant compressor are disposed on either side of the widened section of the piping rack, and are connected to each other via a first refrigerant transporting pipe extending in a direction intersecting a lengthwise direction of the piping rack for transporting the first refrigerant.
US10161674B2 Method for controlling a refrigerator and refrigerator
A control method is provided for controlling a refrigerator that is connected to one or more electrical apparatuses, in which the refrigerator includes a door/drawer and a processor. The control method causes the processor to sense a change in an opened state or a closed state of the door/drawer and receive state information indicating an operation state of the one or more electrical apparatuses from the one or more electrical apparatuses, which are operable when the user is. The processor determines whether the user is cooking based on the received state information, and notifies the user of different information each time a change in the opened state or the closed state is sensed if a change in the opened state or the closed state is sensed when a determination is made that the user is cooking.
US10161673B2 Refrigerator and household appliance networking system
A refrigerator includes a casing including storage compartments, doors attached to the casing to expose or cover the storage compartments, hinges connecting the doors to the casing and supporting the doors so that the doors are openable and closable, electrically non-conductive hinge covers detachably attached to the casing and covering the hinges, and a wireless adapter disposed on the hinge cover and including an antenna unit configured to transmit and receive radio waves.
US10161671B2 Adjustable shelf for a refrigerator appliance
An adjustable shelf assembly for a refrigerator appliance includes a rear bracket and a rack positioned on the rear bracket. A pinion gear is meshed with the rack. A shelf frame is slidably mounted to the rear bracket. The pinion gear is rotatably mounted to the shelf frame. An actuator is positioned on the shelf frame. A line couples the actuator to the pinion gear such that the pinion gear is rotatable with the actuator via the line. The shelf frame is configured to move along a vertical direction relative to the rear bracket when the pinion gear is rotated by the actuator via the line. A related refrigerator appliance is also provided.
US10161670B2 Refrigerator comprising vacuum space
The refrigerator includes a body having a storage space for storing a predetermined storage object, wherein the body includes an inner case having the storage space, an outer case having an inside surface spaced a predetermined gap from an inside surface of the inner case to house the inner case, a vacuum space provided between the inner case and the outer case enclosed to maintain a vacuum state for heat insulating between the inner case and the outer case, and a sealing unit for sealing a front of the vacuum space formed between a front of the inner case and a front of the outer case and reducing a heat transfer rate between the inner case and the outer case.
US10161664B2 Ice vending machine
An ice vending machine automatically provides ice to a customer based upon a request from the consumer for the ice. In some embodiments, the ice vending machine includes a transfer box to transfer ice from a horizontal auger to an inclined auger. In some embodiments, the inclined auger motor is mounted at the top of the inclined auger. The inclined auger motor may drive the inclined auger by way of a chain and sprockets or directly drive the inclined auger without a chain or sprockets. In some embodiments, a lip shelf is located at an edge of the holding vessel floor. In some embodiments, a rear wall is removable from the holding vessel. In some embodiments, the ice machine includes an awning, a top hat, or an ice maker canopy. In some embodiments, the ice vending machine includes an improved motor and chain layout.
US10161661B2 Refrigeration cycle apparatus, and abnormality detection system for refrigeration cycle apparatus
A refrigeration cycle apparatus includes a refrigeration cycle in which refrigerant circulates, the refrigeration cycle including a compressor, an outdoor heat exchanger, expansion valves, and indoor heat exchangers, which are connected to each other via a refrigerant pipe, a heat source unit accommodating the outdoor heat exchanger, use-side units accommodating the indoor heat exchangers, and a control unit that controls at least turning on and off of the refrigeration cycle. The control unit detects abnormality of the refrigeration cycle based on the pressure or temperature of the refrigeration cycle in an off time of the refrigeration cycle.
US10161659B2 Refrigerant evaporator
A first evaporation unit and a second evaporation unit are coupled via a refrigerant interchanging portion having a first communication portion and a second communication portion. A first partition member is provided in a tank portion of the first evaporation unit to define a first tank internal space and a second tank internal space. The first partition member has a first communication hole to let the first tank internal space and the second tank internal space communicate with each other. A second partition member is provided in a tank portion of the second evaporation unit to define a third tank internal space and a fourth tank internal space. The second partition member has a second communication hole to let the third tank internal space and the fourth tank internal space communicate with each other.
US10161656B2 Air conditioner having a bending tube which alters the flow of the refrigerant prior to entering the distributor
An air conditioner includes a heat exchanger including a plurality of refrigerant tubes, a distributor disposed on one side of the heat exchanger to divide a refrigerant so that the refrigerant flows into a plurality of flow paths, a plurality of capillary tubes extending from the distributor toward the plurality of refrigerant tubes, a guide tube guiding an introduction of the refrigerant into the distributor, an inlet tube connected to an inlet-side of the distributor, and a bending part disposed between the guide tube and the inlet tube to switch a flow direction of the refrigerant. The inlet tube extends in a horizontal direction or an inclined direction to guide a liquid refrigerant of a two-phase liquid refrigerant so that the liquid refrigerant flows into a lower portion of the inlet tube.
US10161653B1 Portable desiccant dehumidifier control circuit
A dehumidifier includes a desiccant, a first fan, a second fan, and a circuit. The first fan generates a process airflow through a first portion of the desiccant as it rotates to provide dehumidification. The process airflow enters the dehumidifier through a process airflow inlet and exits through a process airflow outlet. The second fan generates a reactivation airflow through a second portion of the desiccant to dry the desiccant. The reactivation airflow enters the dehumidifier through a reactivation airflow inlet and exits through a reactivation airflow outlet. The circuit includes a power setting switch that controls whether the dehumidifier operates in a low or high power setting. In the low power setting, the dehumidifier operates on power from a first electrical outlet type. In the high power setting, the dehumidifier operates on power from a second electrical outlet type that is different from the first electrical outlet type.
US10161651B2 Air conditioning apparatus
An air conditioning apparatus includes an outdoor unit and an indoor unit having an indoor heat exchanger and an indoor fan. An airflow rate setting of the indoor fan can be manually instructed. An indoor airflow rate limitation control useable to forcibly limit the airflow rate setting of the indoor fan to be nearer to a low airflow rate in accordance with an outside air temperature is carried out with the airflow rate setting of the indoor fan having been manually instructed.
US10161646B2 Sensors for detecting presence, occupancy, and/or motion and related systems and methods
A motion sensor assembly may include a cover plate configured to be mounted to an electrical box. The cover plate may include a front surface configured to face away from the electrical box and a rear surface opposite the front surface. The cover plate may further include an aperture configured to receive a toggle or rocker type switch. A motion sensor may be coupled to the cover plate. A power source and processor may be operably coupled to the motion sensor. Furthermore, the processor may be operably coupled to a communication device.
US10161643B2 Apparatus for both humidification and air cleaning
Provided is a humidification and air cleaning apparatus. The humidification and air cleaning apparatus includes a water tank storing water; a visual body forming at least a portion of the water tank and formed of a transparent material; a watering housing disposed in the water tank, drawing water stored in the water tank to pump water to an upper side, and spraying the pumped water; a nozzle disposed in the watering housing and spraying the pumped water; and a watering motor rotating the watering housing. Here, when the watering housing rotates, water sprayed from the nozzle forms at least one spray line on an inner side surface of the visual body.
US10161637B2 Heating cooker
A heating cooker includes a heating chamber provided within a casing, a turntable placed at a bottom of the heating chamber, a turntable motor for driving the turntable to rotate, the turntable motor being placed below the heating chamber and below the casing, and a cooling fan for circulating air, taken in from a front side of the casing, through a space between a lower face of the casing and a bottom face of the built-in storage unit to supply the air into the casing, in a state that the casing is mounted within the built-in storage unit. Thus, a heating cooker capable of effectively cooling the turntable motor at a low cost with a simple configuration.
US10161634B2 Airblast fuel injector
An airblast fuel injector for a gas turbine engine fuel spray nozzle has, in order from radially inner to outer, a coaxial arrangement of an inner air swirler passage, an annular fuel passage, an annular outer air swirler passage, and an annular shroud air swirler passage. The injector further has an annular shroud having an inner surface profile. Relative to the overall axial direction of flow through the injector the shroud inner surface profile has a convergent section followed by a divergent section, the transition of which forming a first inwardly directed annular nose. The injector further has an annular wall having an outer surface profile, and having an inner surface profile. Relative to the overall axial direction of flow through the injector the wall outer surface profile has a convergent section followed by an outwardly turning section which faces across the shroud air passage to the first nose.
US10161633B2 Air swirlers
A swirler, such as for swirling air in a fuel injector of a gas turbine engine, includes a swirler body with opposed inlet and outlet ends with a swirler wall extending therebetween along a longitudinal axis. The inlet end of the swirler body defines an inlet opening. A plurality of swirl slots is defined through a portion of the swirler wall that converges toward the longitudinal axis in a direction from the inlet opening toward the outlet end of the swirler body. The swirl slots are radially off-set with respect to the longitudinal axis for imparting swirl on a flow passing from the inlet opening, through the swirl slots, and past the outlet end of the swirler body.
US10161631B2 Self-powered damper system
A system for operating a damper comprises a flue pipe assembly, and a damper movable between an open position and a closed position within the flue pipe assembly. At least one thermoelectric generator is coupled to a surface of the flue pipe assembly. Operation of the damper is achieved by the thermoelectric generator harvesting thermal energy from the flue pipe assembly and converting it into usable electrical energy for actuation of the damper.
US10161626B2 Ducted fuel injection
Various technologies presented herein relate to enhancing mixing inside a combustion chamber to form one or more locally premixed mixtures comprising fuel and charge-gas to enable minimal, or no, generation of soot and/or other undesired emissions during ignition and subsequent combustion of the locally premixed mixtures. To enable sufficient mixing of the fuel and charge-gas, a jet of fuel can be directed to pass through a bore of a duct causing charge-gas to be drawn into the bore creating turbulence to mix the fuel and the drawn charge-gas. The duct can be located proximate to an opening in a tip of a fuel injector. The various technologies presented herein can be utilized in a number of combustion systems, such as compression-ignition (CI) reciprocating engines, spark-ignition (SI) reciprocating engines, gas-turbine (GT) engines, burners and boilers, wellhead/refinery flaring, etc.
US10161622B1 Illuminating three-panel anti-fog mirror
The three-paneled mirror is a multi-paneled mirror set that is adapted to be used in and around a bathroom or other locale where a mirror may be required. The three-paneled mirror includes an anti-fogging capability so as to prevent condensation from occurring on any of a plurality of mirrored surfaces. The three-paneled mirror further includes a plurality of suction cups as well as hooks to provide support of the three-paneled mirror on different surfaces. Each of the plurality of mirrored surfaces is interconnected with one another via a hinge such that the entire assembly is able to fold itself into a closed state when not in use. The three-paneled mirror includes a plurality of lights that illuminate an end user when positioned in front of the plurality of mirrored surfaces.
US10161621B2 In-grade light fixture
An in-grade light fixtures having hermetically sealed components that enable water and air to pass through the fixture to effectuate cooling without degrading the fixture components.
US10161619B2 LED illumination device with vent to heat sink
A light fixture includes a housing comprising a body portion with an opening at a first end, a power supply at an opposing second end, and a heat sink comprising a plurality of fins between the opening and the power supply. A mating surface is positioned proximate to the opening. The mating surface includes a set of landing pad areas and a set of open areas. The fixture also includes a set of light emitting diode (LED) modules, each of which is positioned in the opening and secured to a landing pad area of the mating surface. The LED modules are arranged so that the plurality of open areas remain open to the atmosphere and provide an air path to and from the heat sink.
US10161617B2 Lighting apparatus, automobile, and projection lens
A lighting apparatus includes: a projection lens; a light source behind the projection lens; a reflector that reflects light from the light source toward the projection lens; and a shield that blocks a portion of the light reflected by the reflector to form a cutoff line in a distribution pattern of the light. A textured section demarcated by unit regions is formed on a surface of the projection lens, and when a region in a center of the projection lens is defined as a central region, and regions left and right of the central region are defined as left and right regions, respectively, in a front view, a proportion of the unit regions in the central region is greater than a proportion of the unit regions in each of the left region and the right region.
US10161616B2 Linear solid-state lighting with reliable electric shock current control free of fire hazard
A linear light-emitting diode (LED) lamp comprising a housing, two lamp bases at two ends of the housing, a full-wave rectifier, an LED driving circuit, LED arrays, two displacement sensors, and two pairs of electrical contacts controlled by the two displacement sensors, is used to replace a fluorescent tube or a conventional LED tube lamp. The two displacement sensors and the two pairs of electrical contacts are configured to respectively perform position sensing for electric shock hazards. The two pairs of electrical contacts are operated by using a low direct current (DC) voltage supplied by a power sustaining device. When both two lamp bases are inserted in the two sockets, the two pairs of electrical contacts are driven to make an electric connection from the power sustaining device to a low voltage input of the LED driving circuit and to power the LED driving circuit. Use of the low DC voltage is to eliminate electric arcing that may cause internal fire when used with ballasts and to prevent substantial electric shock current from reaching ground through a person's body when used with AC mains.
US10161615B2 Apparatus with forward and reverse-biased light emitting diodes coupled in parallel
An exemplary printable composition of a liquid or gel suspension of diodes generally includes a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus may include: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
US10161614B2 Retrofit lamp for automotive headlights
A retrofit lamp (310) is provided. The retrofit lamp comprises a connector (311) for mounting the lamp at an automotive headlight; a body (312) extending from the connector along an axis (313); and a plurality of light emitting diodes (314) arranged at the body. The light emitting diodes are arranged along the axis and adapted to emit light (331, 332) laterally with respect to the axis. The retrofit lamp further comprises a reflective element (315) arranged at an end of the arrangement of light emitting diodes opposite to the connector. The reflective element is adapted to reflect some light (332) emitted by the light emitting diodes. Additionally—the extension of the arrangement of light emitting diodes along the axis is shorter than a light emitting area (114) of a reference replaceable headlight bulb (110), and—the reflective element (315) is configured to establish a virtual prolongation (340) of the arrangement of LEDs.
US10161613B2 Support rail for forming a lighting strip system and lighting strip system
A support rail for holding and supplying power to illumination modules has a wiring unit with coupling elements for electrically connecting at least two illumination modules, wherein the wiring unit is divided into two sub-units which each have at least one coupling element, and wherein the sub-units can be adjusted relative to each other in the longitudinal direction of the support rail.
US10161611B2 Activating a control module
A control module (105) is supported within an item of clothing. The control module is located within a pocket (503). A visual indicator (1201) is pressed on the jacket at a position in front of the activation button on the control module. The activation button has a surface area that covers at least 40% of a surface area of the control module. In this way, it is possible for the control module to move within the pocket while still facilitating activation and deactivation upon pressing the visual indicator.
US10161610B2 Solid-state luminaire with electronically adjustable light beam distribution
A luminaire having an electronically adjustable light beam distribution is disclosed. In accordance with some embodiments, the disclosed luminaire includes a housing, for example, of hemi-cylindrical, oblate hemi-cylindrical, oblong elliptical, or polyhedral shape. The disclosed luminaire also includes a plurality of solid-state light sources arranged over its housing, in accordance with some embodiments. The one or more solid-state emitters of a given solid-state light source may be addressable individually and/or in one or more groupings, in some embodiments. As such, the solid-state light sources can be electronically controlled individually and/or in conjunction with one another, providing for highly adjustable light emissions from the host luminaire, in accordance with some embodiments. One or more heat sinks may be mounted on the housing to assist with heat dissipation for the solid-state light sources. The luminaire can be configured, for example, to be mounted or as a free-standing lighting device, as desired.
US10161606B2 Lighting device and method of using the same
The present document describes a lighting device comprising: a structure comprising a conformable elongated member being adaptable to a shape of an object for securing the lighting device to the object; a light source attached to the structure thereby defining a connection between the light source and the structure; a power source for providing electrical power to the light source; and a skin overmolded onto the structure, the power source, the connection and part of the light source near the connection. There is also described a method for providing lighting in a confined space where a hand-operated tool is used.
US10161605B2 Lighting assembly
An elongate tubular lighting assembly having a body with a length between spaced first and second ends. The tubular lighting assembly has a source of illumination and first and second connectors respectively at the first and second body ends. The first connector has cooperating first and second parts having first and second surfaces. The first and second connector parts are configured so that the first and second surfaces are placed in confronting relationship to prevent separation of the first and second connector parts with the body in an operative state as an incident of the first connector part moving relative to the second connector part from a position fully separated from the second connector part in a substantially straight path that is transverse to the length of the body into an engaged position.
US10161603B1 Fully-sealed LED decorative lamp used in festivals
A fully-sealed LED decorative lamp used in festivals includes a bulb shell, a core column, a driving circuit board, an LED lamp body, and a lamp cap. The lamp cap and bulb shell are configured to form a sealed cavity. The core column is partially plugged and fixed into the bulb shell. This invention has the features of powerful function, simple structure, and reasonable design and uses a cup shaped groove filled with colloid and the structure of the LED lamp body to achieve the effect of sealing the light emitting circuit completely, so that the implementation of the present invention can prevent people from being exposed to electric shock after the bulb shell broken and the invention also can prevent short circuit or fire caused by the short circuit, so as to meet the safety regulation and requirement as set forth by the Article UL 588.
US10161596B2 Chromatic mirror, chromatic panel and applications thereof
Chromatic components are presented which alleviate the usage in various applications in that this chromatic component is, according to a first aspect of the present application, made-up of a mirroring surface and a diffusing layer in front of the mirroring surface, which preferentially scatters short-wavelength components of impinging light with respect to long-wavelength components of the impinging light, and in that according to another aspect, the chromatic component is made up of a stratified-glass panel which comprises two less sheets sandwiching an adhesive transparent polymeric film wherein the adhesive transparent polymeric film forms a diffusing layer which preferentially scatters short-wavelength components of light passing the stratified-glass panel with respect to long-wavelength components of this light with respect to long-wavelength components of the same.
US10161593B2 Solid state lighting device with virtual filament(s)
Lighting systems and devices include a light-transmissive tube and a light source assembly. The light-transmissive tube defines a cavity that extends along a longitudinal axis, at least a portion of the tube having an inner structured surface facing the cavity, and an outer structured surface facing away from the cavity. The light source assembly is disposed to inject light into the cavity, and includes one or more discrete light sources such as LED sources. The inner and outer structured surfaces of the tube are configured to direct a first portion of the injected light out of the tube through the outer structured surface and to direct a second portion of the injected light back into the cavity, such that a virtual filament, or pattern of virtual filaments, appears in the tube.
US10161586B2 Light device with multiple and separate bands for motor vehicles
The light device contains first and second rows of light sources wherein rows are arranged next to each other, collimating elements associated with the light sources to convert their generated light to collimated light, and a light guide to bind the collimated light and emit it from the light guide output surface. Between the collimating element output and the light guide output surface, an optical means is arranged to divide the collimated light to at least two individual, spatially separated light beams, wherein the first light beam is formed by part of the collimated light passing by the optical means, and the second light beam is produced by passing another part of the collimated light through a refractive surface of the optical means. The first and second light beams are displayed on the output surface in the form of separate bands, namely the first and second band (A, B).
US10161585B2 Louver assembly
A generally plano rectangular louvers are capable of being ganged in a stacked tiltable array to enhance light re-direction when titled to follow the solar elevation. Combinations of features and optical characteristic avoid optical artifacts and enhance efficiency of light utilization and manufacturing. Different louvers can be combined in alternative ways in such arrays.
US10161584B2 Electric lighting device with scent cartridge
Electronic lighting systems comprising various internal housing assemblies that provide an air channel for air and scented air are contemplated. In some embodiments, an electronic lighting system comprises a housing disposed within the outer cover that supports a flame element. The flame element is allowed to move on the housing to create a realistic candle light effect. Additionally, a scent cartridge can be inserted into the electronic lighting device to create scented air that moves through an air channel in the electronic lighting device. The scented air is distributed by the electronic lighting device to create an enhanced user experience.
US10161583B1 LED flame effect lighting device
There is provided a lighting device comprising a plurality of light emitting diodes (LEDs) that simulate a flame. The device comprises a circuit board having a plurality of through-holes extending between two opposing faces of the circuit board, and wherein at least some of the LEDs are mounted inside the through-holes so they are visible from both faces of the circuit board.
US10161582B1 Solar-powered collapsible lantern
A solar-powered, collapsible lantern that employs a frame assembly of an umbrella and which is movable between a collapsed, storage position and an expanded, deployed position. The solar-powered lantern includes a plurality of light sources supported by the frame assembly for illumination of the lantern and the surrounding environment when the lantern is manipulated from a collapsed, storage position to an expanded, deployed position. The solar-powered lantern may include a removable hook to suspend the lantern from a suspension point. The hook may be interchanged with a removable stake that is insertable into a support surface, to support or otherwise anchor the lantern on the support surface. The power source may include at least one solar panel configured for selective movement to permit adjustable orientation of the at least one solar panel relative to the sun.
US10161580B2 Adjustable recessed lighting assembly
An integrated recessed lighting assembly with an outer frame and inner sleeve with an electronics unit fixed to the outer frame. The frame is fixable to a building member with a portion within the recess opening and the electronics unit concealed behind the building member. Brackets are fixed to the frame and provide multi-directional slots for maintaining the inner sleeve via cooperative projections. The inner sleeve is slidable along a portion of the slots from a lower position with its terminal edge distal to the frame distal edge to a raised position with its terminal edge proximal to the frame proximal edge and building member, and then slidable along another portion of the slots to an offset position at least partially concealed by the building member to open an access opening through the frame to the electronics unit.
US10161576B2 Flashlight with battery adapter
An example apparatus embodiment includes a flashlight operable from a primary electric storage battery and from another battery having an external casing that has a different outer diameter and possibly a different overall length than the primary battery. In some embodiments, a battery adapter extends a battery compartment to hold a longer substitute battery. In other embodiments a batter adapter holds a battery with a dimension, for example a diameter of the battery case, that is too large to allow the battery to slide into the battery compartment. Another example embodiment includes a battery adapter without a flashlight.
US10161575B2 Solid state lighting device and luminaire
A lamp (10) for replacement of a HPS or HID lamp, is disclosed that comprises a support element (13) including a mounting shaft (15) extending therefrom, said mounting shaft being substantially parallel and having lateral displacement relative to a central axis of the lamp and a plurality of modules (20) each comprising a heat spreading element (23) wherein at least one module is mounted on the mounting shaft and is rotatable about the mounting shaft such that said at least one module can be pivoted between a first orientation in which the modules cooperate to define a closed structure; and a second orientation in which the at least one module is pivoted away from at least one neighboring module to define an opened structure. The lamp further comprises a plurality of sets of solid state lighting elements (30) wherein each set is mounted on an outer surface (21) of one of said modules, and a holder (11) for holding the support element (13), wherein the holder comprises a lamp cap (12) to connect the lamp (10) to a power source, wherein the lamp cap is compatible with a socket for the HPS or HID lamp to be replaced. A luminaire including such a lamp is also disclosed.
US10161572B2 Spectrally enhanced white light for better visual acuity
A lighting configuration for providing improved vision acuity includes a first light source emitting light having a first wavelength peak in the range from 500 to 530 nm; a second light source emitting light having a second wavelength peak in the range from 600 to 640 nm; and a third light source emitting light having a third wavelength peak in the range from 440 to 460 nm. The radiated power at 555 nm is less than 15% of the radiated power at the wavelength of the second wavelength peak. The light configurations are characterized by an S/P ratio between 2 and 5. Optionally the radiated power at 480 nm is at least 20% of the second wavelength peak. The light sources used in the lighting configuration can be LEDs, preferably LEDs that are substantially free of a color conversion layer.
US10161570B2 Lighting device and luminaire
Disclosed is a lighting device (100) comprising a tubular body (120), said tubular body comprising a carrier (130) mounted inside the tubular body such that the tubular body comprises a first inner volume (102) delimited by a first arcuate section (121) of the tubular body and the carrier; and a second inner volume (104) delimited by a second arcuate section (124) of the tubular body and the carrier, wherein the carrier supports a plurality of solid state lighting elements (32) arranged to emit a luminous output into the first inner volume; and the first arcuate section (121) comprises a transparent region (123) and a translucent region (122) obscuring the solid state lighting elements, said transparent region extending from the translucent region to the carrier; wherein the carrier (130) comprises a central region extending along the length of the tubular body (120), and defining a recess in which the solid state lighting elements (32) are located, which recess prevents the solid state lighting elements (32) from being directly observable through the transparent region (123) of the first arcuate section (121). A luminaire (200) comprising at least one such a lighting device (100) is also disclosed.
US10161565B2 Suspension mount
A suspension mount is provided, which is capable of selectively hanging an electronic device onto different ceiling structures. The suspension mount includes a first member, a pivot shaft and a second member. The first member includes a first restriction unit and a second restriction unit. The second member pivots on the first member by the pivot shaft. The second member includes a third restriction unit and a fourth restriction unit. The first restriction unit corresponds to the third restriction unit. The second restriction unit corresponds to the fourth restriction unit. When the suspension mount is connected to the first ceiling structure, the first restriction unit and the fourth restriction unit abut a side of the first ceiling structure, and the second restriction unit and the third restriction unit abut the other side of the first ceiling structure.
US10161563B1 Stand clamp with ease of force application
The stand clamp with ease of force application comprises a fixed part, a movable part and a screwing-lock part. The movable part is pivotally coupled to the fixed part. The screwing-lock part includes a bolt, a pressing plate, a rotating rod and a resetting assembly, wherein two ends of the bolt are provided with a threaded section and a ratchet wheel section respectively. Further, the rotating rod slips with respect to the bolt to form a reset position and an actuating position. The resetting assembly is linked to the bolt and the rotating rod, such that the rotating rod is in the reset position under an ordinary state. In addition, the rotating rod can freely rotate with respect to the bolt at the actuating position. Therefore, an operator can freely change the position of the rotating rod and apply a force with a most suitable application angle.
US10161562B2 Planar non-compressible rigidizable chain assembly
Disclosed are various examples of support assemblies comprising multiple elements engaged together and independently rotatable within or substantially parallel to a reference plane while resisting twisting, rotation, or other movement in directions other than substantially within or parallel to the reference plane. The elements typically include projecting members received within cavities of adjacent elements that are configured to allow the resulting assembly to collectively flex within, or substantially parallel to, the reference plane while resisting movement in other directions.
US10161560B2 Integrated picomotor mount
An adjustable compact mount that may include an integrated configuration that is suitable for use in confined spaces. Some adjustable compact mount embodiments may include a threaded drive screw that is completely disposed within an outer perimeter of the base during use. End caps of high density material may be used to facilitate the compactness of certain embodiments while enabling efficient use of piezoelectric type drive motors for the adjustable compact mounts. Certain coatings may be used on components of some embodiments in order to increase durability.
US10161557B2 Cryogenic fluid transfer line
Cryogenic fluid transfer line comprising a tubular outer jacket housing at least two interior fluid-transfer tubes and a heat shield forming an insulating wall arranged around the interior tubes, the outer jacket comprising a lateral pumping opening connected to a pumping member intended to pull a vacuum in the outer jacket, characterized in that the heat shield comprises an orifice situated adjacent to the opening and an optical cover, the optical cover being positioned facing the orifice and in a plane distinct from that of the wall of the heat shield so as to prevent or limit direct thermal radiation from the outer jacket toward the interior tubes.
US10161554B2 Active control of subsea coolers
A cooler system has at least first and second coolers which are arranged in series, at least a third cooler which is arranged in parallel with the first and second coolers, and at least one flow control device for directing a fluid flow through at least one of the coolers. At least one of the coolers includes a bypass circuit or a recirculation loop for the fluid flow.
US10161553B2 Clamp and spike for flexible conduit
A clamp and spike combination for use in conjunction with a flexible conduit, comprising a spike including an inlet rod with a sharpened tip for penetration into the conduit, an outlet rod connected to the inlet rod, the outlet rod having a barbed tip for attachment to a tube. The bore extends through the rods from the sharpened tip to the barbed tip, whereby the spike provides a channel for the passage of fluid. Further included, a clamp including two legs extending substantially parallel with each other and spaced apart from each other by a distance, an apex portion connecting the two legs to each other so that the clamp is shaped substantially in the form of an inverted “U”; and an opening in the apex portion, the opening being sized to receive the inlet rod of the spike.
US10161551B2 Quick-connector
A quick-connector connecting a first pipe and a second pipe. The quick-connector includes a housing that extends about a first axis and defines a bore that extends axially therethrough. A grab ring is disposed in the bore of the housing and includes a body that extends about and along the first axis between a first end and a second end and defines a passage that extends between the first and second ends for receiving one of the first or second pipes. A plurality of protrusions extend from the body in the passage for clamping against the received pipe to prevent the received pipe from being axially removed from the passage. A plurality of hinges are spaced from one another about the body for allowing the body to uniformly and circumferentially flex about the hinges relative to the first axis when the first or second pipe is received in the passage.
US10161543B2 Multi-part insert
An insert comprising: a first carrier portion, the first carrier portion including: at least one attachment portion; a non attachment portion; and a portion of a channel, the channel being surrounded by the attachment portion and the non-attachment portion, and extending along all or a portion of the longitudinal axis of the first carrier portion; a second carrier portion, the second carrier portion including: at least one attachment portion; a non-attachment portion; and a portion of a channel, the channel being surrounding by the attachment portion and the non-attachment portion, and extending along all or a portion of the longitudinal axis of the second carrier portion; wherein the first carrier and the second carrier are attached via the respective at least one attachment portions forming a channel between the first carrier portion and the second carrier portion so that components, devices, fluids, or a combination thereof may pass through all or a portion of the insert.
US10161541B2 Throttle device and refrigeration cycle system with same
In a throttle device, a body portion has a flat surface at a position at a predetermined distance from its center axis. Thus, when a needle member is moving, a working pressure of a refrigerant present between an inner peripheral surface of a guide tube and the flat surface acts in a radial direction of the body portion and presses part of an outer peripheral surface of the body portion located opposite from the flat surface against the inner peripheral surface of the guide tube.
US10161540B2 Valve actuating device with anti-rotation and axial guidance means
A valve actuated device for a valve having a valve body and a valve translating member; a housing; a rotary and non-translating sleeve mounted in the housing and connected to an input rotary means; an axial shaft means positioned coaxially to the sleeve and adapted to be connected to the valve translating member; screw connecting means provided between the axial shaft means and the sleeve for convert applied rotation of the sleeve into axial translation of the axial shaft means; anti-rotation and axial guidance means installed between the housing and the shaft means; the anti-rotation and axial guidance means providing a linear ball bearing including a sleeve mounted to the housing and at least one rolling element recirculation system, the rolling elements thereof engaging axial groove of the shaft means.
US10161539B1 Motor water valve
A motor water valve is provided, the motor water valve can prevent a pressure of a fluid from being too great and prevent motor water valve from failing to function and leaking water, and the motor water valve can control a flow of the fluid flowing through a piping member so as to control in segments. In addition, the motor water valve is an intelligent water valve system which can be in communication with an application unit through wireless network to be remotely set up and operated so that a person can use the motor water valve even when they are not around.
US10161532B2 Pinch valve assembly
A pinch valve assembly for use in fluidic applications has an inlet and outlet with a flexible conduit therebetween, a base plate attached to a housing maintaining in its upper part an electromagnet. The valve assembly further includes a pinch unit assembly including in its lower external surface a knife, the pinch unit assembly being axially moveable around the body of the electromagnet between a rest position in which the knife pinches the flexible conduit when the electromagnet is not energized and an open position in which the knife releases the flexible conduit when the electromagnet is energized. It further includes an elastic unit urging the pinch unit assembly against the base plate. The electromagnet is energized in phases, first with a high level of energy during a short time and second with an energy ten times less than that provided in the first phase to maintain the valve open.
US10161528B2 Valve plugs having curved notches
Valve plugs having curved notches are described herein. An example valve plug includes a first section defining a first end, a second section defining a second end opposite the first end, and a third section located between the first and second sections, the third section including a curved notch formed inwardly from a periphery of the third section toward a longitudinal axis of the valve plug defined by the first, second and third sections.
US10161525B2 Sealing system and method for the production thereof
The invention relates to a seal for high pressure applications, in which a static and a dynamic sealing portion are separated from each other by a material thin point in such a manner that plastic flowing through the thin point is suppressed even if one of the two sealing portions is acted upon under high pressure as far as elastic compression.
US10161523B2 Enhanced cloth seal
The embodiments described herein provide a cloth seal for use with turbine components. The cloth seal includes first and second cloth layers. One or more central shims are positioned between the first and second cloth layers so as to block a leakage flow path. Another shim is positioned on and seals the opposite side of the first cloth layer from the one or more central shims positioned between the first and second cloth layers so as to block another leakage flow path. Yet another sealing shim may be positioned on the opposite side of the second cloth layer from the one or more central shims positioned between the first and second cloth layers to as to seal the opposite side of the second cloth layer and block another leakage flow path.
US10161517B1 Method and apparatus to control a continuously variable transmission
A powertrain system includes a torque generating device to transfer torque to a driveline via a CVT, wherein the CVT includes a first pulley coupled to a second pulley via a flexible continuous device to transfer torque therebetween. A controller including a processor and memory is operatively connected to the CVT. The controller includes an instruction set that is executable to dynamically monitor operating parameters associated with an input force and an output force of the CVT and determine an amplitude variation of one of the operating parameters. The controller is disposed to detect an impending slip event based upon the amplitude variation, wherein the impending slip event is associated with a macro-slip condition on the flexible continuous device. Operation of the CVT is controlled to preclude the impending slip event.
US10161515B2 Actuating device for a manual transmission and a clutch unit of a commercial vehicle
An actuating device is provided for a manual transmission having at least one clutch unit of a commercial vehicle. The actuating device includes transmission-actuating elements for the mechanical actuation of the manual transmission and clutch actuating elements for the fluidic actuation of the clutch unit. At least two actuating cylinders as transmission-actuating elements for actuating the manual transmission coupled thereto and at least one compressed-air connection as a clutch-actuating element for actuating the clutch unit connected thereto are arranged in a common carrier housing.
US10161514B2 Control apparatus for lockup clutch
A control apparatus for a lockup clutch is provided. The control apparatus for the lockup clutch includes an electronic control unit that is configured to: calculate a driven target clutch torque capacity and a driving target clutch torque capacity; set a target clutch torque of the lockup clutch and control the lockup clutch, based on the driven target clutch torque capacity and the driving target clutch torque capacity; and change over the target clutch torque capacity from the driven target clutch torque capacity to the driving target clutch torque capacity when the driven target clutch torque capacity and the driving target clutch torque capacity coincide with each other after an operation state of an accelerator of the vehicle changes over from an accelerator OFF state to an accelerator ON state.
US10161512B2 System and method for torque converter clutch pressure circuit filling and capacity detection
A transmission includes a torque converter with an impeller, a turbine, a torque converter clutch, a hydraulic torque converter clutch control circuit and a controller that commands a first pressure into the hydraulic torque converter clutch control circuit during a transition period between a torque converter clutch OFF mode to a torque converter clutch ON mode and prior to the torque converter clutch reaching capacity and a second pressure into the hydraulic torque converter clutch control circuit after the torque converter clutch reaches capacity.
US10161509B2 Hydraulic control device for an automatic transmission
A hydraulic control device for controlling multiple torque-transferring shift elements of an automatic transmission, where each of the shift elements features at least one hydraulic actuator, which includes one actuating pressure chamber, at least one stop valve and at least one hydraulic shift device with multiple pressure adjusting devices connected to the different shift elements. Thereby, the stop valve is configured and arranged in such a manner that the actuators of at least two shift elements are hydraulically connectable to the pressure adjusting devices through a common stop valve. In a first shifting position, all actuating pressure chambers of the at least two shift elements are tightly sealed by the stop valve. In a second shifting position, all actuating pressure chambers of the at least two shift elements are connected through the stop valve to the pressure adjusting device allocated to the respective shift element.
US10161505B2 Devices and methods for increasing the strength of an automotive transmission
Methods for modifying certain prior art automatic transmissions to strengthen the transmission and eliminate a tendency of the transmissions to fail as well as components for doing the same. Some aspects also include kits for modifying a transmission to increase the strength of the transmission. In some examples, the hydraulic system of a General Motor's model number 4L80E transmission is modified so that an overrun clutch is engaged in more modes of operation than the original equipment prior art 4L80E transmission in order to minimize a tendency for an overdrive roller clutch to fail.
US10161494B2 Manufacturing method of sliding cam assembly and assembling method of cam shaft assembly including sliding cam and fixed cam
Disclosed is a method of manufacturing a sliding cam assembly. In particular, a requirement for wear resistance of a hollow tubular portion in which sliding takes place can be satisfied due to a cam piece being fixed to the hollow tubular portion by diffusion bonding while the sliding cam assembly repeatedly slides along a shaft, and each component can be separately machined and combined, thus minimizing an amount which is wasted at the time of machining, reducing the machining time, and rendering a separate heat treatment of a cam piece unnecessary.
US10161491B1 Fail-safe selective self-locking actuator
A selectively self-locking actuator includes a threaded shaft having a first threaded portion and a second threaded portion. The first threaded portion includes a semicircular ball screw threadform and the second threaded portion includes a power screw threadform. The actuator further includes a ball nut mated to the first threaded portion, a split nut selectively mated with the second threaded portion, and a nut coupler plate configured to secure the ball nut and split nut at a fixed distance from each other. The split nut includes at least a first split nut portion and a second split portion each mated to a spring and a driver. The spring is configured to bias the first split nut portion and the second split nut portion either radially inward or radially outward with respect to the threaded shaft, and wherein the driver is configured to selectively oppose the bias of the spring.
US10161487B2 Toothed belt and sprocket system
A belt and sprocket system comprising a tensile cord disposed within a belt body, at least two teeth projecting from the belt body, the belt comprising a pitch length measured between the at least two teeth on the belt, one of the at least two teeth having a tooth tip and a profile comprising a first radius and a second radius and a third radius disposed between a first linear segment and a second linear segment, the sprocket having a groove for receiving one of the at least two teeth, the groove profile comprising a first radius and a second radius and the third radius and a fourth radius, each of which is connected in series to the others and each of which is unequal in length to the other radii, the tooth having a width that is approximately 35% of a pitch length at 90% of a tooth height so as to result in an interference fit between the one of at least two teeth and groove at 90% of the tooth height; and a volume between the tooth tip and the groove.
US10161486B2 Multi-speed planetary transmission
A multi-speed transmission including a plurality of planetary gearsets and a plurality of selective couplers to achieve at least nine forward speed ratios is disclosed. The plurality of planetary gearsets may include a first planetary gearset, a second planetary gearset, a third planetary gearset, and a fourth planetary gearset. The plurality of selective couplers may include a number of clutches and a number of brakes. The multi-speed transmission may have four planetary gearsets and six selective couplers. The six selective couplers may include three clutches and three brakes.
US10161480B2 Eccentric oscillating speed reducer
An eccentric oscillating speed reducer includes: first and second external gears, each having shaft penetration holes in respective circumferences thereof; eccentric shafts, having first and second crank portions passing through the shaft penetration holes, with the first and second external gears furnished on the first and second crank portions, respectively; a supporting member inserted through a first shaft penetration hole of the first external gear and a second shaft penetration hole of the second external gear, and being in eccentric contact with inner peripheries of the shaft penetration holes; first and second output portions, each having shaft penetration holes on respective circumferences thereof, with both ends of an axis of each of the eccentric shafts furnished in the shaft penetration holes, and the first and second output portion being connected by the supporting member; and an annular gear engaged with the first and second external gears.
US10161477B2 Actuator and electronic device having the same
The present invention relates an actuator including a housing, a drive unit installed in the housing and provided with a rotatable shaft, a bearing part installed in the housing to rotatably support the shaft at different positions, at least one bearing part included in the bearing part being fixed to the housing, and a gear unit accommodated in the housing, the gear unit being rotated about different axes rotational power transmitted thereto from the shaft.
US10161473B2 Process for constructing the multiple stage air shock
Disclosed herein is a process suitable for constructing the multiple stage air shock. The multiple stage air shock is unique among shocks in that the multiple stage design possesses qualities not available to other shock absorbers. The process includes a means for determining the compressed and extended lengths of the air shock based on the lengths of the parts for each stage. This means refers to one methodology and offers the air shock an extended length that is greater than twice its compressed length, an optimized extended length, and a construction capability based on adding stages. In particular, the extended length-compressed length relationship is a quality inherently unobtainable by current shock absorbers. The process also includes a means of determining the spring rate. This means refers to a second methodology and offers the capability to both set-up the air shock with a relatively linear spring rate and make the relatively linear spring rate more linear.
US10161464B2 Abrasion compensation device, clutch actuator unit including abrasion compensation device, and vehicle including clutch actuator unit
A clutch actuator unit that includes an abrasion compensation device and removes an adhesive force between a clutch disc and a flywheel by using a diaphragm spring to press the clutch disc against the flywheel and by using a fork to push a first side of the diaphragm spring may include an outer member including a groove and a female screw portion, a push rod pushing against a first side of the fork, an inner member including a male screw portion screwed into the female screw portion, including a rotation center portion of a rear end portion thereof in which a support portion is formed, and including a first gear portion, a fixed guide member guiding the outer member, a pushing member including a second gear portion meshed with the first gear portion, an actuator employing an actuator rod to push or pull the pushing member, and a controller controlling the actuator.
US10161459B2 Damper disc assembly
A damper disc assembly includes an input plate, an output unit including an input-side member and an output-side member, a high stiffness damper unit, a low stiffness damper unit and first and second hysteresis torque generating mechanisms. The low stiffness damper unit is disposed axially between the input plate and the input-side member, and is actuated in a low torsion angular range of torsional characteristics. The first hysteresis torque generating mechanism generates a first hysteresis torque in a lower torsion angular part of an actuation range of the low stiffness damper unit. The second hysteresis torque generating mechanism generates a second hysteresis torque in a higher torsion angular part of the actuation range of the low stiffness damper unit and an actuation range of the high stiffness damper unit.
US10161451B2 Cage segment, segmented cage, and bearing
A cage segment for a bearing rotatable around an axis of symmetry that defines an axial direction and able to receive a plurality of rolling elements and having an inner and outer walls that extend circumferentially in the form of a of cylinder. A plurality of radial beams extend globally radially with respect to the axis and connecting the inner and outer walls. Each axial radial beam having a central portion and two end portions that are opposite with respect to the central portion. The central portion being symmetrical with respect to a plane of symmetry. The plane of symmetry of the at least one end portion cooperating with a rolling element to center the segment, forms with the plane of symmetry of the central portion an angle which is not equal to zero.
US10161450B2 Ball bearing
A cage has an annular portion positioned on an axially first side of balls and a plurality of cage bars provided to extend from the annular portion toward an axially second side. Pockets each housing a corresponding one of the balls correspond to areas each located on the axially second side of the annular portion and between two cage bars adjacent to each other in a circumferential direction. Each of the balls is exposed from axially-second-side ends of the corresponding cage bars over an axially-second-side range. An axial dimension of the range over which the ball is exposed from the axially-second-side ends is 30% or more and 50% or less of the diameter of the ball.
US10161441B2 Self-lubricated bearings
An aircraft includes an airframe and a rotary component rotatably connected to the airframe by way of a plain bearing. The rotary component is part of a rotorcraft control system. The plain bearing includes an inner member rotatably engaged in at least two axes of rotation to an outer member. The inner member has a coefficient of thermal expansion (CTE) substantially less than that of the outer member.
US10161439B2 Connecting rod and manufacturing method thereof
Provided is a connecting rod which can be manufactured without increasing the cost, and is provided with an effectively strengthened rod portion. The rod portion includes a pair of ribs (21) extending in parallel to each other in cross sectional view, and a web (22) connected between substantially vertically middle parts of the ribs. Each rib includes a rib root portion (23) located in a vertically central part thereof in cross sectional view, and a pair of rib tip portions (24) located at both vertical ends thereof, and each rib tip portion has a higher hardness than the web by 40 HV or more, and the rib root portion has a higher hardness than the web by 30 HV or more.
US10161435B2 Self-attaching fastener and panel assembly, and method of attaching
A self-attaching fastener includes a substantially polyhedral head portion defining a longitudinal axis. The head portion is circumscribable by a first cylinder having a head diameter. The first cylinder is coaxial to the longitudinal axis. A central pilot portion substantially defines a pilot polyhedron extending from the head portion along the longitudinal axis. The central pilot portion is circumscribable by a second cylinder having a pilot diameter smaller than the head diameter. The second cylinder is coaxial to the longitudinal axis. The central pilot portion has a perimetric wall with rectangular faces of the pilot polyhedron. The rectangular faces are defined in respective planes that are parallel to the longitudinal axis. A planar panel support surface is defined on the head portion. The planar panel support surface defines a closed substantially polygonal planar margin at a perimeter of the planar panel support surface.
US10161434B2 Hollow metal screw and method of making
A hollow screw and related process of making is provided, wherein the hollow screw is formed from a generally circular corrosion resistant stainless steel disk cut from flat roll stock. The hollow screw includes a head and an elongated and hollow shaft having a wall thickness between about 0.2 to about 0.7 millimeters extending therefrom and defining a shank portion and a threaded portion having a plurality of threads thereon with a rotational drive mechanism configured to facilitate tightening via the threads. The process involves annealing to soften the stamped hollow screw, followed by thread rolling, and then age hardening the hollow screw. As such, the resultant hollow screw is relatively lightweight, about 50% the mass of a solid core screw made from the same material, with a sufficient thread strength to meet most aerospace applications and contributes to important aircraft fuel economy.
US10161432B2 Spreading connector
A spreading connector for connecting two furniture parts, including a built-in pot having a pot bottom, the pot being pressable, pot bottom first, into a housing bore of a first of the furniture parts. The pot further has a hollow-cylindrical pot wall that has a wall opening and at least one spreading tab that is cut free in the hollow-cylindrical pot wall and is pivotable about an axis running tangentially to the hollow-cylindrical pot wall. A tightening element is rotatably mounted inside the built-in pot for tightening a fastening bolt of a second of the furniture parts which passes through the wall opening. The tightening element has an outer eccentric surface for spreading the at least one spreading tab. The at least one spreading tab has a free tab end that extends in an axial direction away from the pot bottom.
US10161431B2 Net pole latch mechanism
The disclosure relates to a wrapping material system in a harvester, particularly to a latching mechanism that allows a material support cylinder to be unlocked and automatically ejected from its locked position. The latching mechanism comprises a support plate, connected to a harvester sidewall and configured for supporting the material support cylinder, and a lever plate, connected to the support plate at a pivot point and configured for locking in the material support cylinder in a closed position and ejecting the material support cylinder from the locked position when moved to an open position.
US10161428B2 Use of treating elements to facilitate flow in vessels
A method for facilitating the distribution of the flow of one or more streams within a bed vessel is provided. Disposed within the bed vessel are internal materials and structures including multiple operating zones. One type of operating zone can be a processing zone composed of one or more beds of solid processing material. Another type of operating zone can be a treating zone. Treating zones can facilitate the distribution of the one or more streams fed to processing zones. The distribution can facilitate contact between the feed streams and the processing materials contained in the processing zones.
US10161421B2 Method and system for injecting a process fluid using a high pressure drive fluid
A system and method of operating the same includes a first fluid cylinder having a first process fluid end and a first drive fluid end. The first cylinder comprising a first process fluid inlet port and a first process fluid outlet port disposed at the first process fluid end of the first fluid cylinder and first drive fluid inlet port and a first drive fluid outlet port disposed at the first fluid end of the first fluid cylinder. The first fluid cylinder is oriented vertically. A first liquid fluid interface is disposed between the first process fluid end and the first drive fluid end to divide the first fluid cylinder into a first process fluid portion and a first drive fluid portion. A first pump pumps drive fluid to the drive fluid portion to drive the fluid interface to pressurize the process fluid.
US10161420B2 Fan
A fan, including a volute, a motor, and multiple fan blades that are assembled on a rotor of the motor, where the volute includes a side wall that is disposed around circumference of the multiple fan blades, and a support frame that is connected to an end of the side wall and located on an inner side of the side wall; and the rotor of the motor drives the multiple fan blades to rotate, where multiple through-holes are disposed on the side wall of the volute, and at least more than one of the multiple through-holes is a slant through-hole.
US10161416B2 Rotary machine heat sink
A heat sink that can be positioned around a rotating shaft includes a cylindrical body with a first end and a second end, a bore running through the body with a first opening at the first end of the body and a second opening at the second end of the body, fins extending radially outward from the body and running from the first end to the second end of the body, and channels defined between the fins and running from the first end to the second end of the body.
US10161414B2 High compressor exit guide vane assembly to pre-diffuser junction
A pre-diffuser and exit guide vane (EGV) system for a gas turbine engine includes an annular EGV assembly containing a number of guide vanes and having an annular opening bounded by a radially inner annular sealing surface at a first radius and a radially outer annular sealing surface at a second radius. First and second seals substantially matching the first and second radii respectively join the EGV assembly to an annular pre-diffuser having an annular opening bounded by radially inner and outer annular sealing surfaces at substantially the first and second radii. The seals seal the inner sealing surface of the EGV assembly to the inner sealing surface of the pre-diffuser and the second seal seals the outer sealing surface of the EGV assembly to the outer sealing surface of the pre-diffuser, such that the EGV assembly annular opening is in fluid communication with the annular opening of the pre-diffuser.
US10161413B2 Method for preventing corrosion and component obtained by means of such
A method for preventing corrosion in a component of a turbo-machine having a metal substrate made of carbon steel, low alloy steel and stainless steel includes: a first deposition step of depositing a first metallic layer on the substrate by electroplating; a second deposition step of depositing at least a second layer of a nickel alloy on the first layer by electroless plating; at least one thermal treatment step after the deposition steps, said thermal treatment being applied at a temperature and for a time depending on the overall thickness of the layers, the value of said temperature being directly proportional to the thickness, the value of said time being inversely proportional to the temperature.
US10161411B1 Centrifugal pump sealing surfaces
Centrifugal pump sealing surfaces are described. A multi-stage centrifugal pump includes an impeller between a first diffuser and a second diffuser, a plurality of sealing surfaces formed by at least one diffuser inlet ring of the first diffuser interspersed between at least two concentric balance rings of the impeller, and at least one annular diffuser exit skirt of the second diffuser interspersed between at least two concentric annular skirts of the impeller. A multi-stage centrifugal pump includes an impeller including a plurality of concentric annular impeller sealing surfaces mated to a plurality of concentric annular diffuser sealing surfaces, the diffuser sealing surfaces extending toward the impeller from a diffuser stacked adjacent to the impeller, wherein the impeller sealing surfaces and the diffuser sealing surfaces interlock to form a plurality of tight clearances and a tortuous leak path for well fluid lifted by the centrifugal pump.
US10161409B2 Fan drive gear system including a two-piece fan shaft with lubricant transfer leakage recapture
A disclosed fan drive gear system for a gas turbine engine includes a first fan shaft coupled to a second fan shaft, a first shaft support bearing assembly disposed about the first fan shaft and a second shaft support bearing assembly disposed about the second fan shaft. A planetary gear system is coupled to the second fan shaft. A transfer bearing is configured to receive lubricant from a lubricant input and is positioned between the first and second fan shaft support bearings. A second bearing is configured to rotate with the second fan shaft and receive lubricant from the transfer bearing and communicate lubricant to at least one lubricant passage and a conduit fluidly connecting the at least one lubricant passage to the planetary gear system.
US10161408B2 Manhattan dual FDGS aux pump design
What is described is a system for pumping lubricant to a component of a gas turbine engine. The system includes a fan gear coupled to a fan shaft of the gas turbine engine and configured to rotate in a forward direction and in a reverse direction based at least partially on a direction of wind relative to a fan of the gas turbine engine. The system also includes a first pump coupled to the fan gear and configured to pump lubricant to the component in response to the fan rotating in the forward direction. The system also includes a second pump coupled to the fan gear and configured to pump lubricant to the component in response to the fan rotating in the reverse direction.
US10161405B2 Cooling apparatus
A cooling apparatus includes an impeller, a motor, a base portion, and a motor circuit board. The impeller includes a plurality of blades and a blade support portion. Of the plurality of blades, at least one pair of circumferentially adjacent blades are arranged to have a channel defined therebetween, the channel extending from axially upper edges to axially lower edges of the blades, and being arranged to be open toward the upper surface of the base portion. The base portion includes a heat source contact portion with which a heat source is to be in contact. At least one of the blades includes a blade edge opposed portion having an axially lower edge arranged opposite to the upper surface of the base portion. An outermost edge portion of the motor circuit board is arranged radially inward of a radially inner end portion of the blade edge opposed portion.
US10161403B2 Vacuum pump
A vacuum pump has an exhaust portion in which rotating blade portions and stationary blade portions are laminated in multiple stages. Each of the plurality of stator blades in one stage of the stationary blade portion is three-dimensionally connected to the stationary blade portion main body by an inner circumferential side support portion on the inner circumferential end side, and three-dimensionally connected to the stationary blade portion main body by an outer circumferential side support portion on the outer circumferential end side, and a cutout is provided in ag circumferential front end of the outer circumferential side support portion.
US10161401B2 Compressor and method of autonomously inspecting oil
Systems and techniques are disclosed to sense a temperature and a flow rate of oil in a compressor. A compressor includes: a casing; a frame on the casing; a fixed scroll on the frame; an orbiting scroll supported by the frame and defining a compression chamber while engaging the fixed scroll; and a crank shaft. The crank shaft transfers, to the orbiting scroll, a rotational force of a motor. The casing includes: a main housing including a refrigerant discharge passage and an oil passing passage; and a sub-housing including a refrigerant discharge port and an oil channel, which includes an oil reservoir, that each face the main housing. A sensor module attached to a sensor receptor in the sub-housing includes: a sensor housing covering the sensor receptor; and an oil sensor and a temperature sensor located on the sensor housing that each protrude towards the oil reservoir.
US10161400B2 Snap-in temperature sensor for scroll compressor
A temperature sensor on an outer surface of an upper shell at a location is associated with a discharge chamber. The temperature sensor includes electronics molded into an overmolded plastic and includes a spring member. The spring member snaps into a sensor housing connected to the outer surface.
US10161397B2 Eccentric screw pump with split stator housing
An eccentric screw pump has at least one stator of elastic material and extending along an axis, a rotor rotatable about the axis in the stator, and an axially split stator housing at least partially surrounding the stator and, formed by at least two housing segments. A stator-clamping device presses the housing segments radially against the stator and thereby presses the stator against the rotor. It has one or more movable adjusting elements that bear radially inward on the housing segments for radially adjusting and clamping the stator and one or more actuators connected or provided with the adjusting elements for automatically positioning the housing segments.
US10161395B2 Mechanically actuated traveling valve
A mechanically actuated traveling valve for use in fluid pumping equipment. More particularly, a multiple component mechanically actuated traveling plug valve having a valve seat, a valve plug and at least one displaceable valve ring positioned therebetween is provided for use in subsurface positive displacement pumps capable of pumping high viscosity fluids, with any gas to liquid ratio, operating at any inclination angle.
US10161394B2 Counterweighted pumpjack with reversible motors
A counterweighted well pumping unit comprises two or more reversible motors, each of which is directly and operatively connected to a rotatable drive component mounted on a support structure positioned over a wellhead. For each motor, an elongate, flexible drive element is trained over the associated rotatable drive component, with one end of the flexible drive element connected to a counterweight assembly and the other end connected to a pump rod string associated with the wellhead. Actuation of the motors rotates the rotatable drive components, thus causing the drive elements to move the pump rod string and the counterweight assembly in opposite vertical directions. The rotational direction of the drive motors is alternated so as to alternate the directions of vertical movement of the pump rod string and the counterweight. The counterweight assembly may be concentric with or offset from the wellhead.
US10161393B2 Mechanical drive system for a pulseless positive displacement pump
A drive system for a pump includes a housing defining an internal pressure chamber, a working fluid disposed within and charging the internal pressure chamber, and a reciprocating member disposed within the internal pressure chamber. The reciprocating member has a pull chamber. A pull is secured within the pull chamber, and a fluid displacement member is coupled to the pull.
US10161389B2 Device for enabling access to a wind turbine
A device 1 for enabling access to a rotor blade 54 of a wind turbine, said device being adapted for being moved in the longitudinal direction of the rotor blade 54, the device comprising a frame structure 2, means for supporting and guiding the device in relation to the rotor blade, means for lowering and/or lifting the device in relation to the rotor blade, wherein said means for supporting and guiding the device in relation to the rotor blade are configured for contacting the rotor blade at regions at or near the front edge of the rotor blade and at or near the rear edge of the rotor blade, and wherein said means for supporting and guiding the device in relation to the rotor blade are configured for being adjusted to the rotor blade during movement of the device in order to maintain controllable contact at said regions, and wherein said means for supporting and guiding the device in relation to the rotor blade comprises a plurality of contact means 12, 14 at least one of which is adapted for being omnidirectionally movable along the surface of the rotor blade 54 while said means for supporting and guiding the device in relation to the rotor blade are being adjusted to the rotor blade during movement of the device.
US10161388B2 Wind turbine blade lifting device and a method for lifting a wind turbine blade
A wind turbine blade lifting device having a length, a width and a height and is suitable for lifting and handling a wind turbine blade or a part of a wind turbine blade, also having a length, a width and a height, where the lifting device has a chassis with at least one set of connection for coupling to a lifting apparatus, and a mechanism for engaging a wind turbine blade or blade part. Also, a method for installing at least a part of a wind turbine blade, e.g. a full wind turbine blade or an inner blade part for a partial pitch wind turbine blade having an inner blade part and an outer blade part.
US10161386B2 Optimal wind farm operation
The present application is concerned with a flexible way of operating a wind farm with a plurality of degrading wind turbine components. According to the invention, maintenance scheduling and power production in the wind farm are handled concurrently in a single optimization step. Instead of a serial approach first scheduling maintenance activities and subsequently adapting the power production and/or wind turbine operation the two aspects are optimized together. The wind farm operation takes maintenance aspects into account by adapting life index or health status based on modeled mechanical and electrical stress. Accordingly, the wind farm owner may decide when and how much energy to produce accepting which level of stress to the turbine equipment. The proposed optimization of wind farm operation includes all aspects of transmission network operator settings, the topology of wind farms and the underlying collector grid, the short and long term wind conditions forecasts, the conditions of the turbines, the estimated remaining operational time under different usage patterns and times, as well as aspects of the electricity market.
US10161384B1 Fan control circuit and fan control method
A fan control circuit for controlling a fan includes a processing module, a driving module and a speed compensation module. The driving module is electrically connected to the processing module, and generates at least one driving signal to drive the fan. The speed compensation module is electrically connected to the processing module, and receives a first voltage. The first voltage is variable. The speed compensation module generates and transmits a speed-compensation parameter to the processing module according to the first voltage and a first waveform, and the processing module adjusts the driving signal according to the speed-compensation parameter.
US10161379B2 Coastal protection and wave energy generation system
This invention relates to a wave energy generator for a coastal protection system. The wave energy generator includes a base structure arranged in a body of water and configured to protect a portion of a coastline against incoming waves. The base structure has a foundation located on a floor of the body of water and a wall extending from the foundation to a point above a highest predicted height of the waves. At least one duct is associated with the base structure for receiving an oscillating water column from the body of water. The oscillating water column oscillates in response to wave action of the incoming waves and the duct forms part of an energy extraction system for capturing energy from the incoming waves.
US10161376B2 Ignition control apparatus
An ignition control apparatus for engines is provided. The ignition control apparatus is designed to control a switch to release energy stored in a capacitor during spark discharge, thereby supplying a primary current to an other end side opposite a one end of a primary winding of an ignition coil connected to a dc power supply. This provides the ignition control apparatus which is capable of minimizing an increase in size or manufacturing cost and stabilizing the state of combustion of an air-fuel mixture.
US10161373B2 Method and device for starting or restarting thermal engine
The method according to the invention calls upon a rotary electric machine (1) comprising a drive member (3) and a transmission member (4) of the belt or chain type, collaborating with the drive member and with the combustion engine (2) in order to start or restart the combustion engine, a tensioner (6) being provided to press against one strand (7) of the transmission member that extends between the rotary electric machine and the combustion engine. According to the invention, in a first stage, the rotary electric machine (1) supplies a predetermined reduced torque in the direction of starting for a predetermined duration in order to tension the transmission member (4) and then, in a second stage, the rotary electric machine (1) supplies a predetermined optimum torque for rapidly turning over the combustion engine (2) and causing it to start.
US10161372B2 Hydrostatic drive
A hydrostatic drive includes a hydraulic machine, a hydraulic adjusting device, a high-pressure accumulator, an accumulator-closing valve, and an electronic control unit. The hydraulic machine has a swept volume that is adjustable via the hydraulic adjusting device from a maximum positive swept volume to a maximum negative swept volume via a zero swept volume. The hydraulic machine is operated as a pump with positive swept volume and as a motor with negative swept volume. The high-pressure accumulator supplies the hydraulic machine with pressure medium for operation as a motor via a pressure line. The accumulator-closing valve has a first position and a second position and is arranged in the pressure line. A fluidic connection from the high-pressure accumulator to the hydraulic machine is open in the first position and closed in the second position. The accumulator-closing valve is actuated in accordance with signals from the electronic control unit.
US10161371B2 Opposed piston three nozzle piston bowl design
A piston may include an outer peripheral surface and a crown. The outer peripheral surface may include first and second openings spaced about and extending through the outer peripheral surface. The crown may include a recess at least partially defined by a first lobe in fluid communication with the first opening and a second lobe in fluid communication with the second opening. Each of the first and second lobes may be recessed relative to an adjacent portion of the recess of the crown.
US10161370B2 Systems and methods for performing prognosis of fuel delivery systems
An engine fuel delivery system includes a fuel pump having a pumping chamber to increase fuel pressure and a closeable inlet valve, and a fuel rail to communicate pressurized fuel received from the fuel pump to at least one engine cylinder. The engine fuel delivery system also includes a controller programmed to issue a control signal to periodically close the inlet valve to generate a setpoint fuel pressure within the pumping chamber. The controller is also programmed to adjust a control signal gain value in response to deviation in an outlet fuel pressure relative to the setpoint fuel pressure. The controller is further programmed to issue a warning message in response to the control signal gain being adjusted by more than a predetermined threshold from a calibrated gain value.
US10161367B2 Fuel shutoff structure
A fuel shutoff structure that prevents a fuel outflow to an external fuel line of a fuel tank mounted on a vehicle includes a fuel shutoff valve provided in the rear section of the fuel tank and a canister that is provided so as to be located across the front section of the fuel tank from the fuel shutoff valve and that is connected to the external fuel line, in which an in-tank fuel line extending from the fuel shutoff valve and the external fuel line are connected to each other at a location that is different from the fuel shutoff valve.
US10161366B2 Air intake apparatus
An air intake apparatus includes: an air intake apparatus body including first, second, third and fourth air intake passages respectively provided corresponding to first, second, third and fourth cylinders of a multi-cylinder engine which has one or a plurality of groups of four consecutive cylinders of the first, second, third and fourth cylinders, the multi-cylinder engine having an air intake sequence of the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder; and a distribution passage through which external gas is distributed to the first, second, third and fourth air intake passages. The distribution passage includes an upstream distribution passage, first and second midstream distribution passages branched off from the upstream distribution passage, and first and second downstream distribution passages branched off from the first midstream distribution passage, and third and fourth downstream distribution passages branched off from the second midstream distribution passage.
US10161364B2 Hollow intake manifold
An intake manifold for an internal combustion engine having at least one runner having a top end, a bottom end, a front side, and a back side defining a hollow interior space wherein the top end has a first height greater than a second height of the bottom end, and a port for receiving air into the hollow interior space, the back side having cylinder holes aligning with cylinder head openings of the internal combustion engine and bolt holes for receiving bolts, each bolt having a bolt head and a bolt thread, the front side having access holes aligning with the bolt holes, such that the intake manifold can be secured to the internal combustion engine with no portion of the bolt thread lying within the hollow interior space of the intake manifold thus preventing obstruction of air circulation through the hollow interior space.
US10161362B2 Systems and methods for an exhaust gas recirculation mixer
Methods and systems are provided for a mixer. In one example, a system may include an EGR mixing having a downstream surface with a plurality of venturi tubes extending therefrom.
US10161361B2 Method for operating a coolant circuit
A method for operating a liquid coolant circuit of an internal combustion engine is described in which the coolant circuit contains an integrated EGR cooler such that the cooling system has a single circuit with two operational modes. The method includes a controller that can switch between operational modes to enable delivery of coolant to the EGR cooler when the flow of coolant through the block cooling circuit is blocked. In the second operational mode, the method also includes using an auxiliary pump to pass coolant to the EGR cooler while bypassing the main coolant pump, which can occur by adjusting the flow of coolant through the circuit so the flow through a bypass line is reversed relative to the inherent forward direction of flow in the bypass line during the first operational mode.
US10161360B2 Valve device
A valve device includes: a main valve element dividing a valve element space of a housing into first and second pressure chambers; a sealing member configured to isolate the first and second pressure chambers from each other; a first pilot passage including one end communicating with a primary passage, the other end communicating with the second pressure chamber, and a first restrictor; a second pilot passage including a second restrictor and formed at the main valve element; a pilot valve element configured to open and close the second pilot passage; a drive mechanism configured to, when a current flows through the drive mechanism, drive the pilot valve element such that the pilot valve element opens the second pilot passage against biasing force of a biasing member; and a pin coupling the main valve element and the pilot valve element to each other.
US10161355B2 Efficient stirling engine
An efficient stirling engine comprises an expansion chamber with a heater and a compression chamber with a cooler, wherein the two chambers are connected through a regenerator. A passage between the heater and the expansion chamber is provided with a first valve system, a passage between the cooler and the compression chamber is provided with a second valve system, the first valve system can close or open the passage between the heater and the expansion chamber, and the second valve system can close or open the passage between the cooler and the compression chamber. After adopting the structure above, when a heating end is heated to expand, a cooling end at the other end is closed, and on the contrary, when the cooling end is cooled to shrink, the heating end at the other end is closed, so that the heating energy is fully used, so as to increase the efficiency of the stirling engine.
US10161347B2 Zero flow lubrication for a high pressure fuel pump
Methods and systems are providing for improving zero flow lubrication (ZFL) of a high pressure fuel pump coupled to direct fuel injectors via a direct injection fuel rail. A ZFL transfer function for the fuel pump is learned while fuel is at non-nominal fuel bulk modulus conditions and corrected for variations from a nominal fuel bulk modulus estimate. When zero flow lubrication of the pump is requested, the pump is operated with a duty cycle based on the learned transfer function and an instantaneous estimate of the fuel bulk modulus to compensate for differences in fuel condition from the nominal fuel bulk modulus estimate.
US10161342B2 Control device for high-pressure pump
A control device for a high-pressure pump includes: a determination unit, an acquisition unit, and an electric power setting unit. The determination unit determines whether a movable portion of an electromagnetic valve has been moved to a closed position to close the electromagnetic valve when the electromagnetic valve is energized. The acquisition unit acquires, as an electromagnetic-valve response time, a period of time from a start of the energization of the electromagnetic valve until when it is determined that the electromagnetic valve has been closed. The electric power setting unit sets a supply power to the electromagnetic valve by repeating a process in which the supply power to the electromagnetic valve is reduced so as to be smaller than a previous value until the electromagnetic-valve response time reaches a predefined upper limit value.
US10161341B2 Control system for diagnosing a malfunctioning of a pressure sensor included in an aftertreatment system of an internal combustion engine
A system and method is disclosed for diagnosing a malfunctioning of a pressure sensor in an aftertreatment system of an internal combustion engine. A first value of a differential pressure across the particulate filter is measured during the identified fuel cut-off state of the internal combustion engine. An exhaust back pressure valve of the aftertreatment system is operated toward a predetermined closed position thereof, and a second value of a differential pressure across the particulate filter is measured. A difference between the second value and the first value is calculated, and a malfunctioning of the differential pressure sensor is identified when the calculated difference is higher than a predetermined threshold value thereof.
US10161339B2 Drive device for fuel injection device
The objective of the present invention is to correct deviation in the injection amount and changes in the injection timing when the voltage of a high-voltage source for a drive device decreases. This drive device for a fuel injection device is equipped with a function whereby, when the pulse width of the injection pulse is set to an energization time 815 that closes a valve after a drive current has been switched to a maintenance current, the injection pulse width when the voltage of a high-voltage source has decreased is corrected so as to be longer than the injection pulse width when the voltage of the high-voltage source has not decreased, and, when the pulse width of the injection pulse is set to an energization time 804′ that closes the valve before the drive current has been switched to the maintenance current, the absolute value of the amount of correction of the injection pulse width is made smaller than when the injection pulse width is set to the energization time 815 that closes the valve after the drive current has been switched to the maintenance current.
US10161337B2 Control device for internal combustion engine
A control device for an internal combustion engine includes an electronic control unit configured to switch a control algorithms for a calculation of a command value of the actuator between a first control algorithm and a second control algorithm. The electronic control unit is configured to calculate a value obtained by adding a value of a term of the second control algorithm changing in accordance with the deviation calculated in a present control cycle to the command value calculated in a previous control cycle in accordance with the first control algorithm as a value of the command value calculated in the present control cycle in a first control cycle after switching from the first control algorithm to the second control algorithm. The value of the term changing in accordance with the deviation includes an update amount of an I term of the I control calculated in the present control cycle.
US10161334B2 Systems and methods for a split exhaust engine system
Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a first exhaust manifold and exhaust gas to an exhaust passage via a second exhaust manifold. In one example, in response to a request to shut down the split exhaust engine system, an intake throttle may be closed and a first valve disposed in a secondary flow passage coupled between the intake manifold, downstream of the intake throttle, and a first exhaust manifold coupled to a first set of exhaust valves, may be opened. As a result, unburned hydrocarbons may be routed to a catalyst disposed in the exhaust passage.
US10161331B2 Method of operating a selective catalytic reduction on filter of an automotive system
A method of operating a Selective Catalytic Reduction on Diesel Particulate Filter or SDPF is disclosed. During a SDPF regeneration; temperature values are obtained for the SDPF inlet and SDPF outlet. The temperature values are used to calculate a rate of increase of SDPF outlet temperature and a rate of increase of SDPF inlet temperature. A ratio between the rate of increase of SDPF outlet temperature values and the rate of increase of SDPF inlet temperature values is calculated, and if the ratio is greater than a threshold thereof, the exhaust gas composition is modified in some manner.
US10161321B2 Control apparatus for internal combustion engine
A control apparatus for an internal combustion engine is configured to: open a waste gate valve if switching operation modes from supercharged lean burn operation to stoichiometric burn operation and if it is necessary to decrease an air amount; control an exhaust variable valve train so that, during a response delay period accompanying the waste gate valve being opened, a first valve opening period EX1 and a second valve opening period EX2 are set and the second valve opening period overlaps with a valve opening period IN; control a fuel injection valve so as to inject fuel of an amount necessary to realize the stoichiometric air-fuel ratio under a stoichiometric requested air amount during the response delay period; and control the second valve opening period EX2 of the exhaust valve so that, during the response delay period, the air amount comes close to the requested air amount.
US10161319B2 Method and system to provide engine torque
An exemplary method of providing torque-assist to a crankshaft of an internal combustion engine includes, among other things, assisting a rotation of the crankshaft using an electric machine during the transition between stages of a multi-stage forced induction system.
US10161317B2 Gas-turbine control device, gas turbine, and gas-turbine control method
A gas turbine drives a power generator by rotating a turbine using combustion gas generated in a combustor as a result of supplying the combustor with fuel and compressed air from a compressor, which is provided with an inlet guide vane at a front stage. An operation control device of the gas turbine enables an IGV priority open flag when the inlet guide vane is not fully open and when the system frequency is lower than or equal to a predetermined threshold value α or there is a request for increasing the output of the gas turbine. When the IGV priority open flag is enabled, the operation control device sets the degree of opening of the inlet guide vane to be larger than before. Accordingly, the output can be increased without having to increase the turbine inlet temperature, regardless of the operational state of the gas turbine.
US10161314B2 Vented buffer air supply for intershaft seals
Aspects of the disclosure are directed to a system associated with an engine having a central longitudinal axis, comprising: a first shaft axially extend along the central longitudinal axis, a second shaft coaxial with the first shaft, a first air seal that seals between the first shaft and the second shaft at a first axial location, a second air seal that seals between the first shaft and the second shaft at a second axial location, a high pressure compressor section that provides air to the first air seal and the second air seal, at least one buffer passage, and a meter connected to the buffer passage that exhausts a portion of the air.
US10161312B2 System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle has first and second passages that separately inject respective first and second flows into a chamber of the turbine combustor to produce a diffusion flame. The first flow includes a first fuel and a first diluent, and the second flow includes a first oxidant. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
US10161311B2 Aircraft with injection cooling system and injection cooling system
An aircraft with aturbofan engine assembly having at least one compressor, a nacelle surrounding the turbine engine and defimng an annular bypass duct between the nacelle and the turbine engine, a thrust reverser having at least one moveable control surface, a thrust reverser locking system configured to selectively lock the thrust reverserand an injection cooling system.
US10161309B2 Thermally compliant fitting for high temperature tube applications
A fitting is configured to couple a portion of a frame of a turbine and a bearing housing on an aircraft engine. The fitting includes a first receptacle configured to seat a tube that is configured to convey oil or air, and at least a second receptacle configured to seat a corresponding at least two bolts associated with the bearing housing, wherein the fitting comprises sections between the first receptacle and the at least a second receptacle that have a material thickness in a range of 3.175 millimeters and 6.35 millimeters.
US10161308B2 System for determining damage based on liner polish
A machine may comprise a memory configured to store liner polish information; and an electronic control module. The electronic control module may be configured to: determine a load factor based on an amount of load on the engine; determine an end of injection factor associated with the engine; determine a liner polish rate based on the load factor and the end of injection factor; obtain, from the liner polish information stored in the memory, information identifying a previous amount of damage to the engine; determine an amount of time between a current time and a time when the previous amount of damage was calculated; calculate a current amount of damage to the engine based on the previous amount of liner polish, the amount of time, and the liner polish rate; and take a remedial action based on the current amount of damage.
US10161307B2 Bilateral engine control system
Technology is provided for a bilateral engine control system for use on a multi-cylinder opposed piston engine. The system includes first and second sets of injectors, each set mountable on first and second sides of an engine. Each injector is in fluid communication with a corresponding cylinder of the engine. First and second engine control units are each connected to a respective set of injectors. First and second crankshaft speed sensors are connected to respective engine control units. The first engine control unit independently controls the first set of injectors based on a first speed signal and the second engine control unit independently controls the second set of injectors based on a second speed signal. The first engine control unit and the second engine control unit are configured to activate corresponding injectors of the first and second sets of injectors at substantially the same time.
US10161300B2 Internal combustion engine system
An internal combustion engine system includes an internal combustion engine, an exhaust system, an exhaust gas recirculation circuit and a turbocharger including a first turbine interacting with a first compressor for charging air to the internal combustion engine. An exhaust gas recirculation passage is arranged to divert exhaust gases from the internal combustion engine upstream the first turbine and to debouch the exhaust gases downstream the first compressor. The internal combustion engine includes a bleed air channel which is located to divert compressed air at a location in or down¬stream from the first compressor and upstream of the internal combustion engine. A second turbine is arranged for receiving bleed air from the bleed air channel to recover energy from the bleed air channel. A vehicle including such an internal combustion engine system is also provided.
US10161299B2 Fixed-rail rotor pump and fixed-rail rotor pump combined supercharging internal-combustion engine
A fixed-rail rotor pump and fixed-rail rotor pump combined supercharging internal combustion engine are described. In the fixed-rail rotor pump, a rotor shaft runs through a rotor; the rotor is internally tangent to the inner wall of the cylinder; the inner side of at least one side of a cylinder-end cover is fixed with a convex fixed-rail disposed concentrically with the cylinder; the rotor runs through the cylinder end cover and the fixed-rail; a piston is provided along the external periphery of the rotor and is rotatably connected to the rotor via a rotating shaft of the piston; the rotor is provided with a piston comprises a top arc surface, a bottom arc surface the three angels of the piston constitute an equilateral triangle; the top angle of the piston keeps contact with the inner wall of the cylinder; the bottom arc surface of the piston is externally tangent to the outer peripheral surface of the fixed-rail; the piston moves in a curved path around the fixed-rail.
US10161298B2 Carburetor for two-stroke internal combustion engine
A carburetor for a two-stroke internal combustion engine whereby airtightness is maintained and intake of uncombusted fuel into an air path is prevented. The carburetor includes a circular cylindrical valve hole and a rotary valve fitted into the valve hole such that it can rotate and is disposed perpendicularly across a fuel intake path and an air intake path which are formed substantially parallel with respect to each other, and a fuel supply-side bore which controls the flow rate along the fuel intake path and the air supply-side bore which controls the air capacity along the air path pass through part of the cylindrical portion perpendicularly to the axial direction of the rotary valve, and annular recesses formed in part of a circumferential wall of an outer circumference of the rotary valve so as not to correspond to at least the fuel supply-side bore and the air supply-side bore.
US10161297B2 Heat-insulating structure of member facing engine combustion chamber, and process for producing same
A heat-insulating layer exhibiting high resistance to cracks, peeling, deformation, and gasoline and high heat insulation is obtained on the wall surface of an engine member (19). First, a heat insulator layer including a silicone-based resin and hollow particles containing a Si-based oxide is formed on a wall surface of the engine member (19). Then, Si-based oxide is produced through oxidation of a silicone-based resin in at least part of the surface of the heat insulator layer by heating the surface of the heat insulator layer. Thereafter, a catalytic metal is added to the silicone-based resin in the surface of the heat insulator layer and/or Si-based oxide derived from the hollow particles. Using the catalytic metal as nuclei, electroless plating is performed. In this manner, a heat-insulating layer (21) in which the surface of the heat-insulating film (27) is covered with a plating film (29) is obtained.
US10161294B2 Temperature control device for engine
A temperature control device for the engine may include an air heater configured to heat air introduced into a throttle valve by a flow of engine cooling water, and a valve apparatus configured to cut off the flow of the engine cooling water passing through the air heater at a set temperature range or more, without being supplied with a separate control signal.
US10161291B2 Engine system having coolant control valve
An engine system having a coolant control valve device may include valves that distribute coolant that is injected into a coolant inflow chamber to coolant demand elements, respectively; a driver that operates each of the valves; a safety valve that bypasses coolant that is operated by a coolant temperature to be injected into the coolant inflow chamber; and a degassing member that collects coolant including a bubble, wherein a degassing passage that is opened or closed by operation of the safety valve is formed.
US10161290B2 Cooling system for an internal combustion engine
An engine cooling system is provided with an internal combustion engine defining a head cooling jacket and a block cooling jacket in a split flow configuration. A first thermostat is positioned at an outlet of the block cooling jacket and configured to control coolant flow therethrough. A second thermostat is positioned to receive coolant flow from the first thermostat and the head cooling jacket. The first and second thermostats are in a thermostat assembly within a housing. In response to coolant temperature being below a first threshold, a first and a second thermostat downstream of the engine in a thermostat assembly are closed such that coolant flows through a head jacket and the thermostat assembly to a pump, and such that coolant in the head jacket entrains a trickle flow of coolant from a block jacket through an interbore cooling passage, thereby cooling an interbore region.
US10161285B2 Method and apparatus for monitoring particulate matter in an exhaust gas feedstream
An exhaust aftertreatment system includes a particulate filter element and a particulate matter sensor that is disposed to monitor the exhaust gas feedstream downstream of the particulate filter element. A method for monitoring the exhaust gas feedstream includes determining a temperature associated with the particulate matter sensor and monitoring engine operation and the exhaust aftertreatment system. A magnitude of ammonia is determined in the exhaust gas feedstream proximal to the particulate matter sensor based upon the monitoring of the engine operation and the exhaust aftertreatment system. An initial reading is determined from the particulate matter sensor and is adjusted based upon the magnitude of ammonia in the exhaust gas feedstream proximal to the particulate matter sensor and the temperature of the particulate matter sensor. A magnitude of particulate matter in the exhaust gas feedstream is determined based upon the adjusted initial reading from the particulate matter sensor.
US10161283B2 Urea deposit detection for use with SCR emissions control system
A method of detecting urea-derived deposits in the exhaust line of an internal combustion engine having an SCR (selective catalyst reduction) aftertreatment system. A radio frequency (RF) transmitter is placed upstream of the SCR system's urea injector, and an RF receiver is placed downstream of the mixer. The transmitter and receiver are used to acquire baseline RF data representing a clean condition exhaust line without deposits. During subsequent operation of the engine, the transmitter and receiver are used to acquire subsequent RF data, which is compared to the baseline data after being corrected for temperature differences. If the comparison indicates the presence of one or more deposits, an alert signal is generated.
US10161278B1 Catalyst arrangement for industrial emissions control and method of assembling same
A catalyst arrangement for use with a selective catalytic reduction system includes a frame and a plurality of catalyst elements coupled to the frame. The plurality of catalyst elements is arranged vertically among a plurality of vertical stations. The plurality of vertical stations is successively defined along a height of the catalyst arrangement. The catalyst elements of at least one of the vertical stations are arranged at a plurality of axial positions with respect to an axial direction of a flow of exhaust gases through the selective catalytic reduction system.