Document | Document Title |
---|---|
US09712751B2 |
Camera field of view effects based on device orientation and scene content
Systems and methods to improve photo taking using an image capture device having a wide field of view (FOV) camera. In some embodiments, when the device is held in landscape orientation, a wide diagonal FOV may be displayed to the user on a preview screen of the device, and the landscape image may be captured in a wide, 16:9 aspect ratio. However, when the device is held in portrait orientation, the effective diagonal FOV of the device may be decreased via software and/or hardware, and a 4:3 aspect ratio image may be displayed and captured. In other embodiments, the captured portrait orientation image may be scaled, shifted, and/or cropped before being displayed to the user on the device's preview display screen, in such a manner that the user will naturally be inclined to hold the device in a position that will produce a more optimal self-portrait image. |
US09712749B2 |
Electronic device having multiple sides
An electronic device has an imaging device (such as a still camera or video camera) and is capable of displaying a viewfinder on one side or multiple sides of the device. The device may determine the side or sides on which to display the viewfinder based on factors such as user input, object proximity, grip detection, accelerometer data, and gyroscope data. In one implementation, the device has multiple imaging devices and can select which imaging device to use to capture an image based on the above factors as well. |
US09712746B2 |
Image capture and ordering
One or more techniques and/or systems are provided for ordering images for panorama stitching and/or for providing a focal point indicator for image capture. For example, one or more images, which may be stitched together to create a panorama of a scene, may be stored within an image stack according to one or more ordering preferences, such as where manually captured images are stored within a first/higher priority region of the image stack as compared to automatically captured images. One or more images within the image stack may be stitched according to a stitching order to create the panorama, such as using images in the first region for a foreground of the panorama. Also, a current position of a camera may be tracked and compared with a focal point of a scene to generate a focal point indicator to assist with capturing a new/current image of the scene. |
US09712745B2 |
Method and apparatus for operating camera function in portable terminal
A method and an apparatus for operating a camera function in a portable terminal are provided. State information representing at least one of a direction and a rotation state of the portable terminal is obtained, and at least one of a sequence of reading an image from a camera sensor and an appropriate user interface is determined depending on the state information. Thus, the camera function is performed depending on the determined sequence or user interface. |
US09712744B2 |
Image quality compensation system and method
A user authentication system and method. The user authentication system includes a camera and a processor connected to the camera. The processor receives images from the camera, searches for a user feature in the images, determines if the images require correction, adjusts camera controls in a pre-defined order to provide desired corrections, applies the desired corrections to subsequent images and authenticates the user based on the user feature in the corrected images. |
US09712743B2 |
Digital image processing using face detection and skin tone information
A technique for processing a digital image uses face detection to achieve one or more desired image processing parameters. A group of pixels is identified that corresponds to a face image within the digital image. A skin tone is detected for the face image by determining one or more default color or tonal values, or combinations thereof, for the group of pixels. Values of one or more parameters are adjusted for the group of pixels that correspond to the face image based on the detected skin tone. |
US09712742B2 |
Photographic apparatus and method using human face detection
Processing for judging whether a face is included in a frame is performed, in a predetermined interval, on each of frames included in a moving image of a subject, displayed on a monitor, until the judgment becomes positive. If it is judged that a face is included in a frame, the facial position is detected in the frame, and stored. Then, judgment is made as to whether a face is included in the next frame after predetermined time. If the judgment is positive, the facial position is detected. The previously stored facial position is replaced by the newly detected facial position, and the newly detected facial position is stored. These processes are repeated until photographing operation is performed by operating a release unit. |
US09712739B2 |
Focusing device, control method therefor, storage medium storing control program therefor, and image pickup apparatus
A focusing device that is capable of shortening focusing time even when contrast AR is started for an object in a defocus state. A first computation unit computes a contrast determination index that indicates contrast of an object based on an image obtained through an image pickup optical system. A second computation unit computes a focusing degree that indicates a degree of a focusing state to the object based on the image. A first setting unit sets up a contrast determination threshold according to the focusing degree. A second setting unit sets up an image pickup cycle for picking up the object according to the contrast determination index and the contrast determination threshold. A focusing unit focuses on the object by driving a focusing lens of the image pickup optical system along an optical axis based on the contrast determination index and the focusing degree. |
US09712737B2 |
Camera control method usable only by user present in photographing spot
A request to issue a photographing ID is received from a user and a first photographing ID is generated. The first photographing ID is issued from an ID issuer installed in a photographing spot. When a second photographing ID is received from a mobile terminal of the user, the first photographing ID is collated with the second photographing ID. When the collated photographing IDs are identical, a transmission source of the second photographing ID is authenticated as being present in the photographing spot. In accordance with an instruction from the authenticated transmission source of the second photographing ID, a photographing camera installed toward the photographing spot is controlled. |
US09712735B2 |
Movable-mechanical-section controlling device, method of controlling movable mechanical section, and program
A movable-mechanical-section controlling device includes a pan/tilt driving controlling unit configured to perform driving control on a movable mechanical section having a structure that moves so that an image pickup direction of an image pickup section that obtains an image-pickup image by performing an image pickup operation changes in a pan direction and a tilt direction. In the controlling device, unit pan operations that are performed in an angular range in the pan direction are performed for the respective two or more different tilt positions with decreasing angle of elevation at the tilt positions. |
US09712729B2 |
Camera cover and camera
A camera cover and camera capable of mitigating water drop and dirt adhesion and of ensuring image clarity are provided. A dome section (130) of the camera cover includes, on its outer surface (130a), a hydrophilic coating (131) made of an inorganic material whose main component is a silicon compound. The thickness of the hydrophilic coating (131) is 0.01 to 1 μm. Surface roughness Ra of the hydrophilic coating (131) is 0.06 μm or less. |
US09712720B2 |
Image refocusing for camera arrays
Techniques related to image refocusing for camera arrays using a space variant filter based on a pixel by pixel blur level associated with a difference between a reference image and a basic refocused image are discussed. Such techniques may include taking the difference between the reference image and the basic refocused image and applying a space variant filter to the basic refocused image to generate a final refocused image having a region of increased blur with respect to the all in focus reference image. The blur level implemented by the space variant filter may be based on the difference and, optionally, the reference image noise level and the reference image gradient. |
US09712717B2 |
Image processing apparatus, region detection method and computer-readable, non-transitory medium
An image processing apparatus includes a presumed background region extractor for extracting a presumed background region presumed to include an image of a background from an input image, a threshold value determination module for determining a threshold value based on pixels in the presumed background region, an edge pixel extractor for using the threshold value to extract edge pixels from the input image, and a document region detector for detecting a document region from the edge pixels. |
US09712716B2 |
Print system, control method, and print apparatus
A print apparatus comprises: a holding unit that holds destination information of a print server trusted as a request destination; a determination unit that determines, when a print request is received, whether destination information of a print server designated by the print request matches the held destination information; an access unit that requests access to the print server indicated by the held destination information if the determination unit determines that there is no match for the destination information; and an update unit that updates the held destination information to the destination information of the print server designated by the received print request if, as a response to the request, a destination that is the same as in the destination information of the print server designated by the received print request is received as a redirect destination. |
US09712711B2 |
Image forming apparatus controlling print timing
A control portion specifies an allowance time from a job reception time to a time at which a job sender reaches a self-apparatus, on the basis of allowance time specifying information acquired per print job data. Furthermore, the control portion controls a start time of a print process in accordance with an order in which an elapsed time from the job reception time is determined to have reached a planned start time. The planned start time is a time which is back-calculated from a time point when the allowance time elapses after the job reception, on the basis of a time required for the print process. |
US09712707B2 |
Information processing apparatus and user detection method
An information processing apparatus detects a first user and a second user that approaches the information processing apparatus by using a plurality of detection devices including a first detection device and a second detection device which is different from the first detection device. The information processing apparatus includes a second user determination unit configured to determine that a user detected by the first detection device is the second user, in a case where a certain time period has elapsed since the first detection device detects the user, at which the first user has been detected, the second detection device not detecting the user during the certain time period. |
US09712704B2 |
Scanner providing centered alignment marks
A scanner includes a platen having a surface supporting items for scanning, and a projector adjacent (e.g., above or below) the platen. The projector projects light displaying patterned alignment marks on the items located on the platen. The patterned alignment marks identify an alignment position for the items to be located on the platen for properly aligned scanning. The projector projects different patterned alignment marks based on different characteristics of different items to be scanned. |
US09712701B2 |
Sheet conveyance device, image reading device, image forming apparatus, and sensor unit
A double feed detection sensor unit includes a double feed detection sensor for detecting a document via a hole on a conveyance guide, a control circuit board on which the double feed detection sensor and an element are provided, and a protection member provided to cover the element. |
US09712700B1 |
Image reading apparatus and image forming apparatus comprising same
An image reading apparatus (6) includes a document placing table (6a) to an upper surface of which a contact glass (25) is fixed, and a document pressing device (24) supported at an end of the document placing table (6a) to be openable/closable via a hinge portion, and having, on its back surface side, a document presser (30) that presses a document placed on the contact glass (25). The document pressing device (24) includes a light transmission window (31) transmitting light in a front-surface-to-back-surface direction of the document pressing device (24). The light transmission window (31) is disposed at a position not overlapping with the contact glass (25) when the document pressing device (24) is at the closure position, and when the document pressing device (24) has moved in an opening direction from the closure position, light that has passed through the light transmission window (31) reaches the contact glass (25). |
US09712699B2 |
Image processing apparatus, method of controlling the same, information processing apparatus, method of controlling the same, and storage medium
An image processing apparatus containing a web server is provided. The image processing apparatus regularly notifies a web browser of an operation instruction. When it is determined that setting processing of a set value for an operation of the image processing apparatus is attached, whether or not there is a set value saved on the web browser is checked. When it is confirmed that there is a set value saved on the web browser, the web browser is caused to transmit the set value to the image processing apparatus. When the set value transmitted from the web browser is reflected on the image processing apparatus, the set value saved on the web browser is deleted. |
US09712697B1 |
Detecting sizes of documents scanned using handheld devices
An electronic document image of a document is captured using a camera of a handheld device. A user interface of the handheld device displays an instruction to place the handheld device on the document and to change the magnification of the electronic document image on the user interface until the electronic document image and the document are the same size. The handheld device automatically determines the original size of the document based on the magnification that made the electronic document image and the document the same size when the handheld device was on the document. The handheld device converts the electronic document image into an original size document image file based on the original size of the document. |
US09712695B2 |
Image forming apparatus, information processing method, and storage medium
An image forming apparatus includes a display unit configured to display a print target list of printing data corresponding to a login user, and a print control unit configured to execute print processing on data selected by the login user through the print target list displayed by the display unit. The print control unit is configured to execute the print processing on the data corresponding to the login user without selecting the data by the login user through the print target list when voice use setting of the login user is valid. |
US09712694B2 |
Cooperative system, information processing apparatus, and computer program product
An operation unit in a child device causes a main unit in the child device to execute a stand-alone job, and causes the main unit and a server device to execute a cooperating job. The main unit executes the stand-alone job every time it is requested, and generates and manages a stand-alone job log including stand-alone job log identification information. The server device controls the execution of stand-alone jobs included in the cooperating job based on a request for executing the cooperating job, and manages cooperating job identification information associated with the stand-alone job log identification information of the stand-alone jobs included in the cooperating job. The server device acquires the stand-alone job logs from the main unit and extracts the stand-alone job logs including the stand-alone job log identification information associated with the cooperating job identification information, to generate a cooperating job log corresponding to the cooperating job. |
US09712693B2 |
Information provision apparatus, information provision method, and non-transitory storage medium
Provided is an information provision apparatus (10) including: a feature quantity storage unit (11) in which a feature quantity of print content that is printed on a printed material is stored; a relevant information storage unit (12) in which relevant information that is associated with the print content is stored; a captured image obtainment unit (13) that obtains a captured image that is captured by an imaging unit; a specification unit (14) that specifies the print content that is included in the captured image by using the feature quantity of the print content that is stored in the feature quantity storage unit (11); and a relevant information output unit (15) that obtains from the relevant information storage unit (12) the relevant information that is associated with the print content that is specified by the specification unit (14) and outputs the obtained relevant information. |
US09712691B2 |
Image processing system for combining scanned data with previously stored data
An information processing device may display a first image indicating a first image file stored in a memory. The information processing device may display a second image in response to receiving a first specific operation. The first specific operation may be performed on the first image. The information processing device may receive first path information in response to receiving a second specific operation. The first path information may indicate a location of the first image file. The information processing device may send an execution instruction to the image processing device in a case that the second specific operation is received. The information processing device may receive scan data from the image processing device. The information processing device may integrate the received scan data to the first image file designated by the first path information. |
US09712690B2 |
Information processing apparatus, information processing system, information processing method, and a computer program product
An information processing apparatus includes an obtaining unit that obtains configuration information about a screen to be displayed in a device connected to the information processing apparatus via a network; a display control unit that displays the screen in the information processing apparatus based on the configuration information; a changing unit that changes the configuration information in response to an operation on the screen displayed by the display control unit; and a transmission unit that transmits the changed configuration information to one or more devices connected to the information processing apparatus via the network. |
US09712686B1 |
Printer diagnostics using external microphone
The present disclosure is directed to a printing device, a system, and a method. The printing device according to one embodiment includes a chassis substantially housing a sheet feeder, a sheet conveyor, and a print applicator; a microphone externally mounted to the chassis for converting audio signals sensed by the microphone external to the printing device to a raw analog electrical signal; an analog low-pass filter for filtering out high frequency harmonics from the raw analog electrical signal to result in a filtered electrical signal; a controller comprising an analog-to-digital port, a processor, and a memory. The controller receives the filtered electrical signal at the analog-to-digital port and samples the filtered electrical signal at a sample rate of at least twice a bandwidth of the filtered analog electrical signal to result in a sampled signal clip. The controller determines a time duration of a portion of the sampled signal clip associated with a print cycle event. The controller stores in the memory data associated with the sampled signal clip for comparison with a training signal clip associated with the print cycle event. |
US09712684B2 |
Audio system for an aircraft
An audio system for an aircraft of the type which includes radiocommunications units and a management unit to which are connected by cables, pieces of audio equipment. Each audio equipment piece includes a generator which, under control of the control unit, is configured to generate a pulsed coded audio signal and inject the signal into a same cable as that used for conveying the audio signals coming from the audio unit of the audio equipment, each code formed by a pulsed coded audio signal being representative of a piece of audio equipment. The audio system includes a decoder for receiving and decoding a coded audio signal generated by a piece of audio equipment and for generating a logic control signal to activate the radiocommunications unit which has previously been associated with the audio equipment represented by the code of the coded audio signal received and decoded. |
US09712681B1 |
Call distribution techniques
Increasing the efficiency of phone call usage is accomplished by using strategic call forwarding techniques to analyze incoming calls and process these calls in real time to: 1) divert unwanted robocallers and/or 2) provide information about unknown human callers. Robocallers are detected by analyzing incoming calls to determine if the audio is human-based or generated by a robocaller. Information about unknown human callers is obtained by real-time look up and reporting techniques to allow the user to determine whether to answer a call. |
US09712678B1 |
Methods systems and computer program products for managing access to customer data
Controlling access to customer data. A customer service agent is provided with indirect access to customer data through an intermediate computer such that it is not necessary for the customer service agent to ask questions about the received customer data or receive such data from the customer directly. Secure data access can be used to validate customers and streamline customer interaction and discussions with customer service agents since many questions a customer service agent may ask a customer directly during a discussion are already answered and known to the customer service agent before the customer speaks with the customer service agent. The customer can select which merchants receive customer data, and customer data can be entered manually or acquired by processing images of customer documents or cards such as personal identification or account cards containing information to be used during customer service discussions. |
US09712676B1 |
Techniques for benchmarking pairing strategies in a contact center system
Techniques for benchmarking pairing strategies in a contact center system are disclosed. In one particular embodiment, the techniques may be realized as a method for techniques for benchmarking pairing strategies in a contact center system comprising: cycling, by at least one processor, among at least two pairing strategies; and determining, by the at least one processor, a difference in performance between the at least two pairing strategies. |
US09712674B2 |
Third-party call control over secure duplex communication channel
A network device in a service provider network receives an incoming call, from a caller, to a telephone number associated with a customer. The network device applies to the call an interactive voice response (IVR) script corresponding to the customer and determines that the caller wants to speak to an agent. The network device establishes a secure duplex communication channel between the network device and an automatic call distributor (ACD) for the customer. The secure duplex communication channel is dedicated for use in managing the incoming call. The network device informs the ACD, via the secure duplex communication channel, that an agent is needed for the incoming call and receives, via the secure duplex communication channel, instructions from the ACD to manage the incoming call. |
US09712672B2 |
Call response system
A Call Response System comprising modules that are mutually interfaced for sharing parameters. Firstly, a data-collection module, for collecting parameters of an incoming call and of a recipient for the incoming call. Secondly, a dynamic-scripting module for configuring a response scenario according to prioritized combinations of the parameters and for substituting a component for at least one respective open variable within the configured scenario. Finally, a call-response module for transmitting aspects of the component substituted configured scenario, and for recording aspects of the transmitted scenario. |
US09712671B2 |
Method and apparatus for intent prediction and proactive service offering
An intelligent IVR system identifies a customer based on previous customer interactions. Customer intent is predicted for an ongoing interaction and personalized services are proactively offered to the customer. A self-optimizing algorithm improves intent prediction, customer identity, and customer willingness to engage and use IVR. |
US09712656B2 |
Control device, communication apparatus, control system, control method and storage medium
A control system which can control a function of a device depending on the result of authentication of an external device that exists outside the device and prevent others from using the device without permission is provided. The control system includes a control device (100) which controls at least one function (1), and at least one external device (900-1 to n: n is an arbitrary integer) which exists outside the control device (100). The control device (100) authenticates the external devices (900-1 to n), and controls the function (1) depending on the number of authenticated devices which can be authenticated and the number of unauthenticated devices which can not be authenticated. |
US09712654B2 |
Microphone line based detection of headset plug removal
Embodiments of the invention include methods, apparatus, systems and means for distinguishing between microphone line signals resulting from: actuation of a microphone button of a headset plugged into a telephone device jack, and removal of the headset plug form the jack. During a telephone call, a first signal can be detected on a microphone line of a headset jack to indicate whether a microphone button of the headset is actuated. Also, while the headset plug is being disconnected from the jack, a transition on the microphone line can be detected, from a second signal indicating that the microphone is being disconnected, to a third signal indicating that the microphone button is actuated. Consequently, to avoid erroneously hanging up a call, transitions to the third signal when removing the plug form the jack can be ignored and the call can be maintained. Other embodiments are also described and claimed. |
US09712653B2 |
Data transmission device, data transmission method and program for data transmission device
The present invention is to provide a data transmission device to enable a sender to easily transmit predefined data to a proper user and a proper terminal even if the receiver owns two or more user IDs and terminals. The data transmission device 100 is provided with a user icon output module 133 outputting a user icon associated with a user ID to display in a sender's terminal, and a data transmission module 136 transmitting predefined data associated with the user icon specified by a sender to a terminal corresponding to the user ID associated with the specified user icon. |
US09712652B2 |
Flexible cable for supporting itself or an electronic device electrically connected threreto
A cable including: a body having one or more elongated conductors and an electrically insulating sheathing covering the elongated conductor; and a connector disposed at at least one end for electrically connecting the elongated conductor to an electronic device; wherein at least a portion of the body has a rigidity such that the portion can be shaped into a predetermined configuration and maintained in the predetermined configuration when one or more of supporting the electronic device in a predetermined position or maintaining the body into a predetermined configuration. |
US09712650B2 |
PIM fast failover using PIM graft message
A system for PIM fast failover recovery includes a network of a plurality of switching devices. The plurality of switching devices includes a source switching device near a source communicatively connected to a receiver switching device near a receiver by a first interface and at least a third switching device that is communicatively connected to the receiver switching device by a second interface and further is communicatively connected to the source switching device by a third interface. The receiver switching device may discover that the first interface has failed and responds by sending the third switching device a PIM graft message prior to deleting an associated first interface route entry. |
US09712649B2 |
CCN fragmentation gateway
A method is provided for managing fragmentation of packets for content object retrieval at a content centric networking (CCN) gateway in a CCN network. The method includes receiving a first CCN interest packet including a name for a first content object from a user equipment in an access network, storing a fragmentation stream identifier in a header of the first CCN interest packet, and setting a path minimum maximum transmission unit (MTU) in the first CCN interest packet to an MTU value required by a link between the CCN gateway and a node forwarding the first CCN interest packet to the CCN gateway. The method further includes forwarding the first CCN interest packet with updated fragmentation stream identifier and path minimum MTU toward a content provider, receiving a set of packets of including fragments of the first content object from the content provider, reassembling and verifying the first content object from the set of packets, and refragmenting the first content object to minimum MTU of the access network and storing the refragmented first content object in the content store. The first content object is then returned to the user equipment in the access network. |
US09712647B2 |
Optimization of computing resources through monitoring and manipulating availabilty
In a method of managing a computing network, an expected behavior of a host is determined. The host is associated with a network resource, and is configured to be switched between active and inactive states. When the host is in the inactive state, a message is transmitted via the network on behalf of the host based on the expected behavior thereof such that the host appears to be in the active state. Related computer systems and computer program products are also discussed. |
US09712642B2 |
Distributed control over client-side requests for server resources
Techniques are disclosed for regulating a flow of requests from a client device to a server. The techniques include the step of receiving, from an application program executing on the client device, a request to perform an operation on the server. The client device determines a current budget value based upon an initial budget value, where the current budget value is reduced by a particular cost each time the server processes a request generated by the application program. The client device then determines a time-adjusted budget value based upon a sum of the current budget value and a regeneration value. Finally, the client device sends to the server the request to perform the operation only when the time-adjusted budget value exceeds a threshold value. |
US09712639B2 |
System and method for dynamic provisioning of mobile application content
In various embodiments, the systems, methods and computer-readable mediums (collectively “system”) discussed herein may be configured to enable a single mobile application to receive dynamically customized content. The criteria and/or preferences that influence the dynamically customized content may be defined by a user and/or may be automatically detected by a user device. The criteria and/or preferences may be associated with the mobile application and/or a mobile device operating the mobile application. The criteria and/or preferences may be provided as part of a request for content to a content distribution system. |
US09712638B2 |
Creating a dynamic aggregate group profile of users in an online collaboration session for providing tailored content delivery
There are provided a system, a method and a computer program product for suggesting content to a group. The system identifies a group of users in a social network. The system receives inputs associated with the social network group. The system aggregates the received inputs. The system analyzes the aggregated inputs. The system searches, based on the aggregation and the analysis, one or more tailored content to be delivered to the group in Internet, one or more database and one or more data warehouse. The system delivers the tailored content to the group in the social network. |
US09712624B2 |
Secure virtual network platform for enterprise hybrid cloud computing environments
Clusters of virtual network switches (VNS) and controllers are provided. The controller cluster is connected to the VNS cluster which is between first and second network domains. A request is received at a first end point in the first network domain to connect to a second end point in the second network domain. If the connection should be through a virtual network connecting the network domains, a virtual network connection is established as allowed by a controller of the controller cluster. The establishment includes initiating first outbound traffic from the first end point to a VNS of the VNS cluster and initiating second outbound traffic from the second end point to the VNS. The VNS places a payload from the first outbound traffic into a reply to the second outbound traffic. |
US09712615B2 |
Information acquisition method, computer system, and management computer
An information acquisition method whereby a management computer provided with a processor, a memory, and an interface acquires information of a plurality of computers via a network, the method including: a first step in which the management computer sets, in acquisition group information, a group of computers for acquiring information among the plurality of computers; a second step in which the management computer determines a sequence in which information is acquired for each group, then determines the sequence of computers for acquiring information in the group; a third step in which the management computer outputs an instruction for acquiring information of computers in the determined sequence; and a fourth step in which an information acquisition execution unit acquires the information of the computers of each group in the determined sequence on the basis of the instruction to acquire the information. |
US09712611B2 |
Systems and methods for GSLB MEP connection management across multiple core appliances
The present disclosure presents systems and methods for obtaining metric information by a multi-core GSLB intermediary device and providing global server load balancing services using the obtained information. A first core of a multi-core GSLB appliance establishes a transport layer connection to a remote load balancer at a site of a plurality of sites. The first core transmits a message to each of the other cores of the multi-core GSLB appliance that the first core is a master core for receiving metric information from the load balancer. The first core receives metric information of the remote site from the load balancer. The first core propagates the metric information to each of the other cores of the GSLB appliance. A GSLB virtual server on a slave core receives a DNS request. The GSLB virtual server determines a DNS resolution for the DNS request based on the metric information. |
US09712610B2 |
System and method for increasing physical memory page sharing by workloads
System and method for increasing physical memory page sharing by workloads executing on different host computing systems are described. In one embodiment, workloads executing on different host computing systems that access physical memory pages having identical contents are identified. Further, migration to consolidate the identified workloads on a single host computing system such that the physical memory pages can be shared using a page sharing mechanism is recommended. |
US09712609B2 |
Computer network system and method of determining necessity of transferring load in computer network system
An evaluation value DS for evaluating responsiveness of a first node when no loads are being transferred, an evaluation value Dn for evaluating responsiveness of a path P connecting between the first and second nodes assuming that loads are being transferred, and an evaluation value Dr for evaluating responsiveness of the second node N2 assuming that the second node has received a load from the first node are calculated. Whether or not to transfer the load is determined depending upon comparison results of magnitude of DS and a sum of Dr+Dn. |
US09712608B2 |
Elastically scalable document-oriented storage services
A server set may provide a document service to one or more clients, and may be configured to do so in view of various considerations such as availability, fault tolerance, flexibility, and performance. Presented herein are document service architectures that involve partitioning the document set into at least two document ranges, and configuring respective servers of the server set to host one or more agents to which are respectively assigned one or more document ranges. A request for an operation involving at least one document may be routed to a server hosting an agent managing the document ranges of the documents involved in the operation. Moreover, respective servers may retain detailed information about neighboring servers (e.g., according to a logical or physical proximity) and scant information about distant servers, thereby avoiding both the extensive information exchange of highly informed network architectures and the inefficiency of uninformed routing algorithms. |
US09712607B2 |
Release and management of composite applications on PAAS
A solution descriptor comprises a set of component workload units, a workload unit describing a deployable application component with application binary, configuration parameters and dependency declarations. An environment descriptor specifies a set of target platforms and plugins in an execution environment. A deployer interprets the solution descriptor and the environment descriptor, and generates a list of tuples comprising compatible workload-plugin-platform combinations. The deployer determines an execution order for the list of tuples, and invokes the plugins in the list of tuples in the execution order, wherein each of the plugins executes a corresponding compatible workload on a corresponding compatible target platform specified in the list of tuples. |
US09712606B2 |
Efficient and reliable host distribution of totally ordered global state
An asynchronous distributed computing system with a plurality of computing nodes is provided. One of the computing nodes includes a sequencer service that receives updates from the plurality of computing nodes. The sequencer service maintains or annotates messages added to the global state of the system. Updates to the global state are published to the plurality of computing nodes. Monitoring services on the other computing nodes write the updates into a locally maintained copy of the global state that exists in shared memory on each one of the nodes. Client computer processes on the nodes may then subscribe to have updates “delivered” to the respective client computer processes. |
US09712605B2 |
Method and system for providing server virtual machine for real-time virtual desktop service, and server device supporting the same
Provided is a virtual desktop service, and disclosed is a system for providing a server virtual machine, including: a client configured to receive allocation of a virtual machine for using a virtual desktop service; a connection broker configured to control a type of virtual machine to be allocated to be classified according to user terminal registration information of the client, any one operation server to be selected among a plurality of operation servers, and the virtual machine to be allocated; the plurality of operation servers configured to provide the client with a virtual machine under a control of the connection broker; and a shared storage configured to store data related to the client for providing the virtual machine, and provide the stored data to the operation servers, a method of providing a server virtual machine, and a server device supporting the same. |
US09712602B2 |
Technique for communication in a communications network with routing by name
A method and routing device are provided for aggregating of requests relating to a data segment of a stream into another request and for storing data segments belonging to different streams in a queue prior to the device routing them to client entities that have requested them. The method includes: determining a credit associated with a stream, the credit varying based on a number of requests transmitted by client entities and relating to data segments belonging to the stream; and, on receiving a data segment in response to the other request, and when memory space available in the queue does not enable the received data segment to be stored: selecting a stream having at least one data segment stored in the queue and for which the associated credit is the smallest; and deleting from the queue a data segment belonging to the selected stream. |
US09712601B2 |
Cloud-connectable middleware appliance
A computer system and associated method and software where communications between the cloud and a sensor device (for example, a temperature sensor) pass through and are processed by a middleware appliance. The middleware appliance creates data structures called cloud event data objects (cEDOs). A cEDO may include, for example: event data, device data, sensor data, geo key data, payload key data and data value pairs. |
US09712597B2 |
Media data processing method and non-transitory computer readable storage medium thereof
A media data processing method is provided herein. The media data processing method is adapted for a portable mobile device. The media data processing method includes: selecting at least one first media file in a first client; uploading the at least one first media file to a server; mixing and editing the at least one first media file and at least one second media file in the server to generate a video. |
US09712596B2 |
Method and apparatus for updating user interface
Methods, apparatuses, and systems for updating a User Interface (UI) in a Remote UI (RUI) client are described. Upon detecting a change in its capability, the RUI client stores a UI state of a UI page and requests a RUI server to update the UI page according to the changed capability. The RUI client receives a UI page updated according to the changed capability from the RUI server, where the stored UI state is reflected in the updated UI page, and the RUI client renders the UI state-reflected updated UI page. |
US09712595B2 |
Creation, sharing and embedding of interactive charts
Systems and methods for generating and sharing interactive charts are described. The interactive charts are generated in an online portal that allows users to customize the interactive features of the chart. An online portal may also be provided to allow users to automatically embed interactive chart(s) in another website without reprogramming the code of the website each time the interactive chart(s) are changed or new interactive chart(s) are added. |
US09712594B2 |
Method and apparatus for pushing applications to a web site visitor during co-browsing
A method for pushing applications to a website visitor during co-browsing is presented. A co-browsing session between an operator of the website and the website visitor is initiated. An application is selected to be pushed to the website visitor. The application is configured and pushed to the website visitor. The application is co-browsed with the website visitor. |
US09712593B2 |
Javascript API for WebRTC
In accordance with an embodiment, described herein is a system and method for real-time communication signaling between HTML5 endpoints and between HTML5 endpoints and the IMS Core of a telecommunication network. In an embodiment the system includes a WebRTC Session Controller (WSC) communicating over an Internet domain protocol with a client-side controller. The WSC terminates web communications with the client-side, parses, and normalizes the Web communications into an internal protocol suitable for communication with telecommunications network systems. The client-side controller provides a JavaScript API that encapsulates the signaling aspect of a communication session of the HTML5 application, including gathering media description, establishing signaling channels, and exchanging media descriptions with the WSC, populating the relevant WebRTC objects, managing the call after it has been established. The JavaScript API thereby simplifies development and implementation of real-time communication in Web applications. |
US09712589B2 |
System and method for playing a video on mobile web environments
A method and mobile computing device for auto-playing a video clip within a web environment of a mobile computing device are provided. The method comprises including an auto-play script in a webpage downloaded to the web environment, wherein the web environment is disabled to auto-play video clips; and executing the auto-play script within the web environment, wherein the execution of the auto-play script causes at least: receiving the video clip from an external source and automatically playing the video clip in the web environment. |
US09712587B1 |
Identifying and rendering content relevant to a user's current mental state and context
Systems and methods are provided for identifying and rendering content relevant to a user's current mental state and context. In an aspect, a system includes a state component that determines a state of a user during a current session of the user with the media system based on navigation of the media system by the user during the current session, media items provided by the media system that are played for watching by the user during the current session, and a manner via which the user interacts with or reacts to the played media items. In an aspect, the state of the user includes a mood of the user. A selection component then selects a media item provided by the media provider based on the state of the user, and a rendering component effectuates rendering of the media item to the user during the current session. |
US09712580B2 |
Pipelining for parallel network connections to transmit a digital content stream
One embodiment of the present invention sets forth a technique for transmitting a digital content stream through a network between at least one content server and a content player. The method includes communicating with the at least one content server to set up a plurality of parallel network connections on the network to transmit the digital content stream. The method further includes sending a first data request and a second data request within a first time limit via at least one tested network connection in the plurality of parallel network connections to evaluate whether pipelining of the digital content stream is possible for the at least one tested network connection. The method also includes utilizing pipelining to transmit the digital content stream over the at least one tested network connection based on a first response to the first data request and a second response to the second data request. |
US09712573B2 |
Synchronized wireless display devices
This disclosure relates to techniques for synchronizing playback of media data between a source device and one or more sink devices in a Wireless Display (WD) system. WD systems enable mobile devices to share a local display of the source device with remote sink devices. The techniques of this disclosure include a management procedure at the source device to select a universal queue size for the source device and the participating sink devices. The source device selects the universal queue size based at least on supported queue sizes of the source device and the sink devices. The media packets are then held in queues having the universal queue size at the source device and the sink devices. The uniform queue size combined with compensation for transmission delay enables each of the devices to begin processing the media packets at the same time. |
US09712570B1 |
Dynamic adaptation to increased SFU load by disabling video streams
A method for dynamically adapting to increased system load at a selective forwarding unit (SFU) is disclosed. In an embodiment, an SFU sends a plurality of video streams to a plurality of participant computing devices. The SFU monitors a system load value on the SFU according to any of a plurality of metrics. When the SFU determines that the monitored system load value exceeds a stored load threshold value, the SFU selects one or more of the streams being sent to participant computing devices and disables them. |
US09712568B2 |
Server apparatus and method of operating a network
A server apparatus accesses a terminal apparatus connected via an IP network to a router from an externally provided terminal apparatus in a simple and firm manner without previously performing a complex setting operation. The server apparatus includes (1) a connection information transmitting unit, when specific information of a second terminal apparatus connected via a router to an IP (Internet Protocol) network is received from a first terminal apparatus connected via the IP network to the connection information transmitting unit, which transmits connection information to the first terminal apparatus, with the connection information being employed to access the second terminal apparatus from the first terminal apparatus, and (2) a relay unit, when the relay unit is accessed from the first terminal apparatus by employing the connection information transmitted by the connection information transmitting unit, which relays the first terminal apparatus to the second terminal apparatus having the specific information. |
US09712567B2 |
Voice over internet protocol (VoIP) systems, methods, network elements and applications
In accordance with at least one embodiment of the invention, methodologies and mechanisms are provided that enable methods, systems and software for supporting or implementing functionality to intercept a phone call and/or data transmission in a cellular network and direct it to at least one receivers' VoIP account if the account is active and provides VoIP connectivity. |
US09712565B2 |
System and method to provide server control for access to mobile client data
Systems and methods for protecting a data item include, upon initiation of transfer of the data item from a server to a client device, determining a sensitivity score and a current protection level of the data item. A policy is applied to determine an appropriate protection for the data item based upon the sensitivity score and the current protection level. A protected data item is provided to the client device by applying the appropriate protection to the data item. |
US09712562B2 |
Method, device and system for detecting potential phishing websites
The present disclosure discloses a method and device for detecting a potential phishing website. In the method, a computing device having at least a processor obtains information input to a website and determines whether the website is legitimate through a server when the input information entered by the user has some private information. The computing device continues to access the website if the website is legitimate and generates a warning if the website is determined not to be legitimate. |
US09712560B2 |
Web page and web browser protection against malicious injections
A method comprising: loading a web page in a web browser, wherein the web page comprises a call to an anti-injection client-side code; loading the anti-injection client-side code in the web browser; and executing the anti-injection client-side code to: (a) in a main execution thread running the web browser, intercept an injection of a node into the DOM (Document Object Model) of the web page, (b) in a web worker execution thread, compare the injected node with a list, and (c) in the main execution thread running the web browser based on the comparison, permit or block execution of the injected code. |
US09712559B2 |
Identifying frames
A frame identifier running on a computing device generates identifier values and embeds the identifier values in a networking frame. The frame identifier also receives networking frames, and analyzes the received networking frames to identify a subset of received networking frames containing the identifier values. The identifier values indicate that corresponding received networking frames were originated from the network device. The frame identifier also discards the identified subset of received networking frames. |
US09712557B2 |
Remediating computer security threats using distributed sensor computers
A data processing system comprising: a sensor computer that is coupled to and co-located with a compromised computer, the compromised computer comprising at least one malware item that is configured to direct unauthorized network activity toward one or more enterprise networks or enterprise computers, wherein the compromised computer is coupled to a firewall that is configured to control ingress of packets to the compromised computer and is logically between one or more attacker computers and the one or more enterprise networks or enterprise computers; a security control computer that is coupled to the sensor computer; one or more non-transitory data storage media in the security control computer storing security logic comprising one or more sequences of instructions which when executed cause the security control computer to perform: obtaining, from the sensor computer, detection data relating to network messages that the compromised computer emits, as the compromised computer emits the network messages; using the detection data, identifying one or more security threats that are indicated by the network messages; determining a specified remediation measure to remediate one or more of the security threats; providing the specified remediation measure to one or more of the compromised computer, the sensor computer, the firewall, and an enterprise computer. |
US09712555B2 |
Automated responses to security threats
Systems, methods, and software described herein provide security actions to computing assets of a computing environment. In one example, a method of operating an advisement system to manage security actions for a computing environment includes identifying a security incident for an asset in the environment, and obtaining enrichment information about the security incident. The method further includes identifying a rule set based on the enrichment information, identifying an action response based on the rule set, and initiating implementation of the action response in the computing environment. |
US09712553B2 |
System and method for developing a cyber-attack scenario
A cyber-attack scenario simulation system and method may include an aircraft simulator operable to generate an aircraft simulation, a cyber-attack generator operable to generate a cyber-attack simulation, a cyber defense generator operable to generate a cyber defense simulation, a scenario generator operable to generate a cyber-attack scenario including the cyber attack simulation and the cyber defense simulation and launch the cyber-attack scenario against the aircraft simulation, and a cyber-attack scenario analysis tool operable to assess an impact of the cyber-attack scenario on the aircraft simulation. |
US09712551B2 |
Methods and systems for architecture-centric threat modeling, analysis and visualization
Methods and systems for use in architecture-centric threat modeling are described. One example system includes a display device, a memory device for storing a plurality of attributes for each of a plurality of network objects, and a processor communicatively coupled to the memory device. The processor is programmed to receive a user selection of at least a first network object and a second network object from the plurality of network objects; create a network architecture including the first network object and the second network object; associate the stored plurality of attributes with the selected network objects in the network architecture; display, on the display device, a graphical representation of the created network architecture; receive, from the user, at least one dataflow attribute associated with at least one of the first and second network objects; and store the at least one dataflow attribute to said memory device as an attribute of at least one of the plurality of network objects. |
US09712550B1 |
Emoji frequency detection and deep link frequency
Systems and methods are disclosed for generating term frequencies of known terms based on crowdsourced differentially private sketches of the known terms. An asset catalog can be updated with new frequency counts for known terms based on the crowdsourced differentially private sketches. Known terms can have a classification. A client device can maintain a privacy budget for each classification of known terms. Classifications can include emojis, deep links, locations, finance terms, and health terms, etc. A privacy budget ensures that a client does not transmit too much information to a term frequency server, thereby compromising the privacy of the client device. |
US09712544B2 |
Direct cache access for network input/output devices
Methods and systems for improving efficiency of direct cache access (DCA) are provided. According to one embodiment, a set of DCA control settings are defined by a network interface controller (NIC) of a network security device for each of multiple I/O device queues. The control settings specify portions of network packets that are to be copied to a cache of the corresponding CPU. A packet is received by the NIC. The packet is parsed to identify boundaries of portions of the packet and is queued onto an I/O device queue. The packet is then transferred from the I/O device queue to a host memory of the network security device and the specified portions are concurrently copied to the cache of the corresponding CPU based on the control setting associated with the I/O device queue. |
US09712537B2 |
Aggregated data in a mobile device for displaying cluster sessions
A method, a device and a system for providing access on a mobile device to aggregated data for interactively displaying a session for a candidate token are provided. The method includes populating data records of a data repository of a data management system from an external data system; generating first information in the data records stored in the data repository; caching the first information on a caching server; creating an application link to be displayed in a mobile device, wherein the application link enables the access to the cached first information that is stored in the data repository; providing an access authorization to the mobile device; retrieving the cached first information from the caching server; displaying the cached first information in a user interface; generating second information dynamically; displaying the second information in the user interface of the mobile device; and deactivating the application link after the session takes place. |
US09712536B2 |
Access control device, access control method, and program
An embodiment of the present invention is provided with an access control device, an access control method, and a program that are capable of easily managing access control and easily confirming whether appropriate access control is exercised. An access control device has a screen generation unit for generating selection screen information allowing for an access rule used by a user having logged in to a working terminal to be selected from one or a plurality of access rules created by an administrator of a client environment, and an access control unit for executing access control on a user according to an access rule selected from access rules displayed on the basis of the selection screen information. |
US09712535B1 |
Security recommendation engine
Users are authorized to access tagged metadata in a provider network. A revision control and binding mechanism may be applied to tagged metadata that is added or modified by the user. A recommendation pertaining to security and compliance for the computing resource may be determined based on an analysis of the computing resource, scoring criteria, and data pertaining to customer and system data. |
US09712534B2 |
Modifying permission trees in a virtualization environment
A processing device receives a permission request indicating a user and an entity. The processing device modifies a permissions database to generate a modified database view. Using the modified database view, the processing device determines whether the user has permission to access the entity and returns an indication of whether the user has permission to access the entity. |
US09712533B2 |
Notifying unauthorized use of electronic device during disconnection time period of electronic device from network
A device management apparatus for notifying unauthorized use of an electronic device includes a connection status detecting circuit, a usage log acquiring circuit, and a notification circuit. The connection status detecting circuit detects a connection status of the electronic device to a network. The usage log acquiring circuit acquires a usage log of the electronic device. The notification circuit notifies an unauthorized use of the electronic device. The notification circuit notifies the unauthorized use if the usage logs acquired by the usage log acquiring circuit before and after a time period of disconnection of the electronic device from the network are varied, a reconnection of the electronic device to the network being detected by the connection status detecting circuit. |
US09712532B2 |
Optimizing security seals on web pages
A method of providing web site verification information to a user can include receiving a DNS query including a host name and a seal verification site name, parsing the DNS query, and extracting the host name from the DNS query. The method also can include accessing a DNS zone file including a list of Trust Services customers and determining if the host name is associated with a Trust Services customer in the list of Trust Services customers. The method further can include transmitting a positive identifier to the requester if the host name is associated with a Trust Services customer and transmitting a negative identifier to the requester if the host name is not associated with a Trust Services customer. In a specific embodiment, the Trust Services include issuance of digital certificates. |
US09712531B2 |
Methods and systems for detecting, verifying, preventing and correcting or resolving unauthorized use of electronic media content
A method of detecting, verifying, preventing and correcting or resolving unauthorized use of electronic media content. In one embodiment, the method comprises providing an electronic system that allows auditors to register to audit the use of electronic media content, providing the auditors with information through the electronic system regarding a unique identifier that identifies one or more items of electronic media content, owners of electronic media content or other intellectual property or users who have subscribed to the use of electronic media content, obtaining information from auditors through the electronic system regarding unauthorized use of the electronic media content and verifying that the information received from auditors is complete. |
US09712530B2 |
Systems and methods for enforcing security in mobile computing
Methods and systems described herein relate to enhancing security on a device by configuring one or more software functions in a trusted zone of a processor using object firewalls, IPC mechanisms, and/or a policy engine. |
US09712529B2 |
Method and apparatus for sending authentication request message in a social network
The present disclosure describes a method and an apparatus for sending an authentication request message in a social network. In order to resolve the problem that there are few parameters to be relied on when a user authenticates a request seeking to establish a social network relationship with the user, the method disclosed by the present disclosure includes: a social network server that, after obtaining an authentication request message sent by a first client to a second client to request to establish a social network relationship, modifies the first client's identification information in the first authentication request message to a third client's identification information to obtain a second authentication request message. The third client has a social network relationship with the first client and also has a direct social network relationship with the second client. The second authentication request message is sent to the second client. As the third client's identification information is used as identification information of a sending party in the second authentication request message that is sent to the second client, there will be more parameters for use when the second client verifies the request to establish the social network relationship. |
US09712524B2 |
Method and apparatus for user authentication
An electronic device is provided including a biometric sensor, a memory, and a processor configured to: initiate a transaction with a server; receive an authentication request from the server; retrieve a biometric template stored in a secure portion of the memory in response to the authentication request; capturing a biometric sample using the biometric sensor; comparing the biometric template with the biometric sample; and transmitting to the server a message indicating an outcome of the comparison. |
US09712520B1 |
User authentication using client-side browse history
Techniques for authenticating a user may be described. In particular, a network-based document may be provided to a computing system of a user. The network-based document may include code and an identifier of another network-based document. The code may be configured to, upon execution, determine whether the other network-based document was accessed prior to providing the network-based document to the computing system. The other network-based document may be accessible to the user based on an identifier of the user. An indication that the other network-based document was accessed may be determined. For example, the indication may be received from the computing system based on an execution of the code at the computing system. The user may be authenticated based on the indication. |
US09712519B2 |
Efficient encryption, escrow and digital signatures
A network server is operated so as to facilitate legal eavesdropping by receiving, from the first user via a network, a session key (SK) encrypted with a second user's public key, kpubU2, and the SK encrypted with an escrow server's (ES) public key, kpubES. The kpubU2 key is the public key of the second user asymmetric private/public key pair kpriU2/kpubU2 The kpubES key is the public key of the ES asymmetric private/public key pair kpriES/kpubES. The received SK encrypted with kpubES is stored. The SK encrypted with kpubU2 is transmitted to the second user via the network. A message encrypted with the SK is received from one of the first and the second users via the network, stored, and transmitted to the other of the first and the second users via the network. |
US09712517B2 |
Method for identifying a task authorization
In an ad hoc mesh network, roles are assignment to the different network nodes, for example mesh point or mesh portal. The invention envisages that a network node identifies the certification and thus the permitted roles of another network node before it sends a message to said other network node. This ensures that the roles maintain their integrity and the security in the network is enhanced. |
US09712516B2 |
Monitoring signed resources transferred over a network
A system for monitoring resources transferred over a network includes a capture module that is configured to capture content transferred over a network between a requestor device and a server device. The content includes a resource, a digital signature associated with the resource and a digital certificate associated with the digital signature. The system includes a resource monitor module that is configured to receive the captured content from the capture module. The resource monitor module includes at least one memory, at least one processor and a resource analyzer module that is configured to use the at least one processor to inspect one or more attributes of the digital certificate and inspect the digital signature and verify the digital certificate using the attributes and verify the digital signature. |
US09712513B2 |
Identity management over multiple identity providers
Systems and processes of advanced identity management over multiple identity providers deployable through mobile applications are provided. The process, e.g., method, includes requesting a backend service from multiple backend services by a requesting device. The method further includes exposing the requested backend service though a call in by a gateway service using a token mapped to the requested backend service, without exposing any of the backend services directly to the requesting device. |
US09712509B1 |
Product and coverage review and recommendation
Financial security and coverage may be reviewed at a comprehensive level by evaluating an ownership status of an entity relative to multiple types of financial products. Based on results of the review, recommendations for one or more financial products may be provided. Additionally or alternatively, the recommendations and products may be ranked or prioritized. According to another aspect, the review of the entity's financial security and coverage may be represented graphically. For example, types of financial products may be represented by icons (e.g., pictograms) with various visual attributes (e.g., color, transparency, pattern, size, etc.) indicating the entity's ownership status. Potential gaps in the entity's financial coverage may be represented with a specified visual element such as a warning symbol or the like. The graphical depiction may allow an entity to better appreciate the spectrum of available financial product types and potential risks in the entity's current financial coverage profile. |
US09712505B2 |
Scalable network apparatus for content based switching or validation acceleration
A network apparatus is provided that may include one or more security accelerators. The network apparatus also includes a plurality of network units cascaded together. According to one embodiment, the plurality of network units comprise a plurality of content based message directors, each to route or direct received messages to one of a plurality of application servers based upon the application data in the message. According to another embodiment, the plurality of network units comprise a plurality of validation accelerators, each validation accelerator to validate at least a portion of a message before outputting the message. |
US09712501B2 |
Packet header randomization
A system and method for the randomization of packet headers is disclosed. A controller is used to provide random values, also referred to as nonces, that replace the source and destination addresses that typically appear in a packet header. The controller also provides routing rules to the switches and routers in the network that allow these devices to properly route packets, even though the source and destination addresses are not present. In some embodiments, network devices that support software-defined networking (SDN) are employed. The number of times that a particular nonce is used may be variable. In some embodiments, a nonce is used for exactly one packet header. In this way, packets may traverse a network using nonces in place of actual source and destination addresses. Because the nonces are changed periodically, detection of traffic patterns is made significantly more difficult. |
US09712499B2 |
Method and apparatus for cryptographic processing
A cryptographic processing apparatus that holds a first key, and receives authentication object data upon authentication includes a communication unit and a computing unit. The communication unit communicates with a calculation apparatus and a determination apparatus. In the calculation apparatus, encrypted registration data obtained by encrypting registration data twice, once with the first key and once with a second key, is registered. The registration data is data against which the authentication object data is verified. The determination apparatus uses the second key upon the authentication. When registering the encrypted registration data in the calculation apparatus, the computing unit generates a key different from the first key, generates encrypted data by encrypting the registration data twice, once with the first key and once with the different key, transmits the different key to the determination apparatus, and the encrypted data to the calculation apparatus, through the communication unit. |
US09712496B2 |
Signal modulation for secure communication
Aspects of the present disclosure are directed to circuits, apparatuses and methods for generating communication signals resistant to early-detect-late-commit attacks. An example embodiment, a plurality of data symbols is generated that includes first and second data symbols. A communication signal is generated that is decodable according to a mapping of the first and second data symbols to respective first and second waveforms. The first waveform has a leading edge that is indicative of the first waveform, and second waveform has a second leading edge that is indicative of the second waveform. In generating the communication signal, a first portion of the communication signal is modulated according to the first waveform for the first data symbol. A second portion of the communication signal is modulated, for the second data symbol, according to a modified second waveform having a leading edge that is indicative of the first waveform. |
US09712495B2 |
Methods and systems for selective encryption and secured extent quota management for storage servers in cloud computing
Methods and systems for selective encryption and secured extent quota management for storage servers in cloud computing are provided. A method includes associating at least one secure storage disk and at least one non-secure storage disk to a virtual disk, and associating the virtual disk to an application to allow access of the at least one secure storage disk and the at least one non-secure storage disk. The method further includes accessing the at least one secure storage disk and the at least one non-secure storage disk based on the associating of the virtual disk to the application, to write or read confidential and non-confidential data associated with the application into a respective one of the at least one secure storage disk and the at least one non-secure storage disk. |
US09712494B2 |
Method and system for sending a message through a secure connection
The method and system enable secure forwarding of a message from a first computer to a second computer via an intermediate computer in a telecommunication network. A message is formed in the first computer or in a computer that is served by the first computer, and in the latter case, sending the message to the first computer. In the first computer, a secure message is then formed by giving the message a unique identity and a destination address. The message is sent from the first computer to the intermediate computer after which the destination address and the unique identity are used to find an address to the second computer. The current destination address is substituted with the found address to the second computer, and the unique identity is substituted with another unique identity. Then the message is forwarded to the second computer. |
US09712487B2 |
Communication apparatus and method of controlling same
A first address set for a first communication interface is acquired from another apparatus. It is determined whether the first address duplicates a second address that has been set for a second communication interface. If it is determined that the first address duplicates the second address, a third address different from the first address is reacquired from the other apparatus. |
US09712484B1 |
Managing request routing information utilizing client identifiers
Systems and methods for managing requesting routing functionality associated with resource requests for one or more resources associated with a content provider are provided. The request routing functionality can correspond to the processing of domain name service (“DNS”) requests for resources by computing devices and the resolution of the DNS requests by the identification of a network address of a computing device that will provide the requested resources. Based on the processing of DNS queries initiated by a client computing device, a CDN service provider can correlate client computing device identifiers, such as an Internet Protocol (“IP”) address, with identifiers (e.g., IP addresses) associated with other components in a content delivery environment, such as DNS resolvers associated with the client computing device. |
US09712482B2 |
Methods and systems for recommending concept clusters based on availability
In some aspects, control circuitry may detect a social media interaction associated with a user. Control circuitry may then identify a symbol associated with the interaction, map the symbol to first media asset metadata, and identify a set of media asset metadata. Control circuitry may further compare the identified media asset metadata to a set of attributes of the user's profile, and identifying second media asset metadata and a first field of the second media asset metadata from the set of media asset metadata that matches attributes of the set of attributes of the user's profile. Control circuitry may then search databases to identify collections of media asset for recommendation to the user by identifying media assets that include the second media asset metadata in a field corresponding to the first field. Lastly, control circuitry may perform an action to provide the user with access to the collection. |
US09712481B2 |
Social media feedback for routing user communications
A call handling platform receives a call placed by a caller to a calling number. The platform examines parameters of the call, determines identifying information of the caller and matches the identifying information with a social network username corresponding to a social media network. The platform obtains the caller's social network data from the social media network. Using the social network data, the platform computes a social network influence score for the caller. The platform compares the social network influence score to a predetermined influence score threshold value and determines that the social network influence score for the caller indicates that the activity of the caller in the social media network has a high level of impact. The platform accordingly selects a first human agent at a call center and routes the call to the first human agent at the call center. |
US09712476B2 |
Secure end-to-end transport through intermediary nodes
A communication network encrypts a first portion of a transaction associated with point-to-point communications using a point-to-point encryption key. A second portion of the transaction associated with end-to-end communications is encrypted using an end-to-end encryption key. |
US09712474B2 |
Information push, receiving and exchanging method, server, client and exchanging apparatus
A method of providing information to a prospective user is performed at a server having one or more processors and memory storing programs to be executed by the processors, the method including receiving audio feature information and location information from a client device, wherein the audio feature information is extracted from an audio signal received by the client device and the location information identifies a current location of the client device; comparing predefined audio feature information with the received audio feature information and comparing predefined location information with the received location information; and pushing predefined information to the client device from the server if there is a match of both comparisons made at the server. |
US09712472B2 |
Application spawning responsive to communication
The automatic spawning of application in response to detected content in other communications. Such application spawning has the effect of enriching the original communication with the additional functionality of applications that accomplish and supplement the original communication. Such application spawning may be automatic, and responsive to monitoring of the content of the communication. Upon detecting that the content of the communication has satisfied summoning criteria, the application is summoned on a hardware entity associated with one or more of the participants in the communication. This may be accomplished while the communication is still ongoing. |
US09712471B2 |
Mail sending/receiving apparatus, method, and recording medium recording program
A vehicle-mounted apparatus includes a mail receiving processing unit configured to receive an electronic mail, a received mail determination unit configured to determine, after a first electronic mail is received by the mail receiving processing unit, whether a second electronic mail associated with the first electronic mail is received by the mail receiving processing unit, and a notification processing unit configured to perform, when it is determined by the received mail determination unit that the first electronic mail and the second electronic mail are associated with each other, notification of these two electronic mails simultaneously. |
US09712470B2 |
Server apparatus enabling posting of messages, method of controlling the same, information processing apparatus, information processing system, and storage medium
A server apparatus which, when a viewer inputs a message, such as a comment, makes it possible to post a relevant comment by referring to another comment posted slightly earlier. Upon receipt of a posting request for posting a message from an information processing apparatus, a comment manager generates a posting reception notification indicative of information related to a reception sequence number of the posting request. The comment manager transmits the posting reception notification to the information processing apparatus. The comment manager receives not only the posted message but also the posting reception notification, and stores the message in a memory if there is no posting request made from another apparatus with a reception sequence number later in sequential order than the reception sequence number indicated by the posting reception notification. |
US09712466B2 |
Integrating actionable objects into an on-line chat communications platform
Implementations disclosed herein provide for integrating actionable objects into an on-line chat communications platform. A method is provided in which state information of a chat message session between participants of a group is determined. A selection of one of a plurality of actionable objects is received based on the state information. Each actionable object comprises a type indicator to characterize a user perceivable action associated with the actionable object. Responsive to the selection, at least one participant is associated with the actionable object. The actionable object is provided to the chat message session to be selectably executed by a client device of the participant. The providing comprises updating the state information of the chat message session in accordance with the at least one actionable object. |
US09712463B1 |
Workload optimization in a wide area network utilizing virtual switches
Disclosed is a method for data traffic optimization within a virtual environment. The method may be implemented within a data center hosting virtual machines and using virtual switches for routing data traffic. The method includes instructing a virtual switch associated with a virtual machine to redirect one or more data packets directed to or from a first address associated with the virtual machine to a second address associated with data optimization virtual machine, wherein the redirection is based at least in part on an access control list, receiving, at the data optimization virtual machine, the one or more data packets redirected by the virtual switch, selectively performing one or more transformations on the one or more data packets to create one or more transformed data packets, and transmitting the one or more transformed data packets to the first address. |
US09712460B1 |
Matching port pick for RSS disaggregation hashing
Embodiments are directed towards selecting a local port number for server side connections that hash to a same processor as a matching client side flow on a multiprocessor device using Receive Side Scaling (RSS) for the disaggregation hash. A hash of a flow key is computed with an initial port number. An exclusive-or (XOR) distance is computed to a desired hash, using least significant bits. An XOR is performed on a corrected pre-computed collision value, to transform the source port number to a value that hashes correctly with other elements within the flow key. The transformed source port number may then be inserted into network packets sent to a server device, such that the transformed source port number can be used in a returning RSS hash to again select the same processor. |
US09712458B2 |
Consolidation encodings representing designated receivers in a bit string
In one embodiment, for each particular multicast flow of a plurality of multicast flows of packets a particular consolidation encoding of a plurality of consolidation encodings is selected based on the sparseness of bit positions within a bit string corresponding to designated receiving packet switching devices of the particular multicast flow. The packet switching device sends one or more packets corresponding to said particular packet, with each of these one or more packets including designated receiving packet switching devices of the particular multicast flow in the header of said particular packet according to the particular consolidation encoding. In one embodiment, different consolidation encodings of the plurality of consolidation encodings are used for at least two different multicast flows of the plurality of multicast flows of packets. In one embodiment, each of said receiving packet switching devices is Bit Index Explicit Replication (BIER) Bit-Forwarding Router (BFR). |
US09712455B1 |
Determining availability of networking resources prior to migration of a server or domain
Presented herein are techniques for resolving VxAN (VSANs and VLANs) networking connectivity, prior to server or domain migration. When UCS domains receive a workload or service profile from a UCS Central Controller, required VLANs/VSANs are checked for deployment for that UCS domain in Fabric Interconnects, and once VLANs/VSANs are successfully confirmed, the workload is deployed into one of the compute servers in that domain. |
US09712453B1 |
Adaptive throttling for shared resources
Customers of shared resources in a multi-tenant environment can have token buckets allocated that have an associated depth and fill rate, with each token enabling the customer to obtain an amount of work from a shared resource. A resource management system can monitor one or more system or output metrics, and can adjust a global fill rate based at least in part upon values of the monitored metrics. Such an approach can provide a fair distribution of work among the customers, while ensuring that the metrics stay within acceptable ranges and there are no drastic changes in performance levels of the system. The fill rate can update dynamically with changes in the monitored parameters, such that the system can float near an equilibrium point. Commitments for specific minimum service levels also can be met. |
US09712450B1 |
Methods and systems for scheduling data transmission with a feedback mechanism
In one embodiment, a method includes identifying one or more channel queues associated with one or more RF channels, wherein the one or more RF channels are associated with a Data Over Cable System Interface Specification (DOCSIS) bonding group and wherein the DOCSIS bonding group receives downstream data from a first node, determining a data usage of the DOCSIS bonding group, determining that a data rate of the downstream data is to be modified based on at least one of the one or more channel queues or the data usage of the DOCSIS bonding group, and causing the first node to modify the data rate of the downstream data based on the determination. |
US09712446B2 |
Apparatus and method for controlling transmission of data traffic
There is provided an apparatus for controlling transmission of data traffic to a destination node. The apparatus includes: an interface unit configured to obtain information regarding a congestion condition that has occurred on a first routing path during transmission of the data traffic; and a control unit configured to select, based on the information, a second routing path to route, to the destination node, a first portion and a second portion of the data traffic along the first routing path and the second routing path, respectively. |
US09712444B1 |
Quality of service for high network traffic events
A method for providing quality of service includes identifying a high network traffic event at a node, providing a user score to each user account of a plurality of user accounts, wherein the plurality of user accounts corresponds to a plurality of user devices connected to the node, and responsive to identifying the high network traffic event, providing instructions to a subset of user devices of the plurality of user devices, wherein the instructions instruct the subset of devices to enter a low traffic mode, and wherein each device of the subset of devices corresponds to a user account with a user score below a threshold. A computer program product and computer system corresponding to the above method are also disclosed herein. |
US09712441B2 |
Method, apparatus and system for determining transmission path of packet
A method, an apparatus and a system are provided, which relate to the communications field, for determining a transmission path of a packet, and can solve a problem that a determined transmission path of a packet is not accurate enough. The method includes determining, by a network device, a packet; acquiring, by the network device, a characteristic of the packet and an attribute of the packet according to the packet; and sending, by the network device, the characteristic of the packet, the attribute of the packet, and an attribute of the network device to a control device, so that the control device determines a transmission path of the packet according to the characteristic of the packet, the attribute of the packet, and the attribute of the network device. |
US09712436B2 |
Adaptive load balancing for bridged systems
Methods, systems, and computer program products for providing adaptive load balancing for bridged systems are disclosed. Examples generally relate to both physical and virtualized computer systems. A computer-implemented method may include mapping a first network interface to each of a plurality of intermediate network interfaces, determining a second network interface to use from the intermediate network interfaces for sending an outbound packet received from the first network interface, updating the outbound packet by replacing a source layer-2 network address of the outbound packet with a layer-2 network address assigned to a mapping between the first network interface and the second network interface, and sending the updated outbound packet using the second network interface. |
US09712432B2 |
Light-weight fork channels for clustering
A method for light-weight fork channels for clustering is disclosed. The method includes receiving, by a processing device, a message at a main channel used for group communication between processes executed by the processing device, identifying a fork channel identifier (ID) and a fork stack ID in a header of the message, processing the message with a fork stack corresponding to the fork stack ID in the header of the message, the fork stack comprising a subset of protocols of a main protocol stack of the main channel, and providing the message to a fork channel corresponding to the fork channel ID, wherein the fork channel to utilize the fork stack to separate messages for the fork channel from the main channel. |
US09712430B2 |
Relay apparatus and control method
A relay apparatus includes a first data storage unit and a processor. The first data storage unit stores an output port identifier in connection with a combination of a port identifier and a communication type identifier. The processor obtains, when a frame is received, a first output port identifier corresponding to a combination of a port identifier of a port that received the frame and a communication type identifier included in the received frame by use of the first data storage unit to output the received frame to a port identified by the first output port identifier. |
US09712425B2 |
Maintaining optimal media routing
A method of managing a media path for a media session established between users across a plurality of interconnected Internet Protocol (IP) networks which utilize Session Initiation Protocol (SIP) and Session Description Protocol (SDP) signaling. The method comprises, at session establishment via a signaling path over the IP networks, making a determination that a shortcut media path is available, wherein the shortcut media path deviates from the signaling path. The method further comprises making a further determination that nodes in the signaling path will subsequently be able to maintain the shortcut media path in the event of a subsequent session update or re-invite and, at a subsequent session update or re-invite, including within update or re-invite signaling an indication that the shortcut media path is to be maintained. |
US09712421B2 |
System and method for subscriber aware network monitoring
A system and method for subscriber aware network monitoring is provided. The method includes: determining subscriber and session data, wherein the subscriber has a non-unique IP (Internet Protocol) address; retrieving identifying data from a packet; and comparing the identifying data with the determined subscriber and session data to determine the subscriber associated with the packet. The system includes: at least one network probe configured to determine subscriber and session data, wherein the subscriber has a non-unique Internet Protocol (IP) address; at least one traffic probe configured to retrieve identifying data from a packet; and a processing module configured to compare the identifying data with the stored subscriber and session data to determine the subscriber associated with the packet. |
US09712419B2 |
Integrated switch tap arrangement and methods thereof
An integrated switch tap device for managing and monitoring network traffic is provided. The device includes a set of network ports for receiving and outputting the network traffic. The device also includes a first logic arrangement for performing routing functionalities and a first CPU for processing the routing functionalities. The device further includes a set of monitoring ports that is coupled to one or more monitoring devices. The device yet also includes a first tap module, which is configured at least for intercepting at least part of the network traffic flowing through the network device, creating a copy of at least part of the network traffic, and forwarding the copy to at least one of the set of monitoring ports. The device moreover includes a second CPU configured at least for processing tap functionalities associated with the first tap module. |
US09712417B2 |
Collision control during delay measurement in optical transport networks
Methods and systems for collision control during delay measurements in optical transport networks include scheduling delay measurements in time slices of a time window. At most, one delay measurement per time slice is scheduled and performed for each optical data unit (ODU) in an optical transport network (OTN). |
US09712415B2 |
Method, apparatus and communication network for root cause analysis
There is provided a method (100) for root cause analysis of service quality degradation in a communications network. The method comprises receiving (102) measurements from a plurality of nodes in the communication network, determining (104) identifiers for the received measurements, using (106) the identifiers for the received measurements to determine a network topology; and performing (108) root cause analysis based on the determined topology and the measurements linked with said topology. |
US09712413B2 |
Systems and methods for managing computing systems utilizing augmented reality
Various embodiments for managing computing systems are provided. In one embodiment, a method comprises comparing an identified target device in a captured environmental input to a model of the target device; recognizing, in real-time, a status condition of the target device based on the comparison; and determining if the target device is functioning properly if the target device and the model of the target device match, wherein if the target device is not functioning properly: a cause of error and troubleshooting instructions are displayed. |
US09712403B2 |
Method for providing node information, method for acquiring node information, and device
A method provides node information. A command for requesting node information associated with a target node is received. The command includes a Management Object Identifier (MOI) and node object information associated with the target node. The node information associated with the target node is sent according to the MOI and the node object information in the command. |
US09712398B2 |
Authenticating connections and program identity in a messaging system
A messaging system enables client applications to send and receive messages. The messaging system includes independent component programs performing different functions of the messaging system, such as connection managers that maintain network connections with the client applications, a message router that sends received messages to recipient applications through network connections, and a dispatcher that authenticates other component programs. A messaging server may authenticate client applications using certificate-based authentication (e.g., private and public keys), authentication transfer from another trusted messaging server, or other methods (e.g., user name and password). To authenticate a component program, the dispatcher compares instantiation information (e.g., user identity, process identifier, creation time) of the component program provided by the operating system with instantiation information saved in a shared memory at the time of the component program's instantiation. In response to a match, the dispatcher provides the component program with secure information through an inter-process communication socket. |
US09712394B2 |
Sensor network system, sensor network control method, sensor node, sensor node control method, and sensor node control program
A sensor network system 1000 is provided with a plurality of sensor nodes 1100, . . . and configured to decide a parent node for each of the plurality of sensor nodes so as to form a network topology having a tree structure using each of the plurality of sensor nodes as a node. The sensor network system forms the network topology so that, with respect to each of the plurality of sensor nodes, the number of child nodes owned by the sensor node is close to a value obtained by multiplying a maximum containing number, which is a maximum number of sensor data that can be contained by one packet, by a natural number (1200). |
US09712388B2 |
Systems and methods for detecting and managing cloud configurations
A cloud configuration management method implemented in a cloud configuration management system communicatively coupled to one or more cloud nodes in a cloud system includes creating a plurality of golden configurations for each of a plurality of roles, wherein each of the one or more cloud nodes has one of the plurality of roles for operation in the cloud system; defining metadata rules for each of the plurality of golden configurations; performing a configuration analysis to audit the one or more cloud nodes using the metadata rules; and providing results of the configuration analysis to determine misconfiguration of any of the one or more cloud nodes. |
US09712384B2 |
Making subscriber data addressable as a device in a mobile data network
A mobile data network supports making subscriber data addressable as devices in a mobile data network. Each data chunk is assigned a device address in the mobile data network. The data chunk can then be addresses as a device in the mobile data network. A first implementation allows accessing data in existing mobile data networks by sending a text message to the device address of the data chunk. When the data chunk receives a text message, it responds with one or more text messages that deliver the data in the data chunk to the sender who sent the text message. A second implementation includes a subscriber data mechanism in the mobile data network that supports tracking, transfer and management of subscriber data in the mobile data network. Making subscriber data addressable as a device simplifies data-centric communication in a mobile data network. |
US09712381B1 |
Systems and methods for targeted probing to pinpoint failures in large scale networks
Systems and methods for locating network errors. The system includes a plurality of host nodes in a network of host nodes and intermediary nodes, and a database storing route data for each of a plurality of host node pairs. The system includes a controller configured to identify a subject intermediary node to investigate for network errors and select, using route data stored in the database, a set of target probe paths. Each target probe path includes a respective pair of host nodes separated by a network path including at least one target intermediary node, which is either the subject intermediary node or an intermediary node that is a next-hop neighbor of the subject intermediary node. The controller is configured to test each target probe path in the set of target probe paths and to determine, based on a result of the testing, an operational status of the subject intermediary node. |
US09712380B2 |
Analytical device control system
Analytical device control servers transmit analytical parameter information and analysis data concerning the analysis being controlled to a system control server at a predetermined time interval. When the system control server detects a fault in an analytical device control server, the system control server determines a new assignment destination from among other normally functioning analytical device control servers, transmits analytical parameter information and analysis data saved in an analysis information storage unit to the assignment destination analytical device control server, and transmits a command to continue execution of control of analysis of the analytical device to that analytical device control server. |
US09712377B2 |
Methods and apparatus to transfer management control of a client between servers
An example network device includes a processor configured to execute an Open Mobile Alliance (OMA) Device Management (DM) server, the OMA DM server to perform operations of: participating in mutual authentication with a second OMA DM server; sending a notification to the second OMA DM server for notifying the second OMA DM server to proceed with a delegation process; and sending, to a DM client, information for modifying an access control list (ACL). |
US09712376B2 |
Connector configuration for external service provider
An apparatus identifies a connector configuration event. Responsive to the connector configuration event, the apparatus sends an external service information request. The apparatus receives an external service reply to the external service information request. The apparatus performs connector configuration, wherein the connector configuration employs information included in the external service reply, and wherein the performing connector configuration yields a connector employable in consumer external service access. |
US09712375B2 |
Workload deployment with infrastructure management agent provisioning
A computer-implemented method for managing a workload in connection with a networked computing infrastructure having a plurality of host computer systems includes obtaining first data indicative of an environment type of the networked computing infrastructure, obtaining second data indicative of an operating system type of the workload, deploying, with a processor, an image of the workload in a virtual machine on a target host computer system of the plurality of host computer systems, incorporating a management agent of the networked computing infrastructure into the virtual machine to provision the virtual machine for operation within the networked computing infrastructure, the management agent being configured in accordance with the first data, and modifying launch instructions of the virtual machine in accordance with the second data such that the management agent is invoked during the operation of the virtual machine. |
US09712373B1 |
System and method for memory access in server communications
Embodiments of the present invention are directed to memories used in server applications. More specifically, embodiments of the present invention provide a server that has memory management module that is connected to the processor using one or more DDR channels. The memory management module is configured to provide the processor local access and network access to memories on a network. There are other embodiments as well. |
US09712372B2 |
Cable signal detector
A cable signal detector is configured to detect the presence or absence of information communication in a communication cable including a plurality of signal line pairs for differential signaling. The cable signal detector includes a plurality of detecting portions each of which is configured to partially branch and draw a transmission signal from a different signal line pair, rectify the branched and drawn signal into a direct current, and output that direct current, and a displaying portion configured to display the presence or absence of information communication, based on outputs of the plurality of detecting portions. The outputs of the plurality of detecting portions are connected in series, and the displaying portion is configured to display the presence or absence of information communication, based on an overall output voltage of the plurality of detecting portions connected in series. |
US09712371B2 |
Continuous digital content presentation across multiple devices
A digital audio gateway device for use in a wireless network of digital audio playback devices. The gateway device is wirelessly linked to one or more digital audio playback devices to provide a gateway to the Internet for the digital audio playback devices. In addition to functioning as a gateway, the device provides additional functionality and may act as a cache of digital audio data for the various digital audio players connected in the wireless network and may also act to automatically update digital audio content on the audio players, synchronize digital audio content and playlists between the digital audio players and continue automatically or upon user request a particular playlist as the user moves from one digital audio player to another. |
US09712370B2 |
Zero-intermediate frequency correction method, apparatus, and device
A signal receiving apparatus receives a radio frequency signal sent by a signal transmitting apparatus, where the radio frequency signal includes a transmit end image component. The signal receiving apparatus generates a receive end image component after performing down-conversion processing on the radio frequency signal. The signal receiving apparatus separately removes the receive end image component and the transmit end image component by performing quadrature modulation compensation twice. |
US09712369B2 |
Method and apparatus for low-complexity frequency dependent IQ imbalance compensation
Methods and apparatuses are provided in which a processor of a transceiver selects one of a real component of a complex signal and an imaginary component of the complex signal. The complex signal has IQ imbalance. An adaptive filter of the transceiver performs a real multiplication operation using an adaptive filter coefficient and the one of the real component and the imaginary component of the complex signal to generate a complex compensation signal. An adder of the transceiver sums the complex signal and the complex compensation signal to generate a compensated signal in which the IQ imbalance is corrected. The compensated signal is output for digital processing. |
US09712365B2 |
Compressed feedback format for WLAN
Channel data for a plurality of OFDM tones for one or more spatial or space-time streams are determined. A plurality of angle values associated with the one or more spatial or space-time streams and the one or more OFDM tones of the plurality of OFDM tones are determined. For each of the one or more spatial or space time streams, a per-tone signal to noise ratio (PT-SNR) associated with one or more OFDM tone of the plurality of OFDM tones is determined, and an average signal to noise ratio (avg-SNR) is determined by averaging signal to noise ratio (SNR) values corresponding to one or more OFDM tones of the plurality of OFDM tones. A feedback report is generated to include at least i) the plurality of angle values, ii) the PT-SNRs, and iii) the avg-SNR. |
US09712362B2 |
Method for transmitting and receiving data in wireless local area network and apparatus for the same
Disclosed are a method and an apparatus for transmitting and receiving data in a Wireless Local Area Network (WLAN) system. A method for transmitting data may comprise generating a physical layer (PHY) frame including a payload in which a plurality of Medium Access Control protocol data units (MPDUs) are multiplexed; and transmitting the PHY frame, wherein the PHY frame includes information on subcarriers occupied by each of the plurality of MPDUs in an Orthogonal Frequency Division Multiplexing (OFDM) symbol of the payload. Therefore, data transmission efficiency in a WLAN system can be enhanced. |
US09712361B2 |
Method for generating a built symbol for PAPR reduction and a method for demodulating a received symbol
Method for generating a built-symbol including plurality of sub-symbols for transmission including data of an original symbol of an orthogonal multi-carrier modulation-signal reducing the peak-to-average power-ratio (PAPR) and increase its robustness against Doppler-effects of the orthogonal multi-carrier modulation-signal, the original symbol lasting a duration, Ts and carried by N-tones; also including: applying intrinsic temporal diversity properties of complex N-points Inverse-Fast-Fourier-Transform to the original symbol, where plurality of sub-symbols number is M, each M sub-symbols lasts Ts/M and is carried by N/M disjoint-tones, the M sub-symbols are time-multiplexed, so the time-multiplexed built-symbol contains all-data at the same rate of the original symbol. The built-symbol is demodulated, utilizing an orthogonal multi-carrier receiver. Demodulating the received built-symbol including the M sub-symbol by demodulating sequentially sub-symbol by sub-symbol, improving the signal against Doppler-effects robustness. Step of increasing secrecy at the communication system physical-layer by taking the unique properties applied the time-multiplexed built-symbol for transmission. |
US09712359B2 |
System and method for communication using ambient communication devices
Interactive communication devices in communication with a central server support ambient communications between two or more remotely located users. Each device has embedded sensors, lights, and speakers. The sensors allow the device to sense ‘outgoing’ interaction (e.g., a squeeze or hug), and the lights and speakers allow the device to demonstrate ‘incoming’ interaction. A central device is activated when someone interacts with any of the other devices within the network. The other devices in the network—the peripheral devices—are activated both when the interaction originates from the central device as well as from the other peripheral devices. When the server determines that a user has interacted with one of the devices, messages are sent to other devices in the network to reflect the user interaction. The communication devices allow the users in the network to send messages to each other by simply squeezing their respective devices. |
US09712356B2 |
Managing multiple modulation schemes with coded modulation indicator in default-modulated preamble
A wireless transmission having a header and a payload is sent by transmitting a preamble of the header with a first modulation, wherein the preamble carries a coded modulation indicator. The payload and a remainder of the header are transmitted with a modulation associated with the coded modulation indicator. When the transmission is received, the preamble is demodulated in accordance with the first modulation. The coded modulation indicator is then decoded, and the payload and the remainder of the header are demodulated in accordance with the modulation indicated by the decoded modulation indicator. |
US09712349B1 |
FFE-aided CDR to calibrate phase offset and enhance gain in baud rate sampling phase detector
A system and method for Feed Forward. Equalizer (FFE)-Aided Clock Data Recovery (CDR) to calibrate phase offset and enhance gain in baud rate sampling phase detector is provided. In an embodiment, a clock data recovery (CDR) apparatus includes an incremental feed forward equalizer (INC-FFE) in a CDR path and a calibration component in an equalization path, the calibration component connected to the INC-FFE, the calibration component configured to adjust FFE coefficients for the INC-FFE according to a phase code (PC) index in a PC index table and one of a signal-to-noise-ratio (SNR) and a bit error rate (BER) of a sampled signal, wherein the PC index table comprises adjustment values for the FFE coefficients, and wherein the PC index is linearly related to a sampling phase. |
US09712347B2 |
High data rate multilevel clock recovery system
Digital receiver systems and clock recovery techniques for use in digital receiver systems are provided to implement asynchronous baud-rate clock recovery systems for high data rate serial receivers multilevel line modulation. A two-stage postcursor ISI equalization system is provided to efficiently emulate a 4-level DFE (decision feedback equalization) system, for example, while converting a 4-level equalized signal to s 2-level equalized signal. For example, a two stage postcursor ISI equalization system includes a DFE stage which operates on a most significant component of a given 4-level data symbol, followed by a DFFE (decision-feedforward equalizer) stage which operates on a least significant component of the given 4-level data symbol. In parallel with the DFFE stage, an estimate of the least significant component is subtracted from the equalized 4-level data symbol to convert the 4-level data symbol to a 2-level symbol. |
US09712340B2 |
Using a shared data store for peer discovery
After acquiring a network address, a computing device accesses a shared data store and writes the network address to the shared data store. The computing device additionally reads a plurality of network addresses from the shared data store, wherein the plurality of network addresses are for a plurality of nodes that are members of a peer-to-peer system. The computing device then joins the peer-to-peer system based on communicating with the plurality of nodes using the plurality of network addresses. |
US09712339B2 |
Bus architecture and access method for plastic waveguide
The present disclosure relates to a system that uses a switch to convey wireless signals between a plurality of electronic devices interconnected by dielectric waveguides. In some embodiments, the system includes a plurality of electronic devices respectively having a transceiver element that generates a wireless signal that transmits a data packet. A switch receives the wireless signal from a first one of the plurality of electronic devices and re-transmits the wireless signal to a second one of the plurality of electronic devices. A plurality of dielectric waveguides convey the wireless signal between the plurality of electronic devices and the switch. Respective dielectric waveguides have a dielectric material disposed at a location between one of the plurality of electronic devices and the switch. Using the switch to convey wireless signals between the plurality of electronic devices provides a system that has a low wireless signal attenuation and reduced number of transceivers. |
US09712338B2 |
Communication system
A communication system is provide which includes a plurality of communication units connected to a communication line, in which collisions occur between dominant signals outputted from the communication units on the communication line. At least one of the communication units includes a first driver which is set so that a variation of voltage applied to the communication line in transmission of the dominant signal with respect to that in absence of transmission of the dominant signal is smaller than a variation of voltage applied from another of the communication units to the communication line in transmission of the dominant signal. One of the communication units, which differs from the communication unit including the first driver, includes a second driver which limits variation per unit time of current flowing through the communication line in transmission of the dominant signal. |
US09712335B2 |
Secure remote actuation system
A secure remote actuation system may comprise a central signal switch and a remote input receptor. The central signal switch may comprise one or more acceptable inputs. The remote input receptor may comprise a user interface for receiving one or more user inputs from a user. The remote input receptor may further comprise a microcontroller for obtaining and comparing the acceptable inputs to the user inputs. In the present invention, the microcontroller obtains the one or more acceptable inputs from the central signal switch after the user begins to use the user interface. |
US09712334B2 |
Efficient multicast topology construction in a routed network
One embodiment of the present invention provides a layer-3 forwarding device. The layer-3 forwarding device includes a processor and a computer-readable storage medium. The computer-readable storage medium stores instructions which when executed by the processor cause the processor to perform a method. The method comprises determining whether the layer-3 forwarding device is a leaf layer-3 forwarding device of a multicast distribution tree of a multicast group in a routed network based on a multicast topology discovery message from a root layer-3 forwarding device of the multicast distribution tree. If the layer-3 forwarding device is the leaf layer-3 forwarding device, the method comprises constructing a multicast topology report message. This multicast topology report message includes topology information of the multicast group in the routed network associated with the layer-3 forwarding device. |
US09712333B2 |
Bilateral chat for instant messaging
Systems and technologies for providing an electronic bilateral chat room are disclosed. Users of the system may be screened against a database of organizations having hierarchal information relating to parent organization for which the user is associated, including parent subsidiaries, joint ventures and affiliates. While a bilateral chat room is limited to users in only two organizations, the present disclosure also allows other users that are associated with the structure of the parent organization to be included in the chat room. |
US09712330B2 |
Physically uncloneable function device using MRAM
In some examples, a first delay path and a second delay path may each be configured to receive a signal as an input signal at the same time, propagate the input a plurality of MRAM cells, and output the propagated input signal for an arbiter. The arbiter may be configured to output a response value based at least in part on a relative order of arrival of the propagated input signals from the first and second delay paths. |
US09712327B1 |
System and method for remote storage auditing
The present invention relates to remote storage auditing. In another embodiment, a remote storage auditing system may include a first remote storage manager configured to be a data owner, a second remote storage manager configured to be a storage donor, and a remote storage auditor. The first remote storage manager sends a data block and a signed fingerprint for the data block to the second remote storage manager. The second remote storage manager verifies that the signed fingerprint is associated with the data block and stores the data block and signed fingerprint. The second remote storage manager calculates a fingerprint for a sub-block of the data block, and sends the fingerprint for the sub-block and signed fingerprint to the remote storage auditor. The remote storage auditor audits a sub-block of the data block and verifies the fingerprint for the sub-block and signed fingerprint. |
US09712326B2 |
Method and system for backing up private key of electronic signature token
Provided are a method and system for backing up the private key of an electronic signature token, the method comprising: a first electronic signature token transmits a private key backup request data packet comprising a first signature; a second electronic signature token authenticates the first signature in the private key backup request data packet; if the first signature passes authentication, then determining whether the first electronic signature token has a backup relationship with the second electronic signature token; if yes, then encrypting the private key of the second electronic signature token, and transmitting a private key backup response data packet comprising a second signature and the encrypted private key; the first electronic signature token authenticates the second signature in the private key backup response data packet; if the second signature passes authentication, then determining whether the second electronic signature token has a primary-standby relationship with the first electronic signature token; and if yes, then decrypting the encrypted private key. |
US09712325B2 |
Managing secure content in a content delivery network
A system, method, and computer readable medium for managing secure content by CDN service providers are provided. A network storage provider stores one or more resources on behalf of a content provider. A CDN service provider obtains client computing device requests for secure content. Based on processing first signature information, the CDN service provider determines whether the secure content is available to the client computing device. If the CDN service provider does not maintain the requested content, the CDN service provider transmits a request to the network storage provider. Based on second signature information and an identifier associated with the CDN service provider, the network storage provider processes the request based policy information associated with the identifier. |
US09712321B2 |
Unified broadcast encryption system
A system and method is disclosed for performing unified broadcast encryption and traitor tracing for digital content. In one embodiment a media key tree is divided into S subtrees, the media key tree including media keys and initial values, which may be random values. The digital content is divided into a plurality of segments and at least some of the segments are converted into a plurality of variations. The random values are transformed into media key variations and a separate media key variant is assigned to each of the subdivided subtrees. A unified media key block including the media key tree is stored on the media. |
US09712312B2 |
Systems and methods for near band interference cancellation
A method for self-interference canceller tuning for a near band radio includes receiving, in a first frequency band, an RF transmit signal of the near band radio; receiving, in a second frequency band, an RF receive signal of the near band radio; generating a self-interference cancellation signal from the RF transmit signal based on a set of configuration parameters; combining the self-interference cancellation signal with the RF receive signal to create a composite receive signal; and adapting the set of configuration parameters based on the compo-site receive signal. |
US09712305B2 |
Method and apparatus for transmitting and receiving multi-user control channels in a wireless communication system with multiple antennas
Provided are a method and apparatus for transmitting and receiving multi-user control channels through a data channel region in a wireless communication system using multiple antennas. Further provided is a definition of a new search space for control channel candidates. In the transmitting method, a base station forms control channels for a plurality of user equipment each of which is composed of at least one resource block, performs a mapping for the control channels by dividing a space of the same transmission region in a data channel region of a sub-frame, and then multiplexes the control channels with data channels in the data channel region of the sub-frame and to transmit the multiplexed control channels. |
US09712301B2 |
Method and device for transmitting/receiving downlink reference signal in wireless communication system
The present invention relates to a wireless communication system, and discloses a method and a device for transmitting/receiving a downlink reference signal in a wireless communication system. The present invention provides a way for maintaining orthogonality of a reference signal between cells in a multi-cell operation. |
US09712300B2 |
Method and apparatus for reporting reference information with respect to multiple carriers or multiple cells
A method includes causing first reference information associated with a first cell or carrier and second reference information associated with a second cell or carrier to be sent to a first destination in a first time interval and causing at least third reference information associated with a third cell or carrier to be sent to a second destination in a different time interval. |
US09712295B2 |
Method and device for inter-cluster cooperative communication in mobile communication system
The present invention relates to a method and device for inter-cluster cooperative communication in a mobile communication system. A central unit operating method for inter-cluster cooperative communication in a mobile communication system comprises processes comprising: a process of receiving channel data from serving sectors in a serving cluster; a process of respectively receiving the magnitude of change of a target function for scheduling depending on whether the serving sector is blank, from neighboring sectors in neighboring clusters of the serving cluster; and a process of determining the blank pattern of the serving cluster, by using the channel data received from the serving sectors, and the magnitude of change of the target function received from the neighboring sectors in neighboring clusters. |
US09712291B2 |
Method for transmit diversity of HARQ-ACK information feedback
The present invention relates to a method for transmit diversity of HARQ-ACK information feedback in a wireless communication system, said system being adapted to employ transmit diversity and non-transmit diversity transmissions of HARQ-ACK information feedback, said method comprising: assigning uplink control channel resources and modulation symbols to HARQ-ACK states for at least two antenna ports such that said HARQ-ACK states are abled to be transmitted when associated uplink control channel resources are implicitly reserved, wherein at least one of said uplink control channel resources is assigned to more than one of said at least two antenna ports, and wherein uplink control channel resources and modulation symbols assigned to HARQ-ACK states for one of said at least two antenna ports is the same as when non-transmit diversity of HARQ-ACK information feedback is employed; and transmitting HARQ-ACK states assigned according to said assignment step on said at least two antenna ports. |
US09712286B2 |
Adaptive HARQ for half duplex operation for battery and antenna constrained devices
A user equipment (UE) implements improved communication methods which enable uplink (UL) transmissions consistent with an UL timeline. The UE may have a transmit duty cycle and may transmit acknowledge/negative acknowledge messages to a base station according to the transmit duty cycle. Additionally, the UE may be configured to determine signal-to-interference-plus noise ratio (SINR) between the UE and the base station and compare SINR to a threshold. The UE may transmit redundancy versions of data in consecutive sub-frames with a duty cycle of two transmissions per X+1 sub-frames if SINR is equal or above the threshold and redundancy versions using a duty cycle of one transmission per X sub-frames if SINR is below the threshold. Further, the UE may be configured to communicate a number of UL HARQ processes supported by the UE, receive first information in a first sub-frame, and send second information X sub-frames after the first sub-frame. |
US09712284B2 |
Device, system and method of communicating aggregate data units
Some demonstrative embodiments include devices, systems and/or methods of communicating aggregate data units. For example, a device may include a wireless communication unit to communicate an aggregate data unit including a plurality of data units in an increasing order of sequence numbers assigned to the data units, such that a first data unit having a first sequence number always precedes a second data unit having a second sequence number, greater than the first sequence number. |
US09712282B2 |
Route-less multi-hop transmission technique in a peer-to-peer infrastructure-less network
A method includes receiving, at a first station of a peer-to-peer infrastructure-less network, a data packet transmitted from a second station of the peer-to-peer infrastructure-less network. The method also includes determining whether to retransmit the data packet to at least one other station in the peer-to-peer infrastructure-less network or whether to suppress retransmission of the data packet based on received signal strengths of received retransmissions of the same data packets from one or more nearby stations. |
US09712280B2 |
Output signal generating method, decoded data generating method, output signal generating apparatus, and decoded data generating apparatus
A transmitter apparatus wherein a simple structure is used to successfully suppress the degradation of error rate performance that otherwise would be caused by fading or the like. There are included encoding parts that encode transport data; a mapping part that performs such a mapping that encoded data sequentially formed by the encoding parts are not successively included in the same symbol, thereby forming data symbols; and a symbol interleaver that interleaves the data symbols. In this way, a low computational complexity can be used to perform an interleaving process equivalent to a bit interleaving process to effectively improve the reception quality at a receiving end. |
US09712279B2 |
Method and apparatus for interleaving data in a mobile communication system
An interleaving method in a mobile communication system is provided. The interleaving method includes encoding a plurality of bits to output encoded bits in a sequence, interleaving the encoded bits based on a modulation order to generate interleaved encoded bits comprising consecutive bits having a size based on the modulation order, the consecutive bits corresponding to consecutive bits of the encoded bits, scrambling the interleaved encoded bits with a scrambling code to generate scrambled bits, and modulating the scrambled bits based on the modulation order to output at least one symbol. |
US09712278B2 |
Adjusting blind decoding of downlink control channel
The present disclosure is related to adjusting a blind decoding of a downlink control channel in a base station. A method of adjusting a blind decoding of a downlink control channel may include creating an enhanced physical downlink control channel (EPDCCH) using the number of EPDCCH candidates per aggregation level (AL) in each of one or more EPDCCH sets for user equipment; and transmitting the created EPDCCH to the user equipment. Herein, the number of EPDCCH candidates is determined based on at least one of (i) a resource size associated with configuration of each EPDCCH set and (ii) the total number of EPDCCH sets. |
US09712277B2 |
Channel quality indicator feedback method and apparatus, and user equipment
Embodiments of the present invention provide a channel quality indicator feedback method and apparatus, and a user equipment, so as to improve accuracy of channel quality reflection. The method includes: acquiring a first channel quality indicator CQI1 based on detection of a pilot that is sent by a base station; acquiring a second channel quality indicator CQI2 based on a result of detection of a demodulation pilot; and sending the first channel quality indicator CQI1 and/or the second channel quality indicator CQI2 to the base station in a manner in which the base station can distinguish the first channel quality indicator CQI1 and/or the second channel quality indicator CQI2. The method provided by the embodiments of the present invention objectively reflects a current channel quality status, so that the base station can acquire accurate channel quality information, thereby objectively scheduling data based on the channel quality information and improving data sending efficiency of a channel. |
US09712274B2 |
Optical communication system with a hierarchical branch configuration
An optical communication system with a hierarchical branch configuration. The system includes first and second cable landing stations coupled to a trunk path in an optical cable. At least one hub-node is coupled to the trunk path through an associated hub-node branching unit. In an embodiment, mid-nodes are coupled the hub-nodes through associated mid-node branching units and mid-node paths in the optical cable. Mid-node signals may be communicated between the mid-nodes and the hub-nodes without being provided on the trunk path. Sub-nodes are coupled to at least one of the mid-nodes through associated sub-node branching units and sub-node paths in the optical cable. Sub-node signals may also be communicated between the sub-nodes and the mid-nodes without being provided on the trunk path or the mid-node path. |
US09712271B2 |
Radio base station, user terminal and radio communication method
The present invention is designed to reduce the impact of interference even when different DL/UL configurations are applied between neighboring transmission points (radio base stations). A radio base station which can communicate with a user terminal by means of time division duplexing, and furthermore change and control the DL/UL configuration, has an interference measurement section that measures the interference level from other radio base stations in at least a UL subframe, and a scheduling control section that changes the feedback method of uplink control signals, which the user terminal feeds back in the UL subframe in response to downlink signals that have been transmitted in DL subframes, based on the measured interference level. |
US09712262B2 |
Method and apparatus for performing measurement in wireless communication system
A method for and apparatus for performing a measurement in a wireless communication system is provided. A wireless device determines information about a measurement type, the measurement type indicating one of a first measurement object and a second measurement object and performs measurement using a measurement signal at subframe(s) configured in the measurement object indicated by the measurement type. The measurement signal includes one of a discovery signal, a measurement reference signal (MRS) and a cell-common RS (CRS). |
US09712261B2 |
Apparatus and method of background temperature calibration
A circuit includes a controller configured to determine a calibration state of a circuit, to determine an active mode state of the circuit, and to select a type of calibration operation based on the calibration state. The controller is configured to control timing of the selected type of calibration operation in response to determining the calibration state to correspond to a time when the circuit is not active. |
US09712253B1 |
Timing recovery for optical coherent receivers in the presence of polarization mode dispersion
A timing recovery system generates a sampling clock to synchronize sampling of a receiver to a symbol rate of an incoming signal. The input signal is received over an optical communication channel. The receiver generates a timing matrix representing coefficients of a timing tone detected in the input signal. The timing tone representing frequency and phase of a symbol clock of the input signal and has a non-zero timing tone energy. The receiver computes a rotation control signal based on the timing matrix that represents an amount of accumulated phase shift in the input signal relative to the sampling clock. A numerically controlled oscillator is controlled to adjust at least one of the phase and frequency of the sampling clock based on the rotation control signal. |
US09712252B2 |
Adaptive equalizer with coefficients determined using groups of symbols to compensate for nonlinear distortions in optical fiber communications
An adaptive equalizer with coefficients determined by averaging an estimated filter coefficient over a number, N, of past and future symbols. Estimated filter coefficients may be optimized by optimization of the number N, an averaging window function and a scaling factor using a metric. The metric also allows estimation of the amount of noise that may be compensated by an adaptive equalizer consistent with the present disclosure. |
US09712249B2 |
Methods and systems for superchannel subcarrier monitoring using amplitude modulated tones
Methods and systems for superchannel subcarrier monitoring using amplitude modulated (AM) tones include modulating an optical subcarrier of a superchannel with a first frequency that is chosen to be substantially smaller than a baud rate for data modulated onto the optical subcarrier. Certain pairs of subcarriers in the superchannel may be modulated with AM tones having a common frequency with complementary phase for power equalization. Then, downstream detection and monitoring of the optical subcarrier may be performed based on demodulation of the first frequency. Each optical subcarrier in the superchannel may be modulated using a respectively unique combination of AM tone and phase. |
US09712244B2 |
Apparatus and method for efficient two-way optical communication where transmitter may interfere with receiver
A two-way optical communication apparatus includes a transmit element, a receive element and a transceive processor. The transmit and receive elements are coupled to a light pipe, and configured to transmit a first optical signal and receive a second optical signal, respectively. The transceive processor is configured to direct the transmit element to suspend transmitting the first optical signal during reception periods, and direct the receive element to sample for the second optical signal during sampling intervals within the reception periods. Each reception period lasts for a respective duration of time, and occurs in the first optical signal at a respective duty cycle. The receive element is configured to sense an ambient light level of the surrounding environment during the reception periods, and the transceive processor is configured to adjust the durations of time and the duty cycles of the reception periods according to the sensed ambient light level. |
US09712242B2 |
Optical network and optical network element
An optical network is suggested, comprising a first set of optical fibers, a multimode multiplexer, a multimode amplifier, a multimode demultiplexer, and a second set of optical fibers, wherein the first set of optical fibers is connected via the multimode multiplexer to the multimode amplifier and wherein the multimode amplifier is connected via the multimode demultiplexer to the second set of optical fibers. Accordingly, an optical network element is provided. |
US09712241B2 |
Communication system, master station device, slave station device, control unit, and communication control method
A communication system in which a master station device is connected to a plurality of slave station devices by an optical transmission line and a plurality of wavelengths are used to perform at least one of downstream communication and upstream communication. The master station device includes: a control unit that assigns a wavelength to be used in communication to the slave station device, and that generates a control signal for notifying the slave station device of the assigned wavelength; and an optical transmitter that transmits the control signal generated by the control unit to the slave station device. The slave station device includes an optical receiver and an optical transmitter that carry out communication with the master station device using the wavelength based on the control signal received from the master station device. |
US09712230B1 |
Directional statistical priority multiple access system and related method
The present invention is directed to a system and related method for providing high bandwidth communication between nodes in an RF neighborhood. Each node may transmit via an omnidirectional antenna element while time differentially receiving via a directional antenna element. As each node receives signals from neighborhood nodes, it determines a neighborhood contingent as well as a desirability of the received signals and the direction from which the desirable signals originate. Based on this direction, each node focuses a directional antenna element on the node from which a signal is desired while eliminating interference from transmissions from undesired nodes. Based on the neighborhood contingent, the system adjusts the node's omnidirectional transmit rates to communicate via statistical priority multiple access protocols with the desirable neighborhood nodes. The system adjusts the node's statistical priority multiple access channel access to account for the eliminated interference. |
US09712227B2 |
Radio frequency repeater system for signal transmission through radio frequency shielding material
A radio frequency (“RF”) repeater system can receive, from a connected home device, an original RF signal that is unable to propagate through an object. The RF repeater system can demodulate the original RF signal to extract a data stream that includes data captured by the connected home device, can change an original data rate of the data stream to a new data rate that matches an ultrasonic frequency capable of propagating through the object thereby creating an ultrasonic data stream, can transmit, by a first surface transducer, the ultrasonic data stream through the object to a second surface transducer, can receive, by the second surface transducer, the ultrasonic data stream, can change the data stream from the new data rate back to the original data rate, can modulate the data stream to create a new RF signal, and can transmit the new RF signal towards the destination. |
US09712223B2 |
Method of transmitting frames, and corresponding stations and computer program
A frame transmission method is provided for use in a multiuser MIMO system having a transmitter with a plurality of antennas and receivers that are respectively associated with users. The method includes: constructing a sounding frame in which a first portion has at least one symbol for synchronizing destination receivers and a second portion has at least as many pre-coded pilot symbols as there are destination receivers; transmitting the sounding frame in a broadcast mode for its first portion and in a directional mode for its second portion to each of the destination receivers; and constructing a respective data frame for sending to each of the destination receivers by taking account of feedback information coming from the destination receivers and, for each destination receiver, coding interference between destination receivers. |
US09712222B2 |
Layer alignment method and apparatus for multilayer three-dimensional beamforming in wireless communication system
A method for transmitting feedback information for fractional beamforming using a massive antenna array from a User Equipment (UE) to a Base Station (BS) in a wireless communication system is disclosed. The method includes receiving information about a plurality of Reference Signal (RS) resources from the BS; selecting at least one of a sub-precoder for at least one RS resources, and one linking precoder for linking the RS resources, based on a preset codebook; and reporting information about the selected precoder to the BS. The selected precoder is one precoding matrix of precoding matrices included in the codebook or a permuted form of the one precoding matrix, and the information about the selected precoder includes an index and permutation information of the one precoding matrix. |
US09712219B2 |
Method for transmitting signal in multi-antenna wireless communication system and apparatus for the same
The present invention relates to a method for a base station transmitting a precoded signal to user equipment in a wireless communication system supporting a multi-antenna. More specifically, precoding is conducted by using a precoding matrix to which large delay-cyclic delay diversity (LD-CDD) is applied, wherein the precoding matrix is determined by dividing into matrices for a horizontal direction antenna and a perpendicular direction antenna. |
US09712216B2 |
Radio with spatially-offset directional antenna sub-arrays
An intelligent backhaul radio that has an advanced antenna system for use in PTP or PMP topologies. The antenna system provides a significant diversity benefit. Antenna configurations are disclosed that provide for increased transmitter to receiver isolation, adaptive polarization and MIMO transmission equalization. Adaptive optimization of transmission parameters based upon side information provided in the form of metric feedback from a far end receiver utilizing the antenna system is also disclosed. |
US09712206B2 |
Preamble design and processing method for on-the-fly, frame-by-frame air data rate detection in wireless receivers
In a system and method for wireless communication with a transmitter and a receiver, the transmitter is operable to wirelessly transmit digital information to the receiver with a plurality of data transmission rates using a modulation format, wherein the digital information is transmitted using a transmission frame including a header part and a payload part, and the header part comprises a preamble, wherein the modulation format is the same for all data transmission rates and wherein the data transmission rate is at least encoded into the preamble of the frame, and wherein the receiver is configured to determine the data transmission rate when receiving the preamble. |
US09712205B2 |
Duplex unit
A duplex unit allowing simultaneous transmission and reception of microwave signals on at least partly overlapping frequency bands, comprising an interference canceller unit and a control unit, the duplex unit being arranged to receive a transmit signal and to output a first part of the transmit signal at an antenna port, the duplex unit further being arranged to receive a receive signal comprising a payload signal at the antenna port, and to output a combination of the receive signal and a filtered transmit signal as an interference suppressed receive signal of the duplex unit. |
US09712204B2 |
Adaptive antenna selection for interference mitigation
This disclosure relates to performing antenna selection to reduce interference in a wireless device. According to some embodiments, it may be determined whether simultaneous communication according to first and second wireless communication technologies causes performance degradation to a third wireless communication technology. If the simultaneous communication according to first and second wireless communication technologies does cause performance degradation to the third wireless communication technology, selection of antenna(s) used for the communications may be based at least in part on the determination that the simultaneous communication according to the first and second wireless communication technologies causes performance degradation to the third wireless communication technology. |
US09712203B2 |
Radio frequency properties of a case for a communications device
A case is provided for a portable Radio Frequency (RF) communications device in which the portable RF communications device has an RF antenna arrangement internal to or integrated with an outer housing, the outer housing having an outer surface having a first portion, dielectric characteristics adjacent to which having a relatively low effect on a frequency characteristic of the RF antenna arrangement; and a second portion, dielectric characteristics adjacent to which having a relatively high effect on the frequency characteristic of the RF antenna arrangement. The case has a base, dimensioned to fit a back of the RF communications device; and a plurality of walls, extending from the base and dimensioned to fit corresponding walls of the RF communications device. The case is configured to cover part of the first portion so as to cause a dielectric parameter adjacent a part of the first portion to be relatively high. The case being further adapted such that a dielectric parameter adjacent the second portion is caused to be relatively low. A method for fitting the case on the RF communications device and method for manufacturing the device is also provided. |
US09712196B2 |
Tunable notch filter
Aspects of this disclosure relate to a tunable notch filter. In an embodiment, a tunable notch filter includes a series LC circuit in parallel with a tunable impedance circuit, and the tunable notch filter is in a radio frequency signal path associated with a common port of a multi-throw radio frequency switch. According to certain embodiments, the tunable notch filter can be in a radio frequency signal path between an antenna switch and an antenna port. |
US09712193B1 |
High power efficient amplifier through digital pre-distortion and machine learning in cable network environments
An example method for facilitating a high power efficient amplifier through digital pre-distortion (DPD) in cable network environments is provided and includes receiving a first signal and a second signal at a DPD coefficient finder in an amplifier module, the second signal including transformations of the first signal from distortions due to channel effects and amplifier nonlinearity, synchronizing the first signal and the second signal, thereby removing the channel effects, computing a first vector representing an inverse of the nonlinearity of the amplifier, computing a second vector representing an inverse of some of the channel effects and providing DPD coefficients to a DPD actuator in the amplifier module, the DPD coefficients including the first vector and the second vector, the DPD actuator predistorting an input signal to the amplifier module with the DPD coefficients, such that an output signal from the amplifier module retains linearity relative to the input signal. |
US09712190B2 |
Data packing for compression-enabled storage systems
A method, according to one embodiment, includes repeating the following sequence at least until a page stripe of a memory cache has at least a predetermined amount of data stored therein: receiving a compressed logical page of data, finding an open codeword having an amount of available space which is greater than or equal to a size of the compressed logical page, and storing the compressed logical page in the open codeword having the amount of available space which is greater than or equal to a size of the compressed logical page. The compressed logical page does not straddle out of the open codeword. Other systems, methods, and computer program products are described in additional embodiments. |
US09712180B2 |
Angle encoder and a method of measuring an angle using same
An angle encoder has first and second components rotatable with respect to each other, and an encoder pattern having codewords for indicating the angle between the first and second components. The encoder pattern has a set of base encoder channels coded with a conventional Gray code, and a set of Booster channels for improving the resolution of angle measurement. |
US09712178B2 |
Dynamic resolution adjustment for digital converters
A circuit includes a digital converter configured to convert an input signal to an output signal. The digital converter is configured to provide the output signal with at least one of a plurality of different output resolutions during each frame based on a control input. A resolution controller is configured to provide the control input to set the resolution of the digital converter to include at least two of the plurality of different output resolutions during each respective frame, such that an aggregate resolution for the digital converter is maintained below a predetermined threshold over time. The aggregate resolution is based on a ratio of the different output resolutions during each respective frame. |
US09712177B1 |
Fractional PLL using a linear PFD with adjustable delay
A phase-locked loop. The phase-locked loop includes a voltage-controlled oscillator having: a control input, and a clock output; and a phase frequency detector having: a reference clock input, a feedback clock input, an up output configured to be either in a set state or a reset state, and a down output configured to be either in a set state or a reset state. The up output and the down output are connected to the control input. The clock output is connected to the feedback clock input. The phase frequency detector includes an adjustable delay block configured to delay, by an adjustable delay time: a transition of the up output from the set state to the reset state, and a transition of the down output from the set state to the reset state. |
US09712176B1 |
Apparatus for low power signal generator and associated methods
An apparatus includes a signal generator. The signal generator includes a voltage controlled oscillator (VCO) coupled to provide an output signal having a frequency. The signal generator further includes an asymmetric divider coupled to receive the output signal of the VCO and to provide an output signal. The output signal of the asymmetric divider has a frequency that is lower than the frequency of the output signal of the VCO. The asymmetric divider presents a balanced load to the VCO. |
US09712169B2 |
Transmit power measurement apparatus having programmable filter device that is set at least based on frequency response of transmit power detection path and related transmit power measurement method thereof
A transmit power measurement apparatus includes a transmit power detection path, a compensation circuit and a tracking circuit. The compensation circuit includes a programmable filter device and a compensation controller. The programmable filter device generates a filter output. The compensation controller sets the programmable filter device at least based on a frequency response of the transmit power detection path. The tracking circuit generates a transmit power tracking result at least based on the filter output. |
US09712168B1 |
Process variation power control in three-dimensional (3D) integrated circuits (ICs) (3DICs)
Systems and methods for process variation power control in three-dimensional integrated circuits (3DICs) are disclosed. In an exemplary aspect, at least one process variation sensor is placed in each tier of a 3DIC. The process variation sensors report information related to a speed characteristic for elements within the respective tier to a decision logic. The decision logic is programmed to weight output from the process variation sensors according to relative importance of logic path segments in the respective tiers. The weighted outputs are combined to generate a power control signal that is sent to a power management unit (PMU). By weighting the importance of the logic path segments, a compromise voltage may be generated by the PMU which is “good enough” for all the elements in the various tiers to provide acceptable performance. |
US09712166B2 |
Data generating device and authentication system
A data generating device according to embodiments comprises a ring oscillator, a flip-flop circuit and a generator. The flip-flop circuit includes a first terminal and a second terminal to each of which the ring oscillator output is inputted, and that determines a value of output of the ring oscillator. The generator generates an ID for authentication based on one or more values determined by the flip-flop circuit at the time when the ring oscillator is turned on. |
US09712164B2 |
Semiconductor device and designing method of semiconductor device
Out of a plurality of transistors, in a power switch which controls, for each logic block, a supply and an interruption of power with respect to the each logic block, each having a gate electrode connected to a well via a contact electrode, and a body region connected to a connection portion of the well with the contact electrode via a well resistor under an element isolation insulating film, and controlling a threshold voltage by changing an electric potential applied to the body region in accordance with a signal of the gate electrode, a plurality of first transistors and a plurality of second transistors which are different from the plurality of first transistors are made to have different delay characteristics from each other between the respective connection portions of the well with the contact electrodes and the respective body regions. |
US09712163B2 |
Manually operated switching device for a vehicle with a sensor activation device
A manually operated switching device for a vehicle, with a switch lever and at least one touch-sensitive sensor device formed on the switch lever, which is designed for detecting an effect on a sensor surface of the sensor device that leaves the switch lever positionally unchanged and that triggers a switching signal, wherein an activation device is formed, with which the detecting state of the sensor device is activated as defined by the user. |
US09712158B1 |
Apparatus and methods for biasing radio frequency switches
Apparatus and methods for biasing radio frequency (RF) switches are provided herein. In certain configurations, an RF switching circuit includes a field effect transistor (FET) switch electrically connected between a first terminal and a second terminal, and an adaptive biasing circuit that generates a bias voltage used in part to bias a gate of the FET switch. The adaptive biasing circuit includes a low pass filter that generates a low pass filtered voltage based on low pass filtering a voltage of the first terminal, a buffer circuit that receives the low pass filtered voltage and generates a buffered voltage, and a voltage shifting circuit that generates the bias voltage by shifting the buffered voltage by an amount of voltage that depends on a state of a switch control signal. |
US09712155B2 |
Drive circuit for power semiconductor element
A drive circuit for a power semiconductor element includes: a voltage-command generation unit that generates a voltage command VGEref, which is a charge command between the gate and emitter terminals of a power semiconductor element; and a subtracter that calculates a deviation voltage Verr between the voltage command VGEref and the voltage between the gate and emitter terminals. The drive circuit also includes: a gate current controller that is input with the deviation voltage Verr and calculates a gate-current command voltage VIGref for determining the gate current that is caused to flow to the gate terminal of the power semiconductor element; a gate-current command limiter that limits the gate-current command voltage VIGref; and a gate-current supply device that is input with an actual gate-current command voltage VIGout and that supplies a gate current to the gate terminal of the power semiconductor element. |
US09712153B1 |
Method and device for reset modification based on system state
Transistor-based semiconductor devices, such as systems on chips, may be supplemented with a reset request mechanism to prevent a reset from causing the semiconductor device to enter into an uncertain, or fail, state. More particularly, a method or mechanism may modify a requested reset for a semiconductor device based on a state of the semiconductor device to prevent the semiconductor device from entering an uncertain, an undesired, or a failed state when the reset is effected with regard to the semiconductor device. |
US09712150B2 |
Limiting of temperature variations of semiconductor component
A method and an arrangement of limiting temperature variations in a semiconductor component of a switching converter, the method comprising determining a quantity relating to operation temperature of the switching converter, determining temperature of the semiconductor component, selecting a maximum value of switching frequency of the switching converter based on the determined quantity relating to operation temperature of the switching converter and the temperature of the semiconductor component, and limiting the switching frequency of the semiconductor component of the switching converter to the selected switching frequency. |
US09712135B2 |
Acoustic wave filter and duplexer
An acoustic wave filter includes series resonators and parallel resonators that have a piezoelectric film on an identical substrate and have a lower electrode and an upper electrode, wherein: one of the series resonators and the parallel resonators have a temperature compensation film on a face of the lower electrode or the upper electrode that is opposite to the piezoelectric film in a resonance region, the compensation film having an elastic constant of a temperature coefficient of which sign is opposite to a sign of a temperature coefficient of an elastic constant of the piezoelectric film; and the other have an added film on the same side as the temperature compensation film on the lower electrode side or the upper electrode side compared to the piezoelectric film in the resonance region in the one of the series resonators and the parallel resonators. |
US09712132B2 |
Tunable capacitor integrated on one semiconductor die or on one module
Disclosed is a tunable capacitor. The tunable capacitor according to a first embodiment of the present invention includes: a variable capacitor unit placed between a first terminal and a second terminal; and a bypass switch which on/off controls a bypass connection between the first terminal and the second terminal, wherein the variable capacitor unit and the bypass switch are integrated on one semiconductor die or on one module. The tunable capacitor according to a second embodiment of the present invention includes: a variable capacitor unit placed between a first terminal and a second terminal; an impedance tuner placed between aground terminal and either the first terminal or the second terminal; and a tuning switch which on/off controls the connection between the variable capacitor unit and an impedance tuner, wherein the variable capacitor unit, the impedance tuner and the tuning switch are integrated on one semiconductor die or on one module. |
US09712130B2 |
Passive device cell and fabrication process thereof
An implementation of the invention is directed to a passive device cell having a substrate layer, and intermediary layer formed above the substrate layer, and a passive device formed above the intermediary layer. The intermediary layer includes a plurality of LC resonators and a plurality of segmented conductive lines, wherein the plurality of segmented conductive lines are disposed between the plurality of LC resonators. |
US09712129B2 |
Capacitively coupled gyrator based on the hall effect
A gyrator for AC signals was developed. This gyrator comprises a Hall effect material, means for permeating this Hall effect material with a magnetic field that is perpendicular to the plane or surface of the material, at least one input port for coupling an alternating current (I1; I2) into the Hall effect material, and at least one output port for outcoupling an output voltage (U2; U1) which is a measure of the Hall voltage generated by the incoupled alternating current. Each of these ports has at least two terminals, which are connected to the outside. At least one terminal of each port is connected to a connecting electrode, which is electrically insulated from the Hall effect material and forms a capacitor together with the Hall effect material. The alternating current is thus capacitively coupled into the Hall effect material, and the output voltage is capacitively coupled out of the Hall effect material. The capacitive coupling of the connecting electrodes provides boundary conditions for the potential in the interior of the Hall effect material, which do not necessarily force potential jumps there. The development of “hot spots,” at which energy is dissipated, in the region of potential jumps can thereby advantageously be reduced or even entirely suppressed. |
US09712127B2 |
Intelligent method and apparatus for spectral expansion of an input signal
A method, and a corresponding apparatus, for processing an input signal comprise filtering the input signal to separate a passband frequency component of the input signal from a stopband frequency component of the input signal, and adjusting relative signal power values of the passband frequency component and the stopband frequency component of the input signal based at least in part on signal values of a number of samples associated with the input signal. In the case of audio signals, for example, such processing is used for spectral expansion of the input signal by enhancing the power of the stopband, or low and high frequencies, component with respect to the power of the passband component of the input signal. As a result, a better audio quality is achieved. |
US09712117B2 |
Cascode switch for power amplifier
Aspects of this disclosure relate to a cascode circuit electrically coupled between an amplifier configured to amplify a radio frequency (RF) signal and different loads. The cascode circuit can function as a switch to selectively provide an output from the amplifier to a number of different loads. In certain embodiments, the cascode circuit can be electrically coupled between different stages of a multi-stage power amplifier. For instance, the amplifier can be a first stage of the multi-stage power amplifier and the different loads can include different power amplifier transistors of a second stage of the multi-stage amplifier. The cascode circuit can be implemented by bipolar transistors according to certain embodiments. |
US09712116B2 |
Multiple range RF amplifier
An amplifier includes at least two amplification stages coupled in parallel. Each amplification stage includes at differential pair of amplifying MOS transistors having gates connected to a first and second input nodes common to amplifying stages, and bulk regions connected to each other but insulated from bulk regions of the amplifying MOS transistors of the other amplification stages. A configuration circuit generates bias voltage for application to the bulk terminals in each amplification stage to set the threshold voltages of the amplifying MOS transistors, and thus configuring the operating range of each amplification stage so that different amplification stages have different operating ranges. |
US09712103B2 |
Actuator controller and actuator control method
The controller for an actuator that is driven by a brushless motor estimates the temperature of the magnet in the brushless motor on the basis of an electric current value and a rotation speed thereof which are obtained by supplying power to rotate the brushless motor in a reverse direction, and limits current flowing through the brushless motor during forward rotation so as to prevent the magnet temperature from rising beyond an allowable maximum temperature. Limiting the current flowing through the brushless motor on the basis of the estimated magnet temperature makes it possible to drive the brushless motor while preventing the magnet temperature from rising beyond the allowable maximum temperature without providing the brushless motor with any temperature sensor for detecting the magnet temperature therein. |
US09712097B2 |
Divided phase AC synchronous motor controller
A circuit includes phase windings, a power switch circuit comprising at least one power switch at a midpoint of the phase windings, a direct current (DC) supply circuit at the midpoint of the phase windings, and one or more non-collapsing DC power supply components to prevent the DC power supply from collapsing when the at least one power switch is on and conducting during one or more portions of a cycle. The one or more non-collapsing DC power supply components each may include one or more of a tap from one of the phase windings electrically connected to the DC power supply, a secondary phase coil winding connected to the DC power supply to power the power supply, one or more resistors between the one of the phase windings and the power switch circuit, one or more Zener diodes between one of the phase windings and the power switch circuit, and/or an electrical component to create a voltage drop between one of the phase windings and the power switch circuit to prevent the power supply from collapsing when the at least one power switch in the power switch circuit is on and conducting. |
US09712094B2 |
Floating power generator
A floating power generator having a water wheel and electrical generator. The floating power generator can comprise a variable speed drive. |
US09712093B2 |
Device and method for inhibiting vibration of superconducting magnetic suspension rotor
A device and a method for inhibiting vibration of a superconducting magnetic suspension rotor. The device comprises a rotor cavity housing, lateral coils, a superconducting rotor with a rotor top plane, a copper plate, pole shoes, a z-axial vibration measuring sensor, an x-axial vibration measuring sensor, a y-axial vibration measuring sensor, and a copper ring, the pole shoes having a spherical inner surface and being arranged symmetrically up and down so as to form a rotor cavity; the annular lateral coils being closely adjacent to an outside cylindrical surface of the rotor cavity housing and fixed to the same; the z-axial vibration measuring sensor being fixed to a central region of the copper plate; the x-axial vibration measuring sensor being mounted along an x-coordinate axis and the y-axial vibration measuring sensor mounted on a on the copper ring which is mounted along an equatorial plane of the rotor. |
US09712091B2 |
Power tool and controller
A power tool includes a motor, a drive unit driven by the motor, and a trigger switch and a forward-reverse switch each operable by a user. The trigger switch is switchable between an activation state and a deactivation state. The forward-reverse switch switches a motor rotation between forward and reverse. The power tool also includes a control unit that drives the motor based on operation of the trigger switch and allows switching of an operation mode of the power tool between first and second modes. In the first mode, the motor rotation is switched to that selected by the forward-reverse switch. In the second mode, when the activation state is switched to the deactivation state, the motor rotation is switched so that the motor is driven in a direction opposite to the present rotation direction when the trigger switch is activated next. |
US09712088B2 |
Method and system for controlling electrical vacuum pump
A control method and system of an electrical vacuum pump is provide to resolve generation of peak current when a motor of the electrical vacuum pump initially starts and implement a soft start. The electrical vacuum pump generates vacuum by suctioning air by rotating a pump with a motor. The control method includes starting the motor by supplying a power supply to the motor to switch on the electrical vacuum pump and sensing current applied to the motor using a current sensing circuit. In addition, the method includes determining a target value of motor input voltage set as a value according to the sensed applied current while starting the motor until the sensed applied current reaches a predetermined current and adjusted the motor input voltage applied to the motor to correspond to the target value. |
US09712086B2 |
Surfaces that ease relative displacement in EAP generators
An EAP generator is described, including at least one EAP stack that is disposed between two force-transferring surfaces disposed parallel to one another, having at least one layer, facilitating relative displacement between the end of the EAP stack and the force-transferring surface facing toward that end, in particular a deformable or friction-reducing intermediate layer. A corresponding method for generating electrical energy from elongation energy on a capacitive basis by charge displacement is also described. |
US09712085B2 |
Actuation device with a drive element actuated by crawling
An actuation device (1) which includes an actuation element (3) with a fixed 10 portion (31) and a driving portion (32); wherein the fixed portion (31) includes a crawling surface (311). The driving portion (32) includes a flexible moveable blade (321) positioned in parallel and at a distance from the crawling surface (311). When a power supply voltage is applied between the moveable blade (321) and the crawling surface (311), the free end (3211) comes into contact with the crawling surface (311), and a contact area, between the moveable blade (321) and the crawling surface (311), increases by propagation of the crawling front (3213) along the moveable blade (321). The propagation of the crawling front displaces the moveable blade (321) according to a first orientation. |
US09712082B2 |
Method for acquiring values indicative of an AC current of an inverter and related circuit and inverter
A method for acquiring values indicative of an AC current generable by an inverting stage of an inverter. The method includes at least a first line and a second line for providing a path for AC current between the inverting stage and the output stage. A current sensor is operatively associated to the first and second lines and configured in such a way to generate a signal as a function of the sum between the AC current flowing in the first line and the AC current flowing in the second line. The method may also include driving the inverting stage in such a way that the AC current in the first line has a first high-frequency ripple during a first-half of the current period, and in such a way that the AC current in the second line has a second high-frequency ripple during a second-half of the current period. |
US09712079B2 |
Electric power converter and control method for electric power converter
An electric power converter according to an embodiment includes a switching unit, a controller, and a second bidirectional switch. The switching unit includes a plurality of first bidirectional switches disposed between a DC power source and an AC load or between a DC load and an AC power source. The controller controls the switching unit to perform power conversion between DC power and AC power. When turning off the second bidirectional switch disposed on a path between one pole of the DC power source or the DC load and the switching unit, the controller turns on the first bidirectional switch connected between the other pole of the DC power source and the AC load or between the other pole of the DC load and the AC power source. |
US09712074B2 |
Magnetoelectric device capable of damping power amplification
A magnetoelectric device includes reluctance components, damping modules and a driving module. Each reluctance component includes a magnetic core unit having a loop-shaped first segment and a second segment connected to the first segment, first to third coils wound around and loosely coupled to the first segment, a first capacitor connected between the second and third coils, and a second capacitor connected to the third coil in parallel. Each damping module receives electrical energy from a respective reluctance component, and releases electrical energy to a DC power source. The driving module connects the DC power source to each first coil in such a way that a respective AC voltage is generated across each first coil. |
US09712068B2 |
Power supply device, adapter, power receiving device, and power supply method
There is provided a power supply device, including a connection state determiner that determines a connection state between an external power recipient device and a power line on which electric power is transmitted, a communication control unit that, in a case where the connection state determiner determines that the external power recipient device is connected to the power line, causes information related to power receiving capability corresponding to the external power recipient device to be acquired by wireless communication, a power receiving capability specifier that specifies the power receiving capability of the external power recipient device on the basis of the acquired information related to the power receiving capability, and a power control unit that causes electric power compatible with the external power recipient device to be transmitted on the basis of the specified power receiving capability. |
US09712059B2 |
Directly amplified ripple tracking control scheme for multiphase DC-DC converter
A controller for a multiphase power converter has a plurality of DC to DC converters coupled in parallel between a voltage source and a single output terminal is provided. The controller includes a voltage sensing circuit coupled to the output terminal. An internal pulse generating circuit is couplable to the voltage sensing circuit for generating an internal pseudo-pulse width modulated signal. An ON time signal distribution circuit is couplable to an output of the internal pulse generating circuit and couplable to driver circuit for driving each of the plurality of DC to DC converters. A multiphase power converter and method also disclosed. |
US09712053B2 |
DC-DC converter with digital current sensing
A regulated DC-DC switching converter includes a bypass mode in which ends of an output inductor are coupled together. Circuitry determines output capacitor current and load current components of output inductor current during operation of the switching converter, for use in controlling switching operations. |
US09712049B2 |
Power converter with noise-current reduction capacitor
In a power converter, a housing is grounded. A power converter circuit is installed in the housing and configured to perform power conversion of input power into output power. An external terminal is electrically connected to the power converter circuit for connection of an external device to the power converter circuit. A first capacitor has first and second electrodes. The first electrode of the first capacitor is connected to the external terminal, and the second electrode thereof is connected to the housing. A second capacitor has first and second electrodes. The first electrode of the second capacitor is connected to the external terminal, and the second electrode thereof is connected to the housing. The first capacitor, the external terminal, the second capacitor, and the housing is arranged to provide a conductive loop. |
US09712046B2 |
Dead-time optimization of DC-DC converters
Representative implementations of devices and techniques determine the timing of switches associated with a dc-dc converter. The determination is based on a body diode conduction of at least one of the switches, which is detected and used to determine a switching delay. |
US09712044B2 |
Power converter
In a power converter including at least one bridge circuit configured to have upper and lower arms in which a first power semiconductor device and a second power semiconductor device are connected in series, a first gate driving circuit that supplies a charge to the first power semiconductor device of an upper arm to drive the first power semiconductor device monitors a voltage developed by an output inductor between a connection end between the first power semiconductor device and the second power semiconductor device and a load, and performs control to protect the first power semiconductor device based on a value of the monitored voltage. |
US09712041B2 |
Apparatuses and methods for over-current protection of DC-DC voltage converters
A peak current protection circuit includes a current sensing circuit configured to sense an operating current of a DC-DC converter, and an over-current detector operably coupled with the current sensing circuit. The over-current detector is configured to generate an over-current detect signal at a peak current limit that is that is independent of a voltage level of an output signal of the DC-DC converter. A method for providing over-current protection for a DC-DC converter includes sensing an operating current of a DC-DC converter at a first input of a comparator, sensing a reference current at a second input of the comparator, comparing the first input with the second input, and generating an over-current detect signal in response to the comparison such that a peak current limit for the DC-DC converter is independent of a voltage level of an output signal of the DC-DC converter. |
US09712040B1 |
Virtual impedance shaping
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for shaping grid currents output from parallel inverters in a power distribution system with virtual impedances. In one aspect, a method includes receiving a measurement of the current output from the inverter, processing the measurement of the current to extract a first current component having a particular frequency, obtaining a second current component based on the measurement of the current and the extracted first current component, weighing the first and second current components with respective first and second impedances to obtain respective first and second component voltages, the first impedance having a lower impedance amplitude than the second impedance, obtaining a shaped voltage based on the first and second component voltages, and outputting a control signal to the inverter, the control signal causing the inverter to output the shaped voltage to the power distribution bus. |
US09712038B2 |
Insulated power supply apparatus applied to power converter circuit including series connections of upper and lower arm switching elements
An insulated power supply apparatus includes an upper arm transformer which has a primary side coil and a secondary side coil, a lower arm transformer which has a primary side coil and a secondary side coil, and a power supply control section which has a voltage control switching element and an integrated circuit which turns on or off the voltage control switching element. At least one of the upper arm transformer and the lower arm transformer is adjacent to the power supply control section when viewing a surface of the substrate from a front thereof. An electric path transfers output voltage of the secondary side coil of the transformer adjacent to the power supply control section, to the integrated circuit. The integrated circuit turns on or off the voltage control switching element to perform feedback control so that the output voltage detected via the electric path reaches a target voltage. |
US09712036B2 |
Generating electricity from the earth
A system for generating electricity from the geomagnetic field and rotation of the earth is presented. The earth rotates through the geomagnetic field to form a potential difference between first and second terrestrial charged bodies. The first and second charged bodies are spaced apart in a direction substantially normal to the earth's surface. The system comprises an electrical load, a first current path, and a second current path. The electrical load has a supply input and a ground output. The first current path is coupled to the first charged body and to the supply input of the electrical load, for supplying the potential difference to the electrical load. The second current path is coupled to the ground output of the electrical load and to the second charged body. As a result of this arrangement, an electric current related to the potential difference is generated in the electrical load. |
US09712033B2 |
System and method for stabilizing a voice coil
A device or method for stabilizing a voice coil is disclosed. The device comprises a voice coil for providing a motive force, and means for measuring a signal from said voice coil related to a motional electromotive force. The device further comprises a unit for controlling an amplification of said signal to create a force in said voice coil in a direction of said motional electromotive force. |
US09712032B2 |
Linear motor and linear motor drive system
A linear motor is capable of miniaturization of a device, sharing of effective magnetic fluxes between the magnetic poles adjacent to each other, and decreasing a magnetic attractive force acting between a mover and an armature, and a linear motor drive system. The linear motor includes a mover, formed by lining up a plurality of pieces of permanent magnets or magnetic materials while inversing a magnetization direction thereof, and an armature. First and second magnetic pole teeth are disposed in such a way as to vertically tuck the permanent magnet or the magnetic material. A magnetic material links the first magnetic pole tooth to the second magnetic pole tooth, thereby forming a path for a magnetic flux, and windings are disposed on the first magnetic pole tooth and the second magnetic pole tooth, respectively. At least two units of the armatures are lined to be linked to each other. |
US09712031B2 |
Electromagnetic propulsion system
A system for propelling craft which is applicable in any environment. It employs an alternating magnetic field supplied by a coil. A parallel plate capacitor is situated so that the flux of the magnetic field flows between the plates of the capacitor. The capacitor is charged and discharged in synchronization with the alternating magnetic field. The changing magnetic field creates an electric field that applies a force to the charge in the plates which is then transferred to the body of the device. Any induced reactive electric force on the coil affects equally the protons and electrons in the wires of the coil creating the magnetic field, thus the force is non-reactive. At the same time, the changing electric field in the capacitor creates a magnetic field. The current in the coils and/or the surface current in the ferromagnetic material (if present) experiences a force from the magnetic field. The magnetic field created by these currents, however, has no free charge between the plates of the capacitor with which to react, thus this force is also non-reactive. The two forces are in opposite directions, but are not the same magnitude, thus the device is propelled in a single direction. |
US09712030B2 |
Shaft rotary type linear motor and shaft rotary type linear motor unit
The present invention provides a shaft rotary type linear motor that enables a movable element to rotate and linearly move by using a simple structure, and can therefore support compact, space-saving and lightweight designs. The shaft rotary type linear motor includes: a shaft; an outer cylinder; a hollow movable element having a plurality of permanent magnets within the outer cylinder; an armature surrounding the hollow movable element and having a plurality of coils; and a frame containing the armature. The shaft is supported by a rotatable and linearly movable linear guide. |
US09712029B2 |
Holding means for electrical machines
A holding element (68, 82) for attaching magnets (62) to a rotor (20) of an electrical machine (10). This electrical machine is, in particular, designed as an AC generator and comprises intermediate spaces (60) between the individual poles (24, 25). The holding element (68, 82) comprises a top side (72) and spring lugs (70) which axially fix the magnets (62). The holding element (68, 82) has claw-like projections (74) which bear against flanks (80) of the poles (24, 25) when the holding element (68, 82) is in the fitted state. |
US09712024B2 |
Coil end shaping apparatus and method
A coil end shaping apparatus shapes a plurality of edgewise bent portions that are bent in the edgewise direction in a lead wire portion extending from one end of a coil, and includes first and second shaping dies capable of approaching each other to shape the edgewise bent portions provided on the base end side with respect to the edgewise bent portion e4 that is the closest to the free end side among the plurality of edgewise bent portions, and a third shaping die capable of cooperating with the second shaping die to shape the edgewise bent portion that is the closest to the free end side. |
US09712023B2 |
Slip ring device
A slip ring device (5) includes ring members (10a-10c) that rotate along with an input shaft, and brushes that contact the ring members (10a-10c). The ring members (10a-10c) have surfaces (11a-11c) that contact the brushes, and a plurality of dimples are formed upon these surfaces (11a-11c). |
US09712022B2 |
Use of an involute shaped housing surrounding shaft(s) to promote shaft annulus fluid flow
The powertrain includes a sump and an electric motor-generator configured to convert electrical energy into mechanical energy. The electric motor-generator includes a stator and a rotor. The rotor includes a rotor shaft and is configured to rotate about a shaft axis relative to the stator. The powertrain further includes an output shaft rotatable about the shaft axis and extending through the rotor shaft along the shaft axis. The output shaft and the rotor shaft jointly define a substantially annular gap therebetween. The electric motor-generator also includes a motor housing covering the stator and the rotor. The motor housing defines a housing passageway in fluid communication with the sump and the substantially annular gap. The housing passageway includes a substantially involute shaped portion in order to facilitate flow of the cooling fluid from the sump to the substantially annular gap. |
US09712021B2 |
Cooling system for motor
In a vertical through hole of a rotational shaft, a first protrusion portion and a second protrusion portion protruding from an inner peripheral surface of the vertical through hole are provided in an axial direction of the through hole to form a storage area for storing oil, and discharge holes for directly discharging oil flowing over the first protrusion portion into the transaxle casing are provided in parallel with cooling holes. |
US09712018B2 |
Wiper motor
A wiper motor includes a reduction mechanism (26) contained in a reduction mechanism containing chamber (27) of a gear frame (21) and configured to reduce and transmit a rotation to a worm wheel (35); and a motion conversion mechanism (29) contained in a motion conversion mechanism containing chamber (30) of the gear frame (21) and configured to convert and output a rocking motion to an output shaft (28). A support surface (37) set up flush with the other end surface (35b) of the worm wheel (35) in the axial direction rotatably contained in the reduction mechanism containing chamber (27) is formed on the inner surface of the bottom wall (30a) of the motion conversion mechanism containing chamber (30). The support surface (37) is formed over the entire area facing a pinion gear (40) and the motion conversion member (41) on the bottom wall (30a) of the motion conversion mechanism containing chamber (30). |
US09712017B2 |
Electric drive motor
An electric drive motor (4), in particular for a pump assembly, has a terminal box (8) arranged on the electric drive motor (4). The terminal box (8) includes a first section (10) arranged at an axial end (6) of the drive motor (4) and a second section (14) arranged radially to the first section (10). The second section (14) is radially spaced from the first section (10) and in the tangential direction has a width (b) which is larger than a diameter (d) of the first section in this direction. The second section (14) is connected to the first section (10) via a connection section (16) having two side walls which are away for one another. These two side walls extend from the second section (14) to the first section (10) and are angled to one another, such that they approach one another towards the first section (10). |
US09712013B2 |
Winding with a cooling channel for an electrical machine
A winding for an electric machine is provided. The electric machine includes conductor bars which are arranged one above the other and each of which has a cooling slot. The conductor bars are designed such that the height of the conductor bars increases in the radial direction and the effective cooling cross-section decreases in the radial direction. |
US09712011B2 |
Electric machine with modular stator coils and cooling tubes
A stator of an electrical machine includes a stator core having a plurality of stator teeth and stator slots, and a stator winding having a plurality of stator coils. The width of each stator coil is one stator slot pitch, and the stator teeth are shaped to allow each stator coil to be installed by pushing the stator coil to surround one of the stator teeth. The stator coils include tubular cooling channels for conducting cooling liquid in the stator slots. |
US09712008B2 |
Permanent magnet synchronous motor and power-assisted steering system
The invention relates to a permanent magnet synchronous motor, in particular an electric three phase motor, comprising a stator in which stator teeth with interposed stator grooves are arranged, at least one winding made of an electrically conductive material being provided on each stator tooth, further comprising a rotor with permanent magnets which are arranged radially in a spoke-like manner in the rotor. Said synchronous motor has a predetermined and defined maximum brake torque based on a predetermined diameter-length-ratio of the rotor, a number of rotor poles and a number of stator grooves. The present invention further relates to an electric power-assisted steering system. |
US09712006B2 |
Rotor and rotary electric machine using the same
A first rotor core including a plurality of gaps penetrating through the first rotor core along an axial direction is provided. A second rotor core being in contact with an axial end of the first rotor core and having a plurality of magnet-housing slots facing the gaps is also provided. The gaps have a magnetic resistance lower than that of the magnet-housing slots. |
US09712005B2 |
Interior permanent magnet machine with pole-to-pole asymmetry of rotor slot placement
An interior permanent magnet machine includes a rotor having a plurality of slots. First and second slots are disposed in a first pole and the third and fourth slots are disposed in a second pole. A first angle is defined between respective centerlines of the first and second slots. A second angle is defined between respective centerlines of the third and fourth slots. The first angle is configured to be sufficiently different from the second angle so that torque ripple is reduced. Thus the rotor is configured such that the angular configuration of slots in a first pole is different from the angular configuration of slots in a second pole of the rotor. |
US09712002B2 |
Interlocked stator yoke and star for electric motor
A stator for an electric motor includes a yoke and a star disposed in the yoke. The star is configured to receive a rotor therein and has at least one wire coiled thereat. The yoke and the star are configured such that the star is axially insertable into the yoke with reduced interference and reduced insertion force. The star is axially inserted into the yoke in an unlocked position. When the star is inserted into the yoke, the star is rotatable to a locked position, whereby the star is retained at the yoke via an interference fit. |
US09711999B2 |
Antenna array calibration for wireless charging
Antenna array calibration for wireless charging is disclosed. A wireless charging system is provided and configured to calibrate antenna elements in a wireless charging station based on a feedback signal provided by a wireless charging device. The antenna elements in the wireless charging station transmit wireless radio frequency (RF) charging signals to the wireless charging device. The wireless charging device provides the feedback signal to the wireless charging station to indicate total RF power in the wireless RF charging signals. The wireless charging station is configured to adjust transmitter phases associated with the antenna elements based on the feedback signal until the total RF power in the wireless RF charging signals is maximized. By calibrating the antenna elements based on the feedback signal, it is possible to achieve phase coherency among the antenna elements without requiring factory calibration. |
US09711997B2 |
System and method for storing and distributing DC power
A system and method for storing and distributing DC power, comprising: a first desk with a horizontal desktop surface and vertical support surfaces, batteries, a charging circuit with an AC to DC power converter, one AC power input channel, one DC power input channel, and DC power output channels; a second desk with a horizontal desktop surface and vertical support surfaces, batteries, a charging circuit with an AC to DC power converter, one AC power input channel, one DC power input channel, and DC power output channels; and electrical information processors adapted to the charging circuits to regulate and allocate DC power between batteries and DC power output channels within a chain of electrically connected desks by measuring and controlling charges and electric currents from charging circuits to batteries, from charging circuits to DC power output channels, and from batteries to DC output channels. |
US09711996B2 |
Emergency system with brown-out detection
An emergency system including an auxiliary power supply, a charging circuit, a brown-out circuit, and a controller unit. The auxiliary power supply connected to a device. The charging circuit having an input voltage, provided by a mains power supply, and an output, configured to provide power to the auxiliary power supply. The brown-out circuit operably connected to the charging circuit and configured to sample the input voltage. The control unit receiving the sampled input voltage and activating the device when a brown-out condition is detected, the detection based on the sampled input voltage. |
US09711990B2 |
No load detection and slew rate compensation
The power regulation control circuit is implemented during two modes. A first mode is a sleep mode and a second mode is a wake-up mode. During the sleep mode, the power supply detects a no-load presence and artificially increases the output voltage Vout to its maximum allowable value. In some embodiments, this is accomplished by pulling up an output of a error amplifier that feeds a PWM module. During the wake-up mode when the power supply wakes up from the sleep mode under maximum load, the output voltage Vout sinks from the artificially higher voltage, but still stays above a minimum operational voltage level. A slew rate compensation can be implemented to control a rate at which the output voltage drops when a load is applied. The artificially high output voltage during no-load condition and the slew rate compensation provide open loop voltage adjustment. |
US09711988B2 |
Fuel cell system, method for controlling fuel cell system, and storage battery system
The fuel cell system includes: a power generation unit; an obtaining unit obtaining battery information indicating a storage state of a storage battery; and a control unit selecting one of a first control mode and a second control mode based on the battery information when load power changes from a first load power to a second load power, the first control mode being for supplying power from the power generation unit to the load by causing the power generation unit to generate power without causing the storage battery to charge and/or discharge, the second control mode being for causing the power generation unit to generate power with a change rate of generation power being set to a value smaller than a value in the first control mode, by causing the storage battery to charge and/or discharge. |
US09711984B2 |
High voltage generation method at battery system
A method and apparatus for generating a high voltage at a battery system. The apparatus in one embodiment includes a supply node configured for direct or indirect coupling to a supply voltage. A converter is coupled between an input node and an output node, wherein the converter is configured to operate in a forward mode or a reverse mode. The converter generates a voltage at the converter output node for charging a battery when operating in the forward mode, wherein a magnitude of the voltage generated at the converter output node is less than a magnitude of the supply voltage. The converter generates a voltage at the converter input node when operating in the reverse mode, wherein a magnitude of the voltage generated at the converter input node is different than a magnitude of a voltage provided by the battery. A control circuit is coupled to and configured to control operation of the converter in the forward mode or the reverse mode. |
US09711981B2 |
Mobile power supply, charging base and superimposed charging platform
A mobile power supply includes an upper and lower shells, both of which are attached to each other to form a housing of the mobile power supply. A first PCB and a storage battery connected with the first PCB are disposed within the housing. An upper cover is provided at the top of the upper shell. A lower cover is provided at the bottom of the lower shell. A first and second conductive poles, which pass through the upper and lower covers and are both connected with the first PCB, are vertically disposed apart from each other within the housing. Top ends of the first and second conductive poles form first snap button structures with the upper cover, respectively. Bottom ends of the first and second conductive poles form first buckling structures with the lower cover, respectively, the first buckling structures match with the first snap button structures, respectively. |
US09711977B2 |
Battery management system for transmitting secondary protection signal and diagnosis signal using a small number of insulation elements
Disclosed is a battery management system for transmitting a secondary protection signal and a diagnosis signal using a small number of insulation elements. N battery management units included in the battery management system transmit at least two pieces of data via one communication line through time division. N data signals transmitted from the N battery management units are transmitted in a sequential order or are mixed to one signal and transmitted to an external device. |
US09711974B2 |
Wireless power transmitting apparatus and method thereof
Disclosed are a wireless power transmitting apparatus and a method thereof. The wireless power transmitting apparatus wirelessly transmits power to a wireless power receiving apparatus. The wireless power transmitting apparatus detects a wireless power transmission state between the wireless power transmitting apparatus and the wireless power receiving apparatus, and generates a control signal to control transmit power based on the detected wireless power transmission state. The wireless power transmitting apparatus generates the transmit power by using first DC power based on the control signal, and transmits the transmit power to a transmission resonance coil through a transmission induction coil unit based on an electromagnetic induction scheme. |
US09711971B2 |
Wireless power-supplying system
A wireless power-supplying system includes a power-transmitting coil provided on the ground and a power-receiving coil provided above the power-transmitting coil and wirelessly supplies electric power from the power-transmitting coil to the power-receiving coil. The wireless power-supplying system further includes a flexible cover provided so as to cover the power-transmitting coil and configured to be inflated to occupy a space between the power-transmitting coil and the power-receiving coil. During the inflation of the flexible cover, the flexible cover assumes a specific shape capable of removing a foreign object laid thereon before occupying the space between the power-transmitting coil and the power-receiving coil. |
US09711965B2 |
Circuit arrangement for connection to an electrical circuit and electrical circuit
A circuit arrangement connected to an electrical circuit including a transformer with primary winding connected to the electric power grid and secondary winding connected to a power converter with a capacitor, the circuit arrangement has a primary winding coupled to the auxiliary winding, which is connected to a switching device. |
US09711963B2 |
Subscriber line power distribution system
A system and a method for distributing power to telecommunication subscriber lines is disclosed. It is important that the power dissipation in the subscriber line interface circuits, SLICs is reduced. Power dissipation occurs when the subscriber lines are fed with a voltage level that is higher than necessary. It is also important that the implementation allows for flexibility when configuring the subscriber lines. These problem have been solved by using a power distribution system comprising at least three power supply units with different power supply voltages, a control unit and a switching unit connected between the SLICs and the power supply units. The control unit is adapted to determine the loop voltages of the subscriber lines and to connect the corresponding SLIC to the power supply unit giving the least power dissipation. |
US09711962B2 |
System and method for isolated DC to DC converter
Disclosed is a battery and load equalization circuit that prevents the in-rush of current when batteries and/or loads are initially connected in parallel. Various techniques are used including charging, discharging and use of DC to DC converters to equalize charges between batteries and between batteries and capacitive loads. |
US09711960B2 |
Built-in test circuits for transient voltage protection devices
A transient voltage suppressor device includes a transient voltage suppression circuit, a first voltage monitor lead connected to the transient voltage suppression circuit, and a second voltage monitor lead connected to the transient voltage suppression circuit. A voltage injection circuit having a plurality of output voltage levels is also connected to the transient voltage suppression circuit to provide indication via the first and second voltage monitors if the transient voltage suppression circuit is shorted or open. |
US09711955B2 |
Efficient installation electrical hardware system and method of use
An improved installation system for electrical hardware, such as power outlets, electrical switches, light fittings, ceiling fans and the like, whereby the cutting of their installation access holes in drywall panels is accomplished much faster than prior art methods and with a high degree of accuracy by the use of the hole cutting system, comprising the magnetic block assembly, corresponding magnetic template assembly and the hole cutter. In conjunction with the aforementioned; the electrical hardware's associated electrical boxes are wired directly to their electrical supply and the hardware is in turn, electrically connected to them by their respective sets of electrical terminals which make simultaneous contact with each other upon their installation. Additionally, the latching pawl mechanism and alignment device supports the weight of heavy light fittings and ceiling fans and aligns their electrical connections while they're being fixed into their installed position. These features taken together make this improved installation system substantially superior to all prior art. |
US09711944B2 |
Quantum cascade laser
A quantum cascade laser includes a substrate having a principal surface; a laser body region disposed on the principal surface, the laser body region including a semiconductor laminate structure having an end facet, the laser body region having a waveguide structure extending along a waveguide axis; and a distributed Bragg reflection region disposed on the principal surface, the distributed Bragg reflection region including low and high refractive index portions that are alternately arranged in a direction of the waveguide axis. The end facet of the semiconductor laminate structure is optically coupled to the distributed Bragg reflection region. Each of the high refractive index portions includes a semiconductor wall including upper and lower portions that are arranged in a direction intersecting with the principal surface of the substrate. The principal surface is disposed between the upper and lower portions. The lower portion includes a part of the substrate. |
US09711942B2 |
Laser apparatus and optical transmitter
A laser apparatus includes a semiconductor laser of which a drive condition is controlled according to a plurality of types of drive currents and a controller which controls the drive condition such that a sum of the drive currents is equal to or less than a predetermined threshold value. |
US09711938B2 |
Integrated semiconductor optical element and manufacturing method for same
The present invention relates to an optical semiconductor integrated element and manufacturing method for same solves difficulty in element manufacture, and reduces optical transmission loss. The present invention is provided with a stripe-shaped waveguide configured from a multilayer structure wherein at least a first conductivity-type lower cladding layer, a waveguide core layer, and an upper cladding layer are layered, and the upper cladding layer is formed using a second conductivity-type upper cladding layer, and an i-type upper cladding layer, which has a bent portion by being shifted in the perpendicular direction with respect to the main extending direction of the waveguide. |
US09711937B2 |
Semiconductor laser mounting with intact diffusion barrier layer
A first contact surface of a semiconductor laser chip can be formed to a target surface roughness selected to have a maximum peak to valley height that is substantially smaller than a barrier layer thickness. A barrier layer that includes a non-metallic, electrically-conducting compound and that has the barrier layer thickness can be applied to the first contact surface, and the semiconductor laser chip can be soldered to a carrier mounting along the first contact surface using a solder composition by heating the soldering composition to less than a threshold temperature at which dissolution of the barrier layer into the soldering composition occurs. Related systems, methods, articles of manufacture, and the like are also described. |
US09711935B2 |
Optical scanning
The invention relates to an apparatus for generating temporally spaced apart light pulses, comprising a first laser (11) which generates a first sequence (I) of light pulses at a first repetition rate, a second laser (12) which generates a second sequence (II) of light pulses at a second repetition rate, and at least one actuating member which influences the first repetition rate and/or the second repetition rate. It is an object of the invention to provide an apparatus for generating temporally spaced apart light pulses which is improved in relation to the prior art. This object is achieved by the invention by a control element (23) which applies a periodic modulation signal (24) to the actuating member for periodic variation of the first repetition rate and/or the second repetition rate, wherein the actuating member comprises a mechanical oscillator excited by the modulation signal (24), the deflection of said oscillator causing an adjustment in the resonator length of the first laser (11) and/or second laser (12), wherein the mechanical oscillator oscillates in resonant fashion at the frequency of the modulation signal (24). In accordance with the invention, an actuator (e.g. a piezo-actuator) which adjusts the resonator length of the laser is operated in resonant fashion. As a result, a large maximum time offset of the light-pulse sequences (I, II) with, at the same time, a high scanning speed is rendered possible. Moreover, the invention relates to a method for generating temporally spaced apart light pulses. |
US09711934B2 |
Laser apparatus
A laser apparatus may include a first laser resonator configured to generate a laser beam, a first optical element configured to adjust a divergence in a first direction of the laser beam, a second optical element configured to adjust a divergence in a second direction of the laser beam, a measuring unit configured to measure the divergence in the first direction and the divergence in the second direction of the laser beam, and a controller configured to control one or both of the first optical element and the second optical element based on the divergence in the first direction and the divergence in the second direction of the laser beam both measured by the measuring unit. |
US09711931B1 |
Noncollinear achromatic phase matching based optical parametric chirped-pulse amplifier with insensitivity to temperature and wavelength
A simultaneous temperature- and wavelength-insensitive parametric amplifier comprising a pump laser, a signal laser, and a crystal amplifier. The pump laser system on a first optical pathway includes a Nd:YVO4 laser oscillator-regenerative amplifier and a Nd:YAG boost amplifier. The pump laser beam is generated from the pump laser system, passes through the first image-relay system, and is frequency-doubled in the frequency-doubling crystal. The signal laser system on a second optical pathway comprises a Ti:sapphire regenerative amplifier and generates the signal laser beam, which passes through the pulse stretcher and is temporally chirped and imposed with an angular dispersion by the first grating. The chirped signal beam and pump laser beam are intersected with a noncollinear angle of >5° in the crystal amplifier for temperature-insensitive phase-matching (PM). By optimizing grating constant of the first grating, the chirped signal is imposed with appropriate amount of angular dispersion for wavelength-insensitive PM. |
US09711929B1 |
Optical amplifier and method of manufacturing optical amplifier
An apparatus comprising a case, an optical amplifier, and an optical transceiver is provided. The optical amplifier and the optical transceiver are included in the case. The case includes a top portion and a bottom portion. The top portion includes first to third sections arranged in a direction perpendicular to a direction extending from the top portion to the bottom portion. The first section has a larger area than the third section and the second section divides the first and third sections. The third section includes a first cavity including at least one portion of the optical amplifier. The optical amplifier is provided using at least one of an amplifying fiber, a pumping light source, an isolator, a wavelength-division multiplexer (WDM) coupler, a wavelength-variable optical filter, a monitoring-tap photo diode, and a driving control unit. |
US09711926B2 |
Method of forming an interface for an electrical terminal
A method of forming an electrical terminal includes the steps of: transferring a portion of electrically conductive material to a selected location on a surface of electrically conductive material stock; bonding the portion of electrically conductive material to the surface of the electrically conductive material stock; forming the portion of electrically conductive material to the surface of the electrically conductive material stock to define a conductive interface; and forming the electrical terminal from the electrically conductive material stock. |
US09711925B2 |
Method for connecting the conductors of a flexible bonded (equipotential) connection layer
A method electrically connects by crimping electrical conductors in a connector for equipotential connection of a planar and flexible layer formed by the conductors, to metal components. The method includes positioning the electrical conductors in individual longitudinal and parallel cells which are formed between two planar walls of the connector, crimping the conductors crimped in a crimping zone by simultaneous transverse punching of at least one wall of the connector, and forming by the transverse punching at least one corresponding transverse groove line on the at least one connector wall and, by load transfer, on each of the conductors to electrically connect the conductors. |
US09711924B2 |
Brush assembly for an electric motor
A brush assembly has a brush, a brush cage, and a spring. The spring is a constant force spring having two coil portions and a connecting portion. The connecting portion the brush are together received in the brush cage. The brush has a contact end arranged to make sliding contact with a commutator and a second end remote from the contact end against which the spring applies its force, to urge the brush out of the brush cage. A hook is formed at each of two opposite sides of the brush cage, at a first end portion of the brush cage adjacent the contact end of the brush. The coil portions respectively engage the hooks. The hooks extend at different angles to a corresponding outer surface of the brush cage. |
US09711921B2 |
Electrical contact receptacle for bus bars and blade terminals
An electrical contact receptacle includes a base with opposed contact portions extending from one surface thereof. Each contact portion has three arms in spaced arrangement, and optionally a bridge portion extending across outboard arms. Each of arms has an inner contact surface for conductively engaging a blade terminal or a bus bar. Optionally, the base defines an opening through which a tip portion of a blade terminal can be received, thereby permitting insertion of the blade terminal from above or below the contact receptacle, and allowing for additional contact surfaces with the blade terminal. |
US09711918B2 |
Coaxial cable connector having an outer conductor engager
A connector for a coaxial cable includes a coupler configured to engage another coaxial cable connector. The connector further includes a body disposed at least partially within the coupler. The connector further includes an outer conductor engager made of a conductive material disposed within the body and the coupler. The connector further includes a biasing element on an interior of the body. During a coupling of the connector to the coaxial cable: a connector end of the outer conductor engager moves axially relative to the body, the outer conductor engager is compressed by the biasing element, and an interior of the outer conductor engager is inwardly compressed against an outer conductor of the coaxial cable. |
US09711917B2 |
Band spring continuity member for coaxial cable connector
A connector including coupling and sleeve flanges defining opposing recesses separated by an axial gap along an elongate axis. The connector also includes a conductive band radially biased outwardly against at least one of the internal contact surfaces of the opposing recesses and spanning the axial gap. The conductive band maintains electrical conductivity across the axial gap even when the sleeve does not electrically contact the coupling member. At least one of the contact surfaces defines a conical surface which is responsive to the radially biased conductive member to produce a radial force against the internal contact surfaces. The radial force produces an axial force component along the elongate axis. |
US09711912B2 |
Cable connector assembly with improved insulative member
A cable connector assembly includes an insulative housing, a number of contacts retained in the insulative housing, a printed circuit board electrically connected with at least some of the contacts, a cable electrically connected with the contacts and the printed circuit board, an insulative member enclosing the printed circuit board, and a shielding case enclosing the insulative housing and the insulative member, wherein the insulative member includes a recess portion spaced from the shielding case. |
US09711909B2 |
Electrical connector
An electrical connector (100) is disclosed. In a described embodiment, the electrical connector (100) comprises first and second terminal pairs (102, 104) configured to electrically couple to a same device, each terminal pair (102, 104) comprising terminals (102a, 102b, 104a, 104b), with the terminals (102a, 102b) in the first terminal pair (102) having different first and second electrical lengths and the terminals (104a, 104b) in the second terminal pair (104) having different third and fourth electrical lengths, wherein a sum of the first and third electrical lengths is substantially the same as a sum of the second and fourth electrical lengths. |
US09711904B2 |
Connector and connector assembly
A connector is mateable with a mating connector along a predetermined direction. The connector comprises a mated-state detection member and a holding mechanism which includes a reference surface, insulating portions and an insulating external wall. Each of the insulating portions projects from the reference surface by a first predetermined length in the predetermined direction. The insulating external wall projects beyond the reference surface in the predetermined direction and surrounds the insulating portions in a plane perpendicular to the predetermined direction. The mated-state detection member is held by the holding mechanism and is movable between a projecting position and a receding position in the predetermined direction. The mated-state detection member at the projecting position projects from the reference surface by a second predetermined length which is shorter than the first predetermined length. The mated-state detection member is moved to the receding position by the mating connector mated with the connector. |
US09711899B2 |
Latch mechanism having latch locking parts to prevent rotation of latch parts
A latch mechanism for securely locking a latch and a socket for electrical component.A cover member includes a cover body covering an upper side opening surface of a housing body, an elevating part supported by the cover body such that the elevating part can be moved up and down, and a pressing part supported by the cover body and moving down the elevating member. Top end portions of latch parts are rotatably supported on outside surfaces of the cover body. Bottom end portions of the latch parts are engaged with the housing body, so as to fix the cover body to the housing body. The elevating part is provided with latch locking parts that are engaged with the latch parts when moved down, so as to prevent the latch parts from rotating in a direction in which engagement between the latch parts and the housing body is released. |
US09711898B2 |
Electrical connector system with laterally protruding releasing arm
The invention relates to an electrical connector system including a terminal, configured to be conductively connected to a printed circuit board and a cavity body element. The cavity body element has a cavity and a primary locking member. The cavity is configured to receive the terminal. The cavity extends from a front end to a rear end of the cavity body element. The front end is arranged opposite of the rear end. The primary locking member is configured to lock the terminal. The primary locking member includes a releasing arm protruding through a lateral surface of the cavity body element. |
US09711897B2 |
UVA battery connector
An electrical connection device and a terminal are provided. The electrical connection device includes first and second connectors. The first connector includes an insulating body and a plurality of blade-type terminals. The insulating body has a base portion and two ear portions, an inner wall surface of the ear portion has a first guide groove which is perpendicular to the base portion and a second guide groove which is parallel to the base portion. The second connector includes an insulating housing and a plurality of elastic terminals. The insulating housing has a mating portion and a protruding rail, the mating portion has a plurality of terminal grooves respectively provided with the elastic terminals. When the connectors are mated, each contact portion can contact the guide portion of the corresponding elastic terminal and then contact the contact portion of the corresponding elastic terminal to prevent the elastic terminal from being damaged. |
US09711893B2 |
Magnetic connector for electronic device
An electrical plug and receptacle relying on magnetic force from an electromagnet to maintain contact are disclosed. The plug and receptacle can be used as part of a power adapter for connecting an electronic device, such as a laptop computer, to a power supply. The plug includes electrical contacts, which are preferably biased toward corresponding contacts on the receptacle. The plug and receptacle each have a magnetic element. The magnetic element on one of the plug or receptacle can be a magnet or ferromagnetic material. The magnetic element on the other of the plug or receptacle is an electromagnet. When the plug and receptacle are brought into proximity, the magnetic attraction between the electromagnet magnet and its complement, whether another magnet or a ferromagnetic material, maintains the contacts in an electrically conductive relationship. |
US09711892B2 |
Method for producing structure for end of MI cable
The present invention provides a structure for an end of an MI cable, capable of being produced in a short time with a small number of processing steps. In the structure for the end of the MI cable, a connector including metal pins is attached to the end of the MI cable, and the metal pins respectively have sharp-pointed front ends stuck into the end faces of the wires of the MI cable, and rear ends functioning as electrodes for connection with a soft cable. |
US09711890B1 |
Connector cover, connector and connector module
A connector cover is adapted to cover a connector. A fixing member of the connector protrudes from a connector lateral and includes a base portion and a top board located on the base portion. The top board and the base portion form a T shape pillar. The connector cover includes four cover laterals, and one of the cover laterals includes a concave. A position of the concave located on the cover lateral corresponds to a position of the fixing member located on the connector lateral, and a width of the concave is close to a width of base portion. When the connector cover is assembled to the connector, the cover laterals lean against the connector laterals. The base portion is located in the concave and walls of the cover lateral besides the concave is near or lean against the base portion. A connector and a connector module are further provided. |
US09711889B2 |
Cable connector grid frame for a cable backplane system
A cable backplane system includes a backplane having connector openings receiving corresponding cable connectors therein and a cable tray coupled to the backplane. The cable tray has side walls surrounding a cavity defining a raceway for cables interconnecting corresponding cable connectors. A cable connector grid frame supports the cable connectors and the cable connector grid frame is loaded into the cable tray to position the cable connectors and corresponding cables in the cable tray as a unit. The cable connector grid frame includes side rails and center rails held between the side rails and forming a grid of cable connector openings between the side rails and center rails. The cable connector openings receive corresponding headers of the cable connectors and hold the positions of the headers relative to one another. |
US09711888B2 |
Cable assembly with connector and connector assembly
A cable assembly with connector includes: a housing provided with a mate connector opposing part provided on a front side and a cable part provided on a rear side having a cable opening formed; a conductive contactor provided on the mate connector opposing part side of the housing; a cable disposed in the housing via the cable opening and electrically connected to the contactor; a rear faceplate disposed on the cable part on the rear side of the housing and aligned with the cable opening; and a front faceplate disposed on the mate connector opposing part on the front side of the housing and enclosing a housing front face portion; wherein the housing is interposed between the rear faceplate and the front faceplate, and the front faceplate is fixed to the rear faceplate by at least one fixing member extending in the front and rear direction in the housing. |
US09711881B2 |
Tray with low cost used in a tray-type card connector
A tray used in a card connector for receiving a card therein includes a base having opposite top and bottom surfaces, a receiving room for receiving the card therein, and an inner surface surrounding the receiving room and connecting the top surface with the bottom surface. The base defines a plurality of thin portions projecting into the receiving room from the inner surface and a shallow notch recessed in the inner surface to adjacent to one of the plurality of thin portions, the shallow notch runs through both the top surface and the bottom surface. The present invention provides a low cost tray. |
US09711878B2 |
Power connector having a strong contact
A power connector includes: an insulative housing having an upper surface, a lower surface, and a receiving space; a number of contacts accommodated in the insulative housing, the contact having a contacting portion, a rear portion accommodated in a rear end of the insulative housing, and a snakelike elastic portion connecting the contacting portion and the rear portion, the snakelike elastic portion having a number of vertical bending sections and a number of connecting sections each connecting every two adjacent bending sections, wherein the vertical dimension of the intersecting surface of the bending section is greater than the vertical dimension of the intersecting surface of the connecting section. |
US09711877B2 |
Plug and connector module
A plug is disposed on a circuit board to be plug-connected to a socket, where the plug includes a metal housing and a spring pin, where the metal housing includes a first side plate and a second side plate that are oppositely disposed, and a first mating hole is formed on the second side plate; the spring pin is disposed on the second side plate along an insertion/removing direction of the plug, the spring pin includes a first connecting part and a bending part that is formed by bending and extending a first end of the first connecting part, a second end of the first connecting part is fastened inside the first mating hole, and the bending part is corresponding to the first mating hole and is separated from the second side plate. |
US09711875B2 |
Terminal and aluminum wire connection structure of terminal
A bolt-fastened terminal connects to a wire that includes an aluminum core wire of an aluminum-based metal. The terminal includes a wire connection configured by a copper-based metal material and continuous with an electric contact that includes a bolt hole, the wire connection being welded and electrically connected to the aluminum core wire. A surface of the wire connection is coated with a first metal such as nickel and a surface of the electric contact is coated with a second metal such as tin. The first metal and the second metal, which are configured by different metals, are selected from metals between hydrogen and aluminum, aluminum having a negative electric potential with reference to the electric potential of hydrogen and a high ionization tendency, and the second metal is a metal having a smaller negative electric potential and lower ionization tendency than the first metal. |
US09711873B1 |
Crimp terminal and connector
A crimp terminal has a crimp barrel which is crimped onto a core wire of a cable. The crimp barrel has an inner surface in which a plurality of cavities which are independent from one another is formed. Each of the cavities has a predetermined shape in a plane orthogonal to a depth direction thereof before the crimp barrel is crimped onto a core wire. The predetermined shape has at least two straight portions and a concave curved portion connecting the straight portions. The concave curved portion is indented inward of the predetermined shape. A plurality of the concave curved portions which are close to each other and included respectively in the predetermined shapes distinct from each other is arranged on an identical imaginary circle or rounded rectangular. |
US09711872B2 |
Crimp terminal and structure for connecting crimp terminal and wire
A crimp terminal includes a wire connector that crimps a conductor crimping portion and a coating crimping portion in such a manner as to enclose a range continuous from the front end of the conductor crimping portion to the rear end of the coating crimping portion; and a wire holding portion that is formed integrally with the coating crimping portion on the side opposite to the conductor crimping portion via a junction portion and holds the electric wire from the outer circumference of the coating. The junction portion is integrally formed in a manner continuous with a bottom plate of the coating crimping portion. On the inner surface of the junction portion, a convex portion is provided in a protruding manner for crimping the wire connector to the electric wire and bending the electric wire. |
US09711871B2 |
High-band radiators with extended-length feed stalks suitable for basestation antennas
A high-band radiator of an ultra-wideband dual-band basestation antenna is disclosed. The high-band radiator comprises at least one dipole, a feed stalk, and a tubular body made of conductive material and having an annular flange. Each dipole comprises two dipole arms made of conductive material. The feed stalk feeds the dipole and comprises a non-conductive dielectric substrate body and conductors formed on the substrate body to function as a balun transformer. The feed stalk is connected with the dipole at one end and has at least one feed connector at the other, with the conductors coupled there-between. The tubular body is adapted for electrical connection through the annular flange to the ground plane at the open end; the body is short-circuited at the other end to define an internal cavity of the tubular body. At least a portion of the feed stalk is disposed within the tubular body. |
US09711870B2 |
Folded radiation slots for short wall waveguide radiation
An example folded radiation slot for short wall waveguide radiation is disclosed. In one aspect, the radiating structure includes a waveguide layer configured to propagate electromagnetic energy via a waveguide. The waveguide may have a height dimension and a width dimension. The radiating structure also includes a radiating layer coupled to the waveguide layer, such that the radiating layer is parallel to the height dimension of the waveguide. The radiating layer may include a radiating element. The radiating element may be a slot defined by an angular or curved path, and the radiating element may be coupled to the waveguide layer. The radiating element may have an effective length greater than the height dimension of waveguide, wherein the effective length is measured along the angular or curved path of the slot. |
US09711867B2 |
Basic antenna, and corresponding one- or two-dimensional array antenna
A basic antenna (2), designed to form a radiating element of an array antenna, includes, superimposed, a planar reflector (4), a probe (6), and an assembly (8) of the EBG type by default in the form of a cavity (16). The basic antenna (2) includes a wall enclosure (10) capable of reflecting the electromagnetic waves at the operating frequency or frequencies of the basic antenna (2), the wall enclosure (10) being an extension in a direction orthogonal to the planar reflector (4) and simultaneously surrounding only the probe (6), the cavity (16) and the structure (14).The one- or two-dimensional array antenna includes a plurality of joined basic antennas (2) arranged compactly. |
US09711865B2 |
Dual polarization array antenna and radiation units thereof
A dual polarization array antenna having a plurality of radiation units disposed in an array on a reflecting board of the dual polarization array antenna. Each radiation unit is provided with two pairs of radiation oscillators mounted in an orthogonal polarization position. This greatly improves the consistency of radiation performance between two polarizations of the array antenna, and improves the polarization isolation degree of the array antenna. |
US09711862B2 |
Wireless device and wireless system
A wireless device includes an antenna that has a planar shape and radiates a radio signal toward another wireless device, and a chassis housing the antenna and having an outer peripheral portion placed to face the antenna. Multiple distances between a surface of the outer peripheral portion and the antenna are non-uniform. |
US09711859B1 |
Soldier-mounted antenna
Embodiments of a wide band multi-polarization antenna system are described, which can be attached to the back or front of a soldier's vest or backpack. The antenna system can allow for release of pre-shaped integral radiating elements that spring into a geometric configuration suitable for circular polarization radiation or linear polarization over a desired band of frequencies. The antenna system can provide, when collapsed, linear polarized line-of sight capability over a wide band of frequencies. In a collapsed low-profile state, the antenna system can remain on the soldier, but out of the way for maneuvering. |
US09711855B2 |
Multiband antenna and wireless device
A multiband antenna includes a feeding element connected to a feeding point, a radiating element functioning as a radiating conductor, the radiating element being positioned apart from the feeding element and fed with electric power by electromagnetically coupling to the feeding element, a ground plane, and a non-feeding element being positioned close to the radiating element and connected to the ground plane via a reactance element. The reactance element has a reactance that causes the multiband antenna to match with a frequency other than a resonance frequency of a resonance mode of the radiating element. |
US09711853B2 |
Broadband low-beam-coupling dual-beam phased array
Broadband slot-coupled stacked patch antenna elements are capable of continuous broadband operation between 1.71 GHz and 2.69 GHz. The broadband slot-coupled stacked patch antenna element includes a mid-band radiating patch, a high-band radiating patch, and a low-band resonator with coupling slots capable of resonating at low, mid, and high band frequencies. Additionally, a low-profile probe-fed patch element is provided for pattern enhancement of antenna arrays at high-band frequencies. This low-profile patch element features fan-shaped probes that have three degrees of tune-ability, namely a length, a width, and a spreading angle. Further aspects include 3-column and 4-column offset arrays of the broadband patch radiators and an interleaved array of the low-profile high-band patch radiators and the broadband radiating elements. A new type of azimuth beam forming network (ABFN) is also introduced for the beam forming of the 3-column and 4-column dual-beam arrays. |
US09711852B2 |
Modulation patterns for surface scattering antennas
Modulation patterns for surface scattering antennas provide desired antenna pattern attributes such as reduced side lobes and reduced grating lobes. |
US09711850B2 |
Dual antenna tracking in LEO and MEO satcom
Control of dual (two) antennas, for satellite communications (satcom) with satellites in one or more constellations in Low Earth Orbit (LEO) and Medium Earth Orbit (MEO). The dual antennas are typically part of a ground-based antenna system, in particular using the Satrack single pedestal with split antenna design, housed efficiently under a compact radome. Features simultaneous pointing toward two separate satellites during the satellites' handover/switching periods with instantaneous transition between the satcom modems for assuring real-time, continuous data communication over a LEO/MEO satellite link. The dual (two) antennas system can also be used in a “monopulse/electronic scan” mode where a first antenna is used for tracking according to ephemeris data, while a second antenna on the same pedestal will scan for offset/compensation to the first antenna path. |
US09711849B1 |
Antenna reconfigurable circuit
An antenna reconfigurable circuit changes patterns of a multiple-antenna system and includes a feed portion which an electrical signal is fed to; a plurality of power distribution links coupled between the feed portion and the antennas to form therebetween paths of transmission of the electrical signal; and switching units disposed at the power distribution links, respectively, to selectively disable or enable the paths. The switching units enable the antennas to change patterns and enhance signal reception quality. Furthermore, the antenna reconfigurable circuits are printed circuits instead of lumped elements and thereby maintain response characteristics, response stability and production yield of the antenna reconfigurable circuits. |
US09711845B2 |
Aerial vehicle radome assembly and methods for assembling the same
An aerial vehicle includes at least one antenna configured to at least one of transmit and receive a signal and a radome assembly at least partially covering the antenna. The radome assembly includes a shell having an inner surface that defines an opening therein and a tip comprising an extension portion coupled to the shell. The radome assembly also includes a component that engages a portion of the extension portion such that the extension portion is impeded from exiting the opening. |
US09711844B2 |
Portable antenna
A portable antenna with a housing in which the antenna is held when not in use, and a mechanism to cause the antenna to pop-up from, and sit on top of, the housing when it is to be used. The mechanism can function to collapse the antenna into the housing when not in use. |
US09711841B2 |
Apparatus for tuning multi-band frame antenna
A multi-band frame antenna is used for LTE, MIMO, and other frequency bands. The frame antenna includes a conductive block and a metallic frame with no gaps or discontinuities. The conductive block functions as a system ground and has at least one electronic component mounted on the surface. The outer perimeter of the metallic frame surrounds the conductive block, and there is a gap between the metallic frame and the conductive block. One or more antenna feeds are routed across the gap, between the metallic frame and the conductive block. One or more connections can be made across the gap, and at least one electronic element connects the conductive block to the metallic frame. |
US09711840B2 |
Antenna structure and electronic device using the same
An antenna structure and an electronic device using the same are provided. The antenna structure includes an antenna body and a washer body. The antenna body includes an annular metal sheet. The washer body is connected to one side of the annular metal sheet. The washer body has a screw hole. The annular metal sheet surrounds the washer body, and the annular metal sheet extends upward from the washer body. |
US09711838B2 |
Indexed centering spacer for coaxial probes in guided wave radar level transmitters
Coaxial probes for guided wave radar level transmitters have an inner rod within an outer tube. Transmission line impedance changes where the space between the two fills with process fluid, causing a reflection of radar energy. Time of flight calculations yield the distance to the product and thus the level of the fluid in a tank. The inner rod and outer rod should maintain their spacing because a reflection can occur if the inner rod moves too close to the outer tube wall. Spacers can maintain the spacing. The spacers should be retained so that their location over time doesn't change. Retention strategies involving shoulders or discontinuities in the inner rod or outer tube can cause measurement errors. Applications requiring high temperature resistance and high chemical compatibility lead to ceramic spacers instead of plastic spacers. Slip fits are needed when ceramics are too stiff for snap-in functionality. |
US09711833B1 |
Tunable RF anti-jamming system (TRAJS)
Systems and methods are provided for tunable band pass filtering for Tunable RF Anti-Jamming Systems. A tunable notch filter includes a transmission line coupled to an antenna, a splitter, a band-stop filter, a polarity inverter, and a combiner. In operation, the band-stop filter suppresses predetermined frequency bands of a received signal creating a filtered signal, the polarity inverter creates an inverted signal, and the combiner combines the filtered and inverted signals to create a pass band including the predetermined frequency bands and suppressing frequency bands adjacent the predetermined frequency bands. Alternatively, a tunable multiband bandpass filter includes first and second bandpass filters and a plurality of tunable passive components adapted to tune the first and second bandpass filters to first and second frequency bands, thereby creating a multiband pass band signal including the first and second frequency bands and attenuating frequency bands adjacent to the first and second frequency bands. |
US09711832B2 |
Harmonic oscillator and cavity filter and electromagnetic wave device thereof
The present application relates to a harmonic oscillator. The harmonic oscillator includes a dielectric body and at least one responding unit attached onto a surface of the dielectric body, where the responding unit is a conductive structure having a geometrical pattern. The application further relates to a cavity filter having the harmonic oscillator and an electromagnetic wave device. By using the harmonic oscillator in the application, a permittivity can be effectively increased and a resonance frequency of a cavity filter can be decreased, thereby implementing miniaturization. Moreover, for an electromagnetic wave in a TM mode, a frequency can be decreased and an electromagnetic loss is not affected. |
US09711818B2 |
Charge transfer mediator based systems for electrocatalytic oxygen reduction
Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum. |
US09711815B2 |
Polymer electrolyte fuel cell
An object of the invention is to provide a fuel cell having improved long-term durability.The patent provides a fuel cell comprising a peroxide decomposition catalyst immobilized on a support, wherein the fuel cell is constituted of a membrane electrode assembly comprising a polyelectrolyte membrane, electrode layers placed on both the sides of the electrolyte membrane, and gas diffusion layers placed on the side opposite to the electrolyte membrane of the electrode layers, a gas sealing material placed surrounding the membrane electrode assembly, and separators sandwiching the foregoing. |
US09711812B2 |
Piping unit for fuel cell, fuel cell unit equipped with piping unit and fuel cell system
A piping unit includes a cathode gas supply passage arranged to supply a cathode gas, and a cathode gas discharge passage arranged to discharge a cathode off-gas. The cathode gas supply passage includes a cathode supply valve, upstream cathode gas piping and downstream cathode gas piping. The cathode gas discharge passage includes a cathode exhaust valve, upstream cathode off-gas piping and downstream cathode off-gas piping. The cathode gas supply passage and the cathode gas discharge passage are connected with each other by cathode bypass piping and are integrated with each other by joining the cathode supply valve with the upstream cathode off-gas piping. |
US09711810B2 |
Exhaust drain valve for fuel cell
An exhaust drain valve includes a valve casing, a primary flow passage introducing an anode-off gas and a produced water from an inlet of the primary flow passage to an inside, a secondary flow passage discharging the anode-off gas and the produced water from an outlet of the secondary flow passage to an outside, a valve seat being formed at a primary flow passage outlet, and a valve body moving forward and backward. The primary flow passage includes an orifice being communicated with the primary flow passage outlet, an introduction flow passage having a diameter larger than a diameter of the orifice, the introduction flow passage being communicable with the inlet, and a step portion being formed orthogonal to an axial direction of the introduction flow passage, the step portion connecting the orifice and the introduction flow passage by having a step between the orifice and the introduction flow passage. |
US09711809B2 |
Fluidic components suitable for fuel cell systems including pressure regulators and valves
The disclosure teaches controlling the fluid flow and pressure, including adjustable pressure regulators, pressure regulators with an inlet restrictor, semi-automatic valve and pressure regulator with a by-pass valve which use one or more of movable shuttle, shuttle housing, a high pressure diaphragm, a low pressure diaphragm and a fluidic conduit connecting the inlet to the outlet. One or more of these implementations adjust to modify the outlet pressure of the regulator. The inlet restrictor allows incoming fluid to enter the pressure regulators when the pressure of the incoming fluid is higher than a threshold level. The semi-automatic valve is opened manually but closes automatically when fluid flowing through the valve is insufficient to keep the valve open. The semi-automatic valve can also be a semi-automatic electrical switch. The by-pass valve directs the flow to bypass the pressure regulator, when the flow is slow or has low pressure. |
US09711808B2 |
Method for optimized execution of heating tasks in fuel cell vehicles
A heating system for optimizing execution of heating tasks in a fuel cell vehicle is disclosed, the system including a stack coolant loop with a fuel cell stack, a primary pump, and a radiator module. A bypass coolant loop is disposed parallel with and is connected to the stack coolant loop between the fuel cell stack and the radiator module. The bypass loop including a cabin heat exchanger and a coolant heater, along with a secondary pump for pumping coolant through the heaters when desired. |
US09711800B2 |
Cable-type secondary battery
Disclosed is a cable-type secondary battery including an inner electrode including an inner current collector and an inner electrode active material layer formed surrounding an outer surface of the inner current collector, a separation layer formed surrounding an outer surface of the inner electrode to insert the inner electrode inside, an outer electrode active material structure formed surrounding an outer surface of the separation layer to insert the separation layer inside, the outer electrode active material structure including a porous polymer support and an outer electrode active material layer formed on at least one of an upper surface and a lower surface of the porous polymer support, and an outer electrode including an outer current collector formed surrounding the outer electrode active material structure to insert the outer electrode active material structure inside. |
US09711792B2 |
Positive electrode active material for secondary batteries and lithium ion secondary battery using the same
Provided is a positive electrode active material for lithium ion secondary batteries, having a crystal structure containing a layered Li2MnO2 structure with a high theoretical electrical capacity as a basic skeleton, and having both a high theoretical electrical capacity and a high open-circuit voltage by increasing an open-circuit voltage to a value of more than 2 V by replacing a part of manganese ions with calcium ions by adding the calcium ions. That is, a positive electrode active material for secondary batteries mainly containing a compound represented by a chemical composition formula Li2−xMn1−yCayO2, and an electrode and a battery including the same are realized. In the formula, x satisfies 0 |
US09711786B2 |
Fine particle-exfoliated graphite composite, negative electrode material for lithium ion secondary battery, and methods for producing the same, and lithium ion secondary battery
There is provided a method for producing a negative electrode material for lithium ion secondary batteries that is easily produced and is less likely to cause deterioration in charge and discharge cycle characteristics. A method for producing a negative electrode material for lithium ion secondary batteries, comprises steps of heating a raw material composition comprising resin-retained partially exfoliated graphite having a structure in which graphene is partially exfoliated and Si particles to dope the partially exfoliated graphite with the Si particles, the partially exfoliated graphite being obtained by pyrolyzing a resin in a composition in which the resin is fixed to graphite or primary exfoliated graphite, thereby exfoliating the graphite or primary exfoliated graphite while allowing part of the above resin to remain; providing a composition comprising the above partially exfoliated graphite doped with the Si particles, a binder resin, and a solvent; and shaping the above composition. |
US09711783B2 |
Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
A negative electrode for a nonaqueous electrolyte secondary battery according to one aspect of the present invention includes a negative electrode mixture layer that contains a binder and a negative electrode active material particle that forms an alloy with lithium and is formed on a current collector. The negative electrode mixture layer includes a base portion near the current collector and pillar-shaped portions formed on the base portion. A negative electrode for a nonaqueous electrolyte secondary battery according to another aspect of the present invention includes a negative electrode mixture layer that contains a binder and a negative electrode active material particle that forms an alloy with lithium and is formed on a current collector. The negative electrode mixture layer includes pillar-shaped portions and the particle diameter of the negative electrode active material particle is 20% or less of the maximum diameter of the pillar-shaped portions. |
US09711781B2 |
Apparatus for preventing battery overcharge
An apparatus for preventing battery overcharge is provided and includes a plurality of holders interposed between cells stacked within a battery to enclose the cells in a stacking direction. An installation space is formed between outer parts of at least two holders that enclose the cells. In addition, a fluid pouch is disposed within the installation space and adjacent to the cells inside the installation space, and contains a fluid therein. A cutting part is disposed within the installation space and has a first end disposed adjacent to the fluid pouch, and has a cutter edge heading between a lead tab and a bus bar at a second end of the cutting part. |
US09711779B2 |
Battery
Before an insulation insertion part and/or an insulating contact part is compressed with a compression force, a first insulating member, a second insulating member, a case lid, and/or an insert-through part create a receiving space which allows the insulation insertion part to deform in a shape that reduces a compression stress acting on the insulation insertion part when the insulation insertion part is compressed and receive a deformed portion thereof, and/or a receiving space which allows an insulating member having the insulating contact part to deform in a shape that reduces a compression stress acting on the insulating contact part when the insulating contact part is compressed and receives the deformed portion thereof. |
US09711777B2 |
Rechargeable battery
A rechargeable battery includes a plurality of electrode assemblies including a first electrode assembly and a second electrode assembly; a case housing the plurality of electrode assemblies; a first conductive plate between the first electrode assembly and the case; and a first contact electrically coupling the first conductive plate to the second electrode assembly. |
US09711774B2 |
Lithium ion battery with thermal sensitive layer
The present application provides a lithium ion battery including a thermal sensitive layer comprising polymer particles. The thermal sensitive layer may be disposed between the electrodes and the separator. When the lithium ion battery is under thermal runaway condition and the internal temperature rises to a critical temperature, the polymer particles undergo a thermal transition process (melting) to form an insulating barrier on the electrodes, which blocks lithium ion transfer between the electrodes and shuts down the internal current of the battery. |
US09711773B2 |
Separator and lithium-ion secondary battery
The present disclosure provides a separator and a lithium-ion secondary battery. The separator comprises: a microporous membrane having micropores; and a coating provided on a surface of the microporous membrane. The coating comprises polymer particles and binder particles. The polymer particle is a hollow shell structure which comprises a shell and a cavity positioned in the shell, an outer surface of the shell is distributed with nanopores which are communicated with the cavity, a particle diameter of the polymer particle is larger than a pore size of the micropore of the microporous membrane; a particle diameter of the binder particle is larger than the pore size of the micropore of the microporous membrane. The lithium-ion secondary battery comprises: a positive electrode plate; a negative electrode plate; the aforementioned separator interposed between the positive electrode plate and the negative electrode plate; and an electrolyte. |
US09711770B2 |
Laminar battery system
A battery system comprises a plurality of substantially planar layers extending over transverse areas. The plurality of layers comprises at least one cathode layer, at least one anode layer, and at least one separator layer therebetween. |
US09711769B2 |
Separator for nonaqueous cell and nonaqueous cell
Provided are a separator for a nonaqueous cell that has air permeability and is small in thickness while maintaining strength properties; and a nonaqueous cell having this separator. The separator includes a fiber sheet in which a polyvinyl alcohol fiber is incorporated in a proportion of 30% or more by mass (based on the fiber sheet). The fiber has a fiber breaking temperature in heated water of lower than 100° C. and higher than 85° C. |
US09711768B2 |
Electricity storage device
An electricity storage device includes an electrode assembly, a case, a safety valve, and a cover member. The case accommodates the electrode assembly. The safety valve is arranged in the case and opens to discharge gas out of the case when an inner pressure of the case exceeds a release pressure. The cover member is arranged in the case opposing the safety valve and includes a flow passage for the gas. |
US09711764B2 |
Electric storage apparatus
An electric storage apparatus of the present invention includes: a plurality of electric storage devices aligned in a first direction; and a frame configured to hold the plurality of electric storage devices, the frame including: a first frame element that is arranged so as to face the plurality of electric storage devices from one side in a second direction orthogonal to the first direction and to directly or indirectly abut the plurality of electric storage devices; and a second frame element that is arranged so as to face the plurality of electric storage devices from the other side in the second direction, wherein the second frame element includes, between the second frame element and the plurality of electric storage devices, a holding part having projections that are respectively in contact with the plurality of electric storage devices. |
US09711761B2 |
Electro luminescence panel and method for manufacturing electro luminescence panel
The present invention provides an organic EL panel and a manufacturing method of the organic EL layer which can slow the reduction in the light emission lifetime of an organic layer and allow a short-circuit defect to be repaired. Organic EL elements include: an organic EL element including a short-circuit portion, and an altered portion formed to be highly resistive by irradiating a cathode with a laser beam; and an organic EL element which does not include the short-circuit portion. In the organic EL element, an organic EL layer emits light when a voltage higher than or equal to a first voltage is applied. In the organic EL element, the organic EL layer emits light when a voltage higher than equal to a second voltage that is higher than the first voltage is applied. |
US09711760B2 |
Light-emitting device, method of forming and operating the same
In various embodiments, a light-emitting device may be provided including an active structure including a halide perovskite layer. The light-emitting device may further include a first injection electrode and a second injection electrode electrically coupled to the active structure. The light-emitting device may additionally include a control electrode, and an insulator layer between the control electrode and the active structure. The first injection electrode may be configured to inject electrons into the active structure and the second injection electrode may be configured to inject holes into the active structure upon application of a potential difference between the first injection electrode and the second injection electrode. The control electrode may be configured to generate an electric field upon application of a voltage, thereby causing accumulation of the electrons and the holes in a region of the halide perovskite layer so that the electrons and the holes recombine, thereby emitting light. |
US09711759B2 |
Organic light emitting diode display
An organic light emitting diode (OLED) display is provided. The OLED display has a plurality of pixel regions and comprises a substrate, a first electrode layer formed on the substrate, a second electrode layer formed on the first electrode layer, a pixel defining layer, and a light absorption composite layer. The pixel regions are separated by the pixel defining layer. The light absorption composite layer is formed on the substrate, and absorbs a light with wavelength of 380˜780 nm. The light absorption composite layer comprises a first light absorption layer and a second light absorption layer stacked together. The first light absorption layer absorbs a light with shorter wavelength. The second light absorption layer absorbs a light with longer wavelength different from that of the light absorbed by the first light absorption layer in the region of 380˜780 nm. |
US09711758B2 |
Organic light-emitting diode light source comprising a polyester film and a method of improving light extraction from said light source
An organic light-emitting diode (OLED) light source includes, in order: (i) a biaxially oriented polyester film substrate including light-scattering particles (P1); (ii) optionally an organic planarising coating layer (OPC1); (iii) optionally a barrier layer (B1); (iv) an organic planarising coating layer (OPC2) including light-scattering particles (P2); (v) optionally a barrier layer (B2); and (vi) a multi-layer light-emitting assembly including a first electrode, a light-emitting organic layer and a second electrode; wherein the OLED light source includes at least one of barrier layers (B1) and (B2). |
US09711755B2 |
Display panels
A display panel is provided. The display panel includes a first substrate having a display area and a non-display area. A sealant is disposed on the first substrate and on the non-display area. A planarization layer is disposed on the first substrate. The planarization layer has a first trench formed therein on the non-display area. The first trench has a bottom and a side adjacent to the bottom. The bottom has a roughness that is greater than the roughness of the side. |
US09711754B2 |
Manufacturing method of display device
An exemplary embodiment provides a manufacturing method of a display device, including: preparing a first panel and a second panel that are respectively provided with one or more pattern layers formed on a substrate; bonding the first panel and the second panel; cutting the bonded panel into division panels of a cell unit; chamfering the division panels; and chemical reinforcing the chamfered division panels. |
US09711753B2 |
Packaging device and method for manufacturing the OLED display screen
A packaging device for manufacturing the OLED display screen comprises a filling chamber, a transition chamber and a glove box, the glove box is mounted in the filling chamber, a filling pipe is placed in the transition chamber, an isolated cover is provided for separated the transition chamber and the filling chamber, wherein a safe protective cover is further located inside the transition chamber and under the isolated cover, the filling pipe is placed under the safe protective cover in the transition chamber. The touch sensor on the safe protective cover is provided for sensing the position of the filling pipe. If the filling pipe is champed by the safe protective cover, then position of the filling pipe will be readjusted with alarming. The safe protective cover will act a double-protective effect. Then the filling pipe will not be champed by the isolated cover when the filling pipe is replacing. |
US09711752B2 |
Display apparatus
Provided is a display apparatus. The display apparatus includes a display panel, a back cover disposed on a rear side of the display panel, the back cover having a curved shape of which both ends protrude forward, and a fixing part fixing the back cover to maintain the curved shape of the back cover. The display panel is curved in a shape corresponding to that of the back cover. |
US09711751B2 |
Organic light emitting display device
An organic light emitting display device includes a substrate extending along a first direction, the substrate comprising a pixel region having a plurality of pixels and a transparent region that is located adjacent to the pixel region, a lower electrode disposed on the substrate in the pixel region, the lower electrode extending along the first direction, a light emitting layer disposed on the lower electrode, the light emitting layer extending along the first direction, and an upper electrode disposed on the light emitting layer in the pixel region, the upper electrode extending along the first direction. The upper electrode exposes the transparent region. |
US09711748B2 |
OLED devices with internal outcoupling
Optoelectronic devices with enhanced internal outcoupling include a substrate, an anode, a cathode, an electroluminescent layer, and electron transporting layer comprising a fluoro compound of formula I (Ar2)n—Ar1—(Ar2)n I wherein Ar1 is C5-C40 aryl, C5-C40 substituted aryl, C5-C40 heteroaryl, or C5-C40 substituted heteroaryl; Ar2 is, independently at each occurrence, fluoro- or fluoroalkyl-substituted C5-40 heteroaryl; and n is 1, 2, or 3. |
US09711745B2 |
Light emitting element and light emitting device
A high efficient white emission light emitting element having peak intensity in each wavelength region of red, green, and blue is provided. Specifically, a white emission light emitting element having an emission spectrum that is independent of current density is provided. A first light emitting layer 312 exhibiting blue emission and a second light emitting layer 313 containing a phosphorescent material that generates simultaneously phosphorescent emission and excimer emission are combined. In order to derive excimer emission from the phosphorescent material, it is effective to disperse a phosphorescent material 323 having a high planarity structure such as platinum complex at a high concentration of at least 10 wt % to a host material 322. Further, the first light emitting layer 312 is provided to be in contact with the second light emitting layer 313 at the side of an anode. Ionization potential of the second light emitting layer 313 is preferably larger by 0.4 eV than that of the first light emitting layer 312. |
US09711744B2 |
Patterned structured transfer tape
A transfer tape is disclosed that includes a carrier, a template layer having a first surface applied to the carrier and having a second surface opposite the first surface, wherein the second surface comprises a non-planar structured surface, a release coating disposed upon the non-planar structured surface of the template layer, and a backfill layer disposed upon and conforming to the non-planar structured surface of the release coating. In some embodiments, the backfill layer includes a silsesquioxane such as polyvinyl silsesquioxane. The disclosed transfer tape can be used to transfer replicated structures to a receptor substrate. |
US09711740B2 |
Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
A novel organometallic complex which can emit phosphorescence is provided. A light-emitting element, a light-emitting device, an electronic device, or a lighting device with high emission efficiency is provided. The organometallic complex having an aryl triazine derivative as a ligand is represented by General Formula (G1) below as a representative of the organometallic complex of the present invention. |
US09711736B2 |
Condensed cyclic compound and organic light-emitting device comprising the same
A condensed cyclic compound is represented by Formula 1. The components of Formula 1 are described herein. An organic light-emitting device includes the condensed cyclic compound. The organic light-emitting device has improved driving voltage, improved luminance, improved efficiency, and improved half-lifetime, as compared to those of an organic light-emitting device that does not include the condensed cyclic compound. |
US09711733B2 |
Organic thin film transistor, organic semiconductor thin film, and organic semiconductor material
An organic thin film transistor containing a compound represented by one of the following formulae in a semiconductor active layer has a high carrier mobility and a small change in the threshold voltage after repeated driving. X represents S or O, and at least one of R1 to R6 represents -L-R wherein L represents alkylene, etc., and R represents alkyl, etc. |
US09711732B2 |
Organic electroluminescent element and material for organic electroluminescent elements
An organic electroluminescence device includes: a cathode; an anode; and an organic thin-film layer having one or more layers and provided between the anode and the cathode, in which the organic layer includes an emitting layer. The emitting layer includes a first host material, a second host material and a phosphorescent dopant material. The first host material is a compound represented by a formula (1A). The second host material is a compound represented by a formula (2A). |
US09711730B2 |
Organic electroluminescent materials and devices
This invention discloses novel light-emitting materials. These materials comprise a side chain which contains at least two Si or Ge atoms, such as bis(trimethylsilyl)methyl, or a side chain that includes Si—F bond, or a side chain that includes a fluorine-containing alkyl chain. This new side chain could fine tune emission color, reduce the stacking of the light-emitting materials, maintain good lifetime, and result in high PLQY. |
US09711728B1 |
Fused thiophene-based conjugated polymers and their use in optoelectronic devices
The present teachings relate to polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds generally include as repeating units at least one annulated thienyl-vinylene-thienyl (TVT) unit and at least one other pi-conjugated unit. The annulated TVT unit can be represented by the formula: where Cy1 and Cy2 can be a five- or six-membered carbocyclic ring. The annulated TVT unit can be optionally substituted at any available ring atom(s), and can be covalently linked to the other pi-conjugated unit via either the thiophene rings or the carbocyclic rings Cy1 and Cy2. The other pi-conjugated unit can be a conjugated linear linker including one or more unsaturated bonds, or a conjugated cyclic linker including one or more carbocyclic and/or heterocyclic rings. |
US09711726B2 |
Mask plate, method for processing organic layer and method for fabricating display substrate
The present invention provides a mask plate, a method for processing an organic layer and a method for fabricating an organic light-emitting diode display substrate. The mask plate comprises a light transmitting region and a light shading region. The light transmitting region corresponds to a region of an organic layer to be removed. The light transmitting region is provided with a photothermal conversion material for converting light energy into heat energy. The light shading region is provided with a light blocking layer for blocking transmission of light. The mask plate is suitable for processing an organic layer and particularly suitable for forming an auxiliary via hole in an organic light-emitting layer of an organic light-emitting diode display substrate. |
US09711721B2 |
Nonvolatile memory device and method of manufacturing the same
According to one embodiment, a plurality of first wirings are disposed in a first direction and a second direction which intersect with each other, and extended in a third direction. A second wiring stack is configured to include second wirings and interlayer insulating films which are extended and alternately stacked in the second direction. A memory cell includes, in the first direction, a first variable resistive layer which is disposed on a side near the first wiring and a second variable resistive layer which is disposed on a side near the second wiring. The second variable resistive layer is disposed between the interlayer insulating films in the third direction, and made of a material which is obtained by oxidizing the second wiring. |
US09711720B2 |
Resistive random access memory having stable forming voltage
A resistive random access memory including a first electrode, a separating medium, a resistance changing layer and a second electrode is disclosed. The first electrode has a mounting face. The separating medium is arranged on the first electrode and forms a through hole. A part of the first electrode is not covered by the separating medium. The separating medium has a first dielectric. The resistance changing layer extends along the part of the first electrode as well as along an inner face and the second face of the separating medium. The resistance changing layer has a second dielectric having a dielectric constant larger than a dielectric constant of the first dielectric by 2 or less. The second electrode is arranged on the resistance changing layer. In this arrangement, the problem of unstable forming voltage of the conventional resistive random access memory can be solved. |
US09711719B2 |
Nonvolatile memory elements having conductive structures with semimetals and/or semiconductors
A memory element programmable between different impedance states can include a first electrode layer comprising a semimetal or semiconductor (semimetal/semiconductor); a second electrode; and a switch layer formed between the first and second electrodes and comprising an insulating material; wherein atoms of the semimetal/semiconductor provide a reversible change in conductivity of the insulating material by application of electric fields. |
US09711718B1 |
Nonvolatile bipolar junction memory cell
The present disclosure generally relates to an apparatus for a three terminal nonvolatile memory cell. Specifically, a three terminal nonvolatile bipolar junction transistor. The bipolar junction memory device includes a collector layer, a base layer disposed on the collector layer, an emitter layer disposed on the base layer, and a conductive anodic filament extending from the collector layer to the base layer. As current is applied to the transistor and a voltage is applied between P-N junction of the collector layer and the base layer, a conductive anodic filament (CAF) forms. The CAF is non-volatile and short circuits the reverse-biased P-N junction barrier thus keeping the device in a low-resistive state. Removing the CAF switches the device back to a high resistive state. Thus, a new type of semiconductor device advantageously combines computation and memory to form a flux-linkage modulated memory cell. |
US09711716B2 |
Magnetic memory device and method for manufacturing the same
A magnetic memory device and a method for manufacturing the magnetic memory device are disclosed. The method includes forming a first interlayer insulating layer on a substrate, forming a first conductive pattern that penetrates the first interlayer insulating layer, forming a mold insulating layer that includes first and second mold insulating layers on the first interlayer insulating layer, forming a second conductive pattern that penetrates the first and second mold insulating layers and the first interlayer insulating layer, and forming a magnetic tunnel junction pattern on the second conductive pattern. The first mold insulating layer is in contact with the first conductive pattern, and the second mold insulating layer is disposed on the first mold insulating layer. |
US09711715B2 |
Method of manufacturing a dual mode ferroelectric random access memory (FRAM) having imprinted read-only (RO) data
Read-only (“RO”) data to be permanently imprinted in storage cells of a memory array are written to the memory array. One or more over-stress conditions such as heat, over-voltage, over-current and/or mechanical stress are then applied to the memory array or to individual storage cells within the memory array. The over-stress condition(s) act upon one or more state-determining elements of the storage cells to imprint the RO data. The over-stress condition permanently alters a value of a state-determining property of the state-determining element without incapacitating normal operation of the storage cell. The altered value of the state-determining property biases the cell according to the state of the RO data bit. The bias is detectable in the cell read-out signal. A pre-written ferroelectric random-access memory (“FRAM”) array is baked. Baking traps electric dipoles oriented in a direction corresponding to a state of the pre-written data and forms am RO data imprint. |
US09711712B2 |
Vertical hall device comprising a slot in the hall effect region
A vertical Hall device includes a Hall effect region, a separator, a first plurality of contacts, and a second plurality of contacts. The Hall effect region includes a first straight section, a second straight section that is offset parallel to the first straight section, and a connecting section that connects the first straight section and the second straight section. The separator separates a portion of the first straight section from a portion of the second straight section. The first and second plurality of contacts are arranged in or at the surface of the first and second straight sections, respectively. With respect to a first clock phase of a spinning current scheme, the first plurality of contacts comprises a first supply contact and a first sense contact. The second plurality of contacts comprises a second supply contact and a second sense contact. |
US09711711B2 |
Piecewise piezoelectric energy harvester
A piezoelectric energy harvester device has a cantilevered structure with a rectangular proof mass portion defined by holes through a substrate along three sides of a proof mass portion and supported by a thinned hinge portion for free pivotal movement relative to an anchor portion. Elongated strips of piezoelectric energy harvesting units are formed in side-by-side spaced positions on the hinge portion and aligned parallel or perpendicular to a stress direction. Multiplexing electronics coupled to contact pads on the anchor portion selectively connects different strip combinations to power management circuitry, responsive to variations in vibration magnitude or modes. |
US09711708B2 |
Electronic component having a reinforced hollowed structure
Provide an electronic component that has a hollowed structure and is capable of suppressing the deformation of the hollowed structure due to the pressure during the module resin molding. The electronic component includes a device substrate 2, a driver portion 3 formed on one of the principle surfaces of the device substrate 2, a protection portion 4 configured to cover the driver portion 3 so as to form a hollowed space 8 around the driver portion 3, an adhesion layer 10 that is made of a resin and arranged above the protection portion 4, and a reinforcing plate 11 arranged on the adhesion layer 10, wherein the reinforcing plate 11 is a silicon substrate. |
US09711704B2 |
Package support, fabrication method and LED package
A light-emitting diode (LED) package, including: a substrate with front and back surfaces, including: at least two metal blocks; an insulation portion, wherein the metal blocks are disposed in the insulation portion and have at least portions of upper and lower surfaces exposed; and an electrical insulation region between the at least two metal blocks; an LED chip disposed over, and forming one or more electrical connections with, the at least two metal blocks; and a package encapsulant disposed over the LED chip surface and covering at least a portion of the substrate; wherein the at least two metal blocks have protrusion connection portions that extend to an edge of the substrate. |
US09711703B2 |
Apparatus, system and method for use in mounting electronic elements
The present invention provides various embodiments for apparatuses, systems, and methods of manufacturing surface mountable devices. Some embodiments provide surface mount devices comprising a casing with a first and second surface and at least one side surface. A recess is formed in the first surface and extends into the casing. plurality of leads is partially encased by the casing, and one or more electronic devices are coupled with at least one of the plurality of leads and are at least partially exposed through the recess. A heat sink may be included for heat dissipation. |
US09711699B2 |
Optoelectronic semiconductor chip
An optoelectronic semiconductor chip includes a semiconductor layer sequence having at least one active layer. Furthermore, the semiconductor chip has a top-side contact structure on a radiation main side of the semiconductor layer sequence and an underside contact structure on an underside situated opposite to the radiation main side. Furthermore, the semiconductor chip includes at last two trenches that extend from the radiation main side towards the underside. As seen in a plan view of the radiation main side, the top-side contact structure and the underside contact structure are arranged in a manner spaced apart from one another. Likewise as seen in a plan view of the radiation main side, the trenches are located between the top-side contact structure and the underside contact structure. |
US09711698B2 |
Light-emitting device
The present invention provides a solution increasing illuminance of the irradiation surface in a vicinity of the optical axis and suppressing the generation of the yellow ring phenomenon. The present invention is for a light emitting device 1 having a light emitting element 2 and a light control member 3, the light control member has a light incident surface 31 and light emitting surface 32, when the intersection point of the optical axis and a light emitting surface of the light emitting element 2 is defined as a base point, an angle formed by the optical axis and a line connecting the base point and an optional point is defined as α1, and distance between the optional point of the light incident surface and the base point is defined as D1, for the light incident surface, the distance D1 is increasing as increasing the angle α1 if the angle α1 is 0≦α1<β1 (radian), and the distance D1 is decreasing as increasing the angle α1 if β1β2α1<(p/2) (radian). when an angle formed by the optical axis and a line connecting the base point and an optional point of the light emitting surface is defined as α1α2 and distance between the optional point of the light emitting surface and the base point is defined as D2, for the light emitting surface, the distance D2 is decreased in range of 0≦a2 |
US09711694B2 |
Optoelectronic device with light-emitting diodes
An optoelectronic device including an array of light-emitting diodes and photoluminescent blocks opposite at least part of the light-emitting diodes, each light-emitting diode having a lateral dimension smaller than 30 μm, each photoluminescent block including semiconductor crystals having an average size smaller than 1 μm, dispersed in a binding matrix. |
US09711689B2 |
Optical unit and electronic apparatus
A purpose of the present invention is to provide an optical unit that is capable of effectively sealing one or a plurality of optical devices even without a special material, a special structure, etc.In an optical unit of the present invention, the sealing section (50) includes: a circular seal section (51) surrounding one or a plurality of optical devices (40) on a wiring substrate from an in-plane direction of the wiring substrate; and an inside filling section (52) with which inside of the seal section (51) is filled and that seals the one or plurality of optical devices (40). The optical devices (40) are each a light emitting unit, a light receiving device, an image sensor, an X-ray sensor, or a power generating device. The seal section (51) and the inside filling section (52) are each configured of a cured thermosetting resin. The inside filling section (52) has light transmittance that is higher than light transmittance of the seal section (51). The inside filling section (52) has a modulus of elasticity that is smaller than a modulus of elasticity of the seal section (51). |
US09711688B2 |
Controlling LED emission pattern using optically active materials
A light emission device comprising a light emitting element, a wavelength conversion (e.g. phosphor) element, and a filter that reduces Color over Angle (CoA) effects by at least partially reflecting light from the light emitting element that strike the filter at near-normal angles of incidence. In some embodiments, a combined phosphor and filter layer is formed over the LED die. The filter may comprise a dispersion of self-aligning moieties, such as dielectric platelets in a film that is vacuum laminated to the LED structure. Xirallic® Galaxy Blue pigment, comprising an aluminum oxide core coated on both sides with thin films of SnO2, and TiO2, and Ronastar® Blue, comprising Calcium Aluminum Borosilicate and TiO2 may provide the dielectric platelets. |
US09711686B2 |
Lighting device with plural fluorescent materials
Provided is a light-emitting device that has a high emission efficiency, excellent stability and temperature properties, and that generates light having a high color rendering property sufficient for practical use. This semiconductor light-emitting device comprises a semiconductor light-emitting element that emits blue light, a green phosphor that absorbs the blue light and emits green light, and an orange phosphor that absorbs the blue light and emits orange light, and is characterized in that the orange phosphor is an Eu-activated α-SiAlON phosphor having an emission spectrum peak wavelength within a range of 595 to 620 nm. |
US09711684B2 |
Group III nitride semiconductor light-emitting device and production method therefor
There is provided a Group III nitride semiconductor light-emitting device in which electrons and holes are suppressed to be captured by threading dislocation, and a production method therefor. The light-emitting device comprises an n-type semiconductor layer, a light-emitting layer on the n-type semiconductor layer, a p-type semiconductor layer on the light-emitting layer. The light-emitting device has a plurality of pits extending from the n-type semiconductor layer to the p-type semiconductor layer. The n-type semiconductor layer includes an n-side electrostatic breakdown preventing layer. The n-side electrostatic breakdown preventing layer comprises an n-type GaN layer containing starting point of the pits, and an ud-GaN layer disposed adjacent to the n-type GaN layer and containing a part of the pits. At least one of the n-type GaN layer and the ud-GaN layer has an In-doped layer. The In composition ratio of the In-doped layer is more than 0 and not more than 0.0035. |
US09711682B2 |
Multiple quantum well light emitting device with multi-layer barrier structure
The light emitting device includes a first conductive semiconductor layer; a second conductive semiconductor layer on the first conductive semiconductor layer; and an active layer between the first and second conductive semiconductor layers. The active layer includes a plurality of well layers and a plurality of barrier layers, wherein the well layers include a first well layer and a second well layer adjacent to the first well layer. The barrier layers include a first barrier layer disposed between the first and second well layers, and the first barrier layer includes a plurality of semiconductor layers having an energy bandgap wider than an energy bandgap of the first well layer. At least two layers of the plurality of semiconductor layers are adjacent to the first and second well layers, and have aluminum contents greater than that of the other layer. |
US09711681B2 |
Nitride semiconductor
To provide a high-quality nitride semiconductor ensuring high emission efficiency of a light-emitting element fabricated. In the present invention, when obtaining a nitride semiconductor by sequentially stacking a one conductivity type nitride semiconductor part, a quantum well active layer structure part, and a another conductivity type nitride semiconductor part opposite the one conductivity type, the crystal is grown on a base having a nonpolar principal nitride surface, the one conductivity type nitride semiconductor part is formed by sequentially stacking a first nitride semiconductor layer and a second nitride semiconductor layer, and the second nitride semiconductor layer has a thickness of 400 nm to 20 μm and has a nonpolar outermost surface. By virtue of selecting the above-described base for crystal growth, an electron and a hole, which are contributing to light emission, can be prevented from spatial separation based on the QCSE effect and efficient radiation is realized. Also, by setting the thickness of the second nitride semiconductor layer to an appropriate range, the nitride semiconductor surface can avoid having extremely severe unevenness. |
US09711680B2 |
Integrated multi-color light emitting device made with hybrid crystal structure
An integrated hybrid crystal Light Emitting Diode (“LED”) display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides. |
US09711677B2 |
Assembly method of a photovoltaic panel of the back-contact type with pre-fixing of the cells, and combined loading and pre-fixing station
Automatic assembly method of a photovoltaic panel with cells of the back-contact type provided with a conductive backsheet with a thermoplastic encapsulating layer; the loading of the cells occurs in combination with their pre-fixing in a combined station sequentially placed before the superimposition of the upper encapsulating layer and after the laying of the conductive adhesive. The loading is carried out with a first device of the automatic mechanical hand type which takes a group of cells, aligns them with the back contacts in correspondence of the holes and lays them vertically from above. Furthermore, a second device of the presser-heater type carries out the pre-fixing of the cells holding them in the final position also with localized heating on at least one portion of each cell in such a way as to activate the adhesive function of the underlying thermoplastic encapsulating layer. A combined loading and pre-fixing station is also disclosed. |
US09711675B2 |
Sensing pixel and image sensor including the same
Disclosed are a sensing pixel and an image sensor including the same. The sensing pixel includes a determination region, which includes one or more floating body transistors, and an integration region that is adjacent to a floating body region of one of the one or more floating body transistors, absorbs light to generate an electron-hole pair including an electron and a positive hole, and transfers the electron or the positive hole to the floating body region of the one floating body transistor. |
US09711668B2 |
Photovoltaic cell
A photovoltaic cell is provided that enables cost reduction and stable operation with a simple configuration and enhances conversion efficiency by a new technology of forming an energy level in a band gap. In the photovoltaic cell, a substrate, a conductive first electrode, an electromotive force layer, a p-type semiconductor layer, and a conductive second electrode are laminated, electromotive force is generated by photoexciting the electron in the band gap of the electromotive force layer by light irradiation, the electromotive force layer is filled with an n-type metal oxide semiconductor of fine particles coated by an insulating coat, a new energy level is formed in a band gap by photoexcited structural change caused by ultraviolet irradiation, and efficient and stable operation can be performed by providing a layer of an n-type metal oxide semiconductor between the first electrode and the electromotive force layer. |
US09711667B2 |
Solar cell and method of manufacturing the same
Discussed is a solar cell including a single crystalline semiconductor substrate having a first transparent conductive oxide layer positioned on a non-single crystalline emitter layer; a second transparent conductive oxide layer positioned over a rear surface of the single crystalline semiconductor substrate; a first electrode part including a first seed layer directly positioned on the first transparent conductive oxide layer; and a second electrode part including a second seed layer directly positioned on the second transparent conductive oxide layer, wherein the first transparent conductive oxide layer and the first seed layer have different conductivities, and wherein the second transparent conductive oxide layer and the second seed layer have different conductivities. |
US09711665B2 |
Color converters
A color converter comprising at least one layer comprising at least one organic fluorescent colorant and at least one barrier layer having a low permeability to oxygen. |
US09711663B2 |
Power generating system and method of designing power generating system
A power generating system comprising: a plurality of power generating units coupled in parallel; a power collecting device for collecting electric power output from the plurality of power generating units; and wirings for coupling the plurality of power generating units and the power collecting device. A ratio of a conductor diameter to a predetermined length of each of the wirings is defined as a reference ratio. A value obtained by multiplying the reference ratio, a number of the wirings, and a loss generated by a specific wiring together is subtracted from a value obtained by multiplying a predetermined number of wirings for adjustment by a ratio of a conductor diameter to a length of the specific wiring. A total of the ratios of the conductor diameters to the lengths of the predetermined number of the wirings for adjustment is determined as a value less than the subtracted value. |
US09711658B2 |
Semiconductor device
A semiconductor device includes a first pillar-shaped semiconductor layer, a first selection gate insulating film, a first selection gate, a first gate insulating film, a first contact electrode, a first bit line connected to an upper portion of the first pillar-shaped semiconductor layer and an upper portion of the first contact electrode, a second pillar-shaped semiconductor layer, a layer including a first charge storage layer, a first control gate, a layer including a second charge storage layer and formed above the first control gate, a second control gate, a second gate insulating film, a second contact electrode having an upper portion connected to an upper portion of the second pillar-shaped semiconductor layer, and a first lower internal line that connects a lower portion of the first pillar-shaped semiconductor layer and a lower portion of the second pillar-shaped semiconductor layer. |
US09711655B2 |
Oxide semiconductor film and semiconductor device
A semiconductor device comprising a first metal oxide film, an oxide semiconductor film, a second metal oxide film, a gate insulating film, and a gate electrode is provided. The oxide semiconductor film comprises an In—Ga—Zn—O-based metal oxide. The second metal oxide film comprises a Ga—Zn—O-based metal oxide. An amount of substance of zinc oxide with respect to gallium oxide is lower than 50% in the Ga—Zn—O-based metal oxide. |
US09711653B2 |
Thin film transistor, method for fabricating the same and display apparatus
Embodiments of the present invention provide a thin film transistor, method for fabricating the thin film transistor and display apparatus. The method includes steps of: forming an active layer pattern which has a mobility greater than a predetermined threshold from an active layer material; and performing ion implantation on the active layer pattern. The energy of a compound bond formed from the implanted ions is greater than that of a compound bond formed from ions in the active layer material, thereby reducing the chance of vacancy formation and reducing the carrier concentration. Therefore, the mobility of the active layer surface is reduced, the leakage current is reduced, the threshold voltage is adjusted to shift toward positive direction and performance of the thin film transistor is improved. |
US09711650B2 |
Vertical thin film transistor selection devices and methods of fabrication
Three-dimensional (3D) non-volatile memory arrays having a vertically-oriented thin film transistor (TFT) select device and method of fabricating such a memory are described. The vertically-oriented TFT may be used as a vertical bit line selection device to couple a global bit line to a vertical bit line. A select device pillar includes a body and upper and lower source/drain regions. At least one gate is separated horizontally from the select device pillar by a gate dielectric. Beneath each gate, a single gap fill dielectric layer extends vertically from a lower surface of the gate, at least partially separating the gate from the underlying global bit line. Between horizontally adjacent pillars, this same dielectric layer extends from its same lower level beneath the gates vertically to a level of the upper source/drain region. |
US09711646B2 |
Semiconductor structure and manufacturing method for the same
A semiconductor structure and a manufacturing method for the same are disclosed. The semiconductor structure includes a first gate structure, a second gate structure and a second dielectric spacer. Each of the first gate structure and the second gate structure adjacent to each other includes a first dielectric spacer. The second dielectric spacer is on one of opposing sidewalls of the first gate structure and without being disposed on the dielectric spacer of the second gate structure. |
US09711641B2 |
Semiconductor device with cell trench structures and a contact structure
A semiconductor device includes first and second cell trench structures extending from a first surface into a semiconductor body, a first semiconductor mesa separating the cell trench structures. The first cell trench structure includes a first buried electrode and a first insulator layer. A first vertical section of the first insulator layer separates the first buried electrode from the first semiconductor mesa. The first semiconductor mesa includes a source zone of a first conductivity type directly adjoining the first surface. The semiconductor device further includes a capping layer on the first surface and a contact structure having a first section in an opening of the capping layer and a second section in the first semiconductor mesa or between the first semiconductor mesa and the first buried electrode. A lateral net impurity concentration of the source zone parallel to the first surface increases in the direction of the contact structure. |
US09711638B2 |
Semiconductor device using diamond
A semiconductor device includes a MISFET having: a diamond substrate; a drift layer having a first layer with a first density for providing a hopping conduction and a second layer with a second density lower than the first density, and having a δ dope structure; a body layer on the drift layer; a source region in an upper portion of the body layer; a gate insulation film on a surface of the body layer; a gate electrode on a surface of the gate insulation film; a first electrode electrically connected to the source region and a channel region; and a second electrode electrically connected to the diamond substrate. The MISFET flows current in the drift layer in a vertical direction, and the current flows between the first electrode and the second electrode. |
US09711635B1 |
Semiconductor device
A semiconductor device includes: a first semiconductor layer formed at a surface of a semiconductor substrate; an insulating layer formed on the surface of the semiconductor substrate; a first electrode that is electrically connected to the first semiconductor layer; a second semiconductor layer formed to a surface of a region, which is adjacent to the first semiconductor layer; a second electrode formed above a part of the second semiconductor layer; a third semiconductor layer adjacent to the second semiconductor layer in the one direction; a fourth semiconductor layer formed to a surface of a region, which is adjacent to the third semiconductor layer in the one direction; a third electrode that is electrically connected to the fourth semiconductor layer; and a conductor that is separated from the second electrode in the one direction and is kept at the same potential as the first electrode. |
US09711633B2 |
Methods of forming group III-nitride semiconductor devices including implanting ions directly into source and drain regions and annealing to activate the implanted ions
Methods of forming a semiconductor device include forming a dielectric layer on a Group III-nitride semiconductor layer, selectively removing portions of the dielectric layer over spaced apart source and drain regions of the semiconductor layer, implanting ions having a first conductivity type directly into the source and drain regions of the semiconductor layer, annealing the semiconductor layer and the dielectric layer to activate the implanted ions, and forming metal contacts on the source and drain regions of the semiconductor layer. |
US09711628B2 |
Semiconductor device
A semiconductor device has a reduced an on-voltage and uses a gate resistance to improve the trade-off relationship between turn-on loss Eon and dV/dt, and turn-on dV/dt controllability. A floating p+-type region is provided in an n−-type drift layer so as to be spaced from a p-type base region configuring a MOS gate structure. An emitter electrode and the floating p+-type region are electrically connected by an n+-type region provided in the surface layer of a substrate front surface. The n+-type region is covered with a second insulating film which film is covered with an emitter electrode. By an electric field being generated in the n+-type region by the emitter electrode provided on the top of the n+-type region via the second interlayer insulating film, the n+-type region forms a current path which causes holes accumulated in the floating p+-type region to flow to the emitter electrode when turning on. |
US09711626B2 |
Reverse-conducting IGBT
A reverse-conducting IGBT includes a semiconductor body having a drift region arranged between first and second surfaces. The semiconductor body further includes first collector regions arranged at the second surface and in Ohmic contact with a second electrode, backside emitter regions and in Ohmic contact with the second electrode. In a horizontal direction substantially parallel to the first surface, the first collector regions and backside emitter regions define an rc-IGBT area. The semiconductor body further includes a second collector region of the second conductivity type arranged at the second surface and in Ohmic contact with the second electrode. The second collector region defines in the horizontal direction a pilot-IGBT area. The rc-IGBT area includes first semiconductor regions in Ohmic contact with the first electrode and arranged between the drift region and first electrode. The pilot-IGBT area includes second semiconductor regions of the same conductivity type as the first semiconductor regions. |
US09711618B1 |
Fabrication of vertical field effect transistor structure with controlled gate length
A method of forming a gate structure, including forming one or more vertical fins on a substrate; forming a bottom spacer on the substrate surface adjacent to the one or more vertical fins; forming a gate structure on at least a portion of the sidewalls of the one or more vertical fins; forming a gauge layer on at least a portion of the bottom spacer, wherein the gauge layer covers at least a portion of the gate structure on the sidewalls of the one or more vertical fins; and removing a portion of the gauge layer on the bottom spacer. |
US09711617B2 |
Dual isolation fin and method of making
A method of making a dual isolation fin comprises applying a mask to a substrate and etching the exposed areas of the substrate to form a mandrel; forming a dielectric layer on the surface of the substrate and adjacent to the mandrel; forming a first epitaxially formed material on the exposed portions of the mandrel; forming a second epitaxially formed material on the first epitaxially formed material; forming a first isolation layer on the dielectric layer and adjacent to the second epitaxially formed material; removing the mask and mandrel after forming the first isolation layer; removing the first epitaxially formed material after removing the mask and mandrel; and forming a second isolation layer. |
US09711610B2 |
Semiconductor device having oxide semiconductor layer
The reliability of a semiconductor device is increased by suppression of a variation in electric characteristics of a transistor as much as possible. As a cause of a variation in electric characteristics of a transistor including an oxide semiconductor, the concentration of hydrogen in the oxide semiconductor, the density of oxygen vacancies in the oxide semiconductor, or the like can be given. A source electrode and a drain electrode are formed using a conductive material which is easily bonded to oxygen. A channel formation region is formed using an oxide layer formed by a sputtering method or the like under an atmosphere containing oxygen. Thus, the concentration of hydrogen in a stack, in particular, the concentration of hydrogen in a channel formation region can be reduced. |
US09711605B2 |
Contact for high-k metal gate device
An integrated circuit having an improved gate contact and a method of making the circuit are provided. In an exemplary embodiment, the method includes receiving a substrate. The substrate includes a gate stack disposed on the substrate and an interlayer dielectric disposed on the gate stack. The interlayer dielectric is first etched to expose a portion of the gate electrode, and then the exposed portion of the gate electrode is etched to form a cavity. The cavity is shaped such that a portion of the gate electrode overhangs the electrode. A conductive material is deposited within the cavity and in electrical contact with the gate electrode. In some such embodiments, the etching of the gate electrode forms a curvilinear surface of the gate electrode that defines the cavity. |
US09711604B1 |
Loading effect reduction through multiple coat-etch processes
First, second, and third trenches are formed in a layer over a substrate. The third trench is substantially wider than the first and second trenches. The first, second, and third trenches are partially filled with a first conductive material. A first anti-reflective material is coated over the first, second, and third trenches. The first anti-reflective material has a first surface topography variation. A first etch-back process is performed to partially remove the first anti-reflective material. Thereafter, a second anti-reflective material is coated over the first anti-reflective material. The second anti-reflective material has a second surface topography variation that is smaller than the first surface topography variation. A second etch-back process is performed to at least partially remove the second anti-reflective material in the first and second trenches. Thereafter, the first conductive material is partially removed in the first and second trenches. |
US09711602B2 |
Method of making thin film transistor array and source/drain contact via-interconnect structures formed thereby
The present application discloses a thin film transistor comprising active layer on a base substrate; an insulating layer over the active layer, the insulating layer comprising a source via and a drain via, each of which extending through the insulating layer; a source electrode within the source via in contact with the active layer; and a drain electrode within the drain via in contact with the active layer. |
US09711600B2 |
Semiconductor device and method of manufacturing the same, power conversion device, three-phase motor system, automobile, and railway vehicle
In a semiconductor device having a silicon carbide device, a technique capable of suppressing variation in a breakdown voltage and achieving reduction in an area of a termination structure is provided. In order to solve the above-described problem, in the present invention, in a semiconductor device having a silicon carbide device, a p-type first region and a p-type second region provided to be closer to an outer peripheral side than the first region are provided in a junction termination portion, a first concentration gradient is provided in the first region, and a second concentration gradient larger than the first concentration gradient is provided in the second region. |
US09711595B2 |
Semiconductor device including a semiconductor sheet unit interconnecting a source and a drain
A semiconductor device includes a substrate, a pair of source/drain units, and a semiconductor sheet unit. The substrate includes a well region. The source/drain units are disposed above the well region. The semiconductor sheet unit is disposed substantially vertically, interconnects the source/drain units, and defines a cross-sectional shape unit in a top view. The cross-sectional shape unit includes a plurality of cross-sections that have substantially the same shape and different sizes. |
US09711587B2 |
Organic light emitting display device
Provided is an organic light emitting display device. The organic light emitting display device includes: a plurality of sub-pixels including an anode and a cathode; an anode line configured to supply an anode voltage to the anode; and a cathode line configured to supply a cathode voltage to the cathode, and in each of the plurality of sub-pixels, a direction of an anode voltage input of the anode line and a direction of a cathode voltage input of the cathode line are different from each other and face each other in order to reduce a deviation in a potential difference between the anode and the cathode. Thus, it is possible to improve uniformity in the potential difference between the anode and the cathode caused by a line resistance. |
US09711583B2 |
Display device
Discussed is a display device, that may include a substrate divided into a display area and a non-display area except the display area, a first light shielding film formed in the display area, a second light shielding film formed in the non-display area, and oxide thin film transistors and organic light emitting diodes, which are formed on the first light shielding film, wherein the first light shielding film and the second light shielding film are spaced apart from each other. |
US09711580B2 |
Thin film transistor, array substrate, display device and manufacturing method of the thin film transistor and array substrate
A thin film transistor, an array substrate and manufacturing method thereof, and a display device are provided. The thin film transistor includes an active layer, a source electrode, a drain electrode, and a first gate electrode, the first gate electrode is shaped in a ring. The active layer includes a first portion, a second portion and a third portion for connecting the first portion and the second portion. The first portion and the second portion are disposed horizontally, and connected to the source electrode and the drain electrode, respectively. The third portion is disposed obliquely, and has a channel provided thereon. At least one part of the channel is located on an inner side of the first gate electrode. The thin film transistor can be used in a display device. |
US09711579B2 |
Organic light emitting diode display
An organic light emitting diode (OLED) display includes a substrate, a thin film transistor disposed on the substrate, a first electrode disposed on the thin film transistor and electrically connected to the thin film transistor, a first auxiliary layer disposed on the first electrode, an emission layer disposed on the first auxiliary layer, an electron transport layer disposed on the emission layer, a first buffer layer disposed on the electron transport layer, and a second electrode disposed on the first buffer layer. |
US09711578B2 |
Thin film transistor array panel and organic light-emitting display apparatus including the same
A thin film transistor (TFT) circuit panel comprises a substrate and first and second patterned multi-layer structures formed over the substrate. The first patterned multi-layer structure is to provide a driving TFT and a storage capacitor, and comprises: a semiconductor layer, a first electrode over the semiconductor layer, a second electrode disposed over the first electrode and insulated from the first electrode, a storage insulating layer disposed between the first electrode and the second electrode, and a driving gate insulating layer disposed between the semiconductor layer and the first electrode. The second patterned multi-layer structure is spaced from the first multi-layer structure, and comprises: a lower patterned insulating layer, a patterned conductive layer and a top patterned insulating layer. An organic insulating material is filled between the first and second patterned multi-layer structures. |
US09711577B2 |
OLED display device and fabrication method thereof
An organic light emitting diode (OLED) display device (01) and a fabrication method thereof are provided. The OLED display device (01) comprises a plurality of sub-pixel units, and each of the sub-pixel units includes a first electrode (20), an organic material functional layer (30) and a second electrode (40) which are sequentially disposed on a base substrate (10). The sub-pixel unit further includes: a first buffer layer (50) disposed between the base substrate (10) and the first electrode (20). A surface of a part, corresponding to the first electrode (20), of the first buffer layer (50) on a side away from the base substrate (10) is in a concave shape; the first electrode (20) is a transparent electrode, and the second electrode (40) is a non-transparent metal electrode. |
US09711574B2 |
Organic light emitting display panel and method of manufacturing the same
Embodiments relate to an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes a pixel area that includes at least a first sub pixel area. The first sub pixel area includes a color filter, a first overcoat element on the color filter, wherein a portion of the color filter at an edge portion of the first sub pixel area is not covered by the first overcoat element, and an electrode disposed on the pixel area, wherein the electrode is on the portion of the color filter not covered by the first overcoat element. |
US09711571B2 |
Smart window comprising electrochromic device and organic light-emitting device
A smart window is provided. The smart window includes an organic light-emitting device including first and second electrodes corresponding to each other, and a light-emitting layer disposed between the first and second electrodes and containing an organic light-emitting material; an electrochromic device including an electrochromic layer containing an electrochromic material and disposed over the organic light-emitting device, wherein the organic light-emitting device is disposed under the electrochromic device to form a light transmission portion in a predetermined region, and wherein the first electrode is formed of a transparent electrode or a high-reflection translucent electrode, and the second electrode is formed of a high-reflection electrode. |
US09711570B1 |
Touch sensible organic light emitting device
Embodiments of the present invention generally relate to a touch sensible organic light emitting device. The organic light emitting device according to an exemplary embodiment of the present invention comprises: a substrate; a thin film transistor disposed on the substrate; an organic light emitting element connected to the thin film transistor and receiving a data voltage; a plurality of encapsulation thin films disposed on the organic light emitting element, and encapsulating the thin film transistor and the organic light emitting element; a planarization layer disposed on the encapsulation thin film; and a touch sensor disposed on the planarization layer. |
US09711569B2 |
Image sensor and method for driving same
An image sensor and an operating method thereof are disclosed. The image sensor includes a first photoelectric conversion portion configured to receive plural lights, except for a light of first wavelength, to generate an electric charge; and a second photoelectric conversion portion configured to receive the light of the first wavelength to generate an electric charge, wherein at least a portion of the first photoelectric conversion portion and the second photoelectric conversion portion is spaced apart from each other in a vertical direction. |
US09711568B2 |
Organic optoelectronic component and method for operating the organic optoelectronic component
An organic optoelectronic component and a method for operating the organic optoelectronic component are disclosed. In an embodiment an organic optoelectronic component includes at least one organic light emitting element, at least one first organic light detecting element including at least one first organic light detecting layer, and at least one second organic light detecting element including at least one second organic light detecting layer, wherein the at least one organic light emitting element, the at least one first organic light detecting element and the at least one second light detecting element are arranged laterally on a common substrate, wherein the at least one first organic light detecting element is configured to detect ambient light, and wherein the at least one second organic light detecting layer of the at least one second organic light detecting element is arranged between two non-transparent layers. |
US09711566B1 |
Magnetoresistive device design and process integration with surrounding circuitry
Magnetoresistive device architectures and methods for manufacturing are presented that facilitate integration of process steps associated with forming such devices into standard process flows used for surrounding logic/circuitry. In some embodiments, the magnetoresistive device structures are designed such that the devices are able to fit within the vertical dimensions of the integrated circuit associated with a single metal layer and a single layer of interlayer dielectric material. Integrating the processing for the magnetoresistive devices can include using the same standard interlayer dielectric material as used in the surrounding circuits on the integrated circuit as well as using standard vias to interconnect to at least one of the electrodes of the magnetoresistive devices. |
US09711562B2 |
Apparatus and method for reducing optical cross-talk in image sensors
A method includes forming a plurality of pixels formed on a front surface of a semiconductor substrate, forming an array of color filters over the plurality of pixels, each color filter being adapted for allowing a wavelength of light radiation to reach at least one of the plurality of pixels, forming a plurality of micro-lenses over the array of color filters, and forming a second layer between the pixels and the color filters. The second layer further includes a structure adapted for blocking light radiation that is traveling towards a region between adjacent micro-lens, further wherein the plurality of micro-lenses are in contact with the array of color filters, and wherein the structure and the transparent material are coplanar at respective top surfaces thereof, and further wherein the structure directly contacts a bottom surface of at least one of the color filters. |
US09711555B2 |
Dual facing BSI image sensors with wafer level stacking
A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled. |
US09711554B2 |
Image sensor
An image sensor includes a pixel array chip, a logic chip, and an interposed layer. The interposed layer is disposed on the pixel array chip. The logic chip is disposed on the interposed layer. The interposed layer includes a connecting part, a shielding part, and a metal-diffusion barrier layer. The connecting part electrically connects a first interconnection wire of the pixel array chip and a second interconnection wire of the logic chip. The connecting part includes a first metallic element. The shielding part is disposed spatially apart from the connecting part and electrically grounded to suppress an electrical coupling between the pixel array chip and the logic chip. The shielding part includes a second metallic element. The metal-diffusion barrier layer is disposed on top and bottom surfaces of the interposed layer to limit diffusion of electrical charges to the pixel array chip and the logic chip. |
US09711552B2 |
Optoelectronic modules having a silicon substrate, and fabrication methods for such modules
Optoelectronic modules include a silicon substrate in which or on which there is an optoelectronic device. An optics assembly is disposed over the optoelectronic device, and a spacer separates the silicon substrate from the optics assembly. Methods of fabricating such modules also are described. |
US09711550B2 |
Pinned photodiode with a low dark current
A method of manufacturing a pinned photodiode, including: forming a region of photon conversion into electric charges of a first conductivity type on a substrate of the second conductivity type; coating said region with a layer of a heavily-doped insulator of the second conductivity type; and annealing to ensure a dopant diffusion from the heavily-doped insulator layer. |
US09711546B2 |
Image sensor pixel for high dynamic range image sensor
An image sensor pixel includes a first photodiode and a second photodiode disposed in a semiconductor material. The first photodiode has a first doped region, a first lightly doped region, and a first highly doped region. The second photodiode has a second full well capacity substantially equal to a first full well capacity of the first photodiode, and includes a second doped region, a second lightly doped region, and a second highly doped region. The image sensor pixel also includes a first microlens optically coupled to direct a first amount of image light to the first photodiode, and a second microlens optically coupled to direct a second amount of image light to the second photodiode. The first amount of image light is larger than the second amount of image light. |
US09711545B2 |
Method of fabricating display device
A method of fabricating a display device includes forming a thin-film transistor including a gate electrode, a source electrode and a drain electrode on a substrate, forming a first insulating layer and a second insulating layer on the thin-film transistor, forming a common electrode on the second insulating layer by depositing a common electrode material on the second insulating layer, plasma-treating a photoresist pattern on the common electrode material, and etching the common electrode material using the plasma-treated photoresist pattern as a mask, defining a contact hole in the second insulating layer which corresponds to the drain electrode using the plasma-treated photoresist pattern and the common electrode as a mask, forming a third insulating layer on the second insulating layer and the common electrode to expose the contact hole and the drain electrode and forming a pixel electrode connected to the drain electrode on the third insulating layer. |
US09711544B2 |
Thin film transistor and manufacturing method thereof, array substrate and manufacturing method thereof, display device
Embodiments of the disclosure provide a thin film transistor and a manufacturing method thereof, an array substrate and a manufacturing method thereof, and a display device. The thin film transistor comprises a substrate (1), and a gate electrode (2), a source electrode (41) and a drain electrode (42) provided on the substrate. A projection of a gap between the source electrode (41) and the drain electrode (42) on the substrate (1) coincides with a projection of the gate electrode (2) on the substrate (1). |
US09711543B2 |
Liquid crystal display and method for manufacturing the same
A liquid crystal display device includes a gate line and a data line disposed on a substrate; a thin film transistor (TFT) provided between the gate line and the data line; a pixel electrode positioned on the entire surface of a pixel region of the substrate; an insulating layer positioned on the entire surface of the substrate and exposing the TFT and the pixel electrode; a pixel electrode connection pattern electrically connecting the pixel electrode and the TFT on the insulating layer; and a plurality of common electrodes overlapping the pixel electrode and spaced apart from one another; and metal layer patterns provided on the common electrode overlapping at least one of the data line and the gate line. |
US09711542B2 |
Method for fabricating display panel
A method for fabricating a display panel includes forming a first patterned conductive layer, a gate insulation layer, a semiconductor channel layer, a first passivation layer, a second patterned conductive layer and a pixel electrode on a first substrate. The first patterned conductive layer includes a gate electrode, and the second patterned conductive layer includes a source electrode, a drain electrode and a data line. The patterns of the gate insulation layer, the first passivation layer and the second patterned conductive layer are defined by an etching process and a lift-off process with the same photomask. |
US09711541B2 |
Display panel and method for forming an array substrate of a display panel
The present disclosure provides a display panel and a method for forming an array substrate of a display panel. The display panel includes an array substrate which includes a display region and a frame region. The frame region includes a wire region in which first signal wires are formed. Each of the first signal wires includes a first conductive layer and a second conductive layer which are stacked with each other and electrically connected. As such, to obtain the same resistance value as that in prior art, the first signal wires in the present disclosure can be formed with a reduced width. Therefore, the wire region of the array substrate can have a smaller size, and thus the whole frame region of the display panel can be smaller. |
US09711540B2 |
LTPS array substrate
An LTPS array substrate includes a plurality of LTPS thin-film transistors and a bottom transparent conductive layer, a protective layer, and a top transparent conductive layer. Each LTPS thin-film transistor includes a substrate, a patternized light shield layer, a buffering layer, a patternized poly-silicon layer, a gate insulation layer, a gate electrode line and a common electrode line, an insulation layer, a drain electrode and a source electrode, and a planarization layer that are formed to sequentially stack on each other. The light shield layer covers the scan line and the source/drain. The bottom transparent conductive layer, the protection layer, and the top transparent conductive layer are sequentially stacked on the planarization layer. The patternized poly-silicon layer includes a first portion and a second portion. The drain electrode includes an extension section extending therefrom and opposite to the second portion. |
US09711537B2 |
Display device and electronic appliance
A display device with low manufacturing cost, a display device with low power consumption, a display device capable of being formed over a large substrate, a display device with a high aperture ratio of a pixel, and a display device with high reliability are provided. The display device includes a transistor electrically connected to a light-transmitting pixel electrode and a capacitor. The transistor includes a gate electrode, a gate insulating film, and a first multilayer film including an oxide semiconductor layer. The capacitor includes the pixel electrode and a second multilayer film overlapping with the pixel electrode, positioned at a predetermined distance from the pixel electrode, and having the same layer structure as the first multilayer film. A channel formation region of the transistor is at least one layer, which is not in contact with the gate insulating film, of the first multilayer film. |
US09711535B2 |
Method of forming FinFET channel
A method for fabricating a semiconductor device having a substantially undoped channel region includes performing an ion implantation into a substrate, depositing a first epitaxial layer over the substrate, and depositing a second epitaxial layer over the first epitaxial layer. In various examples, a plurality of fins is formed extending from the substrate. Each of the plurality of fins includes a portion of the ion implanted substrate, a portion of the first epitaxial layer, and a portion of the second epitaxial layer. In some embodiments, the portion of the second epitaxial layer of each of the plurality of fins includes an undoped channel region. In various embodiments, the portion of the first epitaxial layer of each of the plurality of fins is oxidized. |
US09711534B2 |
Devices including a diamond layer
A device includes a substrate layer, a diamond layer, and a device layer. The device layer is patterned. The diamond layer is to conform to a pattern associated with the device layer. |
US09711532B2 |
Three dimensional NAND memory having improved connection between source line and in-hole channel material as well as reduced damage to in-hole layers
A fabrication process is provided for a 3D stacked non-volatile memory device which provides a source contact to a bottom of a memory hole in a stack without exposing a programmable material lining of an interior sidewall of the memory hole and without exposing a channel forming region also lining an interior of the memory hole to an energetic and potentially damaging etch environment. The stack includes alternating control gate layers and dielectric layers on a substrate, and the memory hole is etched through the stack before lining an interior sidewall thereof with the programmable material and then with the channel forming material. The process avoids a need to energetically etch down through the memory hole to open up a source contact hole near the bottom of the channel forming material by instead etching upwardly from beneath the memory hole. |
US09711529B2 |
3D NAND device and fabrication method thereof
A method for forming a 3D NAND structure includes providing a semiconductor substrate; forming a control gate structure having a plurality of staircase-stacked layers, each layer has a first end and a second end; forming a dielectric layer covering the semiconductor substrate, and the control gate structure; forming a hard mask layer on the dielectric layer; patterning the hard mask layer to form a plurality of openings above corresponding second ends of the layers of the control gate structure; forming a photoresist layer on the hard mask layer; repeating a photoresist trimming process and a first etching process to sequentially expose the openings, and to form a plurality of holes with predetermined depths in the dielectric layer; performing a second etching process to etch the plurality of holes until surfaces of the second ends are exposed to form through holes; and forming metal vias in the through holes. |
US09711526B2 |
Semiconductor memory device
According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, and a columnar part. The stacked body is provided on the substrate. The stacked body includes a plurality of first insulating films and a plurality of electrode films alternately stacked one layer by one layer. The columnar part includes a semiconductor pillar provided in the stacked body and extending in a stacking direction of the stacked body, and a memory film provided between the semiconductor pillar and the stacked body. The electrode films include a first portion provided on a side part of the columnar part, a second part contacting the first portion and provided further outside the columnar part, and a first conductive layer covering an upper surface and a lower surface of the first portion. |
US09711524B2 |
Three-dimensional memory device containing plural select gate transistors having different characteristics and method of making thereof
A stack of material layers includes first material layers, second material layers located between a respective pair of an overlying first material layer and an underlying first material layer, and at least one temporary material layer located between a respective pair of an overlying first material layer and an underlying first material layer. After formation of a memory opening and a memory stack structure, at least one first backside recess is formed by removing the at least one temporary material layer and adjoining portions of a memory film. A physically exposed portion of a semiconductor channel is doped with electrical dopants to form a doped semiconductor channel portion. Second backside cavities are formed by removal of the second material layers. The backside cavities are then filled with a dielectric liner and electrically conductive layers, such as select and control gate electrodes of a memory device. |
US09711523B2 |
Semiconductor devices
Provided is a semiconductor device, including gate structures on a substrate, the gate structures extending parallel to a first direction and being spaced apart from each other by a separation trench interposed therebetween, each of the gate structures including insulating patterns stacked on the substrate and a gate electrode interposed therebetween; vertical pillars connected to the substrate through the gate structures; an insulating spacer in the separation trench covering a sidewall of each of the gate structures; and a diffusion barrier structure between the gate electrode and the insulating spacer. |
US09711517B2 |
Memory device having a pipe transistor and sub-pipe gate materials with different oxidation rates
The semiconductor device may include a first sub-pipe gate having a pipe hole formed therein; a second sub-pipe gate disposed on the first sub-pipe gate and passed-through by vertical holes being coupled to the pipe hole, wherein a material of the second sub-pipe gate has a lower oxidation rate than that of a material of the first sub-pipe gate; a first oxidized layer formed within a portion of the first sub-pipe gate to conform to a contour of the pipe hole; and a second oxidized layer formed within a portion of the second sub-pipe gate to conform to a contour of the vertical holes and the contour of the pipe hole. |
US09711515B1 |
Method of manufacturing semiconductor memory device
A method of manufacturing a semiconductor memory device according to an embodiment comprises: alternately stacking first inter-layer insulating layers and first layers above a substrate; forming a first opening penetrating the layers stacked above the substrate; and forming a gate insulating layer and a semiconductor layer in the first opening. In addition, the method comprises: forming a second opening penetrating the layers stacked above the substrate; and forming a second inter-layer insulating layer on an inner wall of the second opening. Moreover, the method comprises: forming a first silicide layer and a barrier metal layer on the bottom surface of the second opening; and forming a silicon layer in the second opening such that a crevice is formed in an upper surface of the silicon layer along the second opening. Furthermore, the method comprises: removing part of the silicon layer; and siliciding the silicon layer via the crevice. |
US09711513B2 |
Semiconductor structure including a nonvolatile memory cell and method for the formation thereof
A semiconductor structure includes a nonvolatile memory cell including a source region, a channel region and a drain region that are provided in a semiconductor material. The channel region includes a first portion adjacent the source region and a second portion between the first portion of the channel region and the drain region. An electrically insulating floating gate is provided over the first portion of the channel region. The nonvolatile memory cell further includes a select gate and a control gate. The first portion of the select gate is provided over the second portion of the channel region. The second portion of the select gate is provided over a portion of the floating gate that is adjacent to the first portion of the select gate. The control gate is provided over the floating gate and adjacent to the second portion of the select gate. |
US09711508B2 |
Capacitor structure and method of manufacturing the same
A capacitor structure includes a deep trench, a contact plug, a spacer and a metal-insulator-metal film. The deep trench extends into a crown oxide substrate, and the contact plug is disposed entirely below the crown oxide substrate. The spacer lines the deep trench, and the metal-insulator-metal film is disposed in the deep trench. |
US09711503B2 |
Gate structures with protected end surfaces to eliminate or reduce unwanted EPI material growth
One method disclosed herein includes, among other things, forming a line-end protection layer in an opening on an entirety of each opposing, spaced-apart first and second end face surfaces of first and second spaced-apart gate electrode structures, respectively, and forming a sidewall spacer adjacent opposing sidewall surfaces of each of the gate electrode structures but not adjacent the opposing first and second end face surfaces having the line-end protection layer positioned thereon. |
US09711501B1 |
Interlayer via
A semiconductor device is provided. The semiconductor device includes a lower layer, an upper layer and an interlayer via. The lower layer includes a lower substrate, lower electronic devices, metallization elements and contact elements. One of the lower electronic devices includes a field effect transistor (FET), lower contacts and spacers interposed between the FET and the lower contacts. At least one of the contact elements is electrically coupled between a metallization element and one of the lower contacts to form a stack. The upper layer includes an upper substrate and upper electronic devices. One of the upper electronic devices includes an FET, upper contacts and spacers interposed between the FET and the upper contacts. The upper substrate and one of the upper contacts define a through-hole aligned with the stack. The interlayer via extends through the through-hole to electrically couple the stack and the one of the upper contacts. |
US09711500B1 |
Package including a plurality of stacked semiconductor devices having area efficient ESD protection
A package may include a plurality of stacked semiconductor devices (chips) is disclosed. Each chip may include through vias (through silicon vias—TSV) that can provide an electrical connection between chips and between chips and external connections, such as solder connections or solder balls. Electro static discharge (ESD) protection circuitry may be placed on a bottom chip in the stack even when through vias connect circuitry on a top chip in the stack exclusive of the bottom chip. In this way, ESD protection circuitry may be placed in close proximity to the ESD event occurring at an external connection. In particular, every chip in the stack of semiconductor chips may have circuitry electrically connected to the external connection and by placing ESD protection circuitry on the bottom chip closest to the electrical connection, instead of on all chips ESD protection may be more area efficient. Furthermore, by only placing ESD protection circuitry on a bottom chip in a stack of semiconductor chips, ESD protection circuitry may not be included on other chips, so that total area may be reduced and more chips may be produced on a single silicon wafer. |
US09711497B2 |
Semiconductor unit with proection circuit and electronic apparatus
A semiconductor unit includes: a transistor configured to provide electrical conduction between a first terminal and a second terminal, based on a trigger signal; and a trigger device formed in a transistor region where the transistor is formed, and configured to generate the trigger signal, based on a voltage applied to the first terminal. |
US09711494B2 |
Methods of fabricating semiconductor die assemblies
Methods of fabricating multi-die assemblies including a base semiconductor die bearing a peripherally encapsulated stack of semiconductor dice of lesser lateral dimensions, the dice vertically connected by conductive elements between the dice, resulting assemblies, and semiconductor devices comprising such assemblies. |
US09711493B2 |
Integrated optical sensor and methods for manufacturing and using the same
An integrated optical sensor and methods for forming and using the same is provided. The integrated optical sensor comprising: a light source; a transparent substrate, having a first surface and a second surface opposite to each other; a first pixel cell array region, located on the first surface and adapted to receiving lights emitted from the light source and reflected by an external object; a second pixel cell array region, located on the first surface and adapted to receiving lights emitted from the light source and reflected by the fingerprint; and a third pixel cell array region, located on the first surface and adapted to receiving visible lights from outside. The integrated optical sensor has simplified structures, the forming method thereof has improved processes, and the using method thereof has more applications. Besides, production costs may be reduced. |
US09711491B2 |
Light-emitting device and method of manufacturing the same
A light-emitting device may comprise a substrate, an electric wire fixed to the substrate, and a plurality of light-emitting diodes mounted to the electric wire. According to one embodiment, each of the plurality of light-emitting diodes is an LED chip, and the light-emitting diodes on the substrate are sealed individually or collectively by one or more sealing members. According to another embodiment, the substrate has a plurality of through holes, wherein a plurality of portions of the electric wire provided on a rear surface side of the substrate communicates with a front surface side of the substrate at the plurality of through holes of the substrate, and wherein the plurality of light-emitting diodes is respectively mounted to the respective portions of the electric wire that communicate with the front surface side of the substrate. Other embodiments relate to methods of manufacturing a light-emitting device. |
US09711490B2 |
Illumination device
An illumination device includes a supporting base, at least two supports and at least two semiconductor light emitting elements. The supports are disposed on the supporting base and coupled to each other. The semiconductor light emitting elements are respectively coupled to the supports. The semiconductor light emitting element includes a transparent substrate and a light emitting diode (LED) structure. The transparent substrate has a support surface and a second main surface disposed opposite to each other. The LED structure is disposed on the support surface. At least a part of the light emitted from the LED structure may pass through the transparent substrate and emerge from the second main surface. |
US09711488B2 |
Semiconductor package assembly
The invention provides a semiconductor package assembly. The semiconductor package assembly includes a semiconductor die. A first molding compound covers a back surface of the semiconductor die. A redistribution layer (RDL) structure is disposed on a front surface of the semiconductor die. The semiconductor die is coupled to the RDL structure. A second molding compound is disposed on the front surface of the semiconductor die and embedded in the RDL structure. A passive device is disposed on the second molding compound and coupled to the semiconductor die. |
US09711485B1 |
Thin bonded interposer package
Methods and systems for a thin bonded interposer package are disclosed and may, for example, include bonding a semiconductor die to a first surface of a substrate, forming contacts on the first surface of the substrate, encapsulating the semiconductor die, formed contacts, and first surface of the substrate using a mold material while leaving a top surface of the semiconductor die not encapsulated by mold material, forming vias through the mold material to expose the formed contacts. A bond line may be dispensed on the mold material and the semiconductor die for bonding the substrate to an interposer. A thickness of the bond line may be defined by standoffs formed on the top surface of the semiconductor die. |
US09711483B2 |
Bonding apparatus
A bonding apparatus bonds a plurality of device chips on a plurality of electrode pads that are provided to a surface of a substrate. The bonding apparatus includes a stage, a head unit, a head lifting mechanism, a head vibrator, a heater, and a bonding region observation component. The substrate is placed and supported on the stage. The head unit holds the device chips. The head lifting mechanism raises and lowers the head unit in an up and down direction relative to the stage. The head vibrator vibrate the head unit in the up and down direction. The heater heats a bonding paste that bonds the device chips and the electrode pads. The bonding region observation component observes a region that includes at least a peripheral part of the electrode pads. |
US09711481B2 |
Semiconductor device and semiconductor device mounting structure
A semiconductor device includes a plurality of functional element chips, an electric connection member joined to two of the functional element chips, a first wire and a resin configured to cover the functional element chips, the electric connection member and the first wire. One of the two functional element chips may be a first semiconductor chip having first and second major surface electrodes facing toward the same direction and a first rear surface electrode facing in a direction opposite to a direction in which the first major surface electrode faces. The electric connection member may be joined to the first major surface electrode. The first wire may be joined to the second major surface electrode. The first wire may include a portion overlapping with the electric connection member in a thickness direction of the first semiconductor chip. |
US09711479B2 |
Substrate less die package having wires with dielectric and metal coatings and the method of manufacturing the same
A die package having a plurality of connection pads, a plurality of wire leads having metal cores with a defined core diameter, and a dielectric layer surrounding the metal cores having a defined dielectric thickness, at least one first connection pad held in a mold compound covering the die and the plurality of leads connected to at least one metal core, and at least one second connection pad held in the mold compound covering the die and the plurality of leads connected to at least one metal core. Further, the present invention relates to a method for manufacturing a substrate less die package. |
US09711475B2 |
Bump structural designs to minimize package defects
A method of forming a chip package includes providing a chip with a plurality of first bumps, wherein the plurality of first bumps has a first height. The method further includes providing a substrate with a plurality of second bumps, wherein the plurality of second bumps has a second height. The method further includes bonding the plurality of first bumps to the plurality of second bumps to form a first bump structure of the chip package, wherein the first bump structure has a standoff, wherein a ratio of a sum of the first height and the second height to the standoff is equal to or greater than about 0.6 and less than 1. |
US09711467B2 |
Method for manufacturing a semiconductor component having a common mode filter monolithically integrated with a protection device
In accordance with an embodiment, a semiconductor component, includes a common mode filter monolithically integrated with a protection device. The common mode filter includes a plurality of coils and the protection device has a terminal coupled to a first coil and another terminal coupled to a second coil. |
US09711466B2 |
Electronic apparatus operable in high frequencies
An electronic apparatus that includes a semiconductor device mounted on an assembly base is disclosed. The semiconductor device includes a transmission line, whose impedance is matched to characteristic impedance, and a pad connected to the transmission line, through which a high frequency signal is supplied to or extracted from the semiconductor device. The pad accompanies a stub line that is concurrently formed with the transmission line and grounded within the semiconductor device. The stub line operates as a short stub that may compensate parasitic capacitance attributed to the pad. |
US09711465B2 |
Antenna cavity structure for integrated patch antenna in integrated fan-out packaging
An integrated fan-out package having a top-side redistribution wiring structure, a back-side redistribution wiring layer, a ground plane provided in the back-side redistribution wiring layer, and a molding compound layer having a thickness and provided between the back-side redistribution wiring layer and the top-side redistribution wiring structure is disclosed. The package has an RF IC die embedded within the molding compound layer and one or more integrated patch antenna structure provided in the top-side redistribution wiring structure. The one or more integrated patch antenna structure is coupled to the RF IC die and an antenna cavity is provided within the molding compound layer under each of the one or more integrated patch antenna. |
US09711455B2 |
Method of forming an air gap semiconductor structure with selective cap bilayer
A semiconductor substrate including one or more conductors is provided. A first layer and a second layer are deposited on the top surface of the conductors. A dielectric cap layer is formed over the semiconductor substrate and air gaps are etched into the dielectric layer. The result is a bilayer cap air gap structure with effective electrical performance. |
US09711452B2 |
Optimized wires for resistance or electromigration
Optimized metal wires for resistance or electromigration, methods of manufacturing thereof and design methodologies are disclosed. The method includes depositing metal material within openings and on a surface of dielectric material resulting in metal filled openings and a topography of recessed areas aligned with the metal filled openings. The method further includes depositing an alloying material over the metal material, including within the recessed areas. The method further includes planarizing the metal material, leaving the alloying material within the recessed areas. The method further includes diffusing the alloying material into the metal material forming alloyed regions self-aligned with the metal filled openings. |
US09711450B1 |
Interconnect structures with enhanced electromigration resistance
Interconnect structures are provided that include an intermetallic compound as either a cap or liner material. The intermetallic compound is a thermal reaction product of a metal or metal alloy of an interconnect metallic region with a metal of either a metal cap or a metal layer. In some embodiments, the metal cap may include a metal nitride and thus a nitride-containing intermetallic compound can be formed. The formation of the intermetallic compound can improve the electromigration resistance of the interconnect structures and widen the process window for fabricating interconnect structures. |
US09711444B2 |
Packaging module and substrate structure thereof
A substrate structure is provided, including: a circuit board having a plurality of wiring layers; a first circuit layer; a plurality of conductive posts disposed on the first circuit layer; a first insulating layer encapsulating the circuit board, the first circuit layer and the conductive posts; and a second circuit layer formed on the first insulating layer and electrically connected to the wiring layers with the second circuit layer electrically connected to the first circuit layer through the conductive posts. According to the present disclosure, fine-pitch circuits are formed in the circuit board, and thus only the circuit board needs a high-cost insulating material, thereby allowing the first insulating layer to be made of a low-cost material to reduce the fabrication cost. |
US09711432B2 |
Electronic power device with improved cooling
An electronic device comprising at least one electronic component mounted on a support and surrounded by a deformable casing containing a heat-conducting and electrically-insulating liquid, the device comprising a heat dissipation plate that is substantially parallel to the support and spaced apart therefrom, and heat exchange means for heat exchange by conduction between the casing and the plate, the heat-conducting and electrically-insulating liquid being selected and the casing being arranged so that thermal expansion of the oil leads to the casing applying force against the means for heat exchange by conduction. |
US09711430B2 |
Semiconductor device, method for installing heat dissipation member to semiconductor device, and a method for producing semiconductor device
A semiconductor device is fastened to a heat dissipation member such that a force directed downward acts from a metal substrate onto the heat dissipation member, with a rim portion of a storage region as a fulcrum with respect to the heat dissipation member. As a result, a heat conductive material can be spread into a thinner layer between the metal substrate and the heat dissipation member, improving the heat dissipation between the metal substrate and the heat dissipation member. |
US09711427B2 |
Thermal dissipation through seal rings in 3DIC structure
A package includes a die, which includes a semiconductor substrate, a plurality of through-vias penetrating through the semiconductor substrate, a seal ring overlapping and connected to the plurality of through-vias, and a plurality of electrical connectors underlying the semiconductor substrate and connected to the seal ring. An interposer is underlying and bonded to the die. The interposer includes a substrate, and a plurality of metal lines over the substrate. The plurality of metal lines is electrically coupled to the plurality of electrical connectors. Each of the plurality metal lines has a first portion overlapped by the first die, and a second portion misaligned with the die. A thermal conductive block encircles the die, and is mounted on the plurality of metal lines of the interposer. |
US09711426B2 |
Fan-out wafer level packaging structure
A semiconductor device includes a first die including a first pad and a first passivation layer, a second die including a second pad and a second passivation layer, and an encapsulant surrounding the first die and the second die. Surfaces of the first die are not coplanar with corresponding surfaces of the second die. A dielectric layer covers at least portions of the first passivation layer and the second passivation layer, and further covers the encapsulant between the first die and the second die. The encapsulant has a first surface. The dielectric layer has a second surface adjacent to the first passivation layer, the second passivation layer and the encapsulant, and further has a third surface opposite the second surface. The semiconductor device further includes a redistribution layer electrically connected to the first pad and the second pad and disposed above the third surface of the dielectric layer. |
US09711425B2 |
Sensing module and method for forming the same
A sensing module is provided. The sensing module includes a sensing device. The sensing device includes a first substrate having a first surface and a second surface opposite thereto. The sensing device also includes a sensing region adjacent to the first surface and a conducting pad on the first surface. The sensing device further includes a redistribution layer on the second surface and electrically connected to the conducting pad. The sensing module also includes a second substrate and a cover plate bonded to the sensing device so that the sensing device is between the second substrate and the cover plate. The conducting pad is electrically connected to the second substrate through the redistribution layer. The sensing module further includes an encapsulating layer filled between the second substrate and the cover plate to surround the sensing device. |
US09711422B2 |
Visually detecting electrostatic discharge events
Methods and structures provide an electrostatic discharge (ESD) indicator including an electric field sensitive material configured to undergo a specific color change in response to an electric field. An exposure of the structure to an ESD can be visually determined via the specific color change of the ESD indicator. |
US09711416B2 |
Fin field effect transistor including a strained epitaxial semiconductor shell
A semiconductor fin including a single crystalline semiconductor material is formed on a dielectric layer. A semiconductor shell including an epitaxial semiconductor material is formed on all physically exposed surfaces of the semiconductor fin by selective epitaxy, which deposits the semiconductor material only on semiconductor surfaces and not on dielectric surfaces. The epitaxial semiconductor material can be different from the single crystalline semiconductor material, and the semiconductor shell can be bilaterally strained due to lattice mismatch. A fin field effect transistor including a strained channel can be formed. Further, the semiconductor shell can advantageously alter properties of the source and drain regions, for example, by allowing incorporation of more dopants or by facilitating a metallization process. |
US09711412B2 |
FinFETs with different fin heights
An integrated circuit structure includes a semiconductor substrate including a first portion in a first device region, and a second portion in a second device region. A first semiconductor fin is over the semiconductor substrate and has a first fin height. A second semiconductor fin is over the semiconductor substrate and has a second fin height. The first fin height is greater than the second fin height. |
US09711410B2 |
Semiconductor device having a necked semiconductor body and method of forming semiconductor bodies of varying width
Semiconductor devices having necked semiconductor bodies and methods of forming semiconductor bodies of varying width are described. For example, a semiconductor device includes a semiconductor body disposed above a substrate. A gate electrode stack is disposed over a portion of the semiconductor body to define a channel region in the semiconductor body under the gate electrode stack. Source and drain regions are defined in the semiconductor body on either side of the gate electrode stack. Sidewall spacers are disposed adjacent to the gate electrode stack and over only a portion of the source and drain regions. The portion of the source and drain regions under the sidewall spacers has a height and a width greater than a height and a width of the channel region of the semiconductor body. |
US09711405B2 |
Substrate dividing method
A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness. |
US09711404B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes a substrate that includes a first region and a second region adjacent to the first region. The first region has a thickness that is smaller than a thickness of the second region, and a nitride semiconductor layer is provided on the first region of the substrate. |
US09711401B2 |
Reliable packaging and interconnect structures
Methods and apparatus for forming a semiconductor device are provided which may include any number of features. One feature is a method of forming an interconnect structure that results in the interconnect structure having a top surface and portions of the side walls of the interconnect structure covered in a dissimilar material. In some embodiments, the dissimilar material can be a conductive material or a nano-alloy. The interconnect structure can be formed by removing a portion of the interconnect structure, and covering the interconnect structure with the dissimilar material. The interconnect structure can comprise a damascene structure, such as a single or dual damascene structure, or alternatively, can comprise a silicon-through via (TSV) structure. |
US09711398B2 |
Global dielectric and barrier layer
Methods of fabricating a semiconductor device are described. The method includes forming a patterned oxide layer having a plurality of openings over a substrate, depositing a metal layer in the openings to form metal plugs, depositing a global transformable (GT) layer on the oxide layer and the metal plugs, and depositing a capping layer directly on the GT layer without exposing the GT layer to ambient air. The GT layer on the oxide layer transforms into a dielectric oxide and the GT layer on the metal plugs remains conductive during deposition of the capping layer. |
US09711397B1 |
Cobalt resistance recovery by hydrogen anneal
Resistance increase in Cobalt interconnects due to nitridation occurring during removal of surface oxide from Cobalt interconnects and deposition of Nitrogen-containing film on Cobalt interconnects is solved by a Hydrogen thermal anneal or plasma treatment. Removal of the Nitrogen is through a thin overlying layer which may be a dielectric barrier layer or an etch stop layer. |
US09711394B1 |
Method for cleaning the surface of an epitaxial layer in openings of semiconductor device
A method for fabricating a semiconductor device includes the following steps: providing a substrate having an epitaxial layer, a gate structure and an interlayer dielectric thereon, where the epitaxial structure is disposed at sides of the gate structure and the interlayer dielectric covering the epitaxial structure; forming an opening in the interlayer dielectric so that the surface of the epitaxial layer is exposed from the bottom of the opening; performing a rapid thermal process in an inert environment until non-conductive material is generated on the surface of the epitaxial layer; and removing the non-conductive material. |
US09711386B2 |
Electrostatic chuck for high temperature process applications
Embodiments of the present invention provide a substrate support assembly including an electrostatic chuck with enhanced heat resistance. In one embodiment, an electrostatic chuck includes a support base, an electrode assembly having interleaved electrode fingers formed therein, and an encapsulating member disposed on the electrode assembly, wherein the encapsulating member is fabricated from one of a ceramic material or glass. |
US09711384B2 |
Pattern coating device and pattern coating method thereof
A coating device for coating a coating liquid onto a substrate includes: a coating head having a coating-liquid outlet, adapted to move with respect to the substrate along a first axial direction and capable of coating the substrate with coating liquid through the coating-liquid outlet; and adjustment unit connected to the coating head and including a movable pad disposed proximal to the coating-liquid outlet and adapted to move along a second axial direction for adjusting the size of the opening of the coating-liquid outlet; and a drive assembly connected to the adjustment unit for controlling the adjustment unit to move along the second axial direction. Additionally a coating method is provided. |
US09711382B2 |
Dome cooling using compliant material
Embodiments described herein generally relate to apparatus for processing substrates. The apparatus generally include a process chamber including a lamp housing containing lamps positioned adjacent to an optically transparent window. Lamps within the lamp housing provide radiant energy to a substrate positioned on the substrate support. Temperature control of the optically transparent window is facilitated using cooling channels within the lamp housing. The lamp housing is thermally coupled to the optically transparent window using compliant conductors. The compliant conductors maintain a uniform conduction length irrespective of machining tolerances of the optically transparent window and the lamp housing. The uniform conduction length promotes accurate temperature control. Because the length of the compliant conductors is uniform irrespective of machining tolerances of chamber components, the conduction length is the same for different process chambers. Thus, temperature control amongst multiple process chambers is uniform, reducing chamber-to-chamber variation. |
US09711380B2 |
Liquid processing apparatus, liquid processing method and storage medium
Disclosed are a liquid processing apparatus and a liquid processing method. The liquid processing apparatus includes an ejection port ejecting a first liquid to a wafer, a first liquid supply mechanism supplying sulphuric acid to the ejection port, and a second liquid supply mechanism supplying hydrogen peroxide solution to the ejection port. The first liquid supply mechanism includes a first temperature adjustment mechanism maintaining the first liquid heated to a first temperature, a second temperature adjustment mechanism connected to the first temperature adjustment mechanism, and an ejection line connecting the second temperature adjustment mechanism with the ejection port. The second temperature adjustment mechanism includes a second circulation line and a second heater. The ejection line connects the second circulation line through a switching valve at a location further downstream than the second heater. |
US09711378B2 |
Liquid epoxy resin composition for semiconductor sealing and resin-sealed semiconductor device
The present invention relates to a liquid epoxy resin composition for semiconductor sealing, which contains: (A) a liquid epoxy resin that does not contain a siloxane bond in each molecule; (B) an acid anhydride-based curing agent; (C) a surface-treated spherical inorganic filler which is a spherical inorganic filler having an average particle diameter of 0.1-10 μm as determined by a laser diffraction method and serving as an inorganic filler, and wherein the surface of the spherical inorganic filler is surface-treated with 0.5-2.0 parts by weight of a (meth)acrylic functional silane coupling agent per 100 parts by weight of the spherical inorganic filler of the component (C); and (D) a curing accelerator. The present invention is able to provide a semiconductor device which has excellent heat resistance and moisture resistance. |
US09711376B2 |
System and method for manufacturing a fabricated carrier
A method and apparatus for fabricating a carrier having a top surface and a bottom surface, the method comprising combining a conductive portion at the top surface and a dielectric at the bottom surface, wherein the dielectric includes contact island cavities, filling one or more of the contact island cavities with solder metal to form solder islands, selectively metal plating the conductive portion, selectively etching a portion of the conductive portion, and applying solder resist to the selectively plated and etched top surface of said conductive portion. |
US09711375B2 |
Plasma processing apparatus and plasma processing method
A plasma processing apparatus is provided including a processing chamber disposed within a vacuum vessel to form plasma therein, a processing stage disposed in the processing chamber to mount a wafer thereon, a first power supply for outputting an electric field supplied to form the plasma and forming an electric field of a first frequency supplied with repetition of a high output and a low output during processing of the wafer, a second power supply for supplying power of a second frequency to an electrode disposed within the processing stage, and a control device for causing a first value between load impedance at time of the high output of the electric field and load impedance at time of the low output of the electric field to match with impedance of the first power supply. |
US09711372B2 |
Double patterning method
In some embodiments, the disclosure relates to a method of forming an integrated circuit device. The method is performed by forming a first mask layer over a substrate and a second mask layer over the first mask layer. The second mask layer is patterned to form cut regions. A mandrel is formed over the first mask layer and the cut regions, and the first mask layer is etched using the mandrel form a patterned first mask. The substrate is etched according to the patterned first mask and the cut regions to form trenches in the substrate, and the trenches are filled with conductive metal to form conductive lines. |
US09711368B2 |
Sidewall image transfer process
A sidewall image transfer (SIT) process is provided. First, a substrate is provided. A sacrificial layer having a pattern is formed on the substrate. A first measuring step is performed to measure a width of the pattern of the sacrificial layer. A material layer is formed conformally on the sacrificial layer, wherein a thickness of the material layer is adjusted according to the result of the first measuring step. Then, the material layer is removed anisotropically, so the material layer becomes a spacer on a sidewall of the sacrificial layer. Lastly, the sacrificial layer is removed. |
US09711367B1 |
Semiconductor method with wafer edge modification
The present disclosure provides a semiconductor fabrication method. The method includes modifying an edge portion of a wafer such that the edge portion are prevented from resist coating; coating a resist layer on the front surface of the wafer, wherein the resist layer is free from the edge portion of the wafer; and performing an exposing process to the resist layer. |
US09711365B2 |
Etch rate enhancement for a silicon etch process through etch chamber pretreatment
Pretreatment of an etch chamber for performing a silicon etch process and Bosch process can be effected by running a deposition process employing C5HF7, or by running an alternating deposition and etch process employing C5H2F6 and SF6. It has been discovered that the pretreatment of the etch chamber for the silicon etch process can enhance the etch rate of silicon by at least 50% without adverse effect on etch profile during a first each process following the pretreatment, while the etch rate enhancement factor decreases over time. By periodically performing the pretreatment in the etch chamber, the throughput of the etch chamber can be increased without adversely impacting the etch profile of the processed substrates. |
US09711363B2 |
Plating method, recording medium and plating system
A plating method includes forming a catalyst layer 118 on a surface of a substrate including an inner surface of a recess 112; drying the substrate having the catalyst layer formed thereon such that an inside of the recess is dried as well; removing the catalyst layer at least on the surface of the substrate at the outside of the recess by supplying a processing liquid, which is configured to dissolve a material of the surface of the substrate, onto the surface of the substrate while rotating the dried substrate and while preventing or suppressing the processing liquid from being introduced into the dried inside of the recess; and forming a plating layer 119 on the inside of the recess, at which the catalyst layer is not removed, by an electroless plating process. |
US09711360B2 |
Methods to improve in-film particle performance of amorphous boron-carbon hardmask process in PECVD system
Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-containing amorphous carbon films on a substrate with reduced particle contamination. In one implementation, the method comprises flowing a hydrocarbon-containing gas mixture into a processing volume having a substrate positioned therein, flowing a boron-containing gas mixture into the processing volume, stabilizing the pressure in the processing volume for a predefined RF-on delay time period, generating an RF plasma in the processing volume after the predefined RF-on delay time period expires to deposit a boron-containing amorphous film on the substrate, exposing the processing volume of the process chamber to a dry cleaning process and depositing an amorphous boron season layer over at least one surface in the processing volume of the process chamber. |
US09711355B2 |
Method of manufacturing semiconductor device
In accordance with an embodiment of the present disclosure, a method of manufacturing a semiconductor device may include forming an opening passing-through a multi-layer stack, forming a channel layer on and along a sidewall of the opening, forming a conductive layer on and along a sidewall of the channel layer, and applying a laser to the conductive layer to transfer a heat from the conductive layer to the channel layer to heat-treat the channel layer using the heat. |
US09711354B2 |
Method of fabricating light emitting device through forming a template for growing semiconductor and separating growth substrate
A template for growing a semiconductor, a method of separating a growth substrate and a method of fabricating a light emitting device using the same are disclosed. The template for growing a semiconductor includes a growth substrate including a nitride substrate; a seed layer disposed on the growth substrate and including at least one trench; and a growth stop layer disposed on a bottom surface of the trench, wherein the trench includes an upper trench and a lower trench, and the upper trench has a smaller width than the lower trench. |
US09711352B2 |
Large-area, laterally-grown epitaxial semiconductor layers
Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon. |
US09711351B2 |
Process for densifying nitride film
In some embodiments, a nitride film is provided over a semiconductor substrate and densified. The nitride film may be a flowable nitride, which may be deposited to at least partially fill openings in the substrate. Densifying the film is accomplished without exposing the nitride film to plasma by exposing the nitride film to a non-plasma densifying agent in the process chamber. The non-plasma densifying agent may be a nitriding gas, a hydrogen scavenging gas, a silicon precursor, or a combination thereof. |
US09711348B2 |
Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
The present invention increases controllability of a composition ratio of a multi-element film that contains a predetermined element and at least one element selected from the group consisting of boron, oxygen, carbon and nitrogen. There is provided a method of manufacturing a semiconductor device, including: forming a laminated film where a first film and a second film are laminated on a substrate by performing a cycle a predetermined number of times, the cycle including: (a) forming the first film being free of borazine ring structure and including a predetermined element and at least one element selected from the group consisting of oxygen, carbon and nitrogen; and (b) forming the second film having a borazine ring structure and including at least boron and nitrogen. |
US09711341B2 |
Mass spectrometry systems with convective flow of buffer gas for enhanced signals and related methods
Mass spectrometry systems include an ionizer, mass analyzer and the detector, with a high pressure chamber holding the mass analyzer and a separate chamber holding the detector to allow for differential background pressures where P2 |
US09711340B1 |
Photo-dissociation beam alignment method
A method of aligning a light beam within a mass spectrometer includes providing precursor ions along a longitudinal axis of the mass spectrometer at two or more precursor ion locations, the precursor ion locations being spatially separated along the longitudinal axis of the mass spectrometer, the precursor ions forming in-vacuum targets. The method then includes directing a light beam from a light source in a direction along the longitudinal axis of the mass spectrometer, the light beam photo-dissociating the precursor ions, and monitoring a mass spectrometer ion signal from each of the two or more precursor ion locations while adjusting the direction of the light beam, thereby aligning the light beam within the mass spectrometer. |
US09711339B2 |
Method to generate data acquisition method of mass spectrometry
A process for automatically creating a measurement method suitable for plasma ion source mass spectrometry, including: semi-quantitatively measuring all elements in the sample that affect the measurement; determining a plasma condition based on the total concentration of the semi-quantitatively measured elements; for each of the semi-quantitatively measured elements, estimating signal strengths of the element and an interference component in the sample to be measured and based on the resultant estimates, estimating the concentration of the element; and, based on the estimated signal strengths of the elements and the interference components and the estimated concentrations of the elements, creating at least one mass spectrometry method including at least one of: (1) a plasma condition; (2) an internal standard to be added to the sample; (3) a tuning condition for the collision/reaction cell; (4) a mass-to-charge ratio used in the mass spectrometer; and (5) an integration time used in the mass spectrometer. |
US09711337B2 |
Data dependent control of the intensity of ions separated in multiple dimensions
A method of mass spectrometry is disclosed comprising setting an attenuation factor of an attenuation device to a first value and then separating or filtering ions according to a first physico-chemical property and separating or filtering ions according to a second physico-chemical property and obtaining a multi-dimensional array of data. The most intense ion peak within one or more subsets of the multi-dimensional array of data is determined. If it is determined that the most intense ion peak would cause saturation of an ion detector or ion detection system then the method further comprises adjusting the attenuation factor of the attenuation device to a second value and obtaining mass spectral data wherein the adjustment of the attenuation factor substantially alters the intensity of all ions which are detected by the ion detector or ion detection system equally and irrespective of the mass to charge ratio of the ions. The intensity of the mass spectral data is then scaled based upon the degree to which the attenuation factor of the attenuation device was increased or reduced. |
US09711336B2 |
Backing plate-integrated metal sputtering target and method of producing same
Provided is a backing plate-integrated metal sputtering target comprising a flange part that is formed integrally with a target of which periphery becomes a backing plate, wherein the flange part comprises a structure obtained by repeating partial forging. By increasing the mechanical strength of only the flange part of the target in a backing plate-integrated sputtering target as described above, it is possible to inhibit the deformation of the target during sputtering and a change in the conventional sputtering properties; thereby the formation of thin films having superior uniformity can be realized, and the yield and reliability of semiconductor products, which are being subject to further miniaturization and higher integration, can be improved. |
US09711333B2 |
Non-planar radial-flow plasma treatment system
An atmospheric-pressure plasma treatment system includes a plasma source including at least one electrode, a gas in a gas chamber, and an AC power supply that supplies power to the at least one electrode to form a plasma in the gas. A radial-flow surface has a jet nozzle through which the gas flows and the radial-flow surface has a surface profile that conforms to a nonplanar treatment surface of an object. The radial-flow surface is separated from the nonplanar treatment surface by a gap that is less than 2 times a diameter of the jet nozzle so that the gas flows radially outward from the nozzle and between the radial-flow surface and the nonplanar treatment surface. |
US09711328B2 |
Method of measuring vertical beam profile in an ion implantation system having a vertical beam angle device
An ion implantation system measurement system has a scan arm that rotates about an axis and a workpiece support to translate a workpiece through the ion beam. A first measurement component downstream of the scan arm provides a first signal from the ion beam. A second measurement component with a mask is coupled to the scan arm to provide a second signal from the ion beam with the rotation of the scan arm. The mask permits varying amounts of the ion radiation from the ion beam to enter a Faraday cup based on an angular orientation between the mask and the ion beam. A blocking plate selectively blocks the ion beam to the first faraday based on the rotation of the scan arm. A controller determines an angle and vertical size of the ion beam based on the first signal, second signal, and orientation between the mask and ion beam as the second measurement component rotates. |
US09711326B1 |
Test structure for electron beam inspection and method for defect determination using electron beam inspection
A test structure for electron beam inspection and a method for defect determination using electron beam inspection are provided. The test structure for electron beam inspection includes a semiconductor substrate, at least two conductive regions disposed on the semiconductor substrate, a connection structure disposed on the two conductive regions, and a cap dielectric layer disposed on the connection structure. The method for defect determination using the electron beam inspection includes the following steps. An electron beam inspection is preformed to a test structure with an instant detector and a lock-in amplifier. Signals received by the detector within a period of time are amplified by the lock-in amplifier. A defect in the test structure is determined by monitoring the signals received by the detector and amplified by the lock-in amplifier. The inspection accuracy is improved by the test structure and the method for defect determination in the present invention. |