Document Document Title
US09749785B2 Information providing system and information providing method
A portable terminal obtains a first code used to obtain provision information and a second code, different from the first code, from a communication device. The portable terminal transmits the first and second codes to an information processing device, receives the provision information from the information processing device as a response to the transmission, and outputs the received provision information. The information processing device includes a first storage unit storing the first code and a second storage unit storing, by associating, the second code and the provision information. The information processing device receives the first and second codes from the portable terminal, obtains provision information associated with the received second code from the second storage unit when the received first code is stored in the first storage unit, and transmits the obtained provision information to the portable terminal. The first code is deleted in exiting from a specific area.
US09749776B2 Medical foot control apparatus
A pairing method for wireless communication of an operating unit of a medical control unit with a control apparatus of the medical control unit includes the step of arranging the medical control unit to control a medical device. The operating unit includes at least two operating elements upon the respective user-side actuation of which a control signal is transmitted from a control apparatus to the medical device. The control apparatus is in a pairing mode (or is put into a pairing mode) and the operating unit is put into a pairing mode due to user-side combined actuation of at least two operating elements. A medical control unit implements the pairing method.
US09749775B2 Systems and methods for wireless communication test automation
A method by a near-field communication (NFC) device is described. The method includes receiving, at an NFC controller, an end of test response from a lower tester (LT) device that indicates completion by the LT device of an NFC Forum test case. The method also includes sending an end of test message from the NFC controller to a device host. The method further includes initiating, by the device host, a deactivation process for the LT device upon receiving the end of test message.
US09749770B2 Selectively blocking traffic based on a set of rules associated with an application category
A device may receive a request for a transmission of traffic from an application, the application being associated with an application identifier. The device may determine an application category of the application using the application identifier associated with the application. The device may identify a set of rules associated with the application category, where the set of rules includes at least one of one or more rules associated with foreground traffic, or one or more rules associated with background traffic. The device may selectively block or permit the transmission of traffic, from the application, based on the set of rules.
US09749768B2 Extracting decomposed representations of a sound field based on a first configuration mode
In general, techniques are described for obtaining decomposed versions of spherical harmonic coefficients. A device comprising a processor and a memory may be configured to perform the techniques. The processor may obtain a non-zero set of coefficients of a vector representative a distinct component of a sound field. The vector may have been decomposed from a plurality of spherical harmonic coefficients that describe the sound field. The processor may also obtain one of a plurality of configuration modes by which to extract the non-zero set of coefficients of the vector, where the one of the configuration modes indicates that the coefficients include all of the coefficients except for at least one of the coefficients. The processor may further extract the coefficients of the vector based on the obtained one of the configuration modes. The memory may be configured to store the non-zero set of the coefficients of the vector.
US09749764B2 Apparatus and method for inhibiting portable electronic devices
This accessory is apparatus capable of implementing a method that can affect one or more features of a portable electronic device when brought into a vehicle having a radio with a right and left speaker. The accessory has a sender for initiating transmission of an RF test signal at the portable electronic device. The RF test signal is arranged to cause the radio to produce a distinct pair of audio responses from the right and left speaker. The accessory has a discriminator for determining for the right and left speaker the corresponding return delay between transmission of the RF test signal and arrival of the distinct pair of audio responses at the portable electronic device.
US09749763B2 Playback device calibration
Examples described herein involve calibration of a microphone of a network device. An example network device identifies, within a database of microphone acoustic characteristics, an acoustic characteristic of the microphone which corresponds to a particular characteristic of the network device. The network device calibrates a playback device based on at least the identified acoustic characteristic of the microphone.
US09749761B2 Base properties in a media playback system
An example implementation may involve a playback device assigning, to the playback device, a zone property that is assigned to a device base (e.g., a charging base) that the playback device is placed upon. For instance, a playback device may identify a particular base onto which the playback device is placed. The playback device may determine that the particular base is assigned a zone property that is associated with a first zone of a media playback system. The playback device may assign, to the playback device, the zone property that is assigned to the particular base. By acquiring the zone property, the playback device may join the first zone of the media playback system. Other example implementations may involve assigning a zone property to a device base, or modify a zone property of a device base, among other examples.
US09749757B2 Binaural hearing system and method
The present disclosure regards a binaural hearing system configured to receive sound signals from the environment having two hearing instruments to be worn on respective sides of the head of a user and to generate a binaural signal using the received sound signals of both hearing instruments.
US09749755B2 Hearing device with sound source localization and related method
A hearing device includes: a processing unit; a transceiver connected to the processing unit and being configured for outputting a transceiver output signal representative of a first audio signal to form a first input signal for the processing unit; and a microphone connected to the processing unit for converting a second audio signal into a microphone output signal to form a second input signal for the processing unit; wherein the processing unit is configured to: estimate a time shift between the microphone output signal and the transceiver output signal, determine a time delay based on the time shift, and use the time delay to obtain a summing signal.
US09749754B2 Hearing aids with adaptive beamformer responsive to off-axis speech
A hearing assistance system includes an adaptive directionality controller to control a target direction for sound reception. The adaptive directionality controller includes a beamformer, a speech detector to detect off-axis speech being speech that is not from the target direction, and a steering module to steer the beamformer in response to a detection of the off-axis speech.
US09749753B2 Hearing device with low-energy warning
The present invention regards a hearing device comprising a power source, a control unit, a power source charge state monitoring unit, a timing unit, and an output unit. The hearing device is configured to be worn on or at an ear of a user. The power source is configured to power the hearing device. The power source charge state monitoring unit is configured to monitor the charge state of the power source by determining a current output voltage value of the power source. The timing unit is configured to measure a duration between two points in time. The output unit is configured to generate output sounds corresponding to electrical sound signals. The control unit is configured to activate a low-energy warning mode, if the current output voltage value determined by the power source charge state monitoring unit is below a predetermined threshold output voltage value of the power source. The control unit is further configured to adjust the predetermined threshold output voltage value in dependence of a duration of the low-energy warning mode. The control unit operating in the low-energy warning mode is configured to generate electrical low-energy warning signals. The output unit is configured to generate output stimuli perceived by the user as sounds corresponding to the electrical low-energy warning signals and/or to transmit such output sounds and/or signals indicating low energy warning signals to another device.
US09749751B2 Electronic device
An electronic device includes a vibration unit configured to generate a vibration sound transmitted by vibrating a contacting or pressing body part; and piezoelectric elements stacked on and attached to the vibration unit and vibrating the vibration unit in accordance with an input signal. The piezoelectric elements each have a different capacitance. Voltage of the input signal to the piezoelectric elements is varied in accordance with frequency band, thereby suppressing power consumption.
US09749750B2 Cross-cancellation of audio signals in a stereo flat panel speaker
A method of minimizing edge reflections of vibrational waves in a flat panel speaker assembly for a stereo device by characterizing the impulse response of the flat panel and associated components in response to a test signal to produce a cancellation signal, and applying the cancellation signal for each stereo channel to the opposing stereo channel.
US09749748B2 Electronic device and method for detecting plug type of audio device inserted into electronic device
An electronic device for determining a type of an audio device plugged into the electronic device includes an audio port configured to receive a plug of the audio device, a plug detection system configured to determine a plug type of the audio device from the audio port, and a display configured to display the plug type. The plug type includes a three-section plug and a four-section earphone plug. The three-section plug is either a three-section earphone plug or a three-section external speaker plug.
US09749745B2 Low noise differential microphone arrays
A differential microphone array includes a number (M) of microphone sensors for converting sound to a number of electrical signals, and a processor, operably coupled to the microphone sensors, to specify a target differential order (N) for the differential microphone array, and wherein M>N+1, specify a steering matrix D comprising N+1 steering vectors, calculate a respective one of a plurality of linearly specify a steering matrix D comprising N+1 steering vectors-constrained minimum variance filters based on the steering matrix, apply the respective one of the plurality of linearly-constrained minimum variance filters to a respective one of the electrical signals to calculate a respective frequency response of the electrical signals, wherein the respective frequency response comprises a plurality of components associated with a plurality of subbands, and sum the frequency responses of the electrical signals with respect to each subband to calculate an estimated frequency spectrum of the sound.
US09749744B2 Playback device calibration
Systems and methods are provided for device playback calibration. An example implementation involves a computing device receiving, via a microphone, detected audio content rendered by at least one playback device. The implementation also involves the computing device modulating the detected audio content with a modulation signal such that the modulation signal has a modulation frequency determined based on an input frequency range of a processing unit. The implementation also involves providing the modulated audio content to the processing unit; and determining, via the processing unit, an equalization setting for the at least one playback device.
US09749740B2 Method and apparatus for expanded temperature operation of a portable communication device
A method and apparatus for operation of a remote speaker microphone over an expanded temperature range. By monitoring a temperature of the communication device, a temperature sensitive microprocessor can be disabled above a predetermined extreme temperature, thereby allowing control of an audio path of the communication device to be modified. Microphone and speaker signals of the communication device can be switched or rerouted to an electronic path capable of operating above the predetermined extreme temperature for expanded operation while previous microprocessor controlled digital and analog audio circuits are shut down.
US09749739B2 Protection of a speaker from thermal damage
A method of protecting a speaker from thermal damage includes determining a first load current through a first resistor that is coupled to the speaker. The method also includes converting the first load current to a digital value using a second load current through a second resistor as a reference input. The second resistor is part of a circuit that reduces an effect of a temperature coefficient of resistance of the first resistor. The method also includes comparing the digital value of the first load current to a threshold value. The method further includes, responsive to the first load current being larger than the threshold value, generating an instruction to take an action to protect the speaker.
US09749735B1 Waveguide
A waveguide for conducting sound that is generated by a loudspeaker that is acoustically coupled to the waveguide. There is a duct with an external wall, an interior opening circumscribed by the wall, and an outlet, and an air-adsorbent structure coupled to an inside of the external wall of the duct such that the air adsorbent structure lines at least a portion of the wall. The apparent volume ratio of the air adsorbent structure is at least about 1.5.
US09749730B2 Method for processing data and electronic device therefor
A method for operating an electronic device may include: outputting audio data to be reproduced through an output device connected thereto. A user input for a device change is detected and a reproduction request information is generated including at least one of audio information and output information corresponding to the audio data. The reproduction request information is transmitted to another electronic device communicatively connectable to the output device.
US09749725B2 Wireless microphone with antenna therein
In a wireless microphone having an antenna in a lower part of a main body, a wireless microphone in which a microphone main body serves as a ground plane, which secures stable antenna ground by being gripped by a user, and which is capable of obtaining good RF performance is provided. The microphone main body includes a holder member made of metal for holding at least an antenna circuit part, a cylindrical cover member made of metal for covering a periphery of the holder member, and a cylindrical grip end member made of metal, inserted into a rear end side of the cover member, and connected with a rear part side of the holder member. The holder member has conduction with the cover member via the grip end member.
US09749714B2 Information notification apparatus and information displaying method
An information notification apparatus includes: a communication unit which receives first device information and first history information from a first device and then transmits notification; an information collection database which holds, based on the first device information received by the communication unit, the received first history information in association with the held first device information; a determination unit which determines need to transmit notification of the first device when information included in the first history information held in the information collection database satisfies a condition; a display device designation unit which designates, based on destination information and the received first device information, a display device on which notification of the first device is to be displayed; and a generation unit which generates notification when the determination unit determines need to transmit the notification of the first device, wherein the communication unit transmits the generated notification to the designated display device.
US09749712B2 Method and apparatus for generating an overlay code for a set top box from an external device
A communication system 10 including a host device 14 in communication with an external device 40 through a pair of interfaces 48/50. The external device has an application code image module 42 therein. The host device 14 includes an application execution area 66 and a resource application programming interface (API) 60. The host device 14 stores the application code image in the application execution area 66. The application code image controls a function in the host device 14 using the resource application interface. When the function is performed, the application code image may be removed from the host device 14.
US09749708B2 Crowdsourcing-enhanced audio
Crowdsourcing techniques may be used to enhance the experience of users viewing and/or listening to content (e.g., live and/or pre-recorded content, such as movies, sporting events, etc.). A server device may analyze audio, captured by multiple user devices, in order to determine trigger points, in the content. The trigger point may be a time point in the content, at which the captured audio, received from multiple user devices, should be played by subsequent user devices that play back the content.
US09749707B2 Method and system for power management in a frequency division multiplexed network
A network device may receive a signal from a headend, wherein a bandwidth of the received signal spans from a low frequency to a high frequency and encompasses a plurality of sub-bands. The network device may determine, based on communication with the headend, whether one of more of the sub-bands residing above a threshold frequency are available for carrying downstream data from the headend to the circuitry. The network device may digitize the signal using an ADC operating at a sampling frequency. The sampling frequency may be configured based on a result of the determining. When the sub-band(s) are available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively high frequency. When the sub-band(s) are not available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively low frequency.
US09749701B2 Intelligent routing of notifications to grouped devices
A system and method are disclosed for enhancing a linear broadcast of a network television program by automatically displaying alerts over the linear broadcast relating to web content determined to be of interest to the linear broadcast or user. The alert may include a link such that, once actioned upon, web content may be presented to the user in addition to the linear broadcast or in the place of the linear broadcast.
US09749699B2 Display device, server device, voice input system and methods thereof
A server apparatus is disclosed. The server apparatus includes a communicator configured to receive a text which corresponds to a voice signal input, and a controller configured to, in response to a keyword, which corresponds to the text, not existing from among a keyword included in a mapping table, search for content information belonging to at least one content genre mapped with a synonym of the text, provide a search result to a display apparatus through the communicator, and update the mapping table by adding the synonym as the keyword. Accordingly, the server apparatus may effectively perform search for content information according to voice input.
US09749698B2 Method and apparatus for collecting and providing viewer feedback to a broadcast
The present invention provides an improved method and apparatus to collect and provide viewer feedback to broadcasts. According to one aspect of the present invention, a rating is generated for a broadcast by a server system. The rating is based at least in part on viewer feedback to the broadcast, and the rating indicates a likelihood of interest in the broadcast for potential subsequent viewers. According to another aspect of the present invention, the rating is provided from the server system to an entertainment system, and the broadcast can be selected for viewing at an entertainment system. In one embodiment, the viewer feedback is received at the entertainment system in response to a feedback questionnaire.
US09749697B2 Method and video device for accessing information
A method and video device are disclosed for accessing information. In an embodiment of the present invention, part of data included in a title, being played, read from a storage medium or extracted from a broadcast signal is extracted and sent to a server over a network, and information corresponding to the part of the data (i.e., information related to the data and complete data of the data) is received from the server and played. Rather than the part of the data, information related to a position of the data, (e.g. a time point at which the playing of the data starts within the title or a radial position or a physical address at which the data is located in the storage medium) may be sent. The data may be data that forms audio, a frame-shaped video clip or a frame-shaped picture included in the title.
US09749690B2 System for collecting metadata of a video data in a video data providing system and method thereof
Provided are a video information system and a method of providing video data access history. Biomedical information or non-biomedical information that may authorize a user who is accessing video data stored in the video information system is stored to be linked to the video data as metadata of the video data, and thus, an authorized user who later accesses the video information system may identify an identity of a user who has accessed the video data. If it is determined that the user is an unauthorized user, the biomedical information or the non-biomedical information of the user may be used to determine who the unauthorized user is.
US09749689B2 Intelligent recording of favorite video content using a video services receiver
A video services receiver and related operating methods are presented here. The video services receiver is configured to maintain a database that indicates a viewing pattern for a user of the video services receiver. The video services receiver is configured to detect a condition that is inconsistent with the maintained viewing pattern for the user. In response to the detection of an inconsistent condition, the video services receiver records a designated program event included in the viewing pattern for the user, wherein the recording addresses the detected condition. In some scenarios, the receiver buffers the designated program event to allow the user to view the entirety of the buffered program event. In other scenarios, the receiver records the designated program event and sends a notification to the user when the receiver determines that the user is absent or is not viewing any programming from the receiver.
US09749688B1 Systems and methods for determining multi-platform media ratings
There is provided a system comprising a non-transitory memory storing an executable code and a hardware processor executing the executable code to receive first viewing data for a media content including a first total viewing time of the media content on a first viewing platform, receive a total possible number of viewers and a first audience composition percentage of a first audience viewing the media content on the first viewing platform, determine a first ratio by dividing the first total viewing time of the media content on the first viewing platform by a duration of the media content for the first viewing platform, and calculate a first platform rating for the media content by multiplying the first ratio by the first audience composition percentage and a first co-viewing factor and dividing by the total possible number of viewers.
US09749687B2 Information processing apparatus, program, and video output system
An information processing apparatus in communication with a video output apparatus via a wireless communication network includes a screen display unit outputting a screen on a display apparatus; a screen data acquisition unit acquiring screen data of the screen; a screen data transmission unit transmitting the screen data to the video output apparatus via the wireless communication network; an apparatus capability acquisition unit inquiring about apparatus capability of the video output apparatus and acquiring the apparatus capability from the video output apparatus; and one of a resolution change unit changing a screen resolution of the screen, which is output by the screen display unit, in accordance with the apparatus capability or an acquisition range change unit changing a range, which is acquired by the screen data acquisition unit, in accordance with the apparatus capability into a part of the screen data.
US09749683B2 System and method for a communication exchange with an avatar in a media communication system
A system that incorporates teachings of the present disclosure may include, for example, a processor that causes a STB to present an avatar. The processor can receive from the STB a response of the user, detect from the response a change in an emotional state of the user, adapt a search for media content according to the change in the emotional state of the user, and adapt a portion of the characteristics of the avatar relating to emotional feedback according to the change in the emotional state of the user. The processor can cause the STB to present the adapted avatar presenting content from a media content source identified from the adapted search for media content. Other embodiments are disclosed.
US09749672B2 Storage medium storing information processing program, information processing device, information processing system, and panoramic video display method
An example information processing device displays a partial area of a panoramic video on a display device. The information processing device obtains range information with which it is possible to identify a display range of the panoramic video to be displayed and/or to identify a position within the display range. The obtained range information is information regarding a display range determined based on an input made on a predetermined input device while the panoramic video is played. Where the panoramic video is output using the display device, the information processing device outputs the panoramic video while changing output content thereof in accordance with the obtained range information.
US09749670B2 Method and apparatus for increasing viewership of broadcast programming
A system and method for generating or increasing viewership of a broadcast of an episode of a series by an affiliate to a plurality of receiver stations is disclosed. A live prefacing media program is transmitted to users within an affiliates market in such a way that does not conflict with the affiliate's exclusive right to transmit a media program within that market. The live prefacing media program includes media program clips from previous episodes of a series, and users can vote on their favorite media program clips. Such votes alter the content presented in the live prefacing media program. Transmission of the live prefacing media program terminates when the affiliates broadcast of the next episode of the series begins, thus encouraging or “throwing” viewers to view that episode.
US09749667B2 Method for receiving broadcast service and reception device thereof
A broadcast service receiving method of a broadcast receiving device provided. The method includes: receiving a trigger including location information of a bookmark target object; extracting the location information of the bookmark target object from the trigger; receiving bookmark target object related information including bookmark signaling data by using the location information of the bookmark target object; extracting the bookmark signaling data from the bookmark target object related information; when the bookmark signaling data is extracted, displaying that a bookmark target object is able to be bookmarked; when a user input for bookmarking the bookmark target object is received, saving the location information of the bookmark target object; and displaying location information of a saved bookmark target object at a predetermined time.
US09749666B2 Display apparatus
A display apparatus is provided, which includes a display panel, and a display driving apparatus mounted on the display panel and driving the display panel, which includes an RF modem having a first tuner for providing a broadcasting signal to the display panel.
US09749663B1 Distributed upload of television content
An apparatus including a tuner configured for receiving television signals; a CPU configured to cause the apparatus to perform operations including: receiving configuration data from a first server; receiving a broadcast data stream for the television content via the tuner; obtaining a first plurality of data chunks from the broadcast data stream, wherein each data chunk encodes a portion of audio and/or video included in the broadcast data stream; determining, based on the configuration data, which of the first plurality of data chunks are included in a second plurality of data chunks for uploading, wherein at least one of the first plurality of data chunks is not included in the second plurality of data chunks; and uploading the second plurality of data chunks to a second server.
US09749660B2 Adaptive coding of a prediction error in hybrid video coding
The present invention relates to a method for coding a video signal using hybrid coding, comprising: reducing temporal redundancy by block based motion compensated prediction in order to establish a prediction error signal, deciding whether to transform the prediction error signal into the frequency domain, or to maintain the prediction error signal in the spatial domain for encoding.
US09749658B2 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
An image coding method includes selecting two or more transform components from among a plurality of transform components that include a translation component and non-translation components, the two or more transform components serving as reference information that represents a reference destination of a current block; coding selection information that identifies the two or more transform components that have been selected from among the plurality of transform components; and coding the reference information of the current block by using reference information of a coded block different from the current block.
US09749655B2 Method and apparatus for unified error concealment framework
Techniques for error concealment in multimedia data processing. In an embodiment, error distribution information corresponding to a first section in an access unit is obtained. In another embodiment, a plurality of error recovery schemes may be applied to the first section of the multimedia data based on the error distribution information.
US09749650B2 Scalable motion estimation with macroblock partitions of different shapes and sizes
Scalable motion estimation is provided for macroblocks of a picture with the macroblocks being subdividable into partitions of different shapes and sizes. One embodiment of a method for performing motion estimation includes setting a target complexity for a macroblock of a source frame and performing motion estimation for one or more partitions of the macroblock until the target complexity is met. The macroblock partitions can be rectangular, square or a combination of rectangular and square.
US09749643B2 Encoding/decoding method and apparatus using a tree structure
A method for reconstructing image information divided by a tree structure from a bitstream, includes: decoding the bitstream to reconstruct additional information, the additional information including first information on a minimum block size and second information on a difference between the minimum block size and a maximum block size, wherein the difference between the minimum block size and the maximum block size is a value of a log scale; reconstructing a partition flag indicating whether or not each node, starting from a node of an uppermost layer of the tree structure, is divided into nodes of a lower layer, the node of the uppermost layer identified based on the first and second information; and reconstructing image information of a block corresponding to a node which is not further divided.
US09749636B2 Dynamic on screen display using a compressed video stream
Systems, apparatus, articles, and methods are described below including operations for dynamic on screen display using a compressed video stream.
US09749628B2 Methods of handling escape pixel as a predictor in index map coding
Methods to overcome issues associated with predictors being an Escape pixel in palette coding using a copy mode are disclosed. According to one embodiment, if the predictor for a copy-above mode is an Escape pixel, the pixel value of the current Escape pixel is transmitted so that it can be reconstructed using the transmitted pixel value. In another embodiment, restriction is applied to the encoder side, where in the copy-above mode, the copy-above run is terminated or the copy-above mode is not selected for the current pixel whenever an above pixel located above a current pixel is an Escape pixel. In yet another embodiment, directly copying the Escape value is used, where both the Escape index and Escape value, or the reconstructed pixel value of the predictor is directly copied to reconstruct a current pixel when the predictor is an Escape pixel.
US09749627B2 Control data for motion-constrained tile set
Control data for a motion-constrained tile set (“MCTS”) indicates that inter-picture prediction processes within a specified set of tiles are constrained to reference only regions within the same set of tiles in previous pictures in decoding (or encoding) order. For example, a video encoder encodes multiple pictures partitioned into tiles to produce encoded data. The encoder outputs the encoded data along with control data (e.g., in a supplemental enhancement information message) that indicates that inter-picture prediction dependencies across tile set boundaries are constrained for a given tile set of one or more of the tiles. A video decoder or other tool receives the encoded data and MCTS control data, and processes the encoded data. Signaling and use of MCTS control data can facilitate region-of-interest decoding and display, transcoding to limit encoded data to a selected set of tiles, loss robustness, parallelism in encoding and/or decoding, and other video processing.
US09749626B2 Modulo embedding of video parameters
A decoding method of selecting a value for a video parameter based on a portion of video data encoded in a video bitstream. The method receives the portion of encoded video data from the video bitstream and determines an aggregate value based on the received portion of the video data. The method determines a remainder by dividing the aggregate value with a predetermined value and then selects a value for the video parameter from a set of predefined values according to a mapping from the determined remainder, wherein the mapping has at least a plurality of values for a remainder corresponding to a single value for the video parameter. Associated methods for encoding are also disclosed.
US09749625B2 Image processing apparatus and image processing method utilizing a correlation of motion between layers for encoding an image
Provided is an image processing apparatus including an information acquisition section that acquires setting information to set a motion vector to a second prediction unit in a second layer corresponding to a first prediction unit in a first layer of a scalable-video-decoded image containing the first layer and the second layer, which is higher than the first layer, the setting information being related to a motion vector set to the first prediction unit, and a motion vector setting section that sets the motion vector to the second prediction unit using the setting information acquired by the information acquisition section.
US09749624B2 Moving image coding apparatus and moving image coding method
Moving images are coded with reduced deterioration in the image quality while variations in the amount of code per frame are being reduced. A moving image coding apparatus includes a remaining picture number obtaining unit, an activity calculation unit, an intra MB determination unit, and a coding unit. The remaining picture number obtaining unit detects the temporal position of the current frame image, and determines the reset timing at which an intra refresh process is reset in a manner that the reset timing differs for each macroblock line (MBL). The activity calculation unit calculates an activity value for each macroblock (MB). The intra MB determination unit determines a MB to be set as an intra MB based on the activity value calculated by the activity calculation unit. The coding unit codes the MB set as an intra MB through an intra coding process.
US09749623B2 Moving picture coding method, moving picture decoding method, moving picture coding apparatus, moving picture decoding apparatus, and moving picture coding and decoding apparatus
A moving picture coding method includes: performing context adaptive binary arithmetic coding in which a variable probability value is used, on first information among multiple types of sample adaptive offset (SAO) information used for SAO that is a process of assigning an offset value to a pixel value of a pixel included in an image generated by coding the input image; and continuously performing bypass arithmetic coding in which a fixed probability value is used, on second information and third information among the multiple types of the SAO information, wherein the coded second and third information are placed after the coded first information in the bit stream.
US09749621B2 Calibration plate for calibrating a plurality of image capturing devices and method for calibrating a plurality of image capturing devices
A calibration plate and a method for calibrating image capturing devices are provided. The calibration plate includes: a plate having a front face and a rear face; a plurality of calibration patterns formed at the front face of the plate, arranged in a regular manner, and used to calibrate image distortions, lens aberrations, and image center positions for the image capturing devices; and a plurality of graphically encoded patterns formed at the front face of the plate, the graphically encoded patterns being different from each other, and the graphically encoded patterns having information providing the positions of the calibration patterns.
US09749619B2 Systems and methods for generating stereoscopic images
Systems and methods are disclosed for generating stereoscopic images for a user based on one or more images captured by one or more scene-facing cameras or detectors and the position of the user's eyes or other parts relative to a component of the system as determined from one or more images captured by one or more user-facing detectors. The image captured by the scene-facing detector is modified based on the user's eye or other position. The resulting image represents the scene as seen from the perspective of the eye of the user. The resulting image may be further modified by augmenting the image with additional images, graphics, or other data. Stereoscopic mechanisms may also be adjusted or configured based on the location or the user's eyes or other parts.
US09749616B2 3D image adjustment method and 3D display apparatus using the same
A three-dimensional image adjustment method includes: displaying a three-dimensional image, which is composed by a first to Nth two-dimensional images with respective different viewing angles and formed by projecting the N two-dimensional images through a first to Nth viewing angles of a three-dimensional display apparatus, respectively, and the D1th to D2th of the N viewing angles are defined to a normal-viewing zone; and shifting the N two-dimensional images in first or second direction according to positions of first and second viewers, the D1th and D2th viewing angles, and projecting the N two-dimensional images through the first to Nth viewing angles, respectively, when the first and second viewers are located at the L1th and L2th of the N viewing angles, respectively, wherein at least one of the L1th and L2th viewing angle is located out of the normal-viewing zone. A three-dimensional display apparatus is also provided.
US09749612B2 Display device and display method for three dimensional displaying
In the present disclosure, it is provided a display device, which may include: a detection unit, configured to detect position information with respect to viewer's eyes; a processing unit, configured to obtain the position information with respect to the viewer's eyes from the detection unit, and obtain a screen display image corresponding to a visual angle of the eyes based on the position information with respect to the eyes and parameters for a stereo image to be displayed; and a display unit, configured to obtain the screen display image from the processing unit, and display the screen display image on the display unit.
US09749609B2 Method and apparatus for encoding a 3D mesh
Disclosed is a method and apparatus for encoding a three-dimensional (3D) mesh. The method for encoding the 3D mesh includes determining a priority of a gate configuring a 3D mesh corresponding to a 3D object, removing vertices configuring the 3D mesh using the determined priority of the gate, and simplifying the 3D mesh.
US09749607B2 Coordinated illumination and image signal capture for enhanced signal detection
Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
US09749603B2 Projector light source unit having intensity controller
A light source unit includes: a plurality of elemental light sources; an optical sensor; a light quantity measurement circuit; and a control circuit. The plurality of elemental light sources each include one or more light emitting elements, one or more drive circuits, a focusing optical system, and an optical fiber. The one or more drive circuits selectively operate in a driving state or in a non-driving state. The control circuit performs a sequence that sequentially acquires light quantity measurement data by sequentially selecting one of the plurality of elemental light sources, putting at least one of the one or more drive circuits included in the selected elemental light source into a first state, and putting the plurality of drive circuits other than the at least one drive circuit into a second state, and detects abnormality based on a plurality of pieces of the acquired light quantity measurement data.
US09749599B2 Method and system for controlling a device
Described is a method for registering and executing instructions in a video capturing device and to a door station. The method comprises receiving at a video capturing device a signal(s) representing a first input made using an authorized device, generating a graphical representation of the received signal(s), superimposing the graphical representation onto video captured by the video capturing device and streamed to the authorized device, receiving at the video capturing device, after the signal(s) representing an input made at the authorized device have been received and graphical representations have been generated and superimposed onto video captured by the video capturing device and streamed to the authorized device, a concluding signal representing a concluding input made using the authorized device, translating, in response to said concluding input, the received signal(s) into an instruction executable by the image capturing device, and executing the instruction resulting from the translation of the signal(s).
US09749598B2 Remote visual and auditory monitoring system
A well site remote monitoring system comprises a monitoring station, a number of recording devices, a number of sensors, a processor, and a power source. The monitoring station supports the recording devices, processor, and power source thereon and is positioned at a strategic location at a well site so that the recording devices can create video, audio, or other recordings of points of interest of the well site. The processor controls the recording devices and uploads the recordings to a remote server computer for storage and so that an operator can manage and view the recordings on a remote monitoring computer.
US09749593B2 Optical fiber structure, illumination unit, endoscope, and a method of manufacturing an optical fiber structure
An optical fiber structure according to the present application includes a cylindrical resin body, and a plurality of circumferential arrays of optical fiber bare wires disposed within the resin body and extending along a longitudinal direction of the resin body. The resin body includes a linear slit provided at a location intermediate the length of the resin body. The linear slit extends from an outer surface to an inner bore of the resin body and extending substantially parallel to the bare wires.
US09749584B2 Muting a videoconference
A video conferencing system conducting a videoconference comprising a computing device comprising a processor that, upon receiving input to mute the videoconference from a first participant of the videoconference creates a looping video and displays the looping video to a number of participants of the videoconference and converts detected speech of a number of participants of the videoconference into text and displays the text on a monitor of the computing device.
US09749583B1 Location based device grouping with voice control
This disclosure is directed to facilitating voice and video communication between users independent of a location or a device. A communication request can specify users, who may be identified and located in their respective environments. For example, users can be identified and located using facial recognition imaging techniques and/or by monitoring a radio frequency (RF) signal associated with a device that is carried or worn by a user. After determining a location of a user, individual devices can be configured as a functionally grouped device to allow the users to communicate. For example, capabilities of a television, microphone, speaker, and imaging device can be combined to allow a video communication between users. Further, as a user moves around his or her environment, the location of the user can be tracked and additional functionally grouped devices can be provided for seamless communication.
US09749582B2 Display apparatus and method for performing videotelephony using the same
A display apparatus and method are provided. The display apparatus includes a videotelephony performer that is configured to perform a videotelephony with another display apparatus; and a controller configured to control a corresponding feedback that is output when gestures and speech of a user and the other party of the videotelephony have a preset correlation during a process in which the videotelephony is performed.
US09749576B2 Method and apparatus for composition of subtitles
Embodiments of the invention include a subtitling format encompassing elements of enhanced syntax and semantic to provide improved animation capabilities. The disclosed elements improve subtitle performance without stressing the available subtitle bitrate. This will become essential for authoring content of high-end HDTV subtitles in pre-recorded format, which can be broadcast or stored on high capacity optical media, e.g. the Blue-ray Disc. Embodiments of the invention include abilities for improved authoring possibilities for the content production to animate subtitles. For subtitles that are separate from AV material, a method includes using one or more superimposed subtitle layers, and displaying only a selected part of the transferred subtitles at a time. Further, colors of a selected part of the displayed subtitles may be modified, e.g. highlighted.
US09749573B2 Method, device and system for controlling cable television system
Disclosed are a method, a device and a system for controlling a cable television system. The method includes that: an intelligent mobile terminal detects whether the intelligent mobile terminal is connected to a home wireless network, and when it is detected that the intelligent mobile terminal is connected to the home wireless network, transmits a set-top box turn-on signal to a set-top box through the home wireless network; the set-top box executes a turn-on operation according to the received set-top box turn-on signal and transmits a television turn-on signal to a television. According to the disclosure, after a user of the intelligent mobile terminal gets home, the intelligent mobile terminal carried by the user automatically turns on the set-top box and the television, and the user does not need to use a remote controller of the set-top box and a remote controller of the television.
US09749571B2 Imaging apparatus and imaging system
Provided is an imaging apparatus, including: a first and a second A/D conversion units converting signals output from a first and a second groups of columns of pixels, respectively; a first reference signal supply unit supplying, to the first A/D conversion unit, at least one of reference signals having a first and a second change rates per time; a second reference signal supply unit supplying, to the first A/D conversion unit, at least one of reference signals having a third and a fourth change rate per time; and an adjusting unit adjusting at least one of the first to fourth change rates so that at least one of a difference in change rate per time between the first and the third change rate, and a difference in change rate per time between the second and the fourth change rate is reduced.
US09749570B2 Imaging apparatus, method of driving the same, and imaging system
Provided is an imaging apparatus, including: a driving circuit switching between a current supplying state and a current non-supplying state of the current sources included in column circuits in the respective columns; at least one second readout line to which image signals output from the column circuits in the respective columns are input; switches each having one terminal and another terminal; and a switch control circuit configured to output switch control signals for respectively controlling the switches to be turned on or off, each of the one terminals being connected to corresponding second readout line and each of the another terminals being connected commonly to an output line, in which, in a period in which the switch control signals for respectively controlling the switches to be turned on are output, the number of the current sources controlled to be in the current supplying state by the driving circuit is constant.
US09749568B2 Systems and methods for array camera focal plane control
Systems and methods for controlling the parameters of groups of focal planes as focal plane groups in an array camera are described. One embodiment includes a plurality of focal planes, and control circuitry configured to control the capture of image data by the pixels within the focal planes. In addition, the control circuitry includes: a plurality of parameter registers, where a given parameter register is associated with one of the focal planes and contains configuration data for the associated focal plane; and a focal plane group register that contains data identifying focal planes that belong to a focal plane group. Furthermore, the control circuitry is configured to control the imaging parameters of the focal planes in the focal plane groups by mapping instructions that address virtual register addresses to the addresses of the parameter registers associated with focal planes within specific focal plane groups.
US09749567B2 Operating method of image sensor
An operating method of an image sensor includes the following steps. The image sensor includes at least one pixel unit. The pixel unit includes a photoelectric conversion unit, a first control unit, a capacitor unit, and a sensing unit. The photoelectric conversion unit includes a quantum film photoelectric conversion unit, and the first control unit includes an oxide semiconductor transistor. The capacitor unit is coupled to the first control unit, and the sensing unit is configured to sense signals at a sense point coupled between the first control unit and the sensing unit. The pixel unit is discharged before a readout operation. The capacitor unit is charged by electrons emitted from the photoelectric conversion unit when the photoelectric conversion unit is excited by light. Signals at the sense point are then sensed by the sensing unit.
US09749566B2 Imaging device and electronic device
An imaging device includes a photoelectric conversion element which photoelectrically converts incident light and generates a charge, accumulates and amplifies the charge, and outputs a photocurrent, wherein a level of an output signal when a charge which is accumulated in the photoelectric conversion element is outputted over a saturated amount of accumulable charge includes a level of an output signal of a charge of a photocurrent of DC component which is generated in the photoelectric conversion element and outputted during a readout time when the charge which is accumulated in the photoelectric conversion element is outputted.
US09749564B2 Endoscope system
An endoscope system includes an image pickup section provided with an image sensor and configured to obtain an examination image; a cable that transmits the examination image; and a processor that receives the examination image, performs image processing, and displays the processed image. The processor includes: a cable driver that applies a voltage higher than an input voltage standard of the image pickup section so as to compensate for attenuation of a high-frequency signal caused by the cable and outputs a clock signal for driving the image pickup section; a peaking circuit that performs waveform correction of the clock signal; and a DC level limiting circuit configured to limit, when a clock signal inputted from the first peaking circuit is switched to a DC voltage, an amplitude level of the DC voltage so as not to exceed a level of the input voltage standard of the image pickup section.
US09749562B2 Liquid crystal display and infrared image sensor on silicon
A novel head mounted display includes a display/image sensor. In a particular embodiment the display/image sensor is formed on a single silicon die, which includes display pixels and light sensor pixels. The display pixels and light sensor pixels are each arranged in rows and columns, and the arrays of light sensor pixels and display pixels are interlaced. The center of each light sensor pixel is located between adjacent rows and adjacent columns of display pixels.
US09749561B2 Solid-state image pickup device and method for manufacturing solid-state image pickup device
A solid-state imaging device includes a light receiving section formed by such exposure as to stitch a plurality of patterns in a first direction on a semiconductor substrate. The light receiving section includes a plurality of pixels disposed in a two-dimensional array in the first direction and a second direction perpendicular to the first direction. Electric charges are transferred in the second direction in each of pixel columns consisting of a plurality of pixels disposed in the second direction, among the plurality of pixels.
US09749556B2 Imaging systems having image sensor pixel arrays with phase detection capabilities
An image sensor may have a pixel array that includes an array of pixels arranged in rows and columns. Each pixel may include a number of adjacent sub-pixels covered by a single microlens. The adjacent sub-pixels of each pixel may include color filter elements of the same color. Image signals from the sub-pixels may be used to calculate phase information in each pixel in the array. This information may be used to generate a depth map of the entire captured image. The pixels may each be able to detect vertical, horizontal, or diagonal edges. Additionally, the image signals from each photodiode in a pixel may be binned or average to obtain image data for each pixel. The image sensor also may generate high-dynamic-range images using the pixel array.
US09749554B2 Systems and methods for weighted image signal readout
An imaging system may have a pixel array that includes a first group of pixels and a second group of pixels that generate image signals in response to light received from a scene. Image signals generated by the first group of pixels may be read out using a first skipping pattern and/or binning factor and image signals generated by the second group of pixels may be read out using a second skipping pattern and/or binning factor. The first and second skipping patterns and/or binning may be different and may be weighted based on the amount of image data that is available for different portions of the scene. An image may be generated based on the image signals that are read out from the first and second groups. Perspective correction operations may be used to correct for perspective distortion in the image.
US09749550B2 Apparatus and method for tuning an audiovisual system to viewer attention level
An audiovisual signal processing device including a signal processing unit configured to receive a video signal comprising a plurality of images; identify at least first and second video components of the video signal, the first video component relating to motion of the first video component between at least a first portion of the plurality of images and the second video component relating to a substantial lack of motion of the second video component between at least a second portion of the plurality of images; select at least one image from the second portion of the plurality of images including the second video component; and insert the first video component into a plurality of the selected at least one image to create a temporally repeating sequence of the at least one image including the first video component.
US09749546B2 Image processing apparatus and image processing method
An image processing apparatus includes: an image data selecting section that calculates a luminance equivalent value for each of regions of two or more images of different exposure amounts, compares a luminance equivalent value with a threshold value and selects an image to be used for each region; a white balance gain calculating section that calculates a white balance coefficient using an image that is selected for each region; and a basic image processing section that corrects a white balance of a combined image using the white balance coefficient calculated by the white balance gain calculating section.
US09749544B2 Gimbal driving device and gimbal assembly using the same
The present invention relates to a gimbal driving device comprising a holding arm, a first motor, a connecting frame for fixing an imaging device, a connector and a flexible wiring board. The first motor may comprise a shaft, a rotor holder connected with the shaft, and a shaft cover fixed to the holding arm, wherein the shaft may bring the rotor holder into swinging; the connecting frame may be fixed to the rotor holder to bring the imaging device into swinging; the connector may be connected between the shaft and the connecting frame; and the flexible wiring board may have one end connected to the holding arm and the other end thereof connected to the connecting frame, wherein a length of the flexible wiring board may remain unchanged while the imaging device is swinging. The invention also relates to a gimbal assembly using the gimbal driving device.
US09749542B2 Decoder and monitor system
In an output destination decoder, a desired area receiver receives a desired area, and a cutting-out unit cuts out a desired area from an image input from an output source, and displays the image in the desired area which is cut out.
US09749541B2 Method and apparatus for displaying and recording images using multiple image capturing devices integrated into a single mobile device
A method for capturing images using a mobile device that includes a plurality of integrated image capturing devices having a plurality of different fields of view includes displaying a first image of a first field of view associated with a first one of the plurality of image capturing devices on a first region of a display of the mobile device, and displaying a second image of a second field of view associated with a second one of the plurality of image capturing devices on a second region of the display of the mobile device, wherein the first image and the second image are displayed simultaneously.
US09749540B2 Control device, control method, and computer program
There is provided a control device including an image display unit configured to acquire, from a flying body, an image captured by an imaging device provided in the flying body and to display the image, and a flight instruction generation unit configured to generate a flight instruction for the flying body based on content of an operation performed with respect to the image captured by the imaging device and displayed by the image display unit.
US09749536B2 Ferrofluid material interface for magnetic shape-memory element configuration
The present techniques are related to a system and method for increasing the magnetic flux applied to a magnetic shape-memory (MSM) element. The method includes generating a magnetic field by applying a current through a transformer core. The method includes directing the magnetic field to configure a position of the MSM element. The method includes propagating the magnetic field through a ferrofluid at an interface between the transformer core and the MSM element. The method also includes increasing the permeability of a magnetic flux of the magnetic field across the MSM element.
US09749533B2 Image shake correcting device and control method therefor, optical apparatus, and image pickup apparatus
This image pickup apparatus performs feedback control so that a position of a shake correcting lens converges to a target position. A LPF and a subtracting unit divide a shake signal into low-frequency and high-frequency components. An adding unit combines each output of a high-frequency LPF and a low-frequency LPF and output the target position. A pan/tilt determination unit determines a panning speed from the shake signal. If the panning is fast, the target positions of the low-frequency and the high-frequency are controlled to converge to 0, and calculation for the target position of the high-frequency starts before that of the low-frequency at the end determination. If the panning is slow, only the target position of the low-frequency is controlled to converge to 0. The pan/tilt determination unit changes a determination condition for the detection depending on whether it is at the handheld photographing or the static state.
US09749530B2 Interchangeable lens operable in reduced power modes, image capturing apparatus and storage medium storing control program
The interchangeable lens is detachably attachable to an image capturing apparatus. The lens includes an electronic display to display information, and a lens controller to control an operation of the lens. The lens controller is capable of setting an operation state of the lens to a normal operation state where the interchangeable lens communicates with the image capturing apparatus and displays the information on the electronic display and to a first low power consumption state in which the interchangeable lens displays the information on the electronic display with a power consumption of the interchangeable lens lower than that in the normal operation state. The lens controller transfers the operation state from the normal operation state to the first low power consumption state, in response to receipt of a power lowering instruction for lowering the power consumption of the interchangeable lens from the image capturing apparatus.
US09749528B1 Multi-stage wakeup battery-powered IP camera
An apparatus comprising a first sensor, a second sensor, a processor and a controller. The first sensor may generate a first signal in response to a first type of activity. The second sensor may generate a second signal in response to a second type of activity. The processor may be configured to operate in one of a plurality of power consumption stages. The first power consumption stage waits for a wakeup signal. The second power consumption stage captures a video signal of a targeted view of an environment. The controller may be configured to generate a first intermediate signal if the first type of activity is detected. The controller may generate the wakeup signal if the first intermediate signal is present and the second signal relates to the first signal. The wakeup signal may activate one or more power consuming video processing features of the processor.
US09749522B2 Tracking device for portable astrophotography of the night sky
A tracking device for use when performing astrophotography comprises a guider camera and at least one tilt stage, with the topmost of the tilt stages arranged to support an astrophotography camera and the guider camera. Actuators are coupled to the tilt stages such that the astrophotography and guider cameras can be tilted about three axes. The guider camera and actuators are connected to electronics which include a computer programmed to operate in a calibration mode and a tracking mode. In calibration mode, a calibration procedure determines the effect of each actuator on the positions of at least two objects within the field-of-view (FOV) of the guider camera. In tracking mode, the actuators are operated as needed to maintain the positions of the at least two objects constant within the said FOV.
US09749519B2 Information processing apparatus, electronic apparatus, server, information processing program, and information processing method
There is provided an image processing apparatus including a display configured to display a captured image and a representative icon, wherein the representative icon indicates a range of a focus area of the displayed image and the range encompasses a center of focus point located at an initial position within the displayed image, and a processor configured to adjust the range of the focus area of the displayed image according to a size of the representative icon.
US09749516B2 Imaging apparatus capable of interval photographing
In synchronous interval photographing by a plurality of imaging apparatuses, an imaging apparatus functioning as a master clocks a photographing interval in the interval photographing, sequentially generates photographing instruction signals at clocked photographing intervals, instructs its own imaging section to perform image photographing every time a photographing instruction signal is generated, and transmits the photographing instruction signal to the other imaging apparatus. The imaging apparatus functioning as the slave instructs its own imaging section to perform image photographing every time a photographing instruction signal is received from the imaging apparatus functioning as the master.
US09749514B2 Camera module
The present invention relates to a camera module, the camera module including a PCB (Printed Circuit Board) mounted with an image sensor, a housing configured to protect the image sensor and mounted therein with camera constituent parts, and plural pieces of lenses mounted on the housing, wherein a surface of the housing is metalized.
US09749510B2 Imaging unit and imaging apparatus
The imaging unit of the present disclosure is an imaging unit rotatable about a first axis. The imaging unit includes a lens holder and an operating member. The lens holder holds a lens on its surface, has a first gear on its rear face, and is rotatable about a second axis in forward and backward directions. The operating member has a second gear engaged with the first gear, is rotatable about a third axis in forward and backward directions, and faces the rear face of the lens holder. A plane with the first axis as a normal, a plane with the second axis as a normal, and a plane with the third axis as a normal are orthogonal to each other. The lens holder rotates by rotating the operating member.
US09749509B2 Camera with lens for vehicle vision system
A camera assembly for a vehicle vision system includes an imager, a lens and a lens holder. The imager is disposed at a circuit element. The lens holder includes a barrel portion that houses the lens. The lens holder is positioned relative to the imager and includes a flange protruding outward from the barrel portion. The flange of the lens holder includes a generally flat structure having a planar surface that resides in a plane that is normal to an axis of the barrel portion. The lens holder is positioned relative to the imager such that the plane is parallel to the image plane and such that the planar flat surface is a predetermined distance from the image plane, thereby positioning the lens at a desired location relative to the imager.
US09749499B2 Security printing system that obtains biological information via mobile communication device, security printing method, and image forming apparatus
A security printing system includes an image forming apparatus and a mobile communication device. The image forming apparatus includes a biological information input circuit, a printed matter storing unit, at least one sheet discharge tray, an image forming circuit, and a control circuit. The biological information input circuit inputs biological information. The biological information is preliminary registered as registered biological information with the mobile communication device. The control circuit creates a printed matter in response to a match between the biological information and the registered biological information. The biological information is input by the biological information input circuit. The registered biological information is obtained by the short range wireless communications. The control circuit discharges the created printed matter to any of the at least one sheet discharge tray when the short range wireless communications are in a predetermined predefined state.
US09749498B2 Computer device and method for controlling access to a printer
Content files are isolated in a sandbox as a content isolation environment formed by a secondary user account. Printing is controlled by an agent via a staging file of a secure file type. The agent intercepts print requests (e.g. print start requests and print end requests) in a printing sub-system of an operating system in order to coordinate and securely control printing of the untrusted content file via the intermediate staging file.
US09749496B2 Performing halftone processing using intra-cell sum value differences applied so as to correct boundary pixels
Screen processing is performed on input image data. A boundary pixel adjacent to a white pixel in the input image data is detected. Output image data based on either the input image data or the screen-processed image data is selectively output for each pixel in accordance with the detection result of the boundary pixel.
US09749492B2 Beam adjustment method for optical scanning device and optical scanning device
A housing of an optical scanning device includes a first abutting portion and a second abutting portion. In the optical scanning device, an optical axis adjustment and a focal position adjustment in a main scanning direction and a sub scanning direction are conducted in a state where a part of a holder that holds a light source unit for emitting multi-beam light abuts on the first abutting portion and in a state where a part of a peripheral edge of an optical element that has both a collimator lens function and a cylindrical lens function abuts on the second abutting portion. Furthermore, a beam pitch of the multi-beam light is adjusted by rotating the holder around an optical axis in a state where the holder abuts on the first abutting portion.
US09749491B2 Image forming apparatus having restricted USB socket
An image forming apparatus is provided with USB sockets on front and back sides, and includes a determining unit for determining whether or not a USB device inserted to a front side USB socket 184 is a function enhancement device, and a control unit making, when it is determined by the determining unit that a function enhancement device is inserted to the front side USB socket 184, the USB device unusable and making, when it is determined that a USB device other than the function enhancement device is inserted, the USB device usable. Thus, it is possible to prevent a USB wireless LAN adapter or the like from being used constantly connected to the front side USB socket and thereby to reduce possibility of USB wireless LAN adapter of being damaged or removed.
US09749484B2 Information processing device, control method of information processing device, program, and image processing system
An information processing device includes: a communication unit that communicates with an image forming apparatus; a storage unit; a receipt unit that receives a setting value of the image forming apparatus; an acquisition unit that acquires information about a state of the image forming apparatus from the image forming apparatus to change setting of the setting value; and a request unit that stores the setting value received by the receipt unit in the storage unit when the image forming apparatus is in a state not allowed for setting a setting value, and requests the image forming apparatus to set the setting value stored in the storage unit when the image forming apparatus shifts to a state allowed for setting a setting value, wherein the setting value is stored in the storage unit by a function of a web browser application program executed by the information processing device.
US09749482B2 Image forming system adjusting setting of image forming apparatus to setting of mobile terminal
An image forming system includes a mobile terminal and an image forming apparatus capable of wirelessly communicating with each other. The mobile terminal stores therein setting information. The mobile terminal includes a first processor. The first processor performs a process of transmitting the setting information to the image forming apparatus. The image forming apparatus includes a second processor and a printing device. The second processor performs an image process on an image according to the setting information transmitted from the mobile terminal. The printing device forms the image processed by the image process on a recording medium.
US09749480B1 Method that performs from scanning to storing scan data using scan cloud ticket
An image scanning method includes: logging into a cloud server by a terminal to confirm login information based on the login; generating a scan cloud ticket as a data file including content of job for storing scan data into the cloud server using the confirmed login information; sending the scan cloud ticket from the terminal to the image scanning apparatus; receiving the scan cloud ticket and accepting an initiation operation for initiating the job in response to the receiving; performing, in the image scanning apparatus, in response to the accepting of the initiation operation, the image scanning to generate the scan data; obtaining, in the image scanning apparatus, the login information from the scan cloud ticket and logging into the cloud server by the image scanning apparatus using the obtained login information; and uploading the scan data from the image scanning apparatus to the cloud server.
US09749477B2 Solution to enforce time and usage threshold for monitoring
Methods, apparatuses, and computer program products for enforcing time and usage limits are provided. One method includes allocating a usage allowance and time allowance for a group subscription to a network, and receiving a notification when a minimum threshold is reached for either the usage allowance or the time allowance within a certain duration. The method may further include determining a remainder of the usage allowance and a remainder of the time allowance by querying at least one policy and charging enforcement function, and reallocating the usage allowance and the time allowance based on the determined remainder of the usage allowance and the determined remainder of the time allowance.
US09749475B2 Method and apparatus for reducing distortion echo
Method and apparatus for reducing distortion echo are provided. K-path amplification and pre-distortion process are performed to the downlink reference signal to obtain K-path pre-distorted signals. Afterwards, filtering is performed using the self-adaptive filters which correspond to the downlink reference signal x(t) and the K-path pre-distorted signals to obtain the filtering signals. Error signals are obtained by calculating differences between the target signal and each of the filtering signals. The minimum-value fusion process is performed to the error signals to obtain the residual signal which is then output as the final self-adaptive echo cancellation. In embodiments of the present disclosure, the residual signal is relatively small as the minimum-value fusion process is performed to the error signals. That is to say, echo loss is relatively great. Therefore, the method may provide echo loss with high amplitude under a situation that a speaker has relatively serious distortion.
US09749473B2 Placement of talkers in 2D or 3D conference scene
The present document relates to setting up and managing two-dimensional or three-dimensional scenes for audio conferences. A conference controller (111, 175) configured to place an upstream audio signal (123, 173) associated with a conference participant within a 2D or 3D conference scene to be rendered to a listener (211) is described. An X-point conference scene with X different spatial talker locations (212) is set up within the conference scene, wherein the X talker locations (212) are positioned within a cone around a midline (215) in front of a head of the listener (211). A generatrix (216) of the cone and the midline (215) form an angle which is smaller than or equal to a pre-determined maximum cone angle. The upstream audio signal (123, 173) is assigned to one of the talker locations (212) and metadata identifying the assigned talker location (212) are generated, thus enabling a spatialized audio signal.
US09749472B1 Message backup facilities
Message backup, in which a method initiates establishment of an active telephone call to a voicemail server of a telecommunications service, the voicemail server storing a voicemail message; receives an audio stream from the voicemail server during the active telephone call, the audio stream being part of the active telephone call, wherein the voicemail message is played back as part of the audio stream; initiates recording of at least a portion of the audio stream of the active telephone call, the portion of the audio stream comprising the voicemail message; and streams the portion of the audio stream from the computer system to a remote system.
US09749468B1 Area code and call duration-aware call screening
A method for screening an incoming call is provided. The method may include receiving a transmission of the incoming call in a user device. The method may include determining the incoming call originates from an area code of a telephone number associated with the user device. The method may include determining call information associated with a telephone number is stored within a database. The method may include determining at least one previous call from the telephone number has a call duration that does not satisfy a user preconfigured call duration threshold. The method may include determining the at least one determined previous call satisfies a maximum short call duration threshold. The method may also include determining a previous call frequency count satisfies a user preconfigured frequency threshold. The method may further include displaying the incoming call and an incorrectly dialed call notification on a display screen of the user device.
US09749463B1 Methods and systems for multiple channel authentication
Methods and systems for multiple channel authentication are described. In one embodiment, a request for a combined voice and data call is initiated from within a mobile application. The request may include authentication information and contextual information relating to a current exchange between the mobile application and an organization. The user may be authenticated with the authentication information and the combined voice and data call may be routed to a representative based on the contextual information to continue the exchange.
US09749451B2 Head-mounted display apparatus for retaining a portable electronic device with display
Head-mounted display systems and methods of operation that allow users to couple and decouple a portable electronic device such as a handheld portable electronic device with a separate head-mounted device (e.g., temporarily integrates the separate devices into a single unit) are disclosed. The portable electronic may be physically coupled to the head-mounted device such that the portable electronic device can be worn on the user's head. The portable electronic device may be operatively coupled to the head-mounted device such that the portable electronic device and head mounted device can communicate and operate with one another. Each device may be allowed to extend its features and/or services to the other device for the purpose of enhancing, increasing and/or eliminating redundant functions between the head-mounted device and the portable electronic device.
US09749448B2 Header parity error handling
A parity error is detected in a header, where the header is in a particular one of a plurality of queues, the header is to include a plurality of fields, and each of the queues is to correspond to a respective transaction type. Fabricated header data is generated for one or more of the plurality of fields to indicate the parity error and replace data of one or more of the plurality of fields. An error containment mode is entered based on the parity error.
US09749446B1 Method for consolidated environment computing
A method of dynamically servicing a client request is provided. A consolidated computing environment receives a client request at a single front end service. Desired environment parameters, including usage parameter information are parsed from the request. Resources are allocated in accordance with this usage parameter information, and the allocated computing resources cooperate to create a virtual environment. The client request is executed in this virtual environment.
US09749445B2 System and method for updating service information for across-domain messaging in a transactional middleware machine environment
A system and method can support across-domain messaging in a transactional middleware machine environment. A gateway server in a transaction domain operates to provide a notification of an update in one or more services to one or more gateway servers in one or more remote transaction domains. Furthermore, the gateway server can receive an inquiry for said one or more services from a remote transaction domain, and send a response to a gateway server in the remote transaction domain, wherein the response contains information that allows a client in said remote transaction domain to invoke said one or more services.
US09749443B2 System and method for video distribution over internet protocol networks
A system and method for system and method for video distribution over a range of devices over Internet Protocol (IP) networks are provided. The system and method provide for connecting to the network at least one additional content source, communicating a first request over the network, the request requiring each of the plurality of content sources to identify channels on which each of the content sources provides content, and selecting a channel not being used by the content sources to provide content. The method and system may also provide for connecting at least one client to the network, communicating a second request over the network, the second request requiring each of the plurality of content sources to identify channels on which each of the plurality of content sources provides content, selecting an identified channel by the at least one client, and providing content to the at least one client on the selected identified channel.
US09749441B2 Application server runlevel framework
According to one general aspect, a method for managing a plurality of different tenants on a shared computing infrastructure including at least one application server apparatus may include associating a tenant with a plurality of services, wherein each service provides a set of actions that the service is configured to perform. In some embodiments, the method may include associating at least one tenant runlevel for each associated service with the tenant. In various embodiments, the method may include, when the application server apparatus executes a service for the tenant, determining the tenant runlevel associated with the tenant, and managing the set of actions configured to be performed by the service based at least in part upon the tenant runlevel associated with the tenant and the service.
US09749439B2 Optimizing bandwidth usage and improving performance for web page caching
Improving of bandwidth usage and performance for web page caching. Responsive to a subsequent request for a web page, a server only returns the set of web page portions of the requested web page that are not in a browser cache, have expired, and/or have changed.
US09749438B1 Providing a content item for presentation with multiple applications
Methods, systems, and computer programs encoded on a computer storage medium, for distributing content are disclosed, including receiving a request for a content item to be stored for presentation with content of a first application when a client device is offline; in response, generating and transmitting data that causes the client device to store the content item for presentation with the content of the first application when the client device is offline; determining that a second application is installed; determining that the content item is able to be presented with content of the second application when the client device is offline; and in response, generating and transmitting analytics instructions that cause the client device to detect presentation of the content item with each of the first application and the second application and submit data specifying whether the content item was presented with the first application or the second application.
US09749432B2 Adjusting prominence of a participant profile in a social networking interface
An approach is described for adjusting prominence of a participant profile in a social networking interface. An associated system may include a processor and a memory storing an application program, which, when executed on the processor, performs an operation that may include receiving an activity stream update of the participant and calculating a relevancy score based on content in the activity stream update. The operation further may include adjusting a visibility level of the participant profile in the social networking interface based upon the calculated relevancy score. Adjusting the visibility level may include increasing the visibility level of the participant profile upon determining that the calculated relevancy score is greater than or equal to a first predefined threshold value. Adjusting the visibility level further may include decreasing the visibility level of the participant profile upon determining that the calculated relevancy score is less than a second predefined threshold value.
US09749429B1 Systems and methods for providing location-based cascading displays
Systems and methods for facilitating user interaction such as within a social network are described. In one implementation, location-based display of images and/or other information associated with other users or entities may be provided. The information may be provided in association with mapping or other positional data or information such as personal interests.
US09749425B2 Apparatus, system and method of tearing down a media-agnostic USB session
Some demonstrative embodiments include apparatuses, systems and/or methods of tearing down a Protocol Adaptation Layer (PAL) session. For example, an apparatus may include a first PAL communication unit to control a PAL connection, over a PAL, between a first device and a second device, the first PAL communication unit is to control the PAL connection during a session with a second PAL communication unit over a communication link, wherein the first PAL communication unit is to tear down the session according to a tear down procedure.
US09749421B2 Method and apparatus for enabling delivery of media content
Methods and systems for enabling delivery of media content are provided herein. In some embodiments a method for enabling delivery of media content, comprises receiving a first message from a user device associated with a first subscriber of a telephony service provider to establish a real time communication session with a content service, wherein the first message includes a first subscriber identifier and information identifying the content to be streamed, determining that the first subscriber is authorized to access the content, and sending a second message directed to a second subscriber identifier associated with the content service to establish the real time communication session between the user device and the content service, wherein the real time communication session is established to begin streaming the content.
US09749418B2 Efficient dynamic proofs of retrievability
The present invention relates to a data storage and retrieval system. The system includes a at least one client device; and at least one server. The server includes at least one memory, a processor and a log store. The client data is divided into different blocks and stored in the server. Different logs are generated for each block and stored in the log store. The storage in the server are audited for ensuring their integrity. The present invention also relates to a method used to store and retrieve data form the above system. The present invention also relates to a method used to initialize empty buffers in a storage of a system.
US09749415B2 Service management roles of processor nodes in distributed node service management
A distributed node service management system utilizes multiple existing processor nodes of a distributed computing system, in support of the primary data processing functions of the distributed computing system. The distributed node service management system coordinates and manages service functions on behalf of processor nodes of the distributed computing system. Other features and aspects may be realized, depending upon the particular application.
US09749406B1 System and methods for automated community discovery in networks with multiple relational types
Described is a system for automated community discovery in networks with multiple relational types. The system receives a network as input. The network comprises neighbors, edges connecting the neighbors, and vertices, where edges between two vertices represent a relation. A set of pair-wise similarity comparisons is computed for all pairs of relations. Two relations are considered similar if vertices connected to the two relations share similar relations to the same set of neighbors. A relation dendrogram is created based on the set of pair-wise similarity comparisons. Then, a cut in the relation dendrogram is selected to compute a community solution, resulting in a plurality of relation dendrogram partitions. Each relation dendrogram partition represents a community. A community density criterion is computed based on a density of each community calculated with respect to edge types contained within each community. Finally, a community solution is generated that maximizes the community density criterion.
US09749400B2 Cooperative loading of webpages based on shared meta information
A system, methods and server for creating and using manifests to support the rendering of a webpage by a computing device. Multiple computing devices may render a webpage and generate meta data. A server may collect and use the meta data to generate a manifest. The manifest may provide information describing priorities and formats for loading the resources of the webpage. The computing device may transmit information to the server for comparison with the manifest and to determine priorities and formats for retrieving the resources of the webpage. The server may request and send the webpage resources to the computing device based on the manifest information, to which the computing device may render the webpage. The server may access the webpage and generate meta data to create the manifest. The server may alternatively send the manifest information to the computing device.
US09749399B2 System and method for selecting a content delivery network
A system and method for selecting a data delivery network. A determination is made of user information associated with a communication from a user. A determination is made of performance information for multiple data delivery networks. The data delivery network is selected for the communication from the multiple data delivery networks.
US09749398B2 Cloud federation as a service
A Cloud federator may be used to allow seamless and transparent access by a Cloud Client to Cloud services. Federation may be provided on various terms, including as a subscription based real-time online service to Cloud Clients. The Cloud federator may automatically and transparently effect communication between the Cloud Client and Clouds and desired services of the Clouds, and automatically perform identity federation. A Service Abstraction Layer (SAL) may be implemented to simplify Client communication, and Clouds/Cloud services may elect to support the SAL to facilitate federation of their services.
US09749396B2 Data processing method
A data processing method is executed by a first data processing apparatus, and includes setting based on a size of data that is for executing a predetermined function, a first division number for dividing the data; producing groups of a second division number, each including N (a positive integer) elements by dividing the first division number; assigning a plurality of data processing apparatuses each capable of communicating with the first data processing apparatus, to the groups of the second division number; and assigning sub-data formed by dividing the data by the first division number, to the groups of the second division number.
US09749395B2 Work environment for information sharing and collaboration
An approach for collaboration is provided. An approach includes linking a first user device to a first collaboration screen of a work environment and a second user device to a second collaboration screen of the work environment. The approach also includes displaying data associated with the first user device on the first collaboration screen. The approach further includes detecting manipulation of the data at the first collaboration screen. The approach additionally includes displaying a copy of the data on the second collaboration screen based on the detecting.
US09749392B2 Sharing network addresses
A network address assigned a shared designation by a first client computer is received, in a first data format, automatically, at a host computer from the first client computer. The network address is categorized and published. Publishing the network address includes converting the network address into a second data format, receiving, at the host computer, a subscription request from a second client computer, and sending the network address to the second client computer in response to receiving the subscription request.
US09749390B2 UICC SMS routing to device application
Information regarding the status of an update to a universal integrated circuit card (UICC) being performed across a mobile wireless communication network is provided to a server involved in the update process and/or to a user of the mobile communication device having the UICC. The UICC update server sends an update trigger to the mobile communication device, and the UICC initiates establishment of a communication link to receive the update. The UICC further causes a baseband processor of the mobile communication device to send a proof-of-receipt of the update trigger by short message service (SMS) messaging back to the update server. Additionally or alternatively, the UICC causes the baseband processor to send a wakeup message to a mobile device application executing on the mobile device. The wakeup message includes status information relating to the UICC update which can be provided to a user of the mobile device.
US09749388B2 Network coding using an outer coding process
Systems, methods, and devices for encoding and decoding data packets for transmission across a data network. To encode, data packets are first subjected to a an outer code process to result in outer coded packets. The outer coded packets are then divided into generations or groups of outer coded packets, each group or generation having an equal number of packets. Output packets are then created by forming random linear combinations of the outer coded packets from a specific generation or group of outer coded packets. The coefficients for the various elements of each linear combination is selected from a Galois field of values. To decode the incoming packets, enough packets are received until an iterative decoding process can be initiated.
US09749387B2 Transparently stateful execution of stateless applications
This disclosure provides various embodiments for providing transparently stateful execution of stateless applications. A request associated with an application is received and includes at least one operation to be executed by the application as well as a set of first state information. The application determines if the operations are to be executed statelessly or not. If the application is to be executed statelessly, the first state information is retrieved from the request and used to initialize the application. If not, then the first state of the application is retrieved from a location other than the received request. The operations are then executed by the application in the application's appropriate first state. A response including the relevant information associated with the response as well as an updated set of state information identifying the application's second state is generated and transmitted to the client.
US09749385B2 Hierarchal maximum information rate enforcement
A communication system may be configured to transmit information from one or more information sources to a plurality of users over limited capacity media while enforcing one or more Quality of Service policies, such as maximum information rate (MIR) policies. Methods are presented herein for enforcing maximum information rate on two or more levels in a hierarchal and extendable manner, for at least the purposes of maximizing utilization of available capacity over said media and of fair distributing said capacity between all users. Also presented herein is a method for estimating load over said media.
US09749384B2 Communication system, reception terminal, transmission terminal, and flow rate control method
A reception terminal in which a decrease in transmission performance can be prevented when CCN is applied to a best-effort network and real-time streaming packets are transmitted. Reception terminal (200) has: an available band estimation unit (205) for estimating a first available band, which is an available band between the reception terminal (200) and a transfer terminal for caching and transferring real-time streaming packets transmitted from a transmission terminal, and a second available band, which is an available band between the reception terminal (200) and the transmission terminal; and an RTCP-R controller (206) for requesting the transfer terminal to transfer packets and thereby causing the transfer terminal to transfer packets using the first available band at a frequency based on the estimated first available band, and communicating the estimated second available band to the transmission terminal and thereby causing the transmission terminal to transmit packets using the second available band.
US09749378B2 System and method for early media buffering using prediction of user behavior
A system and method for early media buffering using prediction of user behavior. In accordance with an embodiment, a user interface displays a plurality of media options from which particular options can be selected. A click determination logic is configured so that a first event associated with a particular option, such as a click event, is passed singly to a media application without trapping for the possibility of a double-click. The media application interprets the first event as a likely selection by a user of the particular option, and uses information associated with the likely selection to begin buffering a corresponding media content. If a second event associated with the particular option is received within a subsequent time interval, then the second event is treated, like a double-click, as confirmation of the user's selection, and the corresponding media content is streamed from its media content buffer.
US09749374B2 Systems and methods for digital fulfillment of streaming applications
In accordance with embodiments of the present disclosure, an information handling system for deployment of a streaming application to a streaming application environment comprising the information handling system and one or more target systems may include computer-readable media for storing a library of one or more sequenced applications and entitlement data associated with the one or more sequenced applications and a processor communicatively coupled to the computer-readable media. The processor may be configured to communicate a query for an entitlement to the sequenced application to a digital assets entitlement system server, responsive to a determination that an entitlement exists for the streaming application environment to the sequenced application, receive the sequenced application from the digital assets entitlement system server, and deploy and provision the sequenced application to the one or more target systems via application streaming.
US09749372B2 Device for transmitting broadcast signal, device for receiving broadcast signal, method for transmitting broadcast signal, and method for receiving broadcast signal
Proposed herein is a method for transmitting a broadcast signal. The method for transmitting a broadcast signal proposes a system that can support next generation broadcast services in an environment supporting next generation hybrid broadcast, which uses a terrestrial broadcasting network and Internet network. Additionally, proposed herein is an efficient signaling solution that can encompass both terrestrial broadcasting network and Internet network, in an environment supporting next generation hybrid broadcast.
US09749370B2 Systems and methods for a media playout card
The present disclosure is directed to a single card solid-state play out server for retrieving or receiving content from a network or cloud based storage, and playing content according to an automated playlist received from a media distribution and management system.
US09749364B2 Privacy for inter-user equipment transfer (IUT) subscribers and for remote parties involved in sessions with IUT subscribers
Systems, methods, and instrumentalities are disclosed to provide privacy for inter-user equipment transfer (IUT) subscribers and remote parties involved in sessions with IUT subscribers. A first UE may establish a session with a remote party. The first UE may seek to perform an IUT to a second UE. The first UE may send a first request for the IUT to a service centralization and continuity application server (SCC AS). The SCC AS may receive the first request and perform an authorization. The SCC AS may determine that the requested IUT is allowed for the session. The SCC AS may send a second request to the remote party indicating the requested IUT. The remote party may evaluate the second request and may accept or reject the second request.
US09749360B1 Systems and methods for performing simulated phishing attacks using social engineering indicators
Systems and methods are provided for performing simulated phishing attacks using social engineering indicators. One or more failure indicators can be configured in a phishing email template, and each failure indicator can be assigned a description about that failure indicator through use of a markup tag. The phishing email template containing the markup tags corresponding to the failure indicators can be stored and can be used to generate a simulated phishing email in which the one or more markup tags are removed.
US09749355B1 Network packet prioritization
A technology is described for prioritizing network packets using suspicion weights assigned to packet attributes of the network packets. An example method may include analyzing a network packet for packet attributes that have values indicating that the network packet may be associated with a potential network attack. Suspicion weights for the packet attributes identified as having a value that indicates that the network packet is associated with the potential network attack may be obtained, and a suspicion score may be calculated for the network packet using the suspicion weights.
US09749354B1 Establishing and transferring connections
Technology is described for establishing and transferring transmission control protocol (TCP) connections. A connection may be established when an acknowledgement (ACK) packet is received from the client. A connection handoff packet may be generated that includes connection parameters that describe the connection with the client. The connection handoff packet may be sent to a destination host to enable the destination host to take over the connection with the client based on the connection parameters in the SYN cookie.
US09749351B2 Systems and methods for dynamic network security control and configuration
A computer-implemented method according to one embodiment of the present disclosure includes identifying, by a computer system, an asset associated with a logical zone; detecting a change in an attribute of the asset; and in response to detecting the change in the attribute of the asset, modifying, by the computer system, a configuration setting for a firewall. Among other things, the embodiments of the present disclosure can perform dynamically configure and control security features in response to changes in the computing environment, including asset attribute changes, security events, operational events, user input and environmental changes. Embodiments of the present disclosure thereby help to quickly maintain or change the security posture of a system and maintain the level of compliance with set of predefined security benchmarks or codified best practices.
US09749343B2 System and method of cyber threat structure mapping and application to cyber threat mitigation
A security system comprising a computer, a memory, a data store comprising a cyber threat intent dictionary and a technology dictionary; and an application stored in the memory. When executed by the computer, the application generates a report that comprises an identification of a cyber threat intent and the identification of a cyber threat technology, wherein the cyber threat intent is selected from a plurality of cyber threat intents listed in the cyber threat intent dictionary and wherein the cyber threat technology is selected from the technology dictionary. The application also populates values in a cyber threat progression vector, where the cyber threat progression vector comprises elements that each corresponds to an action in a chain of actions associated with a cybercrime, where the values correspond to one of present or not present. The vector is used to manage the cyber risk of an enterprise or organization.
US09749342B1 System and method for detecting unauthorized device access by comparing multiple independent spatial-time data sets from other devices
An authentication procedure utilizes multiple independent sources of data to determine whether usage of a device, such as a desktop computer, is authorized. When a comparison indicates an anomaly from the base-line usage data, the system, provides a notice that access of the first device is not authorized.
US09749337B2 System and apparatus for rogue VoIP phone detection and managing VoIP phone mobility
A method and a system track network access information for authorized network devices. The access information facilitates tracking movement of the device throughout the network. In addition the access information can be used to detect when an unauthorized device attempts to access the network, posing as an authorized device.
US09749332B2 Electronic device with addiction-prevention function and method thereof
An addiction-prevention method, includes steps: generating a prompt signal to prompt a user to input a biological feature again every a first predetermined time after the user is logged in a particular application; judging whether the biological feature input by the user matches with a biological feature corresponding to an account that the user used to log in the particular application; and forbidding the user to use the particular application if the biological feature input by the user is not matched with the biological feature corresponding to the account.
US09749330B2 Method and system for data session establishment
A method and system for data session establishment from a mobile device in a multiple networks scenario, the method including, checking whether an identifier for an first network is on a blacklist on the mobile device; if the first network identifier is not on the blacklist, attempting to establish a data connection with the first network; and if the first network identifier is on the blacklist, establishing a data connection with a second network. The method and system for data session establishment include deriving and maintaining the blacklist.
US09749326B2 System and method for data center security enhancements leveraging server SOCs or server fabrics
A data center security system and method are provided that leverage server systems on a chip (SOCs) and/or server fabrics. In more detail, server interconnect fabrics may be leveraged and extended to dramatically improve security within a data center.
US09749315B1 Mobile root trust device
A method of conferring security trust and privileges between proximally positioned devices in the presence of a root trust device includes configuring a microprocessor to activate at least one wireless communications module to receive a unique environmental signal (UES) and a proximally positioned device's unique device identifier (UDI) in response to detecting a threshold charge capacity in a battery during its initial charging, imprinting a primary device asymmetric key pair, the UDI, and the UES as a primary device pairing event, transmitting a primary device certificate to the proximally positioned device, encrypting device content on the proximally positioned device by multiplexing a device content signal with an asymmetric key, and decrypting the device content on another proximally positioned device using a corresponding asymmetric key from a shared certificate while in the presence of the root trust device.
US09749314B1 Recovery mechanism for fault-tolerant split-server passcode verification of one-time authentication tokens
A recovery mechanism is provided for split-server passcode verification systems. An exemplary token-centric recovery scheme comprises at least one token and a plurality of authentication servers, comprises the steps of: determining that a first one of the plurality of authentication servers is unavailable; applying an authentication mechanism to a message requesting the token to change to a new split-state mode; and sending the authenticated message to the token. The authentication mechanism comprises, for example, a relying party signing the message using a next passcode of the new split-state mode. The new split-state mode comprises, for example, a single server passcode verification and wherein the next passcode of the new split-state mode comprises a next passcode of the single server. A client optionally changes to the new split-state mode after successfully verifying the authentication mechanism.
US09749312B2 Systems and methods for secure password entry
Systems and methods for secure password entry are provided. A request to authenticate a user is received from a user device. A sequence of characters is generated. The sequence has a first subset of the characters selected from a password associated with the user. At least one of the characters appears a different number of times in the sequence than in the password. The sequence of characters is displayed on the user device in response to the request. A user selection of a second subset of the characters in the sequence is received through the user device. The user is authenticated in response to a determination that the first subset of the characters matches the second subset of the characters.
US09749310B2 Technologies for authentication and single-sign-on using device security assertions
Technologies for remote device authentication include a client computing device, an identity provider, and an application server in communication over a network. The identity provider sends an authentication challenge to the client. A capability proxy of the client intercepts an authentication challenge response and retrieves one or more security assertions from a secure environment of the client computing device. The capability proxy may be an embedded web server providing an HTTP interface to platform features of the client. The client sends a resource access token based on the security assertions to the identity provider. The identity provider verifies the resource access token and authenticates the client computing device based on the resource access token in addition to user authentication factors such as username and password. The identity provider sends an authentication response to the client, which forwards the authentication response to the application server. Other embodiments are described and claimed.
US09749303B2 Method for personalizing a secure element, method for enabling a service, secure element and computer program product
According to an aspect of the invention, a method for personalizing a secure element for a mobile device is conceived, wherein an application is stored in the secure element and wherein the application is pre-provisioned by loading secure credentials into the application without tying said secure credentials to a specific user of the secure element.
US09749302B1 Secure collection of sensitive data
In a method for securely collecting sensitive information, a first key entry made via a user interface is detected. Moreover, information is received via a secure communication channel from a remote server, where the information includes at least a current value of a first layer identifier. Using the current value of the first layer identifier, a bit string corresponding to the first key entry is determined. Using the bit string, at least a portion of a data string is generated. The data string is caused to be stored in a local memory and/or transmitted to another device via a network.
US09749301B2 Cryptographic web service
A system that supports cryptographic web services is provided. A program running on program computing equipment may call a local cryptographic function. A web services interface such as a simple object access protocol interface on the program computing equipment makes a corresponding remote cryptographic function call to a web services interface such as a simple object access protocol interface at a cryptographic web service over a communications network such as the internet. At the cryptographic web service, a cryptographic engine implements cryptographic operations such as encryption and decryption operations. After successful authentication of the calling program, the cryptographic engine produces results for the remotely cryptographic function and returns the results to the program over the communications network.
US09749299B1 Systems and methods for image-based encryption of cloud data
The disclosed computer-implemented method for image-based encryption of cloud data may include (1) identifying a user account for a cloud data store, wherein the cloud data store stores at least one secret to be secured by encryption on behalf of the user account, (2) receiving an image file to be used at least in part to generate a cryptographic element to be used for encrypting the secret, the cryptographic element capable of being re-created when the image file is provided again at a later time, (3) using at least one cryptographic function, generating the cryptographic element based at least in part on the image file, and (4) securing the secret by encrypting the secret using the cryptographic element. Various other methods, systems, and computer-readable media are also disclosed.
US09749298B2 Recovery from decryption errors in a sequence of communication packets
A method in a receiver includes receiving from a transmitter a sequence of communication packets, which carry data encrypted with an encryption scheme. The encryption scheme depends on a counter value that is incremented independently by each of the transmitter and the receiver. Attempts are made to decrypt the data of a received packet multiple times using different, respective counter values, to produce multiple respective decrypted outputs. A decrypted output in which the data has been decrypted correctly is identified, the counter value is corrected, and the data of the received packet is recovered from the identified decrypted output.
US09749296B1 Method and apparatus for modifying address information in signaling messages to ensure in-path devices remain in signaling path between endpoints
Contact information in SIP signaling messages is modified at each in-path network device during the signaling process (along with storage of mapping information) to allow the in-path network devices (and proxy server) to identify the next (or previous) hop device in the path, and thus, maintain the path taken by signaling messages early on during the signaling process. Subsequent request and response signaling messages transmitted during the session follow this path, which ensures that the in-path network devices remain in the SIP signaling path.
US09749294B1 System and method of establishing trusted operability between networks in a network functions virtualization environment
A system for establishing a trusted end-to-end communication link between different NFV networks is disclosed. The system comprises a server operating in a trusted security zone and configured to generate and send a trust ticket, a communication request, and disable communication with the first NFV network. The system further comprises a virtual machine executing virtualized network functions and a session border controller. The session border controller is configured to receive the trust ticket, request, and trusted data from the first server; transmit the trust ticket and request to a second session border controller, wherein the trust ticket and request are transmitted to a second server associated with a second NFV network, and receive a response and second trust ticket from the second NFV network, compare the first and second trust ticket for compatibility, and transmit the trusted data if the trust tickets are compatible.
US09749293B2 Systems for improved mobile internet performance and security
Systems and methods that efficiently combine multiple wireless networks or devices resulting in faster, more reliable, and more secure mobile Internet. A Virtual Private Network (VPN) service application is operated to route outgoing and incoming data packets of a mobile device. The mobile device is (i) either coupled to a remote server through the VPN service application for data packets transfer between the remote server and the mobile device or (ii) performs cross-layer translation for data packets transfer between the mobile device and direct target hosts on the Internet. Concurrently using multiple channels secures data packets transfer by sending encrypted data packets over multiple channels and receiving the encrypted data packets by a single apparatus. Data packets are designated to be transferred via a Wi-Fi channel or a cellular channel, and then transferred using both the Wi-Fi channel and the cellular channel.
US09749292B2 Selectively performing man in the middle decryption
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for selectively performing man in the middle decryption. One of the methods includes receiving a first request to access a first resource hosted by a server outside the network, determining whether requests from the client device to access the first resource outside the network should be redirected to a second resource hosted by a proxy within the network, providing a redirect response to the client device, the redirect response including the second universal resource identifier, establishing a first encrypted connected between the client device and the proxy hosting the second resource, and a second encrypted connection between the proxy hosting the second domain and the server hosting the first resource, and decrypting and inspecting the encrypted communication traffic passing between the client device and the server hosting the first resource.
US09749288B2 Management of network address pools
Systems and methods for storing and managing pools of network addresses. An example method may comprise: identifying, in a data structure representing a pool of network addresses, an index value of an element having a defined state; determining, by a processing device, a network address in view of the index value and a base network address associated with the pool; and modifying the state of the element of the data structure.
US09749287B2 Interface directionality assignment
Assignment of directionality to interfaces, ports, receptacles, antennas and other input/output (I/O) employed by network devices to facilitate multi-device networking is contemplated. The directionality assignments may be used to facilitate assigning directionless and/or configurable router directionality in order to automatically, adaptively, dynamically or other otherwise facilitate inter-router connections within a multi-router network.
US09749283B2 Interactive content in a messaging platform
A messaging platform forms an interactive message with one or more components and broadcasts the interactive message to client devices associated with accounts. The interactive message has a plurality of states that update based on event data received from a content source. While the event is in progress, the messaging platform receives event data relating to the event and transitions to an updated state based on the received event data. When the interactive message transitions to the updated state, the messaging platform updates the interactive message broadcast to the client devices. The interactive message may include interactive components that accounts may use to perform various interactions with the event, the content source, or each other.
US09749278B1 Persistent connections for email web applications
A token for a webclient in communication with an HTTP server to access an email system is stored at a database by the HTTP server. If the HTTP server is unexpectedly unavailable, a backup HTTP server that next interacts with the webclient can locate the token for the webclient using identifying information for the webclient to locate a record in the database containing the token. The backup HTTP server can then provide seamless access to the email system for the webclient despite the loss of connectivity to the initial HTTP server.
US09749277B1 Systems and methods for estimating sender similarity based on user labels
A method assigns categories to electronic messages. Users assign labels to messages received from multiple senders. The user-assigned labels are aggregated into a co-occurrence matrix whose axes correspond to the plurality of senders. Each matrix entry measures the extent to which users have assigned identical user-assigned labels to the pair of senders. Using the co-occurrence matrix, a latent vector is computed for each sender. A user re-categorizes a message received from a first sender, assigning the message to a first category. One or more second senders are identified that are similar to the first sender. Similarity of senders is measured by proximity of the latent vectors corresponding to the senders. One or more second messages are identified from the second senders, and the user is presented with the suggestion to reclassify the second messages under the first category. Upon user confirmation, the second messages are reclassified.
US09749275B2 Method of and system for constructing a listing of E-mail messages
There is disclosed a method of constructing a listing of e-mail messages, the method comprising: retrieving, by at least one server, information in respect of a plurality of e-mail messages from at least one database in electronic communication with the at least one server, each e-mail message including a header having a plurality of header fields and a body having content; sending, by the at least one server to a client device via a communications network, instruction to display in one of an e-mail message listing pane or an e-mail message listing window in a graphical user interface of the client device, a listing of e-mails, the listing including in respect of at least some of the e-mail messages listing information including at least some of the header fields; for at least some of the e-mail messages, one of determining a classification of the e-mail messages by the at least one server and retrieving from the database a classification of the e-mail messages by the at least one server, the classification including a sender type and at least one message type; receiving, by the at least one server from the client device via the communications network, a request to sort the listing of e-mails by e-message classification; sorting, by the at least one server, the listing of e-mails by e-mail classification; sending, by the at least one server to a client device via a communications network, instruction to display in the one of an e-mail message listing pane or an e-mail message listing window in a graphical user interface of the client device, the sorted listing of e-mails.
US09749270B2 Interactive avatar in messaging environment
A sender sends an email message to a receiver. The message includes an avatar representing the sender. Upon receiving the message, if the receiver has a question related to the message, the receiver sends the question to the sender via the avatar. After receiving the question, the avatar remote server device correlates the question with the message through a MSG-ID associated with the receiver or avatar. The avatar remote server device parses and analyzes the question and then searches mailboxes, agendas, previous answers, toDoLists, folders, resumes, and/or address books of the sender to find a corresponding answer for the question. Then, the avatar remote server device provides the answer to the receiver via the avatar. Alternatively, upon receiving the question, the avatar remote server device sends a notification to the sender. If the sender has an online connectivity, the sender provides the answer to the receiver via the avatar.
US09749268B2 System and method for message delivery
A message delivery system includes a plurality of smart devices associated with a person. Each smart device includes the person's contact information and a wireless transceiver for communicating with each of the other smart devices and communicating messages directed to the person. A message handling module having stored codes executable by a processor is embedded within one of the smart devices to receive current device status of each of the smart devices and to determine a chosen smart device to receive a current message directed to the person based on criteria including the current device status.
US09749267B2 Intelligent automated messaging for computer-implemented devices
Various computer-implemented systems and methods are provided here for purposes of intelligent predictive messaging. An exemplary system can be operated to obtain message context data associated with a messaging session, process the message context data to obtain suggested message content for the messaging session, and automatically populate a message field of a user device with at least some of the suggested message content. The system may proceed by sending a message from the user device, where the message includes content of the message field.
US09749266B2 Coalescing messages using a network interface controller
An injection descriptor corresponding to a destination node may be stored in memory. A network interface controller (NIC) may determine that one or more messages added to the injection descriptor are to be transmitted to the destination node. The NIC may then lock the injection descriptor so that no additional message can be added to the injection descriptor, and the NIC may load the one or more messages. The NIC may then generate a network packet that includes the one or more messages, and the NIC may transmit the network packet to the destination node.
US09749265B2 Transmission device and transmission method
A transmission device includes: a first counter; a counter control unit configured to increment the first counter at a specified rate; a frame buffer configured to store a received frame; and a buffer control unit configured to read a frame from the frame buffer when a value of the first counter is larger than a specified threshold and output the frame. When a length of an output frame read from the frame buffer by the buffer control unit is shorter than a specified reference frame length, the counter control unit decrements the first counter by a value indicating the reference frame length. When the length of the output frame is longer than or equal to the reference frame length, the counter control unit decrements the first counter by a value indicating the length of the output frame.
US09749260B2 Implementing a transition protocol in which a first rule set for routing packets received by a group of switches during a first time period is updated to a second rule set
A transition protocol is provided herein in which a first rule set for routing packets received by a group of switches during a first time period is to be updated to a second rule set. During a transition period, at least some switches in the group of switches route packets to a controller, while other switches in the group of switches route packets to a next hop that is unchanged by the change in the rule set. The controller forwards packets that are received from at least some of the switches in the group to a destination node each of the packets, as determined from the updated rule set.
US09749259B2 Flexible deterministic binary scheduler
A method for allocating port assignments for transmitting a reserved network stream across a network node comprises determining a cycle time associated with a network node. The method also comprises establishing, for at least one port of the network node, a plurality of virtual layers associated with the cycle time, wherein each of the plurality of virtual layers is divided into 2n equally-spaced slots per cycle (where n>0). The method further comprises receiving a reserved stream request associated with transmission of a reserved stream across the node, and determining a number of slots required to transmit the reserved stream. The method also comprises assigning one or more slots associated with a port of the network node to the transmission of packets associated with the reserved stream based on the determined number of slots. The method further comprises transmitting the stream according to the slot assignment associated with the port of the network node.
US09749258B2 Network policy and network device control
A policy enforcer device may determine a value of multiple controls included on a control device. The multiple controls may be associated with zones of a facility. The policy enforcer device may determine, based on the values of the plurality of controls, relative amounts of bandwidth to allocate, of a total amount of available bandwidth, to the zones of the facility; and control one or more network devices to provide the determined amounts of bandwidth to the zones of the facility.
US09749257B2 Method and apparatus for dynamically deploying software agents
Methods and apparatus for dynamically deploying software agents are disclosed. For example, a user of an electronic record management system may deploy a plurality of different background processes (e.g., OCR, dedup, etc.) that may each take several hours to complete. Subsequently, the user may decide to change the number of servers dedicated to one or more background process. In addition, the user may decide to deploy additional background processes. Neither of these user actions interrupts any of the background processes.
US09749252B2 Short packet communication in a powerline communication network
A network device may transmit a short packet when the length of application data that will be transmitted does not exceed a threshold length. In some embodiments, the network device may transmit the application data in a frame control field of the short packet. The short packet may not include a payload field. In other embodiments, the network device may support multiple short payload field lengths and may transmit the application data in a short payload field with an appropriate short payload field length. The network device may also support communication techniques to transmit the application data in the short packet.
US09749249B2 Pseudowire protection using a standby pseudowire
Providing protection to network traffic includes sending a Pseudowire protection configuration parameter for configuring a standby Pseudowire between a source node and a destination node, receiving a Pseudowire configuration acknowledgement indicating whether the Pseudowire protection configuration parameter has been accepted by the destination node, and in the event that the Pseudowire protection configuration parameter has been accepted by the destination node, using the standby Pseudowire, wherein the standby Pseudowire's configured based at least in part on the Pseudowire protection configuration parameter.
US09749247B1 System, method, and computer program for transmitting network communications at a point in time automatically determined based on communication rates
A system, method, and computer program product are provided for transmitting network communications at a point in time automatically determined based on communication rates. In use, a communication to be transmitted over a network is identified, utilizing a device. Additionally, a point in time at which to transmit the communication over the network is automatically determined by the device, utilizing at least one rate for the communication. Further, transmission of the communication over the network is initiated at the determined point in time, utilizing the device.
US09749246B2 Network congestion avoidance
Datalink frames or networking packets contain protocol information in the header and optionally in the trailer of a frame or a packet. We are proposing a method in which part of or all of the protocol information corresponding to a frame or a packet is transmitted separately in another datalink frame. The “Separately Transmitted Protocol Information” is referred to as STPI. The STPI contains enough protocol information to identify the next hop node or port. STPI can be used avoid network congestion and improve link efficiency. Preferably, there will be one datalink frame or network packet corresponding to each STPI, containing the data and the rest of the protocol information and this frame/packet is referred to as DFoNP. The creation of STPI and DFoNP is done by the originator of the frame or packet such as an operating system.
US09749244B2 Flow state aware management of QoS through dynamic aggregate bandwidth adjustments
Conventional packet network nodes react to congestion in the packet network by dropping packets in a manner which is perceived by users to be indiscriminate. In embodiments of the invention, indiscriminate packet discards are prevented by causing packets to be discarded on lower priority flows and flow aggregates. Further action is taken to reduce the likelihood of packet discards. When an aggregate set of flows raises a congestion alarm, action is taken to try to increase aggregate capacity by excising capacity from pre-assigned donor aggregates. A donor aggregate may be carrying flows, for example, classified as best effort. Another type of donor capacity is donor re-assignable unused capacity. Aggregates may have capacity added either up to a defined limit or, temporarily, exceeding any limit provided there is free capacity available, but removable back to the defined limit when other aggregates need increased capacity and are below their defined limits.
US09749240B2 Communication system, virtual machine server, virtual network management apparatus, network control method, and program
Each virtual machine server includes: means for generating, when a virtual machine is connected to a virtual network via a virtual network management apparatus, local identification information unique per virtual switch and setting the local identification information as a VLAN ID of a port of a virtual switch, the port having been connected to the virtual machine; and means for notifying the virtual network management apparatus of a correspondence relationship between the virtual network to which the virtual machine has been connected and the local identification information. The virtual network management apparatus instructs, on the basis of the notification, the switch control apparatus to control the virtual network by using the local identification information unique per virtual switch as a match condition.
US09749234B2 Signaling-less dynamic call setup and teardown by utilizing observed session state information
Signaling-less call setup and teardown by employing observed Quality of Experience (QoE) and resource demands. A system provides an environment for supersonic treatment of observed QoE and Quality of Service (QoS) demands for mobile applications. Specifically, a monitoring component is employed to determine session state information associated with a traffic flow, which includes observed QoE and resource demand data. The session state information is stored in a shared memory location and can be analyzed to modify and/or create a network policy for the traffic flow. The network policy is applied to one or more traffic flows to minimize signaling exchanges between a communication network and a mobile station.
US09749227B2 MPLS segment-routing
MPLS segment routing is disclosed. In one embodiment, a first core router generates a first data structure that maps first portcodes to respective identities of first neighbor routers or respective first links, wherein the first portcodes identify respective first ports of the first core router, and wherein the first ports are coupled to the first neighbor routers, respectively, via the first links, respectively. The first core router generates and transmits a first link-state packet, wherein the first link-state packet comprises an identity of the first core router and the first data structure.
US09749223B2 Linear path protection in a centralized controller environment
A method and system for protection switching distributes responsibility for action between a central controller and network elements at endpoints of a linear point-to-point network path. The central controller may be configured to support protection switching by network elements at endpoints of a linear point-to-point path, such that the network elements perform protection switching independently and without direct involvement and/or dependency of the central controller. Simultaneously, the central controller may remain aware of network element actions, events, and states with regard to protection switching, by receiving corresponding notifications from the network elements.
US09749222B2 Parallel computer, node apparatus, and control method for the parallel computer
A parallel computer includes a plurality of nodes. Each of the nodes includes a router directly or indirectly connected to each of the other nodes and a network interface connected to an external network of the parallel computer. The network interface includes a storage unit that holds detour route information indicating a detour route corresponding to a communication route from a node in which the network interface is included to another node. The network interface further includes a reception processing unit that, when the network interface receives data destined to one node of the parallel computer from the external network, sets detour route information corresponding to a communication route from the node in which the network interface is included to the destination node of the data for the data and transmits the data for which the detour route information is set to the destination node.
US09749221B2 Multi-destination packet handling at overlay virtual network tunneling endpoints
In one embodiment, a method provides for hosting, by a first virtual switch of an overlay virtual network, a multi-destination receiver for a multi-destination group. The first virtual switch receives, from a second virtual switch hosting a multi-destination sender for the multi-destination group, a single copy of a multi-destination packet, wherein the first virtual switch is represented by a node of a plurality of nodes in a tree created by a network controller, and wherein each of the nodes represents a virtual switch that has registered a multi-destination receiver with the network controller. The first virtual switch forwards the received multi-destination packet to a third virtual switch hosting a multi-destination receiver for the multi-destination group, wherein the third virtual switch is represented in the tree by a child of the node.
US09749220B2 Automated determination of tree attributes and assignment of receiver identifiers by distributed election in multicast architectures relying on packets identifying intended receivers
Exemplary methods include a first network device participating in an election process to determine a designated bit forwarding router (D-BFR). The methods include in response to determining the first network device is elected to be the D-BFR, performing D-BFR operations comprising determining an elected bitmask (BM) length of a BM based on maximum local BM lengths advertised by other BFRs in the network, wherein each bit of the BM will correspond to a bit forwarding egress router (BFER), and advertising the determined elected BM length to other BFRs. The methods may further include one or more of determining an elected tree type based on supported tree types advertised by other BFRs in the network, assigning one or more BM positions (BMPs) to one or more BFERs, and advertising the elected determined tree type and/or the assigned one or more BMPs.
US09749218B1 System, method, and computer program for routing traffic to a service in a network including at least one virtual network service
A system, method, and computer program product are provided for routing traffic to a service in a network including at least one virtual network service. In use, data traffic directed to at least one first component in a network system is received. Further, one or more second components capable of handling the data traffic are identified based on information associated with the data traffic, the one or more second components including one or more virtual services or one or more physical services. Additionally, at least one of the one or more second components is selected to receive the data traffic, based on criteria associated with the at least one of the one or more second components and the information associated with the data traffic. Moreover, the data traffic is sent to the at least one of the one or more second components.
US09749215B2 Method for receiving information, method for sending information, and apparatus for the same
The present invention provides a method for receiving information, a method for sending information, and apparatuses for the same. The method for receiving information includes: when a control plane apparatus is capable of managing a forwarding plane apparatus, receiving, by the forwarding plane apparatus, information used for packet forwarding path calculation sent by the control plane apparatus, where the forwarding plane apparatus and the control plane apparatus are located in a network with a network architecture featuring forwarding and control element separation. According to the technical solutions provided in embodiments of the present invention, the forwarding plane apparatus does not need to actively obtain the information used for packet forwarding path calculation before calculating a packet forwarding path based on the information used for packet forwarding path calculation.
US09749214B2 Software defined networking (SDN) specific topology information discovery
Disclosed herein is a mechanism for discovering SDN specific topology information in a SDN interconnection network. SDN specific topology information may comprise SDN IDs, SDN member router ID lists, and SDN address lists. A SDNC associated with a local SDN domain in the SDN interconnection network may determine a set of routers and/or links in the local SDN domain for link advertisement and may associate the set of routers with the local SDN domain. The SDNC may further determine a set of border routers in the local SDN domain for broadcasting the link advertisements and SDN specific topology information to other interconnected SDN domains. The SDNC may receive link advertisement and SDN specific topology information from other interconnected SDN domains and may compute a best path through each router and/or link across the SDN domains.
US09749210B2 Method for measuring network throughput
A method for measuring network throughput is provided. The method comprises the following steps: exchanging messages with a time synchronization protocol server in compliance with a time synchronization protocol, synchronizing a slave clock with a master clock of the time synchronization protocol server according to time information related to the messages, and calculating at least one network throughput according to the time information and size information related to the messages.
US09749208B2 Integrated global resource allocation and load balancing
In various embodiments, methods and systems for integrated resource allocation and loading balancing are provided. A global resource allocator receives usage information of resources in a cloud computing system. The usage information is associated with a plurality of accounts and consumer operations pairs on servers of the cloud computing system. For selected account and consumer operation pairs associated with a particular resource, allocation targets are determined and communicated to the corresponding server of the selected account and consumer operation pairs. The servers use the resource based on the allocation targets. A load balancer receives the usage information the resource and the allocation targets. The allocation targets indicate a load by the selected account and consumer operation pairs on their corresponding servers. The load balancer performs a load balancing operation to locate a server with a capacity to process the allocated target of the selected account and consumer operation pairs.
US09749207B2 Methods for measuring physical CPU utilization in a cloud computing infrastructure
Novel techniques are provided to determine concurrent hardware resource usage as expressed in activity performed by hardware processors. A cloud computing consumer can verify the level of the quality of service provided by the physical infrastructure of a cloud, thereby allowing the consumer the ability to request a transfer of the hosting physical infrastructure to a less burdened physical machine.
US09749203B2 Packet analysis apparatus and packet analysis method
A storage unit stores a plurality of packets collected in a wired section. An operation unit classifies the plurality of packets stored in the storage unit for each connection. The operation unit determines packets corresponding to a connection having a period in which a total data amount of packets for each of which a confirmation response packet has not arrived from a destination apparatus among packets transmitted by an information processing apparatus connected to the wired section increases when the connection is started, a round-trip time of each of the packets transmitted by the information processing apparatus not increasing monotonically in the period, to be packets of communication including the wireless section.
US09749202B1 Remote session preview management
A previewing process is directed to the generation and management of a remote application session between a client computing device and one or more content providers in conjunction with a network computing provider, for previewing content at the client computing device. In one embodiment, the client computing device may request network content for preview. The network computing provider may obtain the request and instantiate a network-based browsing application corresponding to the preview request. The network computing provider may subsequently obtain the requested network content from the one or more content providers via the network-based browsing application, and may determine a preview configuration. The preview configuration may identify various processing actions, in accordance with which, the network computing provider can perform a first set of processing actions to generate and transmit a preview result to the client computing device. The preview result may include a preview representation of the requested network content. The preview representation can be presented by the client computing device, which may include the client computing device performing a second set of processing actions on the preview representation.
US09749195B2 Technical component provisioning using metadata structural hierarchy
Determining placement options for technical components of a specified service is a difficult technical challenge. A metadata architecture addresses, in part, the technical challenge by defining a complex metadata collection and attachment mechanism. In one implementation, the metadata architecture defines metadata domains and obtains descriptive metadata for those domains, e.g., metadata for the technical components from multiple disparate sources and across multiple different characteristics of the technical components. The metadata architecture is linked to the technical components and the metadata architecture injects specific metadata subsets into, e.g., a placement pipeline that determines where the technical components may be placed in the extensive provider/platform/service space.
US09749193B1 Rule-based systems for outcome-based data protection
A service level agreement (SLA) is defined for providing data protection with one of data protection levels on data stored in a first system. The SLA includes zero or more service level objectives (SLOs), where each SLO describes a data protection objective to be met. A rule engine applies a set of rules to the SLOs to determine a list of actions to be performed in order to achieve the data protection objectives specified by the SLOs. One or more data protection services are provisioned to be performed at the first storage system and a second storage system that provides data protection for the first storage system. An outcome of the data protection services is evaluated in view of the SLOs to determine whether the data protection objectives have been satisfied.
US09749192B2 Dynamic topology transitions in a content delivery framework
A first group is defined from an arbitrary set of nodes comprising service instances. Each node in the first group assumes one or more responsibilities in processing a request across the first group. A second group is defined from an arbitrary set of nodes. Each node in the second group assumes one or more discrete responsibilities in processing a request across the second group. The second group has a topology distinct from that of the first group. Request processing is transitioned from the first group to the second group based on a responsibility adaptation policy.
US09749189B2 Generating graphical diagram of physical layout of computer platforms
In one aspect, a system includes a service processor (SP), having a processor, a non-volatile memory and a communication interface. The SP receives a component information of components of a host computer from a basic input/output system (BIOS) being executed at a central processing unit (CPU) of the host computer through the communication interface, and stores the received component information in the non-volatile memory. When the SP receives an instruction to display a physical layout of the components of the host computer, the SP retrieves the component information for each of the components stored in the non-volatile memory, and generates corresponding display information for each of the components based on the retrieved component information. Then the SP may send the display information to a remote management computer to display a graphical diagram of the physical layout on a display device at the remote management computer.
US09749187B2 Segment routing into a label distribution protocol domain
A method, apparatus and memory for forwarding packets through a network domain containing nodes that are label distribution protocol (LDP) enabled and nodes that are segment routing (SR) enabled. In one embodiment, the method may include receiving at a hybrid node a packet with an attached segment identifier and detaching the segment identifier from the packet. This embodiment of the method continues with attaching a first LDP label to the packet after the segment identifier is detached and forwarding the packet with the attached first LDP label on a path toward a first LDP enabled node.
US09749180B2 Tuning LDAP server and directory database
A method and system for autonomously tuning a Lightweight Directory Access Protocol (LDAP) server are disclosed. The method comprises activating a tuning thread when defined conditions are met; and using this thread to initiate automatically a tuning procedure to tune an LDAP server cache, to tune a database buffer pool for the server, and to perform runtime tuning of parameters of the database. Tuning may be initiated upon reaching a specified time, or when the cache hit ratio of the server falls below a given threshold or on issuing the extended operation. The tuning procedure may include Basic or Advanced Tuning procedures and an Advanced Tuning procedure. The Basic Tuning procedure is comprised of static tuning of the server based on the number and size of entries in the database, and the Advanced Tuning Procedure is a real time procedure based on real client search patterns.
US09749177B2 Method and apparatus for dynamic address assignment
The present invention relates to an address assignment procedure where an address request containing a unique identification is sent to a predefined address of a network, and the role of an address assignment master is taken over in response to the receipt of a non-acknowledging response to the address request. Standard intelligent building blocks can thus be used to create a large product portfolio. The intelligent building blocks are connected to each other via a network and addresses can be assigned without needing additional process steps, human interaction or factory/field-service tooling.
US09749169B2 Data recovery with inverse transformation
The Data Recovery with Inverse Transformation (DRIT) comprises methods and systems for reversing transmission channel transfer function in order to achieve a direct recovery of original data from a received signal distorted by a transmission link.
US09749166B2 Estimation apparatus and compensation apparatus for clipping distortion of multicarrier signals and receiver
Embodiments of the present disclosure provide an estimation apparatus and compensation apparatus for clipping distortion of multicarrier signals and a receiver. The estimation apparatus includes: a first calculating unit configured to multiply an error signal of each subcarrier in all or part of subcarriers in received multicarrier signals by a conjugation of an error signal of a subcarrier neighboring or spaced apart from each subcarrier; a second calculating unit configured to calculate an average value of all results of multiplication; a third calculating unit configured to calculate parameters of the clipping distortion of the multicarrier signals according to the average value; and an estimating unit configured to estimate the clipping distortion of the multicarrier signals according to the calculated parameters of the clipping distortion. By calculating the parameters of the clipping distortion of the multicarrier signals according to the error signals of the subcarriers, the clipping distortion of the multicarrier signals may be accurately estimated and compensated, with the method of calculation being simple and the bit error rate being low.
US09749164B2 Asynchronous digital communication
Systems, apparatus, and methods of asynchronous digital communication include at least one transmitter and/or at least one receiver communicatively coupleable to at least one communication interface for encoding and transmitting digital information as and/or receiving and decoding digital information from a transition between a first symbol and a second symbol, based on a predetermined relationship between the first symbol and the second symbol in such a way that the timing of the symbols is no longer relevant.
US09749162B1 Receiver bandwidth adaptation
An apparatus for processing data includes a linear equalizer, a load switchably connected to an output of the linear equalizer, a slicer configured to sample a signal derived from the output of the linear equalizer, and a detector circuit configured to detect an over-equalization condition in data to be sampled by the slicer and to connect the load to the output of the linear equalizer in the over-equalization condition.
US09749160B2 Equalizing transmitter and method of operation
A transmitter for providing channel equalization that includes a first driver and second driver having a high pass filter. The first driver generates a first output signal representing a digital input signal. The second driver generates a second output signal representing a high pass filtered version of the digital input signal. The first and second output signals are summed to provide a third output signal that is channel equalized for transmission over a channel.
US09749157B2 Sequence estimation device and method
A sequence estimation device includes a grouping unit, a sequence estimation unit and a combination unit. The grouping unit groups a first plurality of equalized signals into a plurality of equalized signal groups according to a grouping rule. The sequence estimation unit, coupled to the grouping unit, processes the plurality of equalized signal groups according to a sequence estimation rule to obtain a plurality of estimated signal groups, respectively. The combination unit, coupled to the sequence estimation unit, permutes the plurality of estimated signal groups to a plurality of estimated signals according to the grouping rule.
US09749153B2 User registration notification between different communication services
A method and system for populating identities in a message service involves registering a user of a first messaging service with a second messaging service. User identities for users other than the registered user may be identified. These user identities may be associated with the first messaging service and may be stored in a list associated with the registered user. It is determined if each identified user identity has a matching user identity associated with the second messaging service. If so, a database associated with the second messaging service is populated with the matching user identities. Determining whether a matching user identity exists may be performed, for example, by making character strings comparisons between user identities or using a database that stores a mapping of first messaging service user identities to second messaging service user identities. The mapping database may be generated as corresponding user identities are discovered.
US09749152B2 Apparatus and method for allocating data flows based on indication of selection criteria
An apparatus and method for allocating a data flow based on selection criteria including receiving at least one policy including at least one indication for selecting an access from two or more of available accesses; determining a selection criterion based on the data flow; and selecting the access based on the determined selection criterion and the at least one indication. In one example, the selection criterion is one of the following: a bandwidth requirement for the data flow, an application generating the data flow, a protocol used to carry the data flow, a file size, an application name/ID, a role ID, or a throughput of the data flow. In one example, the policy is a management object (MO) received from an Access Network Discovery and Selection Function (ANDSF) module and the selected access is for a wireless local area network (WLAN), a LTE network or for a 3GPP service.
US09749150B2 Method and system for monitoring network communications
A system and method for monitoring network communications are provided. The method comprises capturing one or more packets of data in a networking stack of a computing device. Then, a unique identifier is associated with the computing device that uniquely identifies the computing device. The unique identifier and a sample of the contents of each of the one or more captured packets of data are then stored. The method may further comprise generating hybrid flow data by processing the stored unique identifier and the sample of the contents of each of the one or more captured packets of data. The hybrid data flow comprises the unique identifier, the sample of the contents of each of the one or more captured packets of data, derived network flow data, and derived statistical packet data.
US09749148B2 Systems and methods for load balancing non-IP devices
The present disclosure relates to methods and systems for providing load balancing for layer 2 devices. A device intermediary to a plurality of clients and a plurality of servers and a plurality of layer 2 devices establishes, for each layer 2 device, a first traffic domain corresponding to ingress traffic received from the plurality of clients and a second traffic domain of the device corresponding to ingress traffic received from the plurality of clients. The device associates a first virtual local area network (VLAN) with the first traffic domain and a second VLAN with the second traffic domain. The device establishes a plurality of services. Each service corresponds to a layer 2 device and includes a corresponding subnet internet protocol (SNIP) address hosted on the device. The device establishes a virtual server to load balance the plurality of services corresponding to each of the plurality of layer 2 devices.
US09749144B2 MBSFN and RS considerations in bundled transmission design
Methods, systems, and devices are described for bundling data transmissions in a wireless communication network. Bundled data transmissions may depend on subframe types and may account for multicast service single frequency network (MBMS) subframes. Bundled data transmissions may be repeated and a density of reference signals in the bundled data may be increased. The density of reference signals may be increased according to various techniques, including inserting additional pilot tones in the subframe, inserting additional pilot tones only in the bundled data, or adding additional pilot tones in one or more types of subframes. Multiple subframes used to transmit the bundled data may include, for example, a MBSFN subframe and a non-MBSFN subframe, and increasing density of reference signals may be performed differently for MBSFN subframes and non-MBSFN subframes. In some examples, bundled data transmissions are restricted to subframes of one type.
US09749143B2 Web real-time communication call transferring method and apparatus
A web real-time communication WebRTC call transferring method and apparatus. The method includes receiving a first identifier used for identifying a to-be-transferred call, where the to-be-transferred call is a WebRTC call having been established between a source terminal and a remote terminal, sending, according to the first identifier, a first request message used for requesting page information corresponding to the to-be-transferred call to a WebRTC server, and establishing, according to identification information of the remote terminal in the page information sent by the WebRTC server, a call connection used for bearing the to-be-transferred call with the remote terminal. By means of the embodiments of the present invention, the WebRTC call between the source terminal and the remote terminal may be transferred to between the destination terminal and the remote terminal, thereby implementing transferring of a WebRTC call between terminals.
US09749127B1 Establishing entropy on a system
Servers in datacenters, mobile devices and virtualized servers without human interaction may experience difficulties in establishing entropy in a virtualized computing environment. Entropy is an important foundation for cryptography and a lack of entropy has led to weaknesses that can be used to break cryptographic systems in the past.
US09749124B2 Symbol boundary detection
A symbol boundary in a data packet having a guard interval preceding a preamble having a predetermined sequence of symbols is detected by receiving a signal representing a data packet; sampling the received signal at a sampling rate; estimating channel impulse responses from a set of samples in dependence on the predetermined sequence of symbols of the preamble; determining an energy value for each of a plurality of windows of channel impulse responses, each of the windows corresponding to W number of consecutive samples, the energy value for each of the windows being indicative of the total energy associated with the channel impulse responses of that window; determining which of the windows has the greatest energy value; and identifying the earliest sample of the consecutive W samples in said determined greatest energy window, the earliest sample being indicative of a symbol boundary for the preamble.
US09749123B1 Fast clock and data recovery for free-space optical communications
A method includes receiving an optical signal through an optical link and determining a receiving power for the optical link. The method further includes comparing the receiving power for the optical link to a first receiving power threshold and transitioning a clock and data recovery circuit form a normal mode to a holdover mode when the receiving power is less than the first receiving power threshold. The clock and data recovery circuit, when operating in the holdover mode, configured to hold a recovered clock to a known-good clock frequency. When the receiving power for the optical link is greater than a second receiving power threshold, the method initiates a transition of the clock and data recovery circuit from the holdover mode to the normal mode and reacquires synchronization between the recovered clock and a current rate of the incoming data stream using the known-good clock frequency.
US09749122B2 Method of synchronizing a fountain code transmitting end and receiving end
Systems and methods of synchronizing a fountain code transmitting end and receiving end. In one embodiment, the fountain code transmitting end includes a first pseudorandom number generator, a second pseudorandom number generator, and a first transceiver. The method includes generating, at the first pseudorandom number generator, a first random number based on a seed. The method further includes generating, at the second pseudorandom number generator, a first plurality of unique random numbers based on the first random number. The method also includes selecting, at the fountain code transmitting end, a first subset of data blocks of a plurality of data blocks based on the first plurality of unique random numbers. The method further includes generating, at the fountain code transmitting end, a first communication block based on the first subset of data blocks. The method also includes transmitting, via the first transceiver, the first communication block and the seed.
US09749119B2 RF front-end with wideband transmitter/receiver isolation
Embodiments of a four-port isolation module are presented herein. In an embodiment, the isolation module includes a step-up autotransformer comprising a first and second winding that are electrically coupled in series at a center node. The first port of the isolation module is configured to couple an antenna to a first end node of the series coupled windings. The second port of the isolation module is configured to couple a balancing network to a second end node of the series coupled windings. The third port is configured to couple a transmit path to the center node. The fourth port is configured to couple a differential receive path across the first end node and the second end node. The isolation module effectively isolates the third port from the fourth port to prevent strong outbound signals received at the third port from saturating an LNA coupled to the fourth port.
US09749118B2 Method and apparatus for providing bidirectional communication between segments of a home network
A method for providing bidirectional communication between segments of a home network includes receiving a first communication signal at a first interface of an inter-domain bridge during a first time interval; receiving a second communication signal at a second interface of the inter-domain bridge during the first time interval; generating a superimposed signal of the first communication signal and the second communication signal; and transmitting the superimposed signal through the first interface and the second interface during a second time interval. The second time interval occurs after the first time interval.
US09749112B2 Method and system switching and synchronizing grant intervals in adaptive grant and polling service
An apparatus and a method for switching and synchronizing parameters of an adaptive granting and polling service in a wireless network are provided. The method includes determining a switching of parameter sets from a primary Quality of Service (QoS) parameter set to a secondary QoS parameter set by a Mobile Station(MS). A first switching request is transmitted to a Base Station (BS) in order to switch the parameter sets. A second switching request is transmitted as an explicit switching request along with scheduling interval synchronization information to the BS if the sending of the first switching request has failed. A starting frame number is determined for grants corresponding to parameters of the secondary QoS parameter set upon receiving the retransmitted switching request from the MS. The grants are transmitted from the determined starting frame number to the MS, and the grants are received from the BS.
US09749111B2 Methods and arrangements for CSI reporting
A method in a wireless device for reporting Channel State Information (CSI). The wireless device is comprised in a wireless communications system. The method includes receiving a CSI process configuration and a request for CSI information from a network node. The method further includes reporting CSI for one or more CSI processes. The CSI reflects the state of the channel for a CSI reference resource. According to the method, the CSI reference resource is determined based on the number of configured CSI processes. Related devices are also disclosed.
US09749109B2 Resource allocation method and a method for transmitting/receiving resource allocation information in mobile communication system
According to one embodiment, a user equipment for use in a mobile communication system is configured to: receive control information including a first field and a second field via a control channel, the first field indicating one of N (N≧2) resource block group (RBG) sets and the second field including a bitmap, wherein each bit of the bitmap is used to indicate whether a corresponding resource block (RB) in the indicated one of the N RBG sets is allocated; interpret the first field and the second field for resource allocation in the control information; and receive data using the control information. An RBG set n (0≦n
US09749106B2 Method and device for transmitting channel state information in wireless communication system
The present invention relates to a wireless communication system. A method for transmitting channel state information (CSI) by a user equipment in a wireless communication system includes receiving a CSI-reference signal (CSI-RS), determining overhead of a common reference signal (CRS) resource element based on the same antenna port number as an antenna port number associated with the CSI-RS, and transmitting the CSI calculated based on the CSI-RS and the overhead of the CRS resource element.
US09749104B2 Pilot patterns for OFDM systems with multiple antennas
The present invention relates to orthogonal frequency-division multiplexing (OFDM) communication systems with four transmit antennas and one or more receive antennas, and in particular to methods for inserting scattered pilots (SPs) into the transmit signals of such OFDM systems, for estimating channel properties on the basis of the scattered pilots, a multi-antenna OFDM transmitter, and an OFDM receiver. In this context, it is the particular approach of the present invention to keep the same SP pattern like in the single-transmitter case, to partition the pilots into as many subsets as there are transmitters (transmit antennas), and to interleave these subsets both in time and in frequency. In this manner, the granularity of pilots of the same subset is reduced. This offers increased flexibility in designing the scattered pilot patterns and greater accuracy of the estimated channel properties.
US09749101B2 Base station, method and system for reducing inter-cell interference
A base station for reducing inter-cell interference, including: at least one processor; and a non-transitory storage device storing one or more programs which, when executed by the at least one processor, cause the at least one processor to: detect low interference indicators (LIIs), wherein the LIIs comprising low interference physic resource blocks (PRBs); and allocate the low interference PRBs in the LIIs that are not used by user equipment UE of a cell served by the base station (served cell) to cell edge UE of the served cell.
US09749099B2 Signal transmission method and apparatus in a relay communication system
The present invention relates to a data transmission/receiving method and apparatus in a relay communication system. In particular, the data transmission/receiving method through a backhaul link between a base station and a relay node in a relay communication system comprises: composing a backhaul subframe including a control signal transmission period to which a control signal is allocated and a backhaul signal transmission period to which a backhaul signal is allocated and then allocating the backhaul signal; transmitting configuration information about the backhaul subframe, the information containing symbol position or size data of the backhaul signal transmission period, to the relay node through an upper layer signal; and transmitting the backhaul signal having been allocated through the backhaul subframe to the relay node.
US09749093B2 Method and apparatus for determining number of HARQ processes in wireless communication system
Provided are a method for determining the number of hybrid automatic repeat request (HARQ) processes in a carrier aggregated system configured with a plurality of serving cells, and an apparatus using such a method. The method receives data from a downlink subframe of a second serving cell, and transmits an ACK/NACK signal for the data from an uplink subframe of a first serving cell, wherein the first serving cell uses a first-type frame, the second serving cell uses a second-type frame, and the number of HARQ processes in the second serving cell are determined with respect to each subframe comprised in the second-type frame and on the basis of the number of downlink subframes comprised in each section comprising a set number of subframes.
US09749091B2 Method and device for data communication in a communication network
The present invention relates generally to communication networks and more specifically to methods and devices for data communication over a communication network. A method according to the invention comprises, at a transmitting node: obtaining a plurality of frames including first-type frames associated with an acknowledgment policy requiring acknowledgment and second-type frames associated with an acknowledgment policy requiring no acknowledgment; aggregating the frames of the obtained plurality of frames into an aggregated frame including at least one leading frame of second type and frames subsequent thereto, in an order depending on their associated acknowledgment policies; sending the aggregated frame to a receiving node; and sending an acknowledgment request frame to the receiving node to request it to acknowledge receipt of only subsequent frames of the aggregated frame. Such data communication scheme is liable to reduce bandwidth waste and head-of-line blocking and thus latency, compared to known scheme.
US09749087B2 Apparatus, system and method of multi-user wireless communication
Some demonstrative embodiments include apparatuses, devices, systems and methods of multi-user (MU) wireless communication. For example, a wireless station may generate a MU Physical Layer Convergence Protocol (PLCP) Protocol Data Unit (PPDU) including a header field and a plurality of Spatial Streams (SSs) of Media Access Control (MAC) Protocol Data Units (MPDUs) to a plurality of users, the header field including an indication of a plurality of modulation schemes corresponding to respective ones of the plurality of users; and process transmission of the MU PPDU to the plurality of users over a wireless communication band.
US09749078B2 10 gigabit per second capable passive optical network system with flexible nominal upstream bitrate
Techniques, apparatus and systems are described for accommodating the optical network units (ONUs) having different nominal upstream bitrates on the same passive optical network (PON) system by making the specified burst preamble and the bandwidth map allocation record format invariant with respect to the nominal upstream bitrate of a target ONU. The disclosed techniques, apparatus and systems allow seamless evolution of the lower-bitrate services to higher-bitrate services offered to an end-user without need to upgrade the central office equipment. In addition they can avoid the adverse consequences of inadvertently connecting a high-upstream-bitrate ONU to a lower-upstream-bitrate network.
US09749073B2 Clock recovery in a packet based network
A technique for facilitating clock recovery in a node of a packet-based network is disclosed. The node is synchronized with other nodes based on a master-slave clock mechanism. A list of backup master clock node is maintained for the node, which includes at least one backup master clock node for the node, and in response to occurrence of a synchronization related event, a master clock node of the node is switched from the current master clock node to a backup master clock node selected from the list. A master clock node reselection message is generated and transmitted to the switched backup master clock node for the switched backup master clock node to reselect its master clock node.
US09749072B2 End point parameterization management of generic devices
This disclosure describes a system that implements a multi-channel command and data processing device for multichannel data processing and transmission systems that are designed to connect to different types of data sources and sinks and describes a device configured to implement a novel endpoint parameter management architecture for generic devices. The system uses a multi-channel command and data processing device with one or more inputs and one or more outputs, with a processor and a memory, in communication with a data storage that manages endpoint parameters of one or more input devices and one or more output devices. The system further includes a data terminal and a plurality of endpoints.
US09749069B2 Systems, methods, and devices for electronic spectrum management
Systems, methods, and devices enable spectrum management by identifying, classifying, and cataloging signals of interest based on radio frequency measurements. In an embodiment, signals and the parameters of the signals may be identified and indications of available frequencies may be presented to a user. In another embodiment, the protocols of signals may also be identified. In a further embodiment, the modulation of signals, data types carried by the signals, and estimated signal origins may be identified.
US09749067B2 Systems and methods for satellite noise and interference calibration using terminal measurements
Systems and methods are provided for satellite noise and interference calibration using satellite terminal measurements. In one implementation, a method includes partitioning a satellite network into a first partition including a plurality of terminals and a plurality of inroute frequency channels (IFCs); instructing the plurality of terminals of the partition to measure the SINR of the plurality of IFCs; processing the plurality of SINR measurements to compute normalized IFC measurements for each of the plurality of terminals; processing the normalized IFC measurements for each terminal to compute final calibrated IFC SINR offsets for each IFC of the partition; and normalizing the final calibrated IFC SINR offsets with respect to a lowest SINR offset IFC. The normalized final calibration offsets may be made available to each of the satellite terminals. During subsequent operation, the satellite terminals may consider the amount of interference present in an IFC before switching to the channel.
US09749066B2 Method for testing a low power radio frequency (RF) data packet signal transceiver
Method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) including communicating via each one of multiple available signal channels. Data packets exchanged between a tester and DUT as a normal part of a communication link initiation sequence are exchanged in such a manner that the tester transmits via all available channels simultaneously, thereby ensuring that a properly working DUT will always transmit in response. For example, in the case of a Bluetooth low energy transceiver, advertisement, scan request and scan response data packets can be used in such manner.
US09749056B2 Method and system for discrete multi-tone transmission with multiple modulations
Optical network devices and method for optical network communications in discrete multi-tone (DMT) are provided. A serial information signal is converted to groups of bits and loaded to parallel processing branches based on bit rates of the parallel processing branches. Each branch is configured to encode the associated group of data bits on the associated tone. A first bit rate and modulation and power allocation to a first branch of the branches may be different from a second bit rate and modulation and power allocation to a second branch of the branches. To recover the incoming data, the encoded signal may be parallel-processed using branches with different demodulation formats and provide the serial data stream.
US09749054B2 Multilayer vertical cavity surface emitting electro-absorption optical transceiver
Aspects of embodiments relate to an optical transceiver device, comprising: a detection region for detecting light at a first wavelength for down-conversion; and a modulation region for modulating light at a second wavelength longer than the first wavelength, wherein the detection region is substantially transparent to light at the second wavelength and located upstream to the modulation with respect to direction of propagation of first wavelength light incident onto the detection region.
US09749052B2 Broadband optical network apparatus and method
Methods and apparatus for providing enhanced optical networking service and performance which are particularly advantageous in terms of low cost and use of existing infrastructure, access control techniques, and components. In the exemplary embodiment, current widespread deployment and associated low cost of Ethernet-based systems are leveraged through use of an Ethernet CSMA/CD MAC in the optical domain on a passive optical network (PON) system. Additionally, local networking services are optionally provided to the network units on the PON since each local receiver can receive signals from all other users. An improved symmetric coupler arrangement provides the foregoing functionality at low cost. The improved system architecture also allows for fiber failure protection which is readily implemented at low cost and with minimal modification.
US09749046B2 Signal transmission device, signal transmission method, signal reception device, and communication system
A signal transmission device, includes a processor; and a memory which stores a plurality of instructions, which when executed by the processor, cause the processor to execute: irradiating incoming light, which includes one or more symbols with which the incoming light has been varied in response to a signal to be transmitted, on an arbitrary object with a first intensity; and controlling an amplitude of the first intensity on a basis of a reflectance of the incoming light irradiated on the object.
US09749040B2 Fiber optic telecommunications card with energy level monitoring
A transceiver card for a telecommunications box for transmitting data over a first optical fiber and receiving data over a second optical fiber. The card has transmitter for transmitting data over the first optical fiber, the transmitter having a laser and a modulator, a fiber output optically connected to the laser for connecting the first optical fiber to the card, a fiber input for connecting the second optical fiber to the card, a receiver optically connected to the fiber input for receiving data from the second optical fiber, and an OTDR optically connected between the transmitter and the fiber output or between the receiver and the fiber input. An energy level detector is also provided between the receiver and the fiber input.
US09749039B1 Portable connection diagnostic device
A portable device is brought into a data center for testing connectivity between a customer and a service provider. A user of the device uses the device to requests ticket and customer information from a service provider in order to obtain more information about a particular task. The user plugs a cable into the device and performs a series of diagnostic tests on the connection. The device is configured to display the results of the diagnostic tests and any associated errors. The user of the device performs one or more actions based on the results of the diagnostic tests.
US09749037B2 Demultiplexing apparatus, multiplexing apparatus, and relay apparatus
A demultiplexing apparatus includes a signal receiving unit that receives signals, an analog demultiplexing unit that analog-demultiplexes, in predetermined units of channels, received signals received by the signal receiving unit and generates analog demultiplexed signals, and a plurality of digital demultiplexing units that digital-demultiplex the analog demultiplexed signals in units of sub-channels and generate digital demultiplexed signals. The analog demultiplexing unit controls, concerning the analog demultiplexed signals output to the digital demultiplexing units, a total value of bandwidths in which a signal is present so as to be a predetermined value or less.
US09749035B2 Apparatus and method for network level synchronization in multiple low earth orbit (LEO) satellite communications systems
A synchronization approach is provided that compensates for the large Doppler offset of the satellites in a LEO satellite system by exploiting the predictable and deterministic nature of the Doppler component, and thereby simplifies the delay and the Doppler domain uncertainty ranges that the physical layer receivers have to resolve. The compensation is based on the known ephemeris information of the LEO satellite and the known positions of the gateway (GW) and the user terminal (UT) on the ground. Utilizing the deterministic component of the LEO Doppler, the synchronization process continually tracks and compensates for the time-varying offsets between the GW and UT frame timing, frame numbering (FN), symbol timings, and Doppler-induced scaling of center frequency and the signal bandwidth.
US09749034B2 Transmission device, transmission method, receiving device and receiving method
Provided is a frame configuration usable for both SISO transmission and MISO and/or MIMO transmission. A frame configurator of a transmission device configures a frame by gathering data for SISO and configures a frame by gathering data for MISO and/or MIMO data, thereby to improve the reception performance (detection performance) of a reception device.
US09749029B2 Method for measuring state of channel quality in wireless communication system including cells formed with a plurality of network nodes, and apparatus therefor
Disclosed are a method for measuring a state of channel quality in a wireless communication system including cells formed with a plurality of network nodes and an apparatus therefor. The method of enabling a terminal to measure the state of channel quality in the wireless communication system including the cells formed with the plurality of network nodes, includes the steps of: receiving the information related to a resource in which at least one first type network node transmits a Channel State Information-Reference Signal (CSI-RS); and measuring the intensity of a received signal on only the resource for transmitting the CSI-RS according to at least one first type network node on the basis of the received information.
US09749026B2 Spatial null creation using massive MIMO (M-MIMO)
In a base station having a Massive Multiple Input Multiple Output (M-MIMO) antenna array, the availability of the M-MIMO antenna array is exploited to manage the interference caused by the base station to neighboring cells. In one embodiment, the large number of antenna elements of the M-MIMO antenna array are used to create precise transmit and/or receive spatial nulls at specific User Equipments (UEs) being served by a neighboring cell and/or in select areas of the neighboring cell. Depending on whether the spatial null is partial or full, transmissions by the base station may have reduced or even zero receive power within the neighboring cell.
US09749025B2 Method and apparatus for transmitting control information in WLAN system
A method and a radio apparatus for signal transmission in a Wireless Local Area Network (WLAN) system are discussed. The method according to an embodiment includes generating first and second very high throughput (VHT) fields including first and second control information, respectively; and transmitting a physical layer protocol data unit (PPDU) including the first and second VHT fields to at least one target station. The first VHT field includes an indicator indicating whether the PPDU is to be transmitted by using a single-user multiple input multiple output (SU-MIMO) scheme or a multi-user multiple input multiple output (MU-MIMO) scheme.
US09749022B2 Channel sounding and estimation strategies in MIMO systems
In a system having a first communication device with a first plurality of radio-frequency (RF) chains coupled to a first plurality of antennas and a second communication device with a second plurality of RF chains coupled to a second plurality of antennas, the second communication device receives consecutive training packets that were transmitted by the first communication device, the consecutive training packets having been produced at the first communication device by a power level rule to the first plurality of RF chains. The second communication device determines respective channel measurements corresponding to the consecutive training packets based on the power level rule, and selects a transmit parameter based on the respective channel measurements, the transmit parameter to be used by the first communication device when transmitting to the second communication device. The second communication device transmits and indication of the selected transmit parameter to the first communication device.
US09749021B2 Method and apparatus for mitigating feedback in a digital radio receiver
Embodiments of an acoustic feedback suppressor determine the energy in each of a plurality of frequency bands of frames of an audio signal. The energy in each of the plurality of frequency bands is compared to characteristic of human voice to determine that a present frame contains content that is not likely human voice and exhibits a characteristic of feedback. Upon determining that feedback is occurring, an adaptive gain reduction is applied to the band in which feedback is suspected to be occurring.
US09749020B2 Integrated circuit and layered circuit provided therewith
An integrated circuit includes multiple quadrangular coils including a first wiring and a second wiring that are alternately connected to each other and formed on different layers in a manner perpendicularly intersecting each other. The coils are partly overlapped with each other in a diagonal direction that connects opposite corners of the coils. The coils preferably have the same structures. A target coil among the coils preferably partly overlaps with another coil among the coils in two diagonal directions that connect opposite corners of the target coil.
US09749019B2 Methods and apparatus for determining nearfield localization using phase and RSSI delivery
Methods and apparatus to determine nearfield localization using phase and received signal strength indication (RSSI) diversity are disclosed. An example method includes determining a first strength of an electric field and a second strength of a magnetic field, the electric field and the magnetic field associated with an electromagnetic signal sent from a transmitter; determining a difference between the first strength and the second strength; and determining a transmitter distance based on the difference between the first strength and the second strength.
US09749018B2 Power transmission apparatus and method for controlling power transmission
According to one embodiment, a power transmission apparatus wirelessly transmits power to an electronic device, acquires a value of a standing wave ratio relating to power to be transmitted to the electronic device, when a predetermined condition is satisfied, updates a reference value with the acquired value of the standing wave ratio when the acquired value of the standing wave ratio is smaller than the reference value, and detects removal of the electronic device when a difference between the acquired value of the standing wave ratio and the updated reference value is greater than a threshold.
US09749014B2 Device for power line communication, method for transmitting signals, and method for receiving signals
A device for power line communication is provided, including a transmitter adapted to transmit signals on at least two of a plurality of power line transmission paths of a power line network; a sensor adapted to determine one or a plurality of reflection parameters of one of the plurality of power line transmission paths; and a transmission impedance matching unit adapted to match the output impedance of at least two output ports of the device which each couple to one of the plurality of transmission paths to the impedance of the at least two of the power line transmission paths based on the one or the plurality of reflection parameters. Further, a device including a corresponding reception impedance matching unit is provided and corresponding methods for transmitting and receiving signals.
US09749013B2 Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
Aspects of the subject disclosure may include, for example, identifying a device coupled to a transmission medium that obstructs a propagation of guided electromagnetic waves propagating on an outer surface of the transmission medium when the device is subjected to a liquid, and applying a material to a portion of the device to mitigate the obstruction. Other embodiments are disclosed.
US09749011B2 Physical unidirectional communication apparatus and method
A physical unidirectional communication apparatus and method intended to utilize a structure that exploits an electrical signal by which data cannot be transmitted and to guarantee the reliability of data transmission via a transmission method that uses the structure. The physical unidirectional communication apparatus includes a unidirectional data transmission line, a data reception status transmission line, an internal network connection system unit for performing communication with an internal network transmission host and transmitting transmission data to an external network connection system unit through the unidirectional data transmission line, and the external network connection system unit for performing communication with an external network reception host, receiving the transmission data from the internal network connection system unit, generating reception status information of the transmission data, and transmitting the reception status information to the internal network connection system unit through the data reception status transmission line.
US09749010B2 Method and apparatus to determine electric power network anomalies using a coordinated information exchange among smart meters
A system and method to produce an electric network from estimated line impedance and physical line length among smart meter devices is provided using communication between the smart meters. The smart meters: (1) synchronize time using GPS pps signals, which provide an accurate time stamp; (2) send/receive an identifiable signal through the same phase of electric networks; (3) identify other smart meters on the same phase lines by listening to the information signal on the same phase lines; and (4) calculate time-of-arrival of an identifiable signal from other smart meters. The time of arrival information is used to calculate the line length, which is then used to calculate impedance of a line and topology of the electric network. The system then constructs an electric network by combining geo-spatial information and tree-like usual connection information.
US09749009B2 Cable with field-writeable memory
A method includes monitoring a use of a cable assembly that includes a communication cable terminated by a termination module. Data indicative of the use is written to a writeable non-volatile memory in the termination module. The use of the cable assembly is acted upon by reading the data from the non-volatile memory.
US09749008B2 Low power mode for vectored data transmission
Vectored communication devices and methods are provided for communication via a plurality of communication connections. Communication on at least some of the communication connections is switchable between a low power mode and a regular mode.
US09749007B1 Cognitive blind source separator
Described is a cognitive blind source separator (CBSS). The CBSS includes a delay embedding module that receives a mixture signal (the mixture signal being a time-series of data points from one or more mixtures of source signals) and time-lags the signal to generate a delay embedded mixture signal. The delay embedded mixture signal is then linearly mapped into a reservoir to create a high-dimensional state-space representation of the mixture signal. The state-space representations are then linearly mapped to one or more output nodes in an output layer to generate pre-filtered signals. The pre-filtered signals are passed through a bank of adaptable finite impulse response (FIR) filters to generate separate source signals that collectively formed the mixture signal.
US09749000B2 Drop countermeasures for electronic device
An electronic device comprises a housing, a motion sensor configured to sense motion of the housing, and a processor configured to determine an impact geometry based on the motion. A countermeasure system comprises an actuator coupled to an actuated member. The actuated member is operable by the actuator to modify the impact geometry, so that impact energy is redirected away from an impact sensitive component of the electronic device to an energy absorbing component of the electronic device.
US09748998B2 Electronic device case with peripheral storage
A protective case for an electronic device and an associated electrical peripheral device includes a member for receiving at least a portion of the electronic device and protecting the electronic device when the electronic device is installed in the protective case. The protective case also includes an aperture and a docking receptacle for removably retaining the electrical peripheral device. The docking receptacle includes a cavity for receiving the electrical peripheral device and an engagement mechanism for removably retaining the electrical peripheral device in the cavity. Finally, the protective case includes a flexible member attached to the member and positioned in proximity to the docking receptacle. The flexible member is configured to temporarily deform toward the cavity of the docking receptacle in response to an external force such that the flexible member contacts the retained electrical peripheral device and ejects the electrical peripheral device from the docking receptacle.
US09748991B2 Low noise amplifier module and method of implementation
A high performance switch module to filter a radio frequency signal and to selectively connect to an output includes a filter unit and a plurality of switches. The filter unit has a filter configured to connect to the radio frequency signal and having a plurality of parallel output ports. The plurality of switches is connected between the plurality of parallel output ports and the output, the plurality of switches configured to connect to a control input to selectively connect an output port of the plurality of parallel output ports to the output and to selectively connect a remainder of the plurality of parallel output ports to a connection providing a substantially full reflection to the remainder of the plurality of parallel output ports of the filter unit.
US09748989B1 Rain fade mitigation in a satellite communications system
A beam plan that defines beams generated by a satellite that satisfy a set of communication service requirements is obtained. Fade condition information that indicates an amount of fade at particular geographic areas for one or more of the beams is obtained. A modification to the beam plan that mitigates the amount of fade at the particular geographic areas for the one or more of the beams is determined. The beam plan is modified based on the determined modification.
US09748984B2 Mixing stage, modulator circuit and a current control circuit
A mixing stage includes a first modulation stage that receives an input signal from a first common node of the mixing stage, a first local oscillator input that receives a local oscillator signal, and a first modulation signal output adapted to provide a first modulated signal. A second modulation stage of the mixing stage includes a second input that receives a phase inverted representation of the input signal from a second common node of the mixing stage, a second local oscillator input that receives the local oscillator signal, and a second modulation signal output adapted to provide a second modulated signal. A current generation circuit provides a supply current to the first common node and to the second common node. A current control circuit is adapted to superimpose an offset current to the current of at least one node of the first common node and the second common node.
US09748982B2 Broadband radio frequency data communication system using twisted pair wiring
A system for distributing broadband signals via twisted pair wiring is disclosed. Various aspects of the system involve use of a broadband signal distribution interface device and/or a broadband line driver. In one aspect, a broadband signal distribution interface device includes a broadband signal interface configured to receive broadband radio frequency signals, and a plurality of broadband signal connections configured to distribute broadband radio frequency signals. The interface device also includes circuitry defining an upstream signal path and a downstream signal path and including a gain control circuit and a slope control circuit each positioned along the downstream signal path. The circuitry is configured to accommodate downstream transmission of the broadband signals onto twisted pair wiring.
US09748974B2 Non-binary LDPC decoder using binary subgroup processing
In one embodiment, an electronic system includes a decoder configured to decode an encoded data unit using multiple variable nodes and multiple check nodes to perform a low-density parity check (LDPC) decoding process. The encoded data unit can be received from a solid-state memory array. As part of performing the LDPC decoding process, the decoder can (i) convert reliability information representing first non-binary values to reliability information representing first binary values, (ii) determine reliability information representing second binary values using the reliability information representing first binary values, and (iii) convert the reliability information representing the second binary values to reliability information representing second non-binary values.
US09748972B2 Lossless data compression
An analytical instrument includes a data acquisition system that produces data. The analytical instrument includes a data compression system/process that utilizes a lossless data compression technique that can be implemented using minimal hardware and software resources. The process may be implemented in such a way that it can be split into many parallel operations. The process can be implemented utilizing software and/or processing devices such as Field-Programmable Gate Arrays (FPGAs) or Graphics Processing Units (GPUs).
US09748970B1 Built-in-self-test circuit for sigma-delta modulator
A built-in-self-test (BIST) circuit is connected to a processor and a sigma-delta modulator (SDM) and includes an averaging circuit, a reference signal generator, and a comparator. The averaging circuit calculates an average of a sum of a set of bit signals of the SDM output signal over a period of time period, and generates an average SDM signal. The reference signal generator generates a reference SDM signal based on an SDM input signal. The comparator compares the voltage levels of the average SDM and reference SDM signals with a threshold value, and generates a test output signal based on the comparison.
US09748969B1 Method of operation for an oversampled data converter
In accordance with an embodiment, a method of operating an oversampled data converter having a switched-capacitor (SC) integrator includes operating the oversampled data converter in a gain calibration mode; applying a first voltage to a feedback port of the SC integrator to form a feedback voltage, and during a first clock phase the method further includes applying the first voltage to a first series capacitor via the input port when an output of the oversampled data converter is in a first state; applying a bypass voltage to the first series capacitor when the output of the oversampled data converter is an a second state and applying the first voltage to a second series capacitor via the feedback port with a polarity based on the output of the oversampled data converter, and during a second clock phase the method includes integrating charges of the first series capacitor and the second series capacitor.
US09748968B1 Extreme index finder and finding method thereof
An extreme index finder and a digital value finding method are provided. The extreme index finder includes a plurality of digital-to-time converters (DTCs) and a first arbiter apparatus. The DTCs respectively receive a plurality of input signals and perform a digital-to-time converting operation on each of the input signals to respectively generate a plurality of time-domain signals. The first arbiter apparatus finds a position of a extreme value in the time-domain signals according to transition speeds of the time-domain signals and compares transition speed of the extreme value with each of the time-domain signals to find an extreme input signal corresponding to the extreme value in the input signals.
US09748964B1 Multi-channel analog to digital converter
Embodiments of a multi-channel analog to digital converter (ADC) include: a first multiplying digital to analog converter (MDAC) having: first and second switched capacitor circuit paths respectively coupled between first and second input nodes and an input node of a first gain element, a second MDAC having: third and fourth switched capacitor circuit paths respectively coupled between third and fourth input nodes and an input node of a second gain element, a third MDAC having: fifth and sixth switched capacitor circuit paths respectively coupled between a fifth input node and an input node of a third gain element, seventh and eighth switched capacitor circuit paths respectively coupled between a sixth input node and the input node of the third gain element, the fifth input node coupled to an output node of the first gain element, the sixth input node coupled to an output node of the second gain element.
US09748955B1 Radiation-hardened CMOS logic device
A radiation-hardened logic device includes a first n-channel transistor coupled by its main conducting nodes between an output node of a logic device and a supply voltage rail and a first p-channel transistor coupled by its main conducting nodes between the output node of the logic device and a ground voltage rail. The gates of the first n-channel and p-channel transistors are coupled to the output node.
US09748951B2 Switching circuit
A conversion circuit is disclosed. In one aspect, the conversion circuit includes a first input terminal for receiving a digital signal. The conversion circuit includes a second input terminal for receiving a bias voltage signal. The conversion circuit includes an output terminal for outputting a current. The conversion circuit includes a first and a second switch transistor connected to the first input terminal for receiving the digital signal. The conversion circuit includes a first and a second current source transistor connected to the second input terminal for receiving the bias voltage signal. The conversion circuit further includes a first branch, wherein the first switch transistor is connected to the output terminal via the first current source transistor. The conversion circuit further includes a second branch, wherein the second current source transistor is connected to the output terminal via the second switch transistor.
US09748949B1 Gate drive circuit for power conversion apparatus
An apparatus includes a gate drive circuit and a GaN HEMT switch where the gate drive circuit has a gate drive output to produce a gate drive signal in response to a gate control signal. The switch has a gate connected to the gate drive circuit through a gate drive resistor. The gate drive circuit includes a NPN (or NMOS) turn-on transistor and a PNP (or PMOS) turn-off transistor. The gate drive circuit includes a turn-on resistor with a first resistance coupled to the turn-on transistor and a turn-off resistor with a second resistance coupled to the turn-off transistor. The turn-on and turn-off transistors, gate drive resistor, the switching device, but not the turn-on and turn-off resistors are disposed in an integrated circuit to reduce a gate-drive loop inductance. The first and second resistances can be different to adjust the turn-on and turn-off speeds of the switching device.
US09748943B2 Programmable current for correlated electron switch
Subject matter disclosed herein may relate to programmable current for correlated electron switches.
US09748937B1 Superconducting digital phase rotator
An important component in digital circuits is a phase rotator, which permits precise time-shifting (or equivalently, phase rotation) of a clock signal within a clock period. A digital phase rotator can access multiple discrete values of phase under digital control. Such a device can have application in digital clock synchronization circuits, and can also be used for a digital phase modulator that encodes a digital signal. A digital phase rotator has been implemented in superconducting integrated circuit technology, using rapid single-flux-quantum logic (RSFQ). This circuit can exhibit positive or negative phase shifts of a multi-phase clock. Arbitrary precision can be obtained by cascading a plurality of phase rotator stages. Such a circuit forms a phase-modulator that is the core of a direct digital synthesizer that can operate at multi-gigahertz radio frequencies.
US09748933B2 Multi-step slew rate control circuits
An example circuit includes: a slew rate driver configured to provide an output voltage; a first voltage provider configured to provide a first input voltage to the slew rate driver in response to the output voltage being within a first range; and a second voltage provider configured to provide a second input voltage to the slew rate driver in response to the output voltage being within a second range. The slew rate driver is further configured to change the output voltage based at least in part on the first input voltage or the second input voltage.
US09748927B2 Peaking inductor array for peaking control unit of transceiver
Embodiments relate to peaking inductor array for a peaking control unit of a transceiver. An aspect includes the peaking inductor array comprising a plurality of cells connected in parallel, each cell comprising a respective active inductor. Another aspect includes each of the plurality of cells further comprising a decoupling capacitor.
US09748922B2 Tuning-fork type crystal resonator plate and crystal resonator device
A tuning-fork type crystal resonator plate includes a base portion and a pair of leg portions protruding from the base portion in one direction. A groove and a bank portion are formed on at least one of main surfaces of each of the leg portions. The bank portion is formed accompanied by the formation of the groove, and a width of the bank portion differs along a width direction. The bank portion is constituted by a thick portion having a large width and a thin portion having a small width.
US09748921B2 Electronic device, electronic apparatus, and moving object
A vibrator (electronic device) includes: a vibrator element including vibrating arms; a base portion supporting the vibrator element and having a rectangular shape in a plan view; and a lid provided on the side of the vibrator element opposite to the base portion 3. Extending directions of long and short sides of the base portion and an extending direction of the vibrating arms cross each other. When an angle formed by the vibrating arms and a Y-axis direction is θ, the angle θ is more than 0° and less than 90°.
US09748918B2 Acoustic resonator comprising integrated structures for improved performance
An acoustic resonator structure comprises a first electrode disposed on a substrate, a piezoelectric layer disposed on the first electrode, a second electrode disposed on the piezoelectric layer, and an air cavity disposed in the substrate below at least a portion of a main membrane region defined by an overlap between the first electrode. The acoustic resonator structure may further comprise various integrated structures at or around the main membrane region to improve its electrical performance.
US09748917B2 Antenna device
A stray capacitance is generated between an antenna element and a ground electrode. A capacitance detection circuit detects the stray capacitance. An antenna matching circuit, is provided along a wireless communication signal path, which is a transmission path between the antenna element and a feeder circuit. A feedback control circuit transmits a control signal to the variable matching circuit on the basis of a detection result of the capacitance detection circuit in accordance with the stray capacitance. The capacitance detection circuit includes a constant current source and a timing circuit to measure the time taken to charge the antenna from the constant current source and for the voltage to reach a predetermined voltage.
US09748916B2 Adaptive filter response systems and methods
The present subject matter relates to systems, devices, and methods for adaptively tuning antenna elements and/or associated filter elements to support multiple frequency bands. For example, a tunable filter having an input node and an output node can be selectively tunable to define one or more pass bands associated with one or more first signal bands and one or more reject bands associated with one or more second signal bands. The tunable filter can be configured to pass signals having frequencies within the first signal bands between the input node and the output node and to block signals having frequencies within the second signal bands. Furthermore, the tunable filter can be configured to selectively tune the pass bands to have a minimum pass band insertion loss at any of a variety of frequencies, including frequencies that are greater than and less than frequencies within the reject bands.
US09748915B2 Electronic device with threshold based compression and related devices and methods
An electronic device may include a speaker, and audio circuitry coupled to the speaker. The audio circuitry may generate digitized samples of an audio waveform signal, and compare each digitized sample of the audio waveform signal to a threshold. The audio circuitry may when a given digitized sample is above the threshold, then apply a compression operation to the given digitized sample and successive digitized samples for a set time period, and when the given digitized sample is below the threshold and not within the set time period, then not apply the compression operation.
US09748914B2 Transforming audio content for subjective fidelity
A method or apparatus for delivering audio programming such as music to listeners may include identifying, capturing and applying a listener's audio perception characteristics (sometimes referred to as the listener's Personal Waveform Profile) to transform audio content so that the listener perceives the content similarly to how the content would be perceived by a different listener. An audio testing tool may be implemented as software application to identify and capture respective listeners' Personal Waveform Profiles. A signal processor may operate an algorithm processing source audio content using the respective listeners' Personal Waveform Profiles to provide audio output based on a difference between different profiles.
US09748912B2 Method and apparatus for detecting power
Provided is a Radio Frequency (RF) communication apparatus and a method for detecting power. The RF communication apparatus includes a receiver that receives a segment value indicating one of multiple transmission output power ranges, a power detector that detects a strength of an RF transmission signal in an output power range corresponding to the segment value, and a transmitter that transmits the strength of the detected RF transmission signal. The power detector includes a feedback unit that receives the fed-back RF transmission signal, an RF core unit that generates a Root Mean Square (RMS) of the RF transmission signal, and a converter that converts a current signal corresponding to the RMS of the RF transmission signal into a voltage signal, and converts the converted voltage signal from a differential signal to a single signal.
US09748910B1 Instrument interconnect system
An instrument interconnect system that interfaces an instrument, such as a guitar or a bass, to an audio-receiving device, such as an amplifier, effect box, or a mixer. The instrument interconnect system provides enhanced clarity and sonic detail. The instrument interconnect system may allow a musician to select a voltage-buffered output signal, an unbuffered output signal, or may allow a musician to mix a voltage-buffered output signal and an unbuffered output signal. The instrument interconnect system may further allow the musician to selectively activate or deactivate gain-adjustment circuits and equalization circuits.
US09748908B1 Transimpedance amplifier
Disclosed is a transimpedance amplifier, comprising a first-stage trans-conductance amplifier TCA, a second-stage TCA, a third-stage amplifier and a feedback circuit. The first-stage TCA is electrically connected to an input current source to receive a first input signal, and outputs a first output signal. The second-stage TCA is electrically connected to the first-stage TCA to receive the first output signal, and outputs a second output signal. The third-stage amplifier is electrically connected to the second-stage TCA to receive the second output signal, and outputs a third output signal. One end of the feedback circuit is electrically connected to the input of the first-stage TCA, and the other end of the feedback circuit is electrically connected to the output of the third-stage amplifier to stabilize the third output signal. The third-stage amplifier is composed of a first output stage and a second output stage.
US09748902B2 Phase correction in a Doherty power amplifier
In various embodiments, a semiconductor package includes a carrier amplifier connected to a first output of a power divider, and a first output matching network connected to the carrier amplifier and an output combining node. The first output matching network exhibits a phase delay during operation of the carrier amplifier. The semiconductor package includes a phase advance network connected to the first output matching network. The phase advance network is configured to offset at least a portion of the phase delay of the first output matching network. The semiconductor package includes a peaking amplifier connected to a second output of the power divider and the output combining node, and a second output matching network connected to the peaking amplifier.
US09748901B2 Power amplifying apparatus
A power amplifying apparatus includes a radio frequency (RF) power amplifier, a supply modulating unit, a phase shifting unit, and an envelope shaping unit. The RF power amplifier receives an input RF signal and outputs an amplified RF signal. The supply modulating unit provides the RF power amplifier with a supply voltage which varies with an original envelope of the input RF signal. The phase shifting unit receives a control signal and shifts a phase of the input RF signal to be inputted to the RF power amplifier by a shift amount which varies with the control signal. The envelope shaping unit receives the original envelope and provides the phase shifting unit with the control signal which varies with the original envelope.
US09748894B2 Flexible building-integrated photovoltaic structure
Improved BIPV materials configured to meet various long-term requirements including, among others, a high degree of water resistance, physical durability, electrical durability, and an ability to withstand variations in temperature and other environmental conditions. In some embodiments, the disclosed BIPV materials include modules wherein two or more layers of the module are configured to be joined together during lamination to protect edge portions of the top sheet and/or back sheet of the module, such as in the vicinity of any multi-layer vapor barrier structure(s) of the module.
US09748891B2 Support assembly for supporting a solar panel
A support assembly supports a solar panel. The support assembly includes a first support portion including a first base wall. A first lateral wall is attached to the first base wall and includes a first attachment structure. A second support portion is attached to the first support portion such that the first support portion and the second support portion support the solar panel. The second support portion includes a second base wall. The second base wall is attached to the first base wall of the first support portion. A first attachment wall is attached to the second base wall. The first attachment wall defines a first attachment opening into which the first attachment structure of the first lateral wall is received such that the first attachment wall is attached to the first lateral wall. A method of forming a support assembly for supporting a solar panel is provided.
US09748889B2 Shutdown method for motor and motor drive circuit thereof
Disclosed are a shutdown method for motor and a motor driving circuit using the same. The method comprises: shutting down a higher gate switch and a lower gate switch when a supply voltage decreases, such that the storage capacitor is charged via a back electromotive force, wherein the back electromotive force decreases as the motor gradually stops; driving the motor when the voltage of the storage capacitor is again larger than the first threshold voltage; determining whether the voltage of the storage capacitor is lower than a shutdown threshold voltage when the voltage of the storage capacitor is lower than the first threshold voltage, wherein the shutdown threshold voltage is lower than the first threshold voltage; and turning on the lower gate switch when the voltage of the first threshold voltage is lower than the shutdown threshold voltage, wherein the back current is related to the back electromotive force.
US09748886B1 Variable torque motor/generator/transmission
A motor/generator/transmission system includes: an axle; a stator ring having a plurality of stator coils disposed around the periphery of the stator ring, wherein each phase of the plurality of stator coils includes a respective set of multiple parallel non-twisted wires separated at the center tap with electronic switches for connecting the parallel non-twisted wires of each phase of the stator coils all in series, all in parallel, or in a combination of series and parallel; a rotor support structure coupled to the axle; a first rotor ring and a second rotor ring each having an axis of rotation coincident with the axis of rotation of the axle, at least one of the first rotor ring or the second rotor ring being slidably coupled to the rotor support structure and configured to translate along the rotor support structure in a first axial direction or in a second axial direction.
US09748885B2 Regenerative energy system for ground transportation vehicles
Present example embodiments relate generally to a ground transportation system for interacting with one or more vehicles, the vehicle comprising at least one magnetic element fixedly attached to the vehicle, each magnetic element operable to generate a magnetic field having a first magnitude and a first direction, the system comprising a magnetic coil assembly fixedly positioned near an area traversable by the vehicle and comprising a core and a magnetic wire coil wrapped around the core, the magnetic coil assembly operable to generate a magnetic field having a second magnitude and a second direction; and an energy storage unit operable to release energy to and store energy from the magnetic coil assembly.
US09748883B2 Control device for rotating electrical machine
A rotating electrical machine has a rotor having a field winding and a stator having an armature winding. A control device adjusts a field current flowing in the field winding and an armature current flowing in the armature winding. The armature current flowing in the armature winding is expressed by using a current vector having a d-axis current and a q-axis current in a d-q coordinate system. In a case in which the control device increases the d-axis current to generate a magnetic flux in a direction which is opposite to a direction to generate a magnetic flux by a field current, the control device gradually reduces the d-axis current during a predetermined period of time after increasing the d-axis current in the direction opposite to the direction to generate the magnetic flux by the field current.
US09748871B2 System for harvesting energy from door or door hardware movement
An electrical generation system for a door positioned in a doorway includes a hinge arranged to support the door for rotational movement with respect to the doorway between a closed position and an open position, and a cam that is one of coupled to the door for movement with the door, and fixed with respect to the doorway. A piezo-electric generator is the other of coupled to the door for movement with the door, and fixed with respect to the doorway. The piezo-electric generator and the cam cooperate such that rotation of the cam with respect to the piezo-electric generator is operable to produce an electrical current in response to rotation of the door, and wherein the electrical current has a frequency that is greater than the number of revolutions made by the cam with respect to the piezo-electric generator.
US09748865B2 Power conversion device and three-phase alternating current power supply device
Provided is a power conversion device including: a conversion device for each phase which converts DC voltage inputted from a DC power supply, to voltage having an AC waveform to be outputted to each phase with respect to a neutral point of three-phase AC; and a control unit which controls these conversion devices. Each conversion device includes: a first converter which has a DC/DC converter including an isolation transformer, and a capacitor, and which converts the inputted DC voltage to voltage containing a pulsating DC voltage waveform corresponding to the absolute value of the AC waveform to be outputted; and a second converter which is provided at a stage subsequent to the first converter and has a full-bridge inverter, and which inverts the polarity of the voltage containing the pulsating DC voltage waveform, per one cycle, thereby converting the voltage to voltage having the AC waveform.
US09748859B2 Four-terminal circuit element with photonic core
A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated based on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.
US09748857B2 Method and system for a gas tube-based current source high voltage direct current transmission system
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to “switch on” one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and “switch off” the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
US09748856B2 Modular multi-level converter controlling plurality of sub-modules
Provided is a modular multi-level converter including a plurality of sub-modules including switching elements, a plurality of sub-control units respectively controlling the plurality of switching elements included in the plurality of sub-modules, and a central control unit which determines switching operation conditions of the plurality of sub-modules, and transmits control signals corresponding to the determined switching operation conditions to the plurality of sub-control units. Each of the plurality of sub-control units acquires state information on the sub-module controlled thereby and transmits the acquired state information to the central control unit.
US09748853B1 Semi-dual-active-bridge converter system and methods thereof
One example embodiment is a method executed by a microcontroller with a Pulse Width Modulation (PWM) circuit to control a semi-dual-active-bridge (SDAB) converter that includes a first side bridge circuit, a second side bridge circuit and a transformer. The microcontroller determines a current operation mode and a target operation mode of the SDAB converter. The microcontroller determines an optimal ratio and calculates changes of each gating signal that are applied to the first side bridge circuit and the second side bridge circuit respectively.
US09748850B2 Switching power-supply with switching frequency correction
A switching power-supply device applies a DC voltage to a primary winding of a transformer and performs a switching operation of a switching element connected to a primary winding to generate and output an output voltage to a load. The switching power-supply device includes: an error amplifier, which compares the output voltage with a reference voltage and sends an error voltage as a feedback signal to a primary side; a frequency generation circuit, which generates a switching frequency according to the feedback signal; an off timing determination circuit, which determines a timing at which the switching element is turned off, by comparing a signal depending on the feedback signal with a current flowing through the switching element; and a frequency correction circuit, which corrects the switching frequency generated by the frequency generation circuit, according to an on-duty of the switching element.
US09748849B2 Power supply
Provided is regulation of a line current. The regulation of the line current includes comparing a reference voltage with a line sensing voltage to generate a feedback voltage, and controlling a switching operation of a power switch using the feedback voltage. The reference voltage may be a voltage having a constant level, a voltage which varies according to an output current, or a voltage which follows a sine wave to compensate a power factor. Provided is sensing of an output current. The sensing of the output current includes sensing the output current using a feedback voltage corresponding to a voltage between both terminals of an inductor connected to a power switch, a peak of current flowing through the power switch, and a switching cycle of the power switch.
US09748832B2 Power converter and power conversion method
A line-to-ground fault location detector detects, based on a difference between a current flowing from a power transmission circuit to a load circuit, and a current flowing from the load circuit to the power transmission circuit, whether a line-to-ground fault is occurring at a power-transmission-circuit side or a load-circuit side. A contactor controller opens a first contactor when the load circuit detects the occurrence of the line-to-ground fault, and when a line-to-ground fault location detector detects that a location of the line-to-ground fault is at the power-transmission-circuit side, the contactor controller maintains the open state of the first contactor even if an operation to instruct closing of the first contactor is made after the first contactor is opened.
US09748830B1 Control circuits using different master-slave current sharing modes
A control circuit is provided for controlling two power converters in a master-slave current sharing relationship. The control circuit is adapted to detect a presence of a dynamic load condition, control the two power converters in a default master-slave current sharing mode based on a current sharing correction function, and in response to detecting the presence of the dynamic load condition, disable the current sharing correction function so that the two power converters are controlled in a modified master-slave current sharing mode to substantially prevent oscillation between output currents of the two power converters. The control circuit may be one or more components of the power supply including the two power converters. Other example power supplies, control circuits and control methods are also disclosed.
US09748829B2 Power module
A power module including: a power conversion unit including N switching-element pairs; and a control circuit. The control circuit receives N command signals, which correspond respectively to the N switching-element pairs, and a shared enable signal. The control circuit is configured to, when the enable signal is negated, execute all-off control of turning off all of the switching elements constituting the power conversion unit, and when the enable signal is asserted, execute normal control, dead-time addition control, and dead-time compensation control for each of the switching-element pairs per period of a corresponding command signal.
US09748823B2 Linear actuator with moving central coil and permanent side magnets
A linear actuator, comprising a base housing, a top housing, and a piston assembly. The base housing may include at least one recess configured to restrain at least one magnet in three dimensions and a channel configured to receive a linear guide. The top housing may be fixedly attached to the base housing and may include at least one recess configured to restrain another at least one magnet in three dimensions. The piston assembly may include at least one coil bobbin, a shaft, a linear encoder scale, and a flex cable, wherein the piston assembly may be positioned between the base housing and the top housing.
US09748815B2 Rotary compressor with the balance weight formed with a recess for receiving the head of a rivet
A rotary compressor includes a casing, an electric motor, a compression mechanism and a balance weight mechanism. The electric motor includes a stator fixed to the casing, and a rotor. The compression mechanism is connected to the electric motor via a drive shaft. The balance weight mechanism is configured to cause centrifugal force to act on the drive shaft. The rotor includes a rotor core including a plurality of stacked electromagnetic steel sheets, and a rivet configured to clamp the rotor core at axial ends of the rotor core. The balance weight mechanism includes an insertion portion into which drive shaft is press fit, and a flat portion forming a flat surface at an axial end of the drive shaft. The balance weight mechanism is disposed at an axial end portion of the rotor to cover a head of the rivet.
US09748811B2 Stator for rotating electric machine
A stator includes an annular stator core, a stator coil and a plurality of lead wires. The stator coil is comprised of windings mounted on the stator core and has a coil end part protruding from an axial end face of the stator core. Each of the lead wires is made up of a corresponding one of end portions of the windings of the stator coil. The lead wires include, at least, a first lead wire and a second lead wire. The first lead wire has a radially-extending part that adjoins the coil end part of the stator coil and extends in a radial direction of the stator core. The second lead wire has a circumferentially-extending part that adjoins and intersects the radially-extending part of the first lead wire and is located on the opposite side of the radially-extending part to the coil end part of the stator coil.
US09748807B2 Motor
A motor including a stator assembly and a rotor assembly. The stator assembly includes a stator core and a winding; the stator core includes a yoke and a plurality of teeth protruding inwards from the yoke; between two adjacent teeth formed is a winding slot; the winding is arranged in the winding slot, and winded on the teeth. The rotor assembly includes a rotor core and a permanent magnet. The rotor core includes an annular ring having a central axial bore and a plurality of magnetic induction blocks protruding outwards from an outer side of the annular ring. Between two adjacent magnetic induction blocks formed is a radial recess for mounting the permanent magnet. The magnetic induction blocks at both sides of an opening of the radial recess protrude with a hook block. The thickness of the rotor core is larger than that of the stator core.
US09748806B2 Permanent magnet rotating electrical machine and a motor vehicle using same
A permanent magnet rotating electrical machine includes a rotor which has permanent magnets buried in a plurality of permanent magnet insertion slots that are provided in a rotor core, and the rotor is rotatably supported by a rotary shaft with a gap on the inner peripheral side of a stator. When the axis of magnetic flux for the permanent magnet is set as a d-axis and the position deviated from the d-axis by electrical angle of 90° is set as a q-axis, the permanent magnet insertion slot is located on the q-axis and a first permanent magnet magnetized in the direction orthogonal to the q-axis is buried in the permanent magnet insertion slot. The permanent magnet insertion slot is located on the d-axis and a second permanent magnet magnetized in the direction parallel to the d-axis is buried in the permanent magnet insertion slot, while at least one or more third permanent magnets buried in the permanent magnet insertion slots are provided between the first permanent magnet and the second permanent magnet. Thereby, the environmental load discharged from a motor vehicle is reduced.
US09748803B2 Electric machine
An electric machine comprise a first carrier having an array of electromagnetic elements and a second carrier having electromagnetic elements defining magnetic poles, the second carrier being arranged to move relative to the first carrier. An airgap is provided between the first carrier and the second carrier. The electromagnetic elements of the first carrier include posts, with slots between the posts, one or more electric conductors in each slot, the posts of the first carrier having a post height in mm. The first carrier and the second carrier together define a size of the electric machine. The magnetic poles having a pole pitch in mm. The size of the motor, pole pitch and post height are selected to fall within a region in a space defined by size, pole pitch and post height that provides a benefit in terms of force or torque per weight per excitation level.
US09748802B2 Contactless rotary joint
A contactless rotary joint has a stationary and a rotating part. Furthermore at least one of the parts has a rotary joint body made of a plastic material and holding a capacitive data link and a rotating transformer. The rotating transformer has a magnetic core for transmission of electrical power. To prevent interference of the capacitive data link by electrical and/or magnetic fields from the rotating transformer a shield is provided.
US09748801B2 System for capacitively driving a load
A capacitive driving system (100) comprises: a supply device (10) comprising a power generator (13), capacitive transmission electrodes (11, 12) and preferably at least one inductor (16) connected in series between the power generator and at least one of said transmission electrodes; at least one load device (20) comprising two capacitive receiver electrodes (21, 22) and at least one load member (23) coupled to said receiver electrodes. For resonant energy transfer, the supply device and the load device have an energy transfer position in which a first one of said transmission electrodes together with a first one of said receiver electrodes defines a first transfer capacitor (31) while simultaneously a second one of said transmission electrodes together with a second one of said receiver electrodes defines a second transfer capacitor (32). At least one auxiliary capacitor (111; 112; 121; 122) is connected in series with inductor and load.
US09748800B2 Wireless power transmission system, and method of controlling power in wireless power transmission system based on detection parameter
A wireless power transmission system, and a method of controlling power in the wireless power transmission system based on a detection parameter are provided. The method includes transmitting a request signal to a device. The method further includes receiving, from the device, a response signal corresponding to the request signal, the response signal including a parameter of the device. The method further includes generating an operation power based on the parameter of the device, the operation power being used for an operation of the device.
US09748797B2 Key interlock system and method for safe operation of electric power distribution system
Key interlock systems and methods are described for safely carrying out a closed-transition procedure in an electric power distribution system in which two load busses that can be separately powered by the same power source or by two different power sources can be connected together via one or more bus tie breakers and in which a static transfer switch is used to selectively deliver power from one of the two different power sources to at least one of the load busses. Embodiments described herein prohibit access to a key that is required to close a bus tie breaker that connects the two load busses until at least a determination is made that a particular bypass breaker of the static transfer switch has been closed, thereby ensuring that both load busses are connected to the same power source.
US09748796B2 Multi-port energy storage system and control method thereof
A multi-port energy storage system includes a bi-directional power conversion circuit, a DC-AC inverter circuit, an electric energy storage facility, a first AC port, a second AC port and an AC switch. The multi-port energy storage system controllably provides various classifications of power supply quality via the first AC port and the second AC port.
US09748793B2 Power input circuits
A power input circuit. A wireless power receiver receives power from a wireless power transmitter. A charging circuit is coupled to the battery. A first switch is controlled by a first control signal. A second switch is controlled by the first control signal. A third switch is coupled between the battery and the voltage input terminal and controlled by a second control signal. A fourth switch is coupled between the voltage input terminal and the charging circuit and controlled by a third control signal. A fifth switch is coupled between the wireless power receiver and the charging circuit and controlled by a fourth control signal. When the wireless power receiver receives power, the third switch and the fifth switch are closed to transmit the received power to the charging circuit for charging the battery, and the computer device is powered by the battery.
US09748791B2 Reception device for wireless charging
Disclosed herein is a reception device for wireless charging. The reception device for wireless charging may include a reception antenna configured to generate an electric current based on a change of magnetism and a charging circuit unit configured to convert the electric current generated by the reception antenna into direct current. The reception antenna and the charging circuit unit may be connected to a flexible board. Accordingly, the reception device can be attached to the casing of a smart terminal while minimizing a change in the thickness of the smart terminal. A task for connecting the antenna and charging circuit unit of the reception device can be eliminated. A wireless charging function can be assigned to a smart terminal by simply replacing the casing of the smart terminal not having the wireless charging function.
US09748788B2 Systems and methods for charging a battery
The present disclosure includes a method of charging a battery. In one embodiment, the method comprises receiving, in a battery charging circuit on an electronic device, an input voltage having a first voltage value from an external power source. The battery charger is configured to produce a charge current having a first current value into the battery. The input current limit and/or duty cycle of the charger is monitored. Control signals may be generated to increase the first voltage value of the input voltage if either (i) the input current limit is activated or (ii) the duty cycle reaches a maximum duty cycle. The charger also receives signals indicating a temperature inside the electronic device and generates control signals to decrease the value of the input voltage when the temperature increases above a threshold temperature.
US09748785B2 Storage status adjusting circuit, storage status adjusting device, storage battery pack and switch circuit controlling method
A storage status adjusting circuit includes a first switching unit configured to switch between energy accumulation in a first coil and energy release from the first coil to any one of electric storage devices in a first assembled electric storage device having a plurality of the electric storage devices, a second switching unit configured to switch between energy accumulation in a second coil and energy release from the second coil to any one of the electric storage devices in a second assembled electric storage device having a plurality of the electric storage devices, and a changing unit configured to change a potential difference between both ends of the first coil and a potential difference between both ends of the second coil based on storage statuses of the first assembled electric storage device and the second assembled electric storage device, when energy is accumulated in the first coil and the second coil.
US09748784B2 Detecting batteries with non-uniform drain rates
A remote control is powered by multiple batteries connected in series. The remote control includes a voltage comparison circuit configured to compare a midpoint voltage from a node connecting two of the batteries to a reference voltage. The remote control is able to determine if there is a non-uniform drain rate in the batteries based on the comparison.
US09748781B2 Voltage converters and methods for use therewith
A voltage error signal VERR is provided to a PWM controller of a voltage regular and used to produce a PWM signal that drives a power stage of the regulator. When operating in an adaptor current limit regulation mode, an adaptor current sense voltage VACS, indicative of an adapter current IA, is compared to an adapter current reference voltage VAC_REF to produce an adapter current error signal VAC_ERR. A compensator receives the adapter current error signal VAC_ERR and outputs a compensated adapter current error signal. The adaptor current sense voltage VACS, or a high pass filtered version thereof, is subtracted from the compensated adapter current error signal to produce the voltage error signal VERR provided to the PWM controller. Alternatively, an input voltage VIN, or a high pass filtered version thereof, is added to the compensated adapter current error signal to produce the voltage error signal VERR.
US09748775B2 Method for providing control power using an energy store having variable deadband width when providing the control power
A method providing control power for an electricity network in which at least one energy store supplies energy to the electricity network and/or takes up energy from the electricity network dependent on a frequency deviation from a desired frequency of the electricity network, a deadband being prescribed around the desired frequency. The frequency deviation from the network frequency is measured with greater accuracy than a width of the deadband and a bandwidth within the deadband is chosen dependent on a charging state of the energy store, with control power being provided outside the bandwidth. A device carrying out the method includes at least one energy store and a control system controlling control power of the energy store in an open-loop or closed-loop manner, the energy store being connected to an electricity network such that energy can be fed into the electricity network and can be removed from the electricity network.
US09748773B2 Contactless power supply device
A contactless power supply device includes a power-transmitting-side pad and a power-receiving-side pad. Each of the power-transmitting-side pad and the power-receiving-side pad has a core and a coil. The core has a plate-shaped yoke portion. The coil has a first coil portion and a second coil portion. The first coil portion is arranged on a top surface of the yoke portion. The second coil portion is arranged along an outer periphery of the yoke portion.
US09748771B2 Plug arrangements for alleviating peak loads
Methods and arrangements for load-shifting time deferrable devices. An electrical load scheduling mechanism is provided, and this is placed in communication with an appliance. Electrical grid load conditions are assessed, and delivery of electrical power to the appliance is scheduled via the electrical load scheduling mechanism. The scheduling includes altering a predetermined delivery of electric power to the appliance based on the assessed electrical grid conditions.
US09748764B2 Surge protective devices
A surge protector having a hot line, a load line, a neutral line, and a ground line, the surge protector is provided. The surge protector has a fuse coupled between the hot line and the load line to protect loads from current surges. A differential mode protection circuit is coupled between the load line and the neutral line to protect loads from differential mode transient voltage surges. A common mode protection circuit is coupled to the load line, the neutral line and the ground line to protect loads from common mode transient voltage surges. An indicator circuit monitors the differential mode protection circuit and the common mode protection circuit to provide an indication as to the operational status of the surge protector.
US09748762B2 Method and apparatus for the protection of DC distribution systems
While transient current magnitudes at different locations within a DC distribution system themselves are not a reliable indicator of fault location, it is recognized herein that accumulating energy or pseudo energy values provides a reliable basis for tripping the protection element at a fault location. Thus, in one aspect of the teachings herein, pseudo energy values are accumulated independently during a fault condition, for each of one or more protected branch circuits and the protection element for each such branch circuit is tripped responsive to the accumulated pseudo energy values reaching a defined pseudo energy threshold. The pseudo energy thresholds are defined so that the protection element in the branch circuit where the fault is located will trip first.
US09748758B2 Device comprising a space charge trapping layer
The present invention relates to a device comprising at least one electrical cable (10a, 10b, and 10c) for transporting DC current, said electrical cable comprising an elongate electrical conductor (11a, 11b, and 11c) surrounded by at least one first semiconducting layer (12c), an electrically insulating layer (13a, 13b and 13c) surrounding the first semiconducting layer and a second semiconducting layer (14a, 14b and 14c) surrounding the electrically insulating layer, characterized in that the electrical cable (10a, 10b, and 10c) furthermore comprises a space charge trapping layer (15a, 15b, and 15c) obtained on the basis of a polymeric composition comprising at least one organic polymer and at least one linear filler, the space charge trapping layer (15a, 15b, and 15c) replacing at least in part the second semiconducting layer (14a, 14b, and 14c) of the electrical cable, so that the space charge trapping layer is in physical contact with the electrically insulating layer (13a, 13b, and 13c) of the electrical cable.
US09748757B2 Arrangement for connecting a power cable to an equipment element
In an arrangement for connecting a high-voltage or very-high-voltage power cable comprising an insulative external jacket to an equipment element comprising an external surface by means of an insulative layer, the insulative layer consists of a composite material resistant to traction in the longitudinal direction of the cable and attached to said external jacket and to the external surface.
US09748753B2 Insulating L busbar covers and related systems and methods
An insulating cover for an L-shaped busbar includes first and second opposing longitudinal edge portions and a longitudinal groove between the first and second longitudinal edge portions. The cover is configured to wrap around the busbar in an installed position with the first and second longitudinal edge portions overlapping, with the second longitudinal edge portion adjacent and generally parallel to a leg of the busbar and with the first longitudinal edge portion in the longitudinal groove of the cover.
US09748749B2 Support and retaining device for wires and cables
A two-component device for supporting and retaining a cable or wire bundle in a channel comprises support part with a support surface in which is formed an elongate recess for a cable tie. The upper part lifts on to a lower part and it secured to the floor of the channel, by means of rivets or the like. The support part has an integral tie bar extending across the elongate recess. The lower part has a corresponding tie bar extending across it, between opposed side walls of the lower part. With the wire bundle in place, the cable tie is passed around it and through the recess, passing under the respective tie bars and secured at to hold the bundle in place against the support, at the same time holding the two parts of the support together.
US09748748B2 Cable stripper
A blade stripper has a displaceable blade carriage, which is normally biased toward a cable support to automatically accommodate differently dimensioned jacketed cables in a desired position. The blade carriage supports a blade assembly configured so that the blade can be displaced among multiple positions corresponding to respective axial, radial and a plurality of spiral cuts while the cable is engaged in the desired position.
US09748746B1 Lock-in-place feeding sheave assembly
A feeding sheave assembly for use at the open end of a conduit into which a wire or cable is to be fed during a wire or cable-pulling operation includes an elongated sleeve portion which is insertable endwise into the open end of the conduit and an abutment plate for abutting the open end of the conduit when the sleeve portion is fully inserted within the conduit. An arrangement is provided for releasably locking the sleeve portion in a stationary relationship with the conduit, and a sheave is rotatably mounted upon the abutment plate so that when the sleeve portion is releasably locked within the open end of the conduit, a wire or cable which is directed into the conduit end during a wire or cable-pulling operation moves across and then off of the peripheral roller surface of the sheave before moving into the conduit end.
US09748739B2 Vertical cavity surface emitting laser and atomic oscillator
A vertical cavity surface emitting laser includes: a substrate; a first mirror layer; an active layer; a second mirror layer; a current constriction layer; a first area connected to the first mirror layer and including a plurality of oxide layers; and a second area connected to the second mirror layer and including a plurality of oxide layers. The first mirror layer, the active layer, the second mirror layer, the current constriction layer, the first area, and the second area configure a laminated body. The laminated body includes a first portion, a second portion, and a third portion between the first portion and the second portion. When a width of the oxide area is W1 and a width of an upper surface of the first portion is W2, W2/W1≦3.3.
US09748733B2 Semiconductor laser device and backlight device using the semiconductor laser device
The semiconductor laser device includes a base member having a recess that opens upward, a semiconductor laser element disposed on a bottom surface of the recess, and a light reflecting member being disposed forward of a light emitting surface of the semiconductor laser element and including a light reflecting surface to reflect laser light emitted from the semiconductor laser element. The semiconductor laser element and the light reflecting member are arranged such that a direction of an optical axis of light that is reflected by the light reflecting member is different from a direction that is perpendicular to a lower surface of the base member.
US09748731B2 Optical apparatus
An optical apparatus comprises a package containing an optical device and having a front end face provided with a through window part 11 to which an optical fiber optically connected to the optical device is attached, a base having an attachment surface for attaching the package, a first extension arranged so as to project from the front end face along the attachment surface, and a package securing member having a tilted surface adapted to abut against the package so as to generate a force for pressing the package against the base. The package securing member is independent of the package.
US09748729B2 183NM laser and inspection system
A laser assembly for generating laser output light at an output wavelength of approximately 183 nm includes a fundamental laser, an optical parametric system (OPS), a fifth harmonic generator, and a frequency mixing module. The fundamental laser generates fundamental light at a fundamental frequency. The OPS generates a down-converted signal at a down-converted frequency. The fifth harmonic generator generates a fifth harmonic of the fundamental light. The frequency mixing module mixes the down-converted signal and the fifth harmonic to produce the laser output light at a frequency equal to a sum of the fifth harmonic frequency and the down-converted frequency. The OPS generates the down-converted signal by generating a down-converted seed signal at the down-converted frequency, and then mixing the down-converted seed signal with a portion of the fundamental light. At least one of the frequency mixing, frequency conversion or harmonic generation utilizes an annealed, deuterium-treated or hydrogen-treated CLBO crystal.
US09748725B2 Multipass fiber amplifiers
A multipass fiber amplifier comprises a micro-optic-module polarization separating device including a first ASE blocking device, a micro-optic-module 90° polarization rotating reflector including a second ASE blocking device, a pump source for providing pump light; a micro-optic-module wavelength-division multiplexer (WDM) for combining the pump light and the laser beam; and a gain fiber having a first end and a second end for amplifying the laser beam using the pump light, where the first ASE blocking device is coupled to the first end of the gain fiber and the second ASE blocking device is coupled to the second end of the gain fiber.
US09748723B2 Solder-less board-to-wire connector
A board-to-wire connector includes a substrate, a pair of wires and a pair of electrically conducting rivets. The substrate has a first surface, an opposing second surface and at least two electrically conducting traces having respective conductive pads. The pair of wires are each electrically preassembled to one of the electrically conducting traces through the respective conductive pads with solder joints. The pair of electrically conducting rivets each extend through the substrate from the first surface to the second surface and through one of the electrically conducting traces and have prongs that protrude from the second surface of the substrate.
US09748721B2 Method of fabricating connector terminals
A method of fabricating connector terminals, includes (a) preparing a single electrically conductive metal sheet including a plurality of pre-terminals, and a plurality of carriers connecting adjacent pre-terminals to each other, each of the pre-terminals having at one end thereof in a length-wise direction thereof an elastically deformable contact portion, and at the other end in the length-wise direction a first area, a pitch between adjacent contact portions being unequal to a pitch between adjacent first areas, (b) folding each of the first areas around a line extending in a length-wise direction thereof to thereby form a male tab having a predetermined thickness, and (c) removing the carriers out of the metal sheet.
US09748718B2 Universal connection adapter
A connection adapter is provided. In certain configurations, the connection adapter includes an input portion with a plurality of sets of input connectors, a first output portion extending from the input portion in a first direction and including a first set of output connectors, and a second output portion extending from the input portion in a second direction and including a second set of output connectors. In the connection adapter, the sets of input connectors are electrically coupled to each of the first set of output connectors and the second set of output connectors. Further, the first and second directions are substantially perpendicular to each other, while the input portion extends in a third direction that is not substantially perpendicular to the first direction or the second direction.
US09748717B2 Systems and methods for providing a combination connector assembly in an information handling system
A combination connector may include a first connector housed within a housing and configured to be communicatively coupled to an information handling resource, the first connector configured to receive connectors of a first form factor and to communicatively couple a corresponding connector of the first form factor received by the first connector to the information handling resource, and a second connector housed within the housing and configured to be communicatively coupled to the information handling resource, the second connector configured to receive connectors of a second form factor and to communicatively couple a corresponding connector of the second form factor received by the second connector to the information handling resource. A first footprint of the corresponding connector of the first form factor as engaged with the first connector may be overlapping with a second footprint of the corresponding connector of the second form factor as engaged with the second connector.
US09748716B2 Connection structure for terminal fitting
A connection structure for a terminal fitting includes the terminal fitting including a terminal body and a plurality of terminal connection portions extending from the terminal body, and connection terminals connected to electric wires. Each of the connection terminals include a pair of fastening caulking pieces. The pair of fastening caulking pieces are caulked with opposite side portions of a corresponding one of the terminal connection portions from outside so as to roll up the opposite side portions so that the connection terminal is caulked and fastened to the terminal fitting. The terminal connection portion and the connection terminal include an engagement mechanism that prevents the terminal connection portion from detaching from the fastening caulking pieces. The terminal fitting is connected to the electric wires through the connection terminals.
US09748708B2 Poke-in electrical connector
An electrical connector includes a housing having contact channels with electrical contacts received therein each having a poke-in spring beam configured to engage an electrical wire when poked-in to the housing. The electrical contact is movable between a resting position when no wire is present in the wire channel and a clearance position where the electrical contact allows the electrical wire to be removed from the wire channel. Pivot levers are held by the housing and are coupled to corresponding electrical contacts with a pivot end pivotably coupled to the housing and a push button end having a push button pressed to move the corresponding electrical contact to the clearance position. When the electrical wire is loaded into the wire channel, the electrical contact is positioned in a pinching position in which the spring beam pinches against the electrical wire in physical contact with the electrical wire.
US09748704B2 Shield connector structure
A shield connector structure is provided that can increase the precision in the size of a connection portion of a shield electric wire and can improve the water-stop performance of the connection portion without being affected by the tolerance of the external diameter of a shield unit and an external insulating covering of the shield electric wire. A shield connector includes a connection member fixed to an outer surface of a metal case and a shield member connecting the connection member and a shield unit of a shield electric wire, and a shield pipe configured to fix an exposed portion of the shield unit to the shield member. A first tubular unit of the shield member is inserted between the exposed portion of the shield unit and an internal insulating covering.
US09748703B2 High performance cable with faraday ground sleeve
An improved termination assembly for a multi-wire cable is disclosed. The assembly includes a carrier member that includes wire nest portions spaced along a base portion. The wire nest portions are hollow enclosures that contact the exterior grounding shields of the cable wires so as to electrically interconnect all of the cable wires together through a common ground.
US09748697B2 Pluggable connector and interconnection system configured for resonance control
Pluggable connector includes a plug housing configured to couple to a communication cable. The plug housing has a plug cavity. The pluggable connector also includes a module board that is disposed within the plug cavity and configured to be communicatively coupled to the communication cable. The module board has a mating edge configured to interface with a mating connector. The module board includes a plurality of signal pathways and a plurality of ground pathways in which the signal pathways are interleaved between corresponding ground pathways. The signal and ground pathways include respective contact pads that are disposed proximate to the mating edge for engaging corresponding contacts of the mating connector. Each of the ground pathways has separate first and second trace segments and a damping component that electrically joins the first and second trace segments.
US09748681B1 Ground contact module for a contact module stack
A ground contact module includes a ground leadframe and a ground dielectric body. The ground leadframe has ground contacts extending between corresponding mating ends and terminating ends with transition portions therebetween. The ground dielectric body holds the ground leadframe and has a low loss layer overmolded over the ground leadframe and encasing the transition portions of the ground contacts. The ground dielectric body has lossy wings received in pockets in the low loss layer. The lossy wings are electrically coupled to corresponding ground contacts and are manufactured from lossy material capable of absorbing electrical resonance propagating through the contact module stack. The lossy wings are separate and discrete from the low loss layer and are attached to the at least one low loss layer in proximity to the corresponding ground contacts. Each lossy wing is electrically coupled to only one of the ground contacts.
US09748680B1 Multiple contact pogo pin
Disclosed herein are devices and methods for a multiple contact probe. The multiple contact probe may include a first contact interface and a second contact interface. The first contact interface may be electrically isolated from the second contact interface. A plunger assembly may be slidably engaged between the first contact interface and the second contact interface. The plunger assembly may be slidable between an extended configuration and a retracted configuration along a longitudinal direction of the plunger assembly. The plunger assembly may include a first electrical contact and a second electrical contact. The first electrical contact may be in electrical contact with the first contact interface and the second electrical contact may be in electrical contact with the second contact interface. A bias element may be engaged with the plunger assembly, for instance, the bias element may be configured to bias the plunger assembly to the extended configuration.
US09748678B2 Connectivity in an assembly
A circuit assembly includes one or more electrical conductors. Each of the electrical conductors has a first axial end and a second axial end; the first axial end is disposed opposite the second axial end. The assembly further comprises a non-electrically conductive retainer component operable to: i) retain the electrical conductor and ii) contact a lateral side and/or tip of the electrical conductor onto a conductive pad of a circuit board. The retainer component exerts an appropriate force with respect to the one or more electrical conductors such that, a respective lateral side and/or tip of each of the electrical conductors contact a corresponding electrically conductive pad on the circuit board.
US09748677B2 Wire-to-board connector
A receptacle connector includes a receptacle contact corresponding to a plug contact, a receptacle housing that holds the receptacle contact, and an assistant fitting attached to the receptacle housing, and is mounted on a connector mounting surface of a circuit board. The assistant fitting includes at least a held portion, a fixing portion, and a vertical displacement regulating portion. The held portion is a portion that is held by the receptacle housing. The fixing portion is a portion that is hooked to the plug housing to thereby fix the plug connector to the receptacle connector. The vertical displacement regulating portion is a portion that regulates a displacement of the fixing portion in a direction away from the connector mounting surface of the circuit board.
US09748675B2 Systems and methods for splicing wires
A splicer device is disclosed herein. The splicer device includes a main body having an internal passage formed between a first end of the main body and a second end of the main body. The first end of the main body is configured to receive at least one first wire, and the second end of the main body is configured to receive at least one second wire. A window is disposed within the main body and in communication with the internal passage between the first end of the main body and the second end of the main body for accessing and splicing the at least one first wire and the at least one second wire.
US09748670B1 Conductor connector accessories and methods for connecting conductors to conductor connector accessories
A method for connecting a conductor and a conductor connector accessory includes inserting an end portion of the conductor into an interior of a tube, and inserting the tube into an interior of a barrel. The barrel defines a plurality of radial passages extending between an outer surface of the barrel and the interior of the barrel. The method further includes providing a plurality of lobes, each of the plurality of lobes disposed within one of the plurality of passages. The method further includes inserting the barrel into an interior of an outer shell, and compressing the outer shell, barrel, lobes, tube and end portion together.
US09748666B2 Broadband omnidirectional antenna
The invention relates to an improved antenna which is distinguished by, among other things, the following features: the antenna has a monopole radiator (11), which is vertically polarized; the antenna has at least two horizontally polarized radiators, which lie offset from each other in a circumferential direction about a central axis (Z); the antenna has a reflector (1), in front of which the at least two horizontally polarized radiators and the monopole radiator (11) are arranged at a distance (A); the at least two horizontally polarized radiators each comprise a Vivaldi antenna (5); the Vivaldi antennas (5) have a central and/or feeding surface (123), which forms a feeding plane (123′), in which an electrically conductive layer (27, 127) having slot lines (29′) that widen in a radiation direction is formed or provided, —the feeding plane (123′) is arranged at a distance (A) from the reflector (1); and the electrically conductive layer (27, 127) is led out of the feeding plane (123′), wherein at least one arcuate and/or bent extension (27a, 127a) is formed.
US09748665B2 Ridged waveguide flared radiator array using electromagnetic bandgap material
Presently disclosed is an antenna system having an array of ridged waveguide Vivaldi radiator (RWVR) antenna elements fed through a corporate network of suspended air striplines (SAS) with an electromagnetic bandgap (EBG) ground plane surrounding the ridged waveguide transition. The SAS transfers the electromagnetic energy to the radiating element via the ridged waveguide coupler. The Vivaldi radiator matches the output impedance of the ridged waveguide coupler/SAS to the intrinsic impedance of the surrounding medium. The EBG, which may be comprised of a photonic bandgap material or other metamaterial, allows for better frequency and bandwidth performance in a lower-profile array package, thereby reducing size and weight of the array for applications requiring small size and or low-inertia packaging. In alternate embodiments, radiating elements other than Vivaldi radiators may be used. This configuration also reduces the complexity of the manufacturing process, which in turn lowers cost.
US09748664B2 Semiconductor device, transmission system, method for manufacturing semiconductor device, and method for manufacturing transmission system
Disclosed herein is a semiconductor device including: a semiconductor circuit element configured to process an electrical signal having a predetermined frequency; and a transmission line configured to be connected to the semiconductor circuit element via a wire and transmit the electrical signal. An impedance matching pattern having a symmetric shape with respect to a direction of the transmission line is provided in the transmission line.
US09748662B2 Antenna and wireless communication device
A small antenna operating at a plurality of frequency bands includes a first conductor plane in which a first split ring resonator and a second split ring resonator that have different resonant frequencies are formed and a feed line including a first branch line, a second branch line and a branch portion. Each of the split ring resonators includes a conductor region along an opening edge of an opening formed in the first conductor plane and a split portion cutting through a portion of the conductor region. One end of the first branch line is connected to the first split ring resonator and the other end extends to the branch portion across the conductor region; one end of the second branch line is connected to the second split ring resonator and the other end extends to the branch portion across the conductor region.
US09748658B2 Wideband antenna
First and second hot elements are formed on the front surface of a long and thin substrate. First and second earth elements are formed on the rear surface of the substrate. First and second parasitic elements are disposed adjacent to the hot elements and the earth elements, thereby forming a first-stage element. A second-stage element has a corresponding structure. A first branch line and a second branch line are formed on the front surface. The hot elements of the first-stage and second-stage elements are fed from a feeding point through the first and second branch lines. An earth line is formed on the rear surface. The earth elements of the first-stage and second-stage elements are fed from the feeding point through the earth line. The hot element and the earth element form a dipole antenna. The parasitic element is disposed adjacent to the dipole antenna to broaden a frequency band.
US09748657B1 Cavity backed dipole antenna
The invention is directed to a cavity backed dipole antenna that has at least a reduced length relative to a reference dipole antenna at the same first frequency of operation and, in some embodiments, an improved bandwidth relative to a reference dipole antenna. In one embodiment, the cavity backed dipole antenna comprises a driven bowtie dipole antenna and a parasitic folded sheet dipole antenna with the driven bowtie dipole antenna located with a boundary defined by the parasitic folded sheet dipole antenna.
US09748655B2 Polarization antenna
Provided is a polarization antenna. The polarization antenna includes a dielectric substrate; a radiating element formed on the dielectric substrate to be symmetric in up and down and left and right directions; and a balanced feed element including multiple pairs of feed ports which are formed on the dielectric substrate and have a symmetrical structure, applying balanced signals having different phases from each other to the paired feed ports.
US09748652B2 Manufacturing method for a magnetic material core-embedded resin multilayer board
An antenna device includes a resin multilayer board in which a plurality of resin sheets are stacked, and a coil conductor provided in the resin multilayer board. A plurality of line portions of the coil conductor are provided on a lower surface of the resin sheet. When a magnetic material core is preliminarily pressure-bonded to the resin sheet, the magnetic material core is fractured along the line portions and cracks occur. Thus, the resin sheet with the magnetic material core in which the cracks have been formed is fully pressure-bonded together with the other resin sheets.
US09748651B2 Compound coupling to re-radiating antenna solution
Source radio frequency energy (RF) is coupled wirelessly, with no direct physical contact, between two compound loop (CPL) antennas across a variety of barriers such as plastic, human tissues, glass, and air. The compound coupling interface is highly efficient in transferring the RF energy from a source including one CPL antenna to a destination including a second CPL antenna. A re-radiating structure including a further CPL antenna or a different type of antenna may be connected on the destination side to completely physically isolate the source side from the destination side. When the destination coupling antenna is removed, the source coupling antenna may operate as an efficient radiator at the desired operating frequencies. Likewise, the destination coupling antenna may operate as an efficient radiator in the absence of the source coupling antenna.
US09748641B2 Antenna device and method for designing same
Disclosed is an antenna device or the like having a split ring resonator that adapts to different frequency bands. An antenna device has a laminated structure that is composed by alternating dielectric layers (DL) (35) and conductor layers (CL) and that includes a plurality of structures each comprising: a first split ring (first SR) (31) that is formed in a first conductor layer (first CL) (36A) extending along one surface of a DL (35), surrounds an opening (2) and has a first split (first SP) (51) formed in a circumferential portion along the opening (2); a second split ring (second SR) (32) that is formed in a second conductor layer (second CL) (36B), which extends along the other surface of the DL (35), in such a manner that the second SR (32) is opposed to the first SR (31), the second SR (32) surrounding the opening (2) and having a second split (second SP) (52) formed in a circumferential portion along the opening (2); a plurality of conductor vias (CVs) (3) that are circumferentially formed at intervals, sandwich the first SP (51) and second SP (52) and electrically connect the first SR (31) to the second SR (32); and a feeder line (4) that is formed in a particular one of the CLs and has one end electrically connected to at least one of the CVs (3) and the other end insulated from the particular CL by a clearance (39) formed in the particular CL along the extending direction of the particular CL.
US09748632B2 Radio frequency identification (RFID) tag(s) and sensor(s)
A wireless sensor includes an antenna, a sensing element, a tuning circuit, a processing module, a reference circuit block, and a transmitter. The tuning circuit adjusts the RF front-end to compensation for a change in a characteristic of the RF front end caused by the sensing element. The reference circuit block generates a signal based on a low voltage low frequency input that corresponds to a second environmental condition. The processing module generates a first digital value based on the adjustment to the RF front-end, where the first digital value is a representation of the first environmental condition, and generate a second digital value based on the signal, where the second digital value is a representation of the second environmental condition. The transmitter generates the outbound RF signal that includes at least one of the first and second digital values.
US09748631B2 Manufacturing method for wireless devices
A manufacturing method for a wireless device may involve placing a plurality of antennas on a plastic layer, wherein each of the antennas comprises one or more conductive loops positioned within an inner diameter and an outer diameter; placing a plurality of sensor chips on the plastic layer such that each sensor chip is interconnected to a respective antenna on the plastic layer and is positioned within the inner diameter and outer diameter of the respective antenna, wherein each sensor chip has a respective sensor facing away from the plastic layer and has respective electrical contacts interconnected with the respective antenna; and providing an encapsulation layer over the plurality of antennas and the plurality of sensor chips on the plastic layer.
US09748630B2 Antenna system
The antenna system comprises a first module ensuring the radiofrequency function and containing at least one antenna and at least one radio connection box, a second assembly module ensuring the fastening and positioning of the antenna system onto a mount, and an interface part ensuring the connection between the first module and the second module and enabling a rotating junction between the first module and the second module. Preferably, the antenna system has a generally smooth round shape.
US09748629B2 Troposcatter antenna pointing
A troposcatter terminal can include a location receiver, a network interface, an antenna control unit, and a motor controller. The location receiver can be configured to receive first current location information associated with a local troposcatter antenna. The network interface can be configured to receive second current location information associated with a distant troposcatter antenna. The antenna control unit can be configured to determine a heading from the local troposcatter antenna to the distant troposcatter antenna, an azimuth angle for the local troposcatter antenna, and an elevation angle for the local troposcatter antenna, the heading, the azimuth angle, and the elevation angle based on the first location information and the second location information. The motor controller can be configured to point the local troposcatter antenna according to the heading, the azimuth angle, and the elevation angle to establish troposcatter communications between the local troposcatter antenna and the distant troposcatter antenna.
US09748623B1 Curved filter high density microwave feed network
A method and apparatus forming an efficient and compact waveguide feed with all components for processing signals in multi-frequency band antenna feeds with single/dual linear/circular polarizations with/without tracking. This layout results in a very compact feed, which has excellent electrical characteristics, is mechanically robust, eliminates flange connections between components, and is very cost effective. The new layout eliminates the dummy ports and bends at least one filter element is bent to an acute angle, thereby enabling a high density packaging of the microwave feed network; and wherein a plurality of single sided corrugations are located along the bent filter element. In this design high density arrays of feeds can be realized for satellite communication.
US09748617B2 Storage battery transfer support device and storage battery transfer support method
The present invention serves to reduce the costs associated with the overall life cycle of storage batteries by performing support so that a plurality of batteries are transferred between and used at a plurality of facilities. This storage battery transfer support device comprises: a collection unit that collects battery information representing the status of each battery used at a plurality of facilities; a battery information storage unit that stores the battery information collected by the collection unit; and a deterioration prediction unit that, on the basis of the battery information stored in the battery information storage unit, predicts deterioration of storage batteries that have been transferred between and used at a plurality of facilities.
US09748614B2 Battery temperature regulating device
A battery temperature regulating device is applied to a battery pack configured by parallely connecting battery groups, each of which is a series connection of battery cells capable of charge and discharge. The device regulates temperatures of the battery groups. The battery temperature regulating device includes a heat transfer unit that transfers heat of a part of the battery groups to another battery group.
US09748611B2 Apparatus for determining a state of a rechargeable battery or of a battery, a rechargeable battery or a battery, and a method for determining a state of a rechargeable battery or of a battery
An apparatus for determining a state of a rechargeable battery or of a battery has a sensor device and an evaluation device. The sensor device brings about an interaction between an optical signal and a part of the rechargeable battery or of the battery, which part indicates optically acquirable information about a state of the rechargeable battery or of the battery, and detects an optical signal caused by the interaction. The sensor device furthermore provides a detection signal having information about the detected optical signal. The evaluation device determines information about a state of the rechargeable battery or of the battery on the basis of the information of the detection signal. Furthermore, the evaluation device provides a state signal having the information about the determined state.
US09748609B2 Detection of defects in solid-polymer coatings using reduction-oxidation probes
Electrochemical methods for probing solid polymer electrolyte surface coatings on electrically conducting, active, three-dimensional electrode materials for use in lithium-ion batteries, to quantitatively determine the conformity, uniformity, and the presence of pinholes, and/or other defects in coatings, without requiring the detachment of the coating from the electrode or otherwise inducing damage to the coating, are described. Coated electrodes are submersed in an electrolyte solution containing a redox-active probe species which does not induce electrochemical damage to either the working electrode or the solid polymer electrolyte surface coating. For coated Cu2Sb working electrodes, molecules including a water-soluble redox active viologen moiety have been found to be effective. The current as a function of the applied potential for an uncoated working electrode is used as a baseline for testing solid polymer surface coatings on working electrodes, and the difference in the observed current between the electrodes for a given potential is a quantitative indicator of the ability of the probe species to access the surface of the working electrode through the solid polymer electrolyte coating.
US09748607B2 Electrolyte for lithium battery and lithium battery including the electrolyte
Provided are an electrolyte for a lithium battery and a lithium battery including the electrolyte, wherein the electrolyte includes a disultone-based compound represented by Formula 1; an oxalate-based compound; and an organic solvent: wherein, in Formula 1, A1, A2, A3, and A4 are each independently a substituent-substituted or unsubstituted C1-C5 alkylene group; a carbonyl group; or a sulfinyl group.
US09748605B2 Sulfur-containing additives for electrochemical or optoelectronic devices
The invention relates to sulfur-containing compounds of the formula I, to their preparation, and to their use as additives in electrochemical or electrooptical devices, more particularly in electrolytes for lithium batteries, lithium ion batteries, double layer capacitors, lithium ion capacitors, solar cells, electrochromic displays, sensors and/or biosensors.
US09748603B2 Sulfide solid electrolyte material, battery, and producing method for sulfide solid electrolyte material
A sulfide solid electrolyte material includes Li, K, Si, P and S elements; a peak at 2θ=29.58°±0.50° and not having a peak at a position of 2θ=27.33°±0.50° in X-ray diffraction measurement using a CuKα ray, or when a diffraction intensity at the peak of 2θ=29.58°±0.50° is regarded as IA and a diffraction intensity at the peak of 2θ=27.33°±0.50° is regarded as IB having a peak at the position of 2θ=27.33°±0.50°, a value of IB/IA is less than 1; a P element molar fraction (P/(Si+P)) to a Si element total and the P element satisfies 0.5≦P/(Si+P)≦0.7, and a K element molar fraction (K/(Li+K)) to a Li element total and the K element satisfies 0
US09748590B2 Fuel cell system
A fuel cell system according to the present invention comprises a control apparatus which performs performance restoration processing for a catalyst layer by decreasing the output voltage of a fuel cell to a predetermined voltage. When an oxide film formed on the catalyst layer during power generation of the fuel cell contains, in addition to a first oxide film that can be removed by decreasing the output voltage of the fuel cell to a first oxide film removal voltage, a second oxide film that can be removed by decreasing the output voltage of the fuel cell to a second oxide film removal voltage which is lower than the first oxide film removal voltage, the control apparatus estimates the amount of the second oxide film and performs performance restoration processing with a set voltage being equal to or lower than the second oxide film removal voltage only when it determines that the estimated amount exceeds a predetermined amount A.
US09748587B2 Fuel cell
A fuel cell comprises: a membrane electrode assembly configured to have an electrolyte membrane joined between an anode electrode and a cathode electrode; a flow path-forming member configured to form a flow path that is adjacent to one electrode out of the anode electrode and the cathode electrode and makes a flow of a reactive gas to the one electrode; and a plate-like member made of a material of blocking the reactive gas and stacked on a portion of a flow path-side surface of the one electrode to be adjacent to the flow path. The plate-like member has a gas permeation structure allowing for permeation of the reactive gas in a part where the anode electrode and the cathode electrode are placed in a stacking direction of the plate-like member on the one electrode.
US09748586B2 Gas and condensed water discharge system for fuel cell system and control method thereof
Disclosed are a system and a method for discharging a gas and condensed water for a fuel cell system. The gas and condensed water discharge system comprises: a fuel cell stack that includes cathodes and anodes and produces an electric current by an electrochemical reaction of oxygen and hydrogen; a water trap that temporarily stores gases and water discharged from anodes of the stack and condensed water; an integrated drain valve that is mounted at the water trap so as to generate the gas flow path for gases and the condensed water passing through a discharge portion of the integrated drain valve and discharged out of the water trap; and a controller that discharges the gases and the condensed water by opening and closing the integrated drain valve.
US09748584B2 Fuel cell assembly
A fuel cell assembly comprising an enclosure having a fuel cell stack mounted therein. The fuel cell stack has an inlet face for receiving coolant/oxidant fluid and an outlet face for expelling said coolant/oxidant fluid. The fuel cell stack further includes a pair of end faces extending transversely between the inlet face and outlet face. The enclosure defines a flow path for the coolant/oxidant fluid that is configured to guide the coolant/oxidant fluid to the inlet face, from the outlet face, and over at least one of the end faces.
US09748583B2 Flow field plate for improved coolant flow
Bipolar plate assemblies are disclosed in which the transition fuel channels are offset from the transition oxidant channels in the transition regions on the active sides of the plates. This configuration allows for a reduced pressure drop in the coolant flow in the transition regions on the inactive, coolant side of the plates and thereby improves coolant flow sharing. The assemblies are suitable for use in high power density solid polymer electrolyte fuel cell stacks.
US09748581B2 Functionalized graphene-Pt composites for fuel cells and photoelectrochemical cells
A method of growing crystals on two-dimensional layered material is provided that includes reversibly hydrogenating a two-dimensional layered material, using a controlled radio-frequency hydrogen plasma, depositing Pt atoms on the reversibly hydrogenated two-dimensional layered material, using Atomic Layer Deposition (ALD), where the reversibly hydrogenated two-dimensional layered material promotes loss of methyl groups in an ALD Pt precursor, and forming Pt-O on the reversibly hydrogenated two-dimensional layered material, using combustion by O2, where the Pt-O is used for subsequent Pt half-cycles of the ALD process, where growth of Pt crystals occurs.
US09748580B2 Oxygen reduction catalyst and method for producing the same
Provided is an oxygen reduction catalyst having a high oxygen reduction performance. An oxygen reduction catalyst according to the present embodiment includes a transition metal oxide to which an oxygen defect is introduced, and a layer that is provided on the transition metal oxide and that contains an electron conductive substance. A method for producing an oxygen reduction catalyst according to the present embodiment includes heating a transition metal carbonitride as a starting material in an oxygen-containing mixed gas. In addition, a method for producing an oxygen reduction catalyst according to the present embodiment includes heating a transition-metal phthalocyanine and a carbon fiber powder as starting materials in an oxygen-containing mixed gas.
US09748573B2 Mesoporous silicon compound used as lithium-ion cell negative electrode material and preparation method thereof
A mesoporous silicon compound includes a mesoporous silicon phase, a metal silicide phase, and a carbon phase. The metal silicide is embedded in mesoporous silicon particles, the surfaces of which are coated with a carbon layer. A weight ratio of elemental silicon to the metal element is from 2:3 to 900:1. The pores of the mesoporous silicon particles have a size distribution from two nanometers to eighty nanometers.
US09748572B2 Ultrasound assisted in-situ formation of carbon/sulfur cathodes
A process of preparing an E-carbon nanocomposite includes contacting a porous carbon substrate with an E-containing material to form a mixture; and sonicating the mixture to form the E-carbon nanocomposite; where E is S, Se, SexSy, or Te, x is greater than 0; and y is greater than 0.
US09748564B2 Electrode compositions and related energy storage devices
A positive electrode composition is presented. The composition includes granules that comprise an electroactive metal, an alkali metal halide, and a metal sulfide composition that is substantially-free of oxygen. A molar ratio of the electroactive metal to an amount of sulfur in the metal sulfide composition is between about 1.5:1 and about 50:1. The positive electrode composition is substantially free of iron oxide, iron sulfate, cobalt oxide and cobalt sulfate. An energy storage device and a related energy storage system are also described.
US09748563B2 Electrode material, electrode plate, lithium ion battery, manufacturing method for electrode material, and manufacturing method for electrode plate
An electrode material of the present invention includes surface-coated LixAyDzPO4 particles obtained by coating surfaces of LixAyDzPO4 (in which, A represents one or more selected from the group consisting of Co, Mn, Ni, Fe, Cu and Cr, D represents one or more selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y and rare earth elements, 0
US09748557B2 Phase-pure lithium aluminium titanium phosphate and method for its production and its use
The present invention relates to a method for producing lithium aluminum titanium phosphates of the general formula Li1+xTi2−xAlx(PO4)3, wherein x is ≦0.4, a method for their production as well as their use as solid-state electrolytes in lithium ion accumulators.
US09748556B2 Negative electrode material for secondary battery, and secondary battery
The present invention relates to a negative electrode material for secondary batteries, comprising graphite; wherein the graphite comprises hexagonal crystal graphite and rhombohedral crystal graphite, and has a low-crystalline carbon coating on a surface thereof; and the graphite has exothermic peaks in the range of 600° C. or lower and in the range of 690° C. or higher in DTA measurement, or the graphite has a full width at half maximum of a (101) peak of the hexagonal crystal graphite of 0.2575° or less in XRD measurement, or the graphite has an absolute value of the difference between the lattice strain obtained from (101) plane spacing of the hexagonal crystal graphite and the lattice strain obtained from (100) plane spacing of the hexagonal crystal graphite of 7.1×10−4 or less in XRD measurement.
US09748553B2 Battery pack
A battery pack is disposed at a lower part of a vehicular body. The battery pack (13) includes: a protrusion protruding in a vehicular upward direction and disposed at an upper face of the battery pack, and a dent portion disposed at the upper face of the battery pack (13) and formed lower than the protrusion, wherein an accessory is disposed in the dent portion.
US09748551B2 Battery parts having retaining and sealing features and associated methods of manufacture and use
Battery parts, such as battery terminals, and associated systems and methods for making the same are disclosed herein. In one embodiment, a battery part has a base portion that includes one or more undercut sealing portions, each having a root and a lip. The lip can flare outwardly from the root to define an undercut between the root and the lip of the sealing portion. In some embodiments, the battery terminal can include adjacent sealing portions having opposing undercuts defined by overlapping lips of the adjacent sealing portions. Another embodiment includes a forming assembly for use with, for example, a battery part having a bifurcated acid ring with spaced apart lips. The forming assembly can include movable forming members that can be driven together to peen, crimp, flare or otherwise form the lips on the bifurcated acid ring.
US09748547B2 Method for producing electrode/separator laminate, and lithium-ion rechargeable battery
To provide a method for producing an electrode/separator laminate which, when producing the electrode/separator laminate by subjecting the electrode and separator with adhesive layer to thermocompression bonding, the separator and the electrode can be bonded with adequate adhesion, without detriment to ion conductivity. [Solution] This method for producing an electrode/separator laminate includes a step in which a separator with adhesive layer comprising a porous polyolefin film having an adhesive layer at least on one side, and an electrode which has an electrode active substance layer containing an electrode active substance and an electrode binder, are laminated in such a manner that the adhesive layer and the electrode active substance layer touch one another, and are subsequently subjected to thermocompression.
US09748544B2 Separator for alkali metal ion battery
A separator for an alkali metal ion rechargeable battery includes a porous ceramic alkali ion conductive membrane which is inert to liquid alkali ion solution as well as anode and cathode materials. The porous ceramic separator is structurally self-supporting and maintains its structural integrity at high temperature. The ceramic separator may have a thickness of at least 200 μm and a porosity in the range from 20% to 70%. The separator may be in the form of a clad composite separator structure in which one or more layers of porous and inert ceramic or polymer membrane materials are clad to the alkali ion conductive membrane. The porous and inert alkali ion conductive ceramic membrane may comprise a NaSICON-type, LiSICON-type, or beta alumina material.
US09748543B2 Separator for nonaqueous cell and nonaqueous cell
Provided are a separator for a nonaqueous cell that has air permeability and is small in thickness while maintaining strength properties; and a nonaqueous cell having this separator. The separator includes a fiber sheet in which a polyvinyl alcohol fiber is incorporated in a proportion of 30% or more by mass (based on the fiber sheet). The fiber has a fiber breaking temperature in heated water of lower than 100° C. and higher than 85° C.
US09748529B2 Rechargeable battery having a heat-resistant member
A rechargeable battery including an electrode assembly including a positive electrode and a negative electrode, a case configured to encase the electrode assembly, a cap plate coupled to the case, a gasket between the case and cap plate and configured to insulate the case from the cap plate, and a heat-resistant member between an upper portion of the gasket and an outer surface of the cap plate and having a higher melting point than the gasket.
US09748527B2 Aluminum alloy sheet material for lithium-ion battery and method for producing the same
An aluminum alloy sheet material for a lithium-ion battery can significantly reduce the number of welding defects (e.g., bead non-uniformity and underfill) that occur during laser welding. The aluminum alloy sheet material includes 0.8 to 1.5 mass % of Mn, 0.6 mass % or less of Si, 0.7 mass % or less of Fe, 0.2 mass % or less of Cu, and 0.2 mass % or less of Zn, with the balance being Al and unavoidable impurities, Al—Mn—Si-based intermetallic compounds having a maximum length of less than 1.0 μm being distributed in a matrix of the aluminum alloy sheet material in a number equal to or larger than 0.25 per μm2, and the area ratio of the intermetallic compounds being 3.0% or more when a field of view having an area of 5000 μm2 is subjected to image analysis.
US09748524B2 Light-emitting member and method for preparing the same as well as display device
Disclosed are a light-emitting member and a method for preparing the same as well as a display device. The light-emitting member includes a first electrode layer, a second electrode layer having a polarity opposite to that of the first electrode layer, a light-emitting layer and an isolation layer, the light-emitting layer is located on the first electrode layer, the second electrode layer is located on a side of the light-emitting layer, and the isolation layer is located on a side of the first electrode layer to isolate the first electrode layer from the second electrode layer.
US09748519B2 Optoelectronic component
An optoelectronic component includes a substrate, a first electrode on the substrate, a radiation-emitting or radiation-absorbing layer sequence on the first electrode, a second electrode on the layer sequence, an encapsulation layer on the second electrode, and a covering layer on the encapsulation layer. The covering layer has a first main surface and second main surface. At least one intended rupture surface is provided between the first and the second main surface of the covering layer.
US09748514B2 Method for producing an optical module
The invention relates to a method for producing an optical module, comprising the following steps: a) providing a chip having an optical element integrated in the chip, wherein the optical element bas a first electrode and a second electrode, and wherein the chip has a first connection contact for the first electrode and a second connection contact for the second electrode, such that an operating voltage for the optical element can be applied between the first connection contact and the second connection contact, and wherein the chip has an optically active side, which is designed to emit and/or to receive radiation; b) connecting the chip to a film, such that the film completely covers the optically active side of the chip, wherein the film is a film made from acrylate, polyarylate, or polyurethane, wherein the film, at least in the region located above the optically active side, is transparent to radiation which. when operating voltage is applied, can be emitted or received by the optical element; c) contacting the first connection contact of the chip by means of a conducting track arranged on the film and contacting the second connection contact by means of an additional conducting track.
US09748509B2 Organic EL element and organic EL display panel
An organic electroluminescence (EL) element that has an anode; a cathode; an organic light-emitting layer between the anode and the cathode that emits light according to recombination of holes injected from the anode and electrons injected from the cathode; and an electron transport layer between the cathode and the organic light-emitting layer that transports electrons from the cathode to the organic light-emitting layer. The electron transport layer includes an n-type dopant that includes an electron-donating substance, the electron transport layer being doped with the n-type dopant at a doping concentration that is higher than a doping concentration at which light emittance efficiency of the organic light-emitting layer is greatest.
US09748506B1 Self-assembled monolayer overlying a carbon nanotube substrate
One example includes a semiconductor device. The semiconductor device include a carbon nanotube substrate, a self-assembled monolayer, and a gate oxide. The self-assembled monolayer overlies the carbon nanotube substrate and is comprised of molecules each including a tail group, a carbon backbone, and a head group. The gate oxide overlies the self-assembled monolayer, wherein the self-assembled monolayer forms an interface between the carbon nanotube substrate and the gate oxide.
US09748505B2 Display device with bent portion in peripheral area
A display device includes a first substrate having a display area and a first peripheral area, a second substrate having a second peripheral area, a first filler between the first substrate and the second substrate, and a first adhesive outside the first filler. The first adhesive bonds the first peripheral area and the second peripheral area. The first substrate has a first bent portion in the first peripheral area. The second substrate has a second bent portion in the second peripheral area.
US09748501B2 Iridium complex, method for producing iridium complex, organic electroluminescent element, display device, and lighting device
Disclosed herein are an iridium complex having improved luminous efficiency and emission lifetime, a method for producing the same, an organic electroluminescent element using the iridium complex, and a display device and a lighting device that include the organic electroluminescent element. The iridium complex is contained in at least one organic layer sandwiched between an anode and a cathode of an organic electroluminescent element, and has a coefficient of external influence of 0.73 Å2/MW or less as defined by the following definition equation: Coefficient of external influence (Svdw)=Van der Waals surface area [Å2]/molecular weight (MW).
US09748500B2 Organic light emitting materials
Phosphorescent iridium complexes comprising multi-alkyl-substituted aza-DBF and 2-phenylpyridine ligands is disclosed. These complexes are useful as emitters for phosphorescent OLEDs.
US09748483B2 Deposition source and organic layer deposition apparatus including the same
A deposition source and an organic layer deposition apparatus that may be simply applied to the manufacture of large-sized display apparatuses on a mass scale and may prevent or substantially prevent deposition source nozzles from being blocked during deposition of a deposition material, thereby improving manufacturing yield and deposition efficiency. A deposition source includes a first deposition source including a plurality of first deposition source nozzles, and a second deposition source including a plurality of second deposition source nozzles wherein the plurality of first deposition source nozzles and the plurality of second deposition source nozzles are tilted toward each other.
US09748478B2 Memory device and method of manufacturing the same
A memory device includes: a memory layer that is isolated for each memory cell and stores information by a variation of a resistance value; an ion source layer that is formed to be isolated for each memory cell and to be laminated on the memory layer, and contains at least one kind of element selected from Cu, Ag, Zn, Al and Zr and at least one kind of element selected from Te, S and Se; an insulation layer that isolates the memory layer and the ion source layer for each memory cell; and a diffusion preventing barrier that is provided at a periphery of the memory layer and the ion source layer of each memory cell to prevent the diffusion of the element.
US09748472B2 Electronic device and method for fabricating the same
An electronic device including a semiconductor memory is provided. The semiconductor memory includes an interlayer dielectric layer disposed over a substrate, and having a recess which exposes a portion of the substrate; a bottom contact partially filling the recess; and a resistance variable element including a bottom layer which fills at least a remaining space of the recess over the bottom contact, and a remaining layer which is disposed over the bottom layer and protrudes out of the interlayer dielectric layer.
US09748470B2 Storage element and storage apparatus
A storage element includes a layer structure including a storage layer having a direction of magnetization which changes according to information, a magnetization fixed layer having a fixed direction of magnetization, and an intermediate layer disposed therebetween, which intermediate layer contains a nonmagnetic material. The magnetization fixed layer has at least two ferromagnetic layers having a direction of magnetization tilted from a direction perpendicular to a film surface, which are laminated and magnetically coupled interposing a coupling layer therebetween. This configuration may effectively prevent divergence of magnetization reversal time due to directions of magnetization of the storage layer and the magnetization fixed layer being substantially parallel or antiparallel, reduce write errors, and enable writing operation in a short time.
US09748459B2 Method for manufacturing improved chip-on-board type light emitting device package and such manufactured chip-on-board type light emitting device package
There are provided a chip-on-board type light emitting device package capable of improving structural reliability and heat-dissipating efficiency and reducing a manufacturing cost, and a method for manufacturing the same. The chip-on-board type light emitting device package includes: a dual frame including a base frame on which a plurality of light emitting devices are mounted and an electrode frame positioned above the base frame so as to be spaced apart from the base frame and including two electrodes separated from each other; and a molding part coupled to the dual frame so that the base frame and the electrode frame are spaced apart from each other and having an opening through which light generated in the plurality of light emitting devices is to be emitted, wherein the base frame has a through-hole through which the electrode frame is exposed.
US09748456B2 Light emitting structure and a manufacturing method thereof
A light-emitting structure comprises a semiconductor light-emitting element which includes a first connection point and a second connection point. The light-emitting structure further includes a first electrode electrically connected to the first connection point, and a second electrode electrically connected the second connection point. The first electrode and the second electrode can form a concave on which the semiconductor light-emitting element is located.
US09748455B2 Semiconductor element, semiconductor device including the same, and method for manufacturing semiconductor element
To provide a semiconductor element that can have the high adhesion between a substrate made of an oxide or the like and a metal film, a semiconductor element includes a substrate made of an oxide, a semiconductor element structure provided on an upper surface of the substrate, and a metal film provided on a lower surface of the substrate, in which the metal film contains nanoparticles made of an oxide.
US09748453B2 Semiconductor light emitting device having convex portion made with different materials
A semiconductor light emitting device includes a substrate formed of a first material; and a convex portion protruding from the substrate and including: a first layer formed of the first material as that of the substrate; and a second layer formed of a second material different from the first material and disposed on the first layer. A second height of the second layer is greater than a first height of the first layer.
US09748450B2 Method of producing an optoelectronic component
A method of producing an optoelectronic component includes providing an optoelectronic semiconductor chip having a mask layer arranged on an upper side of the optoelectronic semiconductor chip; providing a carrier having walls arranged on a surface of the carrier, the walls laterally limiting a receiving region; arranging an optoelectronic semiconductor chip in the receiving region, wherein a bottom side of the optoelectronic semiconductor chip faces the surface of the carrier; filling a region of the receiving region surrounding the optoelectronic semiconductor chip with an optically reflective material up to a height that lies between the upper side of the optoelectronic semiconductor chip and an upper side of the mask layer; removing the mask layer to create a free space in the optically reflective material; and introducing a wavelength-converting material into the free space.
US09748445B2 Light emitting diode (LED) die module, LED element with the LED die module and method of manufacturing the LED die module
A light emitting diode (LED) die module includes an LED die and a guiding layer formed on the LED die. The guiding layer includes a first portion, a second portion and a third portion. The first portion and the second portion are positioned at two edges of the surface of the LED die opposite to each other. The third portion is connected between the first portion and the second portion and divides the surface into a first electrically connecting area and a second electrically connecting area. The first portion, the second portion and the third portion defines a first opening and a second opening. The first opening and the second opening face two opposite directions. The present disclose also provides an LED element with the LED die module and a method of manufacturing the LED die module.
US09748444B2 Light emitting diode having carbon nanotubes
A light emitting diode includes a substrate, a first semiconductor layer, an active layer, a second semiconductor layer, a first electrode, a second electrode and a carbon nanotube structure. The first semiconductor layer, the active layer, and the second semiconductor layer are stacked on the substrate. The first semiconductor layer is a stepped structure and has a first surface and a second surface lower than the first surface. The first electrode is located on and electrically connected to the second semiconductor layer. The carbon nanotube structure is located on the second surface of the first semiconductor layer and electrically connected to the first semiconductor layer. The second electrode is located on and electrically connected to the carbon nanotube structure.
US09748443B2 Light emitting device
The present disclosure provides a light-emitting device, comprising: a light-emitting stack comprising an active layer, wherein the active layer is configured to emit light; a first semiconductor layer on the light-emitting stack; a first electrode formed on the first semiconductor layer and comprising an inner segment, an outer segment, and a plurality of extending segments electrically connecting the inner segment with the outer segment; and a light-absorbing layer having a first portion surrounding the first semiconductor layer in a top view.
US09748440B2 Semiconductor layer including compositional inhomogeneities
A device comprising a semiconductor layer including a plurality of compositional inhomogeneous regions is provided. The difference between an average band gap for the plurality of compositional inhomogeneous regions and an average band gap for a remaining portion of the semiconductor layer can be at least thermal energy. Additionally, a characteristic size of the plurality of compositional inhomogeneous regions can be smaller than an inverse of a dislocation density for the semiconductor layer.
US09748435B2 Methods of forming thin-film photovoltaic devices with discontinuous passivation layers
In various embodiments, photovoltaic devices incorporate discontinuous passivation layers (i) disposed between a thin-film absorber layer and a partner layer, (ii) disposed between the partner layer and a front contact layer, and/or (iii) disposed between a back contact layer and the thin-film absorber layer.
US09748431B1 Large scale production of photovoltaic cells and resulting power
The present application discloses systems and methods for manufacturing large PV sheets and conveying large PV sheets away from the PV manufacturing site while using power from the PV sheet to power the PV manufacturing site.
US09748430B2 Staircase avalanche photodiode with a staircase multiplication region composed of an AIInAsSb alloy
A staircase avalanche photodiode with a staircase multiplication region composed of an AlInAsSb alloy. The photodiode includes a buffer layer adjacent to a substrate and an avalanche multiplication region adjacent to the buffer layer, where the avalanche multiplication region includes a graded AlInAsSb alloy grown lattice-matched or psuedomorphically strained on either InAs or GaSb. The photodiode further includes a photoabsorption layer adjacent to the avalanche multiplication region, where the photoabsorption layer is utilized for absorbing photons. By utilizing AlInAsSb in the multiplication region, the photodiode exhibits a direct bandgap over a wide range of compositions as well as exhibits large conduction band offsets much larger than the smallest achievable bandgap and small valance band offsets. Furthermore, the photodiode is able to detect extremely weak light with a high signal-to-noise ratio.
US09748427B1 MWIR photodetector with compound barrier with P-N junction
The invention describes a device which enables MWIR photodetectors to operate at zero bias and deliver low dark current performance. The performance is achieved by incorporating a p-n junction in the barrier. The device consists of a p-type contact layer, a p-n junction in the compound barrier (CB) with graded composition and/or doping profiles, and an n-type absorber (p-CB-n) device.
US09748426B2 Monolithic multiple solar cells
A monolithic multiple solar cell includes at least three partial cells, with a semiconductor mirror placed between two partial cells. The aim of the invention is to improve the radiation stability of said solar cell. For this purpose, the semiconductor mirror has a high degree of reflection in at least one part of a spectral absorption area of the partial cell which is arranged above the semiconductor mirror and a high degree of transmission within the spectral absorption range of the partial cell arranged below the semiconductor mirror.
US09748422B2 Semiconductor nanocrystals
A semiconductor nanocrystal include a first I-III-VI semiconductor material and have a luminescence quantum yield of at least 10%, at least 20%, or at least 30%. The nanocrystal can be substantially free of toxic elements. Populations of the nanocrystals can have an emission FWHM of no greater than 0.35 eV.
US09748411B2 Wide bandgap semiconductor switching device with wide area schottky junction, and manufacturing process thereof
A switching device including: a body of semiconductor material, which has a first conductivity type and is delimited by a front surface; a contact layer of a first conductive material, which extends in contact with the front surface; and a plurality of buried regions, which have a second conductivity type and are arranged within the semiconductor body, at a distance from the contact layer.
US09748407B2 Semiconductor device and method of manufacturing same
An object is to provide a reliability-improved semiconductor device having a MONOS memory that rewrites data by injecting carriers into a charge storage portion. When a memory gate electrode having a small gate length is formed in order to overlap a carrier injection position in write operation with that in erase operation, each into an ONO film including a charge storage portion, the ONO film is formed in a recess of a main surface of a semiconductor substrate for securing a large channel length. In a step of manufacturing this structure, control gate electrodes are formed by stepwise processing of a polysilicon film by first and second etching and then, the recess is formed in the main surface of the semiconductor substrate on one side of the control gate electrode by second etching.
US09748406B2 Semi-floating-gate device and its manufacturing method
The disclosure, belonging to the technological field of semiconductor memory, specifically relates to a semi-floating-gate device which comprises at least a semiconductor substrate, a source region, a drain region, a floating gate, a control gate, a perpendicular channel region and a gated p-n junction diode used to connect the floating gate and the substrate. The semi-floating-gate device disclosed in the disclosure using the floating gate to store information and realizing charging or discharging of the floating gate through a gated p-n junction diode boasts small unit area, high chip density, low operating voltage in data storage and strong ability in data retain.
US09748405B2 Transistor and fabrication method thereof
A method for fabricating a transistor is provided. The method includes providing a semiconductor substrate; and forming at least a nanowire suspending in the semiconductor substrate. The method also includes forming a channel layer surrounding the nanowire; and forming a contact layer surrounding the channel layer. Further, the method includes forming a trench exposing the channel layer and surrounding the channel layer in the contact layer; and forming a potential barrier layer on the bottom of the trench and surrounding the channel layer. Further, the method also includes forming a gate structure surrounding the potential barrier layer and covering portions of the contact layer; and forming a source and a drain region on the contact layer at two sides of the gate structure, respectively.
US09748404B1 Method for fabricating a semiconductor device including gate-to-bulk substrate isolation
A method for fabricating a semiconductor device comprises forming a sacrificial layer of a first semiconductor material on a substrate, a layer of a second semiconductor material on the sacrificial layer, and a layer of a third semiconductor material on the layer of the second semiconductor material. Portions of the layer of the deposited material are removed to form a first nanowire arranged on the sacrificial fin and a second nanowire arranged on the first nanowire. An oxidizing process is performed that forms a first layer of oxide material on exposed portions of the second nanowire and a second layer of oxide material on exposed portions of the sacrificial fin, the first layer of oxide material having a first thickness and the second layer of oxide material having a second thickness, where the first thickness is less than the second thickness.
US09748403B2 Semiconductor device and display device including the semiconductor device
The reliability of a transistor including an oxide semiconductor is improved. The transistor in a semiconductor device includes a first oxide semiconductor film over a first insulating film, a gate insulating film over the first oxide semiconductor film, a second oxide semiconductor film over the gate insulating film, and a second insulating film over the first oxide semiconductor film and the second oxide semiconductor film. The first oxide semiconductor film includes a channel region overlapping with the second oxide semiconductor film, a source region and a drain region each in contact with the second insulating film. The channel region includes a first layer and a second layer in contact with a top surface of the first layer and covering a side surface of the first layer in the channel width direction. The second oxide semiconductor film has a higher carrier density than the first oxide semiconductor film.
US09748397B2 Thin film transistor substrate and display device comprising the same
A thin-film transistor substrate is disclosed, which comprises a base layer; a semiconductor layer disposed on the base layer; a source electrode and a drain electrode disposed on the semiconductor layer; and a gate electrode disposed on the base layer and corresponding to the semiconductor layer; wherein the semiconductor layer includes a first region, a second region, and a third region, in which the first region corresponds to the gate electrode layer, the second region corresponds to the source electrode, and the third region corresponds to the drain electrode; and wherein the first region has a first thickness, the second region has a second thickness, and the third region has a third thickness, and the first thickness is greater than the second thickness or the third thickness.
US09748395B2 Thin film transistor and manufacturing method thereof
A thin film transistor includes a substrate, a gate electrode disposed on the substrate, a channel layer located on the gate electrode, a gate insulation layer disposed between the gate electrode and the channel layer, an etching stop layer disposed on the channel layer, and a source electrode and a drain electrode disposed on the etching stop layer. The gate electrode has multiple through holes, the etching stop layer has multiple contact holes overlapped with the through holes in a direction perpendicular to the substrate, and the source and drain electrodes are respectively electrically connected to the channel layer through the contact holes. A method of manufacturing the thin film transistor, where the contact holes in the etching stop layer are formed by backside exposure using the gate electrode as a mask. A conductivity of a region of the channel layer exposed by the contact holes has a great conductivity.
US09748393B2 Silicon carbide semiconductor device with a trench
It is an object of the present invention to provide a silicon carbide semiconductor device that reduces a channel resistance and increases reliability of a gate insulating film. The present invention includes a trench partially formed in a surface layer of an epitaxial layer, a well layer formed along side surfaces and a bottom surface of the trench, a source region formed in a surface layer of the well layer on the bottom surface of the trench, a gate insulating film, and a gate electrode. The gate insulating film is formed along the side surfaces of the trench and has one end formed so as to reach the source region. The gate electrode is formed along the side surfaces of the trench and formed on the gate insulating film.
US09748392B1 Formation of work-function layers for gate electrode using a gas cluster ion beam
An angled gas cluster ion beam is used for each sidewall and top of a fin (two applications) to form work-function metal layer(s) only on the sidewalls and top of each fin.
US09748391B2 Field effect transistor with narrow bandgap source and drain regions and method of fabrication
A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
US09748387B2 Methods of forming PMOS FinFET devices and multiple NMOS FinFET devices with different performance characteristics
One method disclosed includes forming first, second and third fins for a first NMOS device, a PMOS device and a second NMOS device, respectively. According to this method, the first fin consists entirely of the substrate material, the second and third fins comprise a lower substrate fin portion made of the substrate material and an upper fin portion made of a second semiconductor material and a third semiconductor material, respectively, wherein the second semiconductor material and the third semiconductor material are each different from the substrate material. The method also includes forming a semiconductor material cladding on the exposed upper portion of the third fin for the second NMOS FinFET device.
US09748386B2 Epitaxial structure of semiconductor device and manufacturing method thereof
An epitaxial structure of semiconductor device includes a substrate, a recess, a first epitaxial layer, a second epitaxial layer, and a third epitaxial layer. The recess is formed in the substrate and disposed near a surface of the substrate, wherein the recess has a recess depth. The first epitaxial layer is disposed on surfaces of a sidewall and a bottom of the recess. The second epitaxial layer is disposed on the surface of the first epitaxial layer, wherein the Ge concentration of the second epitaxial layer is greater than the Ge concentration of the first epitaxial layer. The third epitaxial layer is disposed on the surface of the second epitaxial layer, wherein the Ge concentration of the third epitaxial layer is greater than the Ge concentration of the second epitaxial layer, and the depth of the third epitaxial layer is about ½ to about ¾ of the recess depth.
US09748378B2 Semiconductor device, integrated circuit and method of manufacturing a semiconductor device
A semiconductor device includes a transistor in a semiconductor substrate having a first main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, and a gate electrode adjacent to at least two sides of the channel region. The gate electrode is disposed in trenches extending in a first direction parallel to the first main surface. The gate electrode is electrically coupled to a gate terminal. The channel region and the drift zone are disposed along the first direction between the source region and the drain region. The semiconductor device further includes a conductive layer beneath the gate electrode and insulated from the gate electrode. The conductive layer is electrically connected to the gate terminal.
US09748370B2 Trench MOS semiconductor device
To prevent a malfunction of an overcurrent protection circuit without increasing an on-voltage, and to suppress a short circuit capacity, thus further reducing a switching loss, a trench gate IGBT is provided in which is incorporated a sense IGBT connected in parallel to a main IGBT, where only the sense IGBT portion includes a p-type channel region all over in a semiconductor substrate between adjacent parallel striped trenches, so that the capacitance of the MOS gate of the sense IGBT is smaller than the capacitance of the MOS gate of the main IGBT.
US09748367B2 Method for making thim film transistor
A method for making a thin film transistor includes a step of forming a semiconducting layer, a source electrode, a drain electrode, a gate electrode, and an insulating layer on an insulating substrate. A process of forming the semiconducting layer comprises a step of sputtering an oxide semiconductor film on a substrate by using a sputtering target comprising In2CexZnO4+2x, wherein x=0.5˜2.
US09748359B1 Vertical transistor bottom spacer formation
A silicon layer is formed on a surface of each bottom source/drain region that is present at the footprint of a semiconductor fin. A first set of atoms (nitrogen atoms or carbon atoms) and a second set of atoms (boron atoms and/or carbon atoms) are then ion implanted into the silicon layer and the bottom source/drain regions. An anneal is then performed to convert the silicon layer into a bottom dielectric spacer that is composed of a reaction product of silicon, the first set of atoms and the second set of atoms, while converting each bottom source/drain region into a bottom source/drain structure that includes a first region and a second region. The second region is composed of a doped semiconductor material and at least one of the boron atoms and the carbon atoms; no measurable nitrogen tail and/or oxygen tail is present in the source/drain structures.
US09748357B2 III-V MOSFET with strained channel and semi-insulating bottom barrier
Embodiments include a method for fabricating a semiconductor device and the resulting structure comprising forming a semi-insulating bottom barrier on a semiconductor substrate. A channel is formed on the bottom barrier. A semi-insulating layer is epitaxially formed on the bottom barrier, laterally adjacent to the channel. The semi-insulating layer is formed in such a way that stress is induced onto the channel. A CMOS transistor is formed on the channel.
US09748356B2 Threshold adjustment for quantum dot array devices with metal source and drain
Incorporation of metallic quantum dots (e.g., silver bromide (AgBr) films) into the source and drain regions of a MOSFET can assist in controlling the transistor performance by tuning the threshold voltage. If the silver bromide film is rich in bromine atoms, anion quantum dots are deposited, and the AgBr energy gap is altered so as to increase Vt. If the silver bromide film is rich in silver atoms, cation quantum dots are deposited, and the AgBr energy gap is altered so as to decrease Vt. Atomic layer deposition (ALD) of neutral quantum dots of different sizes also varies Vt. Use of a mass spectrometer during film deposition can assist in varying the composition of the quantum dot film. The metallic quantum dots can be incorporated into ion-doped source and drain regions. Alternatively, the metallic quantum dots can be incorporated into epitaxially doped source and drain regions.
US09748354B2 Multi-threshold voltage structures with a lanthanum nitride film and methods of formation thereof
Semiconductor devices incorporating multi-threshold voltage structures and methods of forming such semiconductor devices are provided herein. In some embodiments of the present disclosure, a semiconductor device having a multi-threshold voltage structure includes: a substrate; a gate dielectric layer atop the substrate, wherein the gate dielectric layer comprises an interface layer and a high-k dielectric layer atop the interface layer; a lanthanum nitride layer deposited atop the high-k dielectric layer; an interface of the interface layer and the high-k dielectric layer comprising lanthanum species from the lanthanum nitride layer; and a gate electrode layer atop the lanthanum nitride layer.
US09748350B2 Semiconductor structure with enlarged gate electrode structure and method for forming the same
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a gate stack structure formed over a substrate. The gate stack structure includes a gate electrode structure having a first portion and a second portion and a first conductive layer below the gate electrode structure. In addition, the first portion of the gate electrode structure is located over the second portion of the gate electrode structure, and a width of a top surface of the first portion of the gate electrode structure is greater than a width of a bottom surface of the second portion of the gate electrode structure.
US09748342B2 Semiconductor device and method for manufacturing the same
A semiconductor device according to an embodiment includes a first-conductivity-type SiC substrate, a first-conductivity-type SiC layer provided on the SiC substrate, having a first surface, and having a lower first-conductivity-type impurity concentration than the SiC substrate, first second-conductivity-type SiC regions provided in the first surface of the SiC layer, second second-conductivity-type SiC regions provided in the first SiC regions and having a higher second-conductivity-type impurity concentration than the first SiC region, silicide layers provided on the second SiC regions and having a second surface, a difference between a distance from the SiC substrate to the second surface and a distance from the SiC substrate to the first surface being equal to or less than 0.2 μm, a first electrode provided to contact with the SiC layer and the silicide layers, and a second electrode provided to contact with the SiC substrate.
US09748338B2 Preventing isolation leakage in III-V devices
A fin is formed over a first barrier layer over a substrate. The first barrier layer has a band gap greater than the band gap of the fin. In one embodiment, a gate dielectric layer is deposited on the top surface and opposing sidewalls of the fin and is adjacent to a second barrier layer deposited on the first barrier layer underneath the fin. In one embodiment, the gate dielectric layer is deposited on the top surface and the opposing sidewalls of the fin and an isolating layer is formed adjacent to the first barrier layer underneath the fin. In one embodiment, the gate dielectric layer is deposited on the top surface and the opposing sidewalls of the fin, and an isolating layer is formed adjacent to the second barrier layer deposited between the fin and the first barrier layer.
US09748335B1 Method, apparatus and system for improved nanowire/nanosheet spacers
A semiconductor structure, comprising a semiconductor substrate; at least one fin, wherein the at least one fin comprises one or more first layers and one or more second layers, wherein the first layers and the second layers are interspersed and the first layers laterally extend further than the second layers; a dummy gate structure comprising a first spacer material disposed on sidewalls of the dummy gate; a second spacer material disposed adjacent to each of the second layers, wherein sidewalls of the fin comprise exposed portions of each of the first layers and the second spacer material, and an epitaxial source/drain material disposed on at least the exposed portions of each of the first layers. Methods and systems for forming the semiconductor structure.
US09748332B1 Non-volatile semiconductor memory
A semiconductor device includes a semiconductor substrate, multiple memory cells on the semiconductor substrate arranged along a first dimension and along a second dimension that is orthogonal to the first dimension, in which each memory cell of the multiple memory cells includes a channel region in the semiconductor substrate, a tunnel dielectric layer on the channel region, and a first electrode layer on the tunnel dielectric layer. Along the first dimension, the channel region of each memory cell of the multiple memory cells is separated from the channel region of an adjacent memory cell of the multiple memory cells by a corresponding first air gap, each first air gap extending from below an upper surface of the semiconductor substrate up to an inter-electrode dielectric layer.
US09748327B2 Pillar resistor structures for integrated circuitry
Integrated circuit structures including a pillar resistor disposed over a surface of a substrate, and fabrication techniques to form such a resistor in conjunction with fabrication of a transistor over the substrate. Following embodiments herein, a small resistor footprint may be achieved by orienting the resistive length orthogonally to the substrate surface. In embodiments, the vertical resistor pillar is disposed over a first end of a conductive trace, a first resistor contact is further disposed on the pillar, and a second resistor contact is disposed over a second end of a conductive trace to render the resistor footprint substantially independent of the resistance value. Formation of a resistor pillar may be integrated with a replacement gate transistor process by concurrently forming the resistor pillar and sacrificial gate out of a same material, such as polysilicon. Pillar resistor contacts may also be concurrently formed with one or more transistor contacts.
US09748325B2 Integrated inductor structure and method for manufacturing the same
An integrated inductor structure includes a capacitor, a guard ring, a patterned shield, and an inductor. The guard ring is coupled to the capacitor. The patterned shield is coupled to the guard ring through the capacitor, such that the patterned shield is floating. The inductor is disposed above the guard ring and the patterned shield.
US09748322B2 Flexible display device with divided power lines and manufacturing method for the same
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
US09748315B2 Flexible display device and method of fabricating the same
A flexible display device including a substrate; a driving element layer including a plurality of thin film transistors on the substrate; a display element layer including organic light-emitting diodes electrically connected to the thin film transistors on the driving element layer; a light transmissive layer on the display element layer and configured to adjust a neutral plane of the flexible display device to lie at the driving element layer and the display element layer when the flexible display device is bent; and a back plate film attached to a back side of the substrate and having a cut portion formed in a center region where the flexible display device is bent.
US09748314B2 Light-emitting device, information processing device, and imaging device
Provided is a light-emitting device and an information processing device which include a light-emitting element mounted on a housing and an optical component detachable from the housing. The optical component is capable of condensing light emitted from the light-emitting element. This structure allows a user to select the emission of diffused light and condensed light by attaching or detaching the optical component.
US09748312B2 Semiconductor memory device
According to an embodiment, a semiconductor memory device comprises: a first semiconductor layer extending in a first direction; a first wiring line extending in a second direction intersecting the first direction; a variable resistance layer provided between these first wiring line and first semiconductor layer; and a first gate electrode extending in the first direction and facing the first semiconductor layer via a first insulating layer. In addition, this semiconductor memory device comprises a second gate electrode provided in the first direction with respect to the first wiring line, extending in the second direction in parallel to the first wiring line, and facing the first semiconductor layer. This second gate electrode faces the first semiconductor layer via a second insulating layer. Moreover, this second gate electrode faces the first gate electrode via the second insulating layer, the first semiconductor layer, and the first insulating layer.
US09748308B2 Method of fabricating multi-wafer image sensor
A method of fabricating an image system includes forming a first wafer that includes a first semiconductor substrate and a first interconnect layer. A pixel array is formed in an imaging region of the first semiconductor substrate and a first insulation-filled trench is formed in a peripheral circuit region of the first semiconductor substrate. Additionally, a second wafer is formed that includes a second semiconductor substrate and a second interconnect layer. A second insulation-filled trench is formed in a second semiconductor substrate, and the first wafer is bonded to the second wafer. A third interconnect layer of a third wafer is bonded to the second wafer. At least one deep via cavity is formed through the first and second interconnect layers and through the first and second insulation-filled trenches. The at least one deep via cavity is filled with a conductive material to form a deep via.
US09748307B2 Light absorption apparatus
A light absorption apparatus includes a substrate, a light absorption layer above the substrate on a first selected area, a silicon layer above the light absorption layer, a spacer surrounding at least part of the sidewall of the light absorption layer, an isolation layer surrounding at least part of the spacer, wherein the light absorption apparatus can achieve high bandwidth and low dark current.
US09748305B2 Image sensor having improved light utilization efficiency
An image sensor is provided including a photo sensor layer including a plurality of photo-sensing cells; a color separation layer disposed on the photo sensor layer and including color separation elements embedded in a transparent spacer layer; and a micro lens array arranged on the color separation layer, the micro lens array including a plurality of micro lenses. The color separation layer separates light by wavelength. The micro lens array concentrates incident light onto the plurality of color separation elements. The color separation elements include: a first main splitter which transmits light of a first primary color onto first photo-sensing cells which faces the first main splitter and diffracts and/or refracts light of colors other than the first primary color onto photo-sensing cells adjacent to the first photo-sensing cell; and a plurality of first auxiliary splitters which are arranged surrounding the first main splitter.
US09748302B2 Solid-state image pickup device
A photoelectric conversion portion, a charge holding portion, a transfer portion, and a sense node are formed in a P-type well. The charge holding portion is configured to include an N-type semiconductor region, which is a first semiconductor region holding charges in a portion different from the photoelectric conversion portion. A P-type semiconductor region having a higher concentration than the P-type well is disposed under the N-type semiconductor region.
US09748299B2 Pixel, image sensor including the same, and portable electronic device including the image sensor
A pixel for a backside illuminated (BSI) image sensor includes a semiconductor substrate having a first surface and a second surface, a photoelectric conversion region between the first surface and the second surface to generate charges in response to light received through the second surface, first trench-type isolation region surrounding the photoelectric conversion region and extending vertically from the second surface, a floating diffusion region in the semiconductor substrate below the photoelectric conversion region, and a transfer gate extending vertically from the first surface towards the photoelectric conversion region to transfer the charges from the photoelectric conversion region to the floating diffusion region. The first trench-type isolation region is formed of a negative charge material.
US09748290B2 Mechanisms for forming image sensor with lateral doping gradient
Embodiments of mechanisms for forming an image sensor device structure are provided. The image sensor device structure includes a substrate and a transfer transistor formed on the substrate. The image sensor device structure also includes a floating node formed in the substrate and a photosensitive element formed in the substrate. The transfer transistor is formed between the floating node and the photosensitive element, and the photosensitive element includes a first doping region with a lateral doping gradient.
US09748285B2 Manufacture method of dual gate oxide semiconductor TFT substrate and structure thereof
The present invention provides a manufacture method of an oxide semiconductor TFT substrate and a structure thereof. The manufacture method of the dual gate oxide semiconductor TFT substrate utilizes the halftone mask to implement one photo process, which cannot only accomplish the patterning to the oxide semiconductor layer but also obtain the oxide conductor layer (53′) with ion doping process; the method implements the patterning process to the bottom gate isolation layer (31) and the top gate isolation layer (32) at the same time with one photo process; the method implements patterning process to the second, third metal layers at the same time to obtain the first source (81), the first drain (82), the second source (83), the second drain (84), the first top gate (71) and the second top gate (72) with one photo process; the method implements patterning process to the second flat layer (9), the passivation layer (8) and the top gate isolation layer (32) at the same time with one photo process, to reduce the number of the photo processes to nine for effectively simplifying the manufacture process, raising the production efficiency and lowering the production cost.
US09748284B2 Thin film transistor, method for fabricating the same, and array substrate
Embodiments of the present invention provide a thin film transistor, a method for fabricating the same and an array substrate. The thin film transistor comprises a base substrate and an active region and a plurality of reflective plates formed on the base substrate, wherein the plurality of reflective plates are spaced apart from each other and provided at least at positions corresponding to the active region, the active region comprises polysilicon, and the polysilicon in the active region is formed by irradiating an amorphous silicon layer with laser emitted from a side of the amorphous silicon layer away from the reflective plates.
US09748280B2 Thin film transistor and method of fabricating the same, array substrate and method of fabricating the same, and display device
The present invention provides a thin film transistor and a method of fabricating the same, an array substrate and a method of fabricating the same, and a display device. The thin film transistor comprises a gate, a source, a drain, a gate insulation layer, an active layer, a passivation layer, a first electrode connection line and a second electrode connection line. The gate, the source and the drain are provided in the same layer and comprise the same material. The gate insulation layer is provided above the gate, the active layer is provided above the gate insulation layer, and a pattern of the gate insulation layer, a pattern of the gate and a pattern of the active layer coincide with each other. The passivation layer covers the source, the drain and the active layer, and the passivation layer has a first via hole corresponding to a position of the source, a second via hole corresponding to a position of the drain, and a third via hole and a fourth via hole corresponding to a position of the active layer provided therein. The first electrode connection line connects the source with the active layer through the first via hole and the third via hole, and the second electrode connection line connects the drain with the active layer through the second via hole and the fourth via hole.
US09748278B2 Suppressing leakage currents in a multi-TFT device
A technique of operating a device comprising a patterned conductor layer defining source electrode circuitry and drain electrode circuitry for a plurality of transistors; a semiconductor layer providing a respective semiconductor channel for each transistor between source electrode circuitry and drain electrode circuitry; and gate electrode circuitry overlapping the semiconductor channels of the plurality of transistor devices for switching the semiconductor channels between two or more levels of conductance; wherein the technique comprises using one or more further conductors independent of said gate electrode circuitry to capacitatively induce a reduction in conductivity of said one or more areas of said semiconductor layer outside of said semiconductor channels.
US09748276B2 Thin film transistor and method of manufacturing the same, array substrate and display device
The present invention discloses a thin film transistor, comprising a gate electrode (2), a gate insulating layer (3), and active layer (4), and etching barrier layer (7), a source electrode and a drain electrode, wherein the source electrode comprises a first source electrode (5) and a second source electrode (8) electrically connected therewith, the drain electrode comprises a first drain electrode (6) and a second drain electrode (9) electrically connected therewith, the first source electrode and first drain electrode are formed on the active layer, the etching barrier layer at least covers a portion of the active layer between the first source electrode and the first drain electrode, and respectively covers portions of the first source electrode (5) and the first drain electrode (6) adjacent to each other, and the second source electrode and the second drain electrode are formed on the etching barrier layer. The present invention further discloses a method of manufacturing a thin film transistor, an array substrate and a display device both comprising the thin film transistor. The thin film transistor formed according to the present invention has a short channel length, which increases an on-state current of the thin film transistor while improving ohmic contact between the source and drain electrodes and the active layer, thereby increasing the stability of the thin film transistor.
US09748274B2 Memory device comprising stacked memory cells and electronic device including the same
A memory device in which the number of films is reduced. The memory device includes a circuit and a wiring. The circuit includes a first memory cell and a second memory cell. The first memory cell includes a first transistor, a second transistor, and a first capacitor. The second memory cell includes a third transistor, a fourth transistor, and a second capacitor. The second memory cell is stacked over the first memory cell. One of a source and a drain of the first transistor is electrically connected to a gate of the second transistor and the first capacitor. One of a source and a drain of the third transistor is electrically connected to a gate of the fourth transistor and the second capacitor. A gate of the first transistor and a gate of the third transistor are electrically connected to the wiring.
US09748271B2 Hybrid circuit including a tunnel field-effect transistor
The present invention relates generally to integrated circuits and more particularly, to a structure and method of forming a hybrid circuit including a tunnel field-effect transistor (TFET) and a conventional field effect transistor (FET). Embodiments of the present invention include a hybrid amplifier which features a TFET common-source feeding a common-gate conventional FET (e.g. a MOSFET). A TFET gate may be electrically isolated from an output from a conventional FET. Thus, a high impedance input may be received by a TFET with a high-isolation output (i.e. low capacitance) at a conventional FET. A hybrid circuit amplifier including a TFET and a conventional FET may have a very high input impedance and a low miller capacitance.
US09748270B2 Tunable capacitor for FDSOI applications
The present disclosure provides in one aspect a semiconductor device including an SOI substrate with an active semiconductor layer disposed on a buried insulating material layer, which, in turn, is formed on a base substrate material, a gate structure formed on the active semiconductor layer, and a back gate region provided in the base substrate material below the gate structure opposing the gate structure. Herein, the back gate region may be electrically insulated from the surrounding base substrate material via an isolation region surrounding the back gate region.
US09748269B1 Fuse programmable logic circuitry with multiple transistor pillars
Transistor pillars have multiple transistor stacks of drain, source and gate rings. Layer fuses connect the rings to conductive layers surrounding the transistor pillars. In between individual transistor stacks are core fuses positioned along the transistor core columns. In one embodiment, layer fuses are fused prior to the core fuses. In a second embodiment, the core fuses may be fuse programmable separated by fusing currents applied preferably via top and bottom stripe layers immediately above and below the core fuses. A core fuse set current applied to predetermined core fuses via individual stripes above and below thermally disintegrates the core fuses. By selectively disintegrating core fuses independently from disintegrating layer fuses, a three dimensional logic circuitry architecture may be fuse programmed into a homogeneous original manufactured transistor pillar structure.
US09748268B1 Semiconductor memory device
A semiconductor memory device including a first electrode layer provided on a conductive layer; a second electrode layer provided between the conductive layer and the first electrode layer; a first insulating layer provided between the first electrode layer and the second electrode layer; and a pillar layer extending through the first electrode, the second electrode and the first insulating layer in a first direction directed from the conductive layer to the first electrode layer. The pillar layer includes a first portion extending through the first insulating layer and a second portion extending through the second electrode layer. The pillar layer has a first width in a second direction along a surface of the conductive layer at a periphery of the first portion, and a second width in the second direction at a periphery of the second portion. The second width is wider than the first width.
US09748267B2 Three dimensional NAND device with channel contacting conductive source line and method of making thereof
A NAND memory cell region of a NAND device includes a conductive source line that extends substantially parallel to a major surface of a substrate, a first semiconductor channel that extends substantially perpendicular to a major surface of the substrate, and a second semiconductor channel that extends substantially perpendicular to the major surface of the substrate. At least one of a bottom portion and a side portion of the first semiconductor channel contacts the conductive source line and at least one of a bottom portion and a side portion of the second semiconductor channel contacts the conductive source line.
US09748262B1 Memory structure and manufacturing method of the same
A memory structure and a manufacturing method thereof are provided. The memory structure includes a bottom oxide layer, a first conductive layer on the bottom oxide layer, a first insulation recess, a plurality of insulating layers on the first conductive layer, a plurality of second conductive layers, a second insulation recess, a channel layer on a sidewall of the second insulation recess, and a memory layer located between the channel layer and the second conductive layers. The first insulation recess has a first width and penetrates through the first conductive layer. The second conductive layers and the insulating layers are interlacedly stacked, and the second conductive layers are electrically isolated from the first conductive layer. The second insulation recess located on the first insulation recess has a second width larger than the first width and penetrates through the insulating layers and the second conductive layers.
US09748261B2 Method of fabricating memory device
A method of fabricating a memory device includes alternately stacking a plurality of insulating layers and a plurality of sacrificial layers on a substrate, forming a channel hole by etching the insulating layers and the sacrificial layers to expose a partial region of the substrate, forming a channel structure in the channel hole, forming an opening by etching the insulating layers and the sacrificial layers to exposed a portion of the substrate, forming a plurality of side openings that include first side openings and a second side opening by removing the sacrificial layers through the opening, forming gate electrodes to fill the first side openings, and forming a blocking layer to fill the second side opening.
US09748259B1 Method of forming a semiconductor device structure and semiconductor device structure
The present disclosure provides, in accordance with some illustrative embodiments, a semiconductor device structure including a hybrid substrate comprising an SOI region and a bulk region, the SOI region comprising an active semiconductor layer, a substrate material, and a buried insulating material interposed between the active semiconductor layer and the substrate material, and the bulk region being provided by the substrate material, an insulating structure formed in the hybrid substrate, the insulating structure separating the bulk region and the SOI region, and a gate electrode formed in the bulk region, wherein the insulating structure is in contact with two opposing sidewalls of the gate electrode.
US09748258B2 Three-dimensional semiconductor devices
A three-dimensional semiconductor device includes an electrode structure on a substrate that includes a first region and a second region, the electrode structure including a ground selection electrode, cell electrodes, and a string selection electrode which are sequentially stacked on the substrate wherein the ground selection electrode, the cell electrodes, and the string selection electrode respectively include a ground selection pad, cell pads, and a string selection pad which define a stepped structure in the second region of the substrate, a plurality of dummy pillars penetrating each of the cell pads and a portion of the electrode structure under each of the cell pads, and a cell contact plug electrically connected to each of the cell pads, wherein each of the dummy pillars penetrates a boundary between adjacent cell pads, and wherein the adjacent cell pads share the dummy pillars.
US09748249B2 Tantalum-containing film forming compositions and vapor deposition of tantalum-containing films
Tantalum-containing film forming compositions are disclosed, along with methods of synthesizing the same, and methods of forming Tantalum-containing films on one or more substrates via vapor deposition processes using the Tantalum-containing film forming composition.
US09748248B2 Semiconductor device having buried gate structure, method for manufacturing the same, memory cell having the same, and electronic device having the same
A semiconductor device includes a substrate including a trench; a gate dielectric layer formed over a surface of the trench; a gate electrode positioned in the trench at a level lower than a top surface of the substrate, and including a first buried portion and a second buried portion over the first buried portion; and a first doping region and a second doping region formed in the substrate on both sides of the gate electrode, and overlapping with the second buried portion, wherein the first buried portion includes a first barrier which has a first work function, and the second buried portion includes a second barrier which has a second work function lower than the first work function.
US09748243B2 Semiconductor device having contact plugs and method of forming the same
A semiconductor device including a first fin active area substantially parallel to a second fin active area, a first source/drain in the first fin active area, a second source/drain in the second fin active area, a first contact plug on the first source/drain, and a second contact plug on the second source/drain. The center of the second contact plug is offset from the center of the second source/drain.
US09748228B2 Structure and method for cooling three-dimensional integrated circuits
A structure and method for cooling a three-dimensional integrated circuit (3DIC) are provided. A cooling element is configured for thermal connection to the 3DIC. The cooling element includes a plurality of individually controllable cooling modules disposed at a first plurality of locations relative to the 3DIC. Each of the cooling modules includes a cold pole and a heat sink. The cold pole is configured to absorb heat from the 3DIC. The heat sink is configured to dissipate the heat absorbed by the cold pole and is coupled to the cold pole via an N-type semiconductor element and via a P-type semiconductor element. A temperature sensing element includes a plurality of thermal monitoring elements disposed at a second plurality of locations relative to the 3DIC for measuring temperatures at the second plurality of locations. The measured temperatures control the plurality of cooling modules.
US09748227B2 Dual-sided silicon integrated passive devices
In some embodiments, a system may include an integrated circuit. The integrated circuit may include a substrate including a first surface, a second surface substantially opposite of the first surface, and a first set of electrical conductors coupled to the first surface. The first set of electrical conductors may function to electrically connect the integrated circuit to a circuit board. The integrated circuit may include a semiconductor die coupled to the second surface of the substrate using a second set of electrical conductors. The integrated circuit may include a passive device dimensioned to be integrated with the integrated circuit. The passive device may be positioned between the second surface and at least one of the first set of electrical conductors. The die may be electrically connected to a second side of the passive device. A first side of the passive device may be available to be electrically connected to a second device.
US09748224B2 Heterojunction semiconductor device having integrated clamping device
In one embodiment, a group III-V transistor structure includes a heterostructure disposed on a semiconductor substrate. A first current carrying electrode and a second current carrying electrode are disposed adjacent a major surface of the heterostructure and a control electrode is disposed between the first and second current carrying electrode. A clamping device is integrated with the group III-V transistor structure and is electrically connected to the first current carrying electrode a third electrode to provide a secondary current path during, for example, an electrical stress event.
US09748221B2 Electrostatic discharge protection device and manufacturing method thereof
An electrostatic discharge (ESD) protection device includes two N-metal oxide semiconductor (NMOS) elements and a doped region. The two NMOS elements are arranged on a P-substrate, and each NMOS element includes a gate, a source, and a drain. The source and the drain are arranged on two opposite sides of the gate. The doped region is implanted into an outer space of the two NMOS surrounding the two NMOS, and a PN junction is formed by the doped region and the P-substrate.
US09748217B2 Method of producing semiconductor device
A semiconductor device production method where separate semiconductor chips are stacked on a semiconductor substrate having a main surface on which multiple semiconductor chips including semiconductor integrated circuits are formed, the semiconductor chips in different layers are connected to each other to enable signal transmission, and a structure formed thereby is separated into multiple stacks of the semiconductor chips. The method includes a first step of forming an insulating layer on the main surface of the semiconductor substrate; a second step of stacking the separate semiconductor chips, which include the integrated semiconductor circuits on main surfaces thereof, via the insulating layer on the semiconductor chips formed on the semiconductor substrate such that opposite surfaces of the separate semiconductor chips opposite to the main surfaces face the insulating layer; and a third step of forming connecting parts that enable signal transmission between the semiconductor chips in different layers.
US09748211B2 Array-type double-side light-emitting device and manufacturing method thereof and double-side display device
The present invention relates to an array-type double-side light-emitting device, a manufacturing method thereof and a double-side display device. The array-type double-side light-emitting device comprises: a first protective layer, a first fluorescent layer or quantum dot layer, an array of first transparent conductive layers, a first anisotropic conductive adhesive layer, an array of light-emitting wafers, a second anisotropic conductive adhesive layer, an array of second transparent conductive layers, a second fluorescent layer or quantum dot layer and a second protective layer, which are attached together sequentially.
US09748203B2 Integrated circuit packaging system with conductive pillars and method of manufacture thereof
A method of manufacture of an integrated circuit packaging system including: providing a package carrier; mounting an integrated circuit to the package carrier; mounting a circuit interposer above the integrated circuit; mounting a mounting integrated circuit above the circuit interposer; forming a conductive pillar to the circuit interposer adjacent to the mounting integrated circuit; connecting the circuit interposer to the package carrier; and forming an encapsulation on the package carrier.
US09748201B2 Semiconductor packages including an interposer
A semiconductor package may include a first semiconductor chip, second semiconductor chips disposed to respectively overlap with portions of the first semiconductor chip, a interposer disposed to overlap with a portion of the first semiconductor chip, and a package substrate disposed on backside surfaces of the second semiconductor chips opposite to the first semiconductor chip. The interposer may be disposed between the first semiconductor chip and the package substrate. First conductive coupling members connect the first semiconductor chip to the second semiconductor chips. Second conductive coupling members connect the first semiconductor chip to the interposer. Third conductive coupling members connect the interposer to the package substrate.
US09748200B1 Manufacturing method of wafer level package structure
A manufacturing method of a wafer level package structure includes the following steps. A chip is disposed on a supporting board, wherein the chip includes an active surface and a back surface opposite to the active surface, and a plurality of pads on the active surface, and the back surface of the chip is adhered to the supporting board through a die attach film (DAF). A molding is disposed on the supporting board to perform a wafer level exposed die molding procedure on the chip, wherein the molding surrounds the chip, and the pads of the chip are exposed out of the molding. A redistribution layer (RDL) is formed on the active surface of the chip, wherein the RDL is electrically connected to the pads. The supporting board and the DAF are removed from the chip.
US09748197B2 Methods for packaging integrated circuits
Techniques for packaging an integrated circuit include attaching a die to a conductive layer before forming dielectric layers on an opposing surface of the conductive layer. The conductive layer may first be formed on a carrier substrate before the die is disposed on the conductive layer. The die may be electrically coupled to the conductive layer via wires or solder bumps. The carrier substrate is removed before the dielectric layers are formed. The dielectric layers may collectively form a coreless package substrate for the integrated circuit package.
US09748196B2 Semiconductor package structure including die and substrate electrically connected through conductive segments
The present disclosure relates to a semiconductor package structure, including a die and a package substrate. The die includes a semiconductor substrate, multiple interconnect metal layers, and at least one inter-level dielectric disposed between ones of the interconnect metal layers. Each inter-level dielectric is formed of a low k material. An outermost interconnect metal layer has multiple first conductive segments exposed from a surface of the inter-level dielectric. The package substrate includes a substrate body and multiple second conductive segments exposed from a surface of the substrate body. The second conductive segments are electrically connected to the first conductive segments.
US09748195B2 Adhesive for mounting flip chip for use in a method for producing a semiconductor device
The present invention aims to provide a method for producing a semiconductor device, the method being capable of achieving high reliability by suppressing voids. The present invention also aims to provide a flip-chip mounting adhesive for use in the method for producing a semiconductor device. The present invention relates to a method for producing a semiconductor device, including: step 1 of positioning a semiconductor chip on a substrate via an adhesive, the semiconductor chip including bump electrodes each having an end made of solder; step 2 of heating the semiconductor chip at a temperature of the melting point of the solder or higher to solder and bond the bump electrodes of the semiconductor chip to an electrode portion of the substrate, and concurrently to temporarily attach the adhesive; and step 3 of removing voids by heating the adhesive under a pressurized atmosphere, wherein the adhesive has an activation energy ΔE of 100 kJ/mol or less, a reaction rate of 20% or less at 2 seconds at 260° C., and a reaction rate of 40% or less at 4 seconds at 260° C., as determined by differential scanning calorimetry and Ozawa method.
US09748192B2 Printed circuit board having a post bump
Provided are a printed circuit board which can be used as a substrate for a package, a method of manufacturing the printed circuit board, and a semiconductor package using the printed circuit board, the printed circuit board including: a first substrate having a first mounting area for mounting a package substrate and a second mounting area for mounting a semiconductor element; a single layer or multi-layered circuit pattern of the first substrate; and a post bump connected to the circuit pattern, provided on an external insulating layer of the first mounting area, and having a concave upper surface.
US09748191B2 Semiconductor device and a method of manufacturing the same
A technique which improves the reliability in coupling between a bump electrode of a semiconductor chip and wiring of a mounting substrate, more particularly a technique which guarantees the flatness of a bump electrode even when wiring lies in a top wiring layer under the bump electrode, thereby improving the reliability in coupling between the bump electrode and the wiring formed on a glass substrate. Wiring, comprised of a power line or signal line, and a dummy pattern are formed in a top wiring layer beneath a non-overlap region of a bump electrode. The dummy pattern is located to fill the space between wirings to reduce irregularities caused by the wirings and space in the top wiring layer. A surface protection film formed to cover the top wiring layer is flattened by CMP.
US09748186B2 Semiconductor device and method for manufacturing the semiconductor device
A semiconductor device has a module structure in which a semiconductor element and a circuit layer are electrically connected to each other by a wire. A front metal layer is formed on a surface of a top side electrode of the semiconductor element and the wire is bonded to the front metal layer by wire bonding. The front metal layer has a higher hardness than the top side electrode or the wire. A bonding interface of the wire with the metal film has a recrystallization temperature that is equal to or higher than 175° C. According to this structure, it is possible to improve the power cycle resistance of the semiconductor device.
US09748184B2 Wafer level package with TSV-less interposer
A semiconductor device includes an interposer having a first side and a second side opposite to the first side; a first semiconductor die mounted on the first side within a first chip mounting area through a plurality of first bumps; a second semiconductor die mounted on the first side within a second chip mounting area being adjacent to the first chip mounting area; a ring-shaped supporting feature disposed on the first side and encompassing the first chip mounting area and the second chip mounting area; and a plurality of solder bumps mounted on the second side.
US09748175B1 Conductive structure in semiconductor structure and method for forming the same
A method for manufacturing a semiconductor structure is provided. The method for manufacturing a semiconductor structure includes forming an organosilicon layer over a substrate and etching the organosilicon layer to have a trench. The method for manufacturing a semiconductor structure further includes forming a conductive structure in the trench. In addition, the organosilicon layer is made of a material including Si—C bonding and Si—O bonding, and a ratio of an amount of the Si—C bonding to an amount of the Si—O bonding is greater than about 0.2.
US09748173B1 Hybrid interconnects and method of forming the same
A method for manufacturing a semiconductor device includes forming a trench in at least one dielectric layer; and forming an interconnect structure in the trench, wherein forming the interconnect structure includes forming a first conductive layer on a bottom surface of the trench, and partially filling the trench, and forming a second conductive layer on the first conductive layer, and filling a remaining portion of the trench, wherein the second conductive layer comprises a different material from the first conductive layer, and wherein an amount of the first conductive layer in the trench is controlled so that an aspect ratio of the second conductive layer has a value that is determined to result in columnar grain boundaries in the second conductive layer.
US09748171B2 Memory structure
A memory structure is provided. The memory structure includes a first chip. The first chip has an array region and a periphery region. The first chip includes a first stack and a plurality of through structures. The first stack is disposed in the periphery region. The first stack includes alternately stacked conductive layers and insulating layers. The through structures each include an opening, a dielectric layer and a channel material. The opening is through the first stack. The dielectric layer is disposed on a sidewall of the opening. The channel material is disposed in the opening, and the channel material covers the dielectric layer.