Document Document Title
US09215836B2 Printed circuit board production apparatus and printing machine
Disclosed is a printed circuit board production apparatus which comprises a first working unit, a second working unit, and a control section. The first working unit includes a board conveying section, and a working mechanism section for subjecting the board conveyed to a given working process, wherein the board conveying section and the working mechanism section are configured to be relatively displaceable between a machine-setup position where a gap defined between the board conveying section and the working mechanism section and leading to the second working unit becomes equal to or less than a given value, and a position where the gap becomes greater than the given value. The board conveying section and the working mechanism section are arranged in the machine-setup position by the control section when machine setup for the first working unit is performed during operation of the second working unit.
US09215835B2 Graphene based structures and methods for shielding electromagnetic radiation
Electromagnetic interference shielding structures and methods of shielding an object form electromagnetic radiation at frequencies greater than a megahertz generally include providing highly doped graphene sheets about the object to be shielded. The highly doped graphene sheets may have a dopant concentration greater than >1e1013 cm−2, which is effective to reflect the electromagnetic radiation or a dopant concentration of 1e1013 cm−2>n>0 cm−2, which is effective to absorb the electromagnetic radiation.
US09215834B2 High-frequency signals double-layer flat cable adapter card
A high-frequency signal double-layer flat cable adapter card that is capable of eliminating transmission disorder of a double-layer cable caused by paralleling and overlap of high-frequency signals and a direct current power supply loop. The high-frequency double-layer flat cable adapter card comprises a first connecting end, a second connecting end and a flat cable group formed by at least two strips of flat cables. The first connecting end includes a first substrate and a connector. The second connecting end includes a second substrate. The flat cable group is in an upper-lower dual-layer structure and is connected between the first connecting end and the second connecting end. A conductive metal foil sheet is arranged between upper and lower dual layers of flat cables of the flat cable group. The width of the metal foil sheet must cover areas of the flat cable group adopted as a power supply loop to isolate the magnetic field effect of the areas of the upper and lower dual layers of flat cables adopted the power supply loop.
US09215831B2 Heat dissipation system
The present invention relates to a heat dissipation system. The heat dissipation system includes: a chassis, configured to house single boards of an orthogonal architecture, where the single boards includes a vertically inserted board; a first fan group, installed inside a first air intake pipe in the upper front of the chassis and configured to guide air into the chassis; and an air guide cavity, installed inside the chassis and configured to transfer the air that is guided by the first fan group into the chassis to a component on the vertically inserted board to perform heat dissipation. With the heat dissipation system in embodiments of the present invention, air is separately supplied to a heat dissipation component on a vertically inserted board in a communications system device based on an orthogonal architecture.
US09215828B1 Server case assembly
A server case assembly includes a fixed component assembly further having a first connection component, a second connection component, and a penetration component. The first connection component has a first communication space, and includes a first withstanding portion and a first convex portion. The first withstanding to portion withstands an inner sidewall of a case body. The first convex portion is connected to the first withstanding portion, and passes through a sidewall of the case body. The second connection component has a second communication space, and includes a second withstanding portion and a second convex portion. The second withstanding portion withstands a handle, and is connected to the second convex portion. The second convex portion passes through the first communication space. The penetration component passes through the first and second communication spaces to fix the first and second connection components so as to fix the handle on the case body.
US09215821B2 Electronic device
An electronic device 100 includes a casing 101 configured to accommodate electronic components. The casing 101 includes an outer layer member 131 formed by a metal and exposed to an outside, and an inner layer member 132 formed by a metal and spaced from an inner surface of the outer layer member 131. Conductive projections 140a and 140b are each formed between the inner layer member 132 and the outer layer member 131, and are each configured to extend like a line on a surface of one of the inner layer member 132 and the outer layer member 131 and have a top end that contacts with the other of the inner layer member 132 and the outer layer member 131, to electrically connect between the inner layer member 132 and the outer layer member 131.
US09215820B2 Practical multi-purpose color-coded flash drive organizer with compartmentalized separate memory sectors for enhanced efficiency and better effective anti-confusion performances in global personal, educational, professional, business and organizational works
Multi-purpose anti-confusing, time-saving, cost-effective hybrid flash drive organizers, methods and systems with easily recognizable color-coded external sectors, color-coded differential LED signal lights, correlating respectively with related internal/external electronic components, achieving easier organized data/information sharing, transfer, storage, retrieval and display when connected to host system; one embodiment having attachable/detachable sectors providing different combinations of USB connectors; another embodiment of with uni-body housing having one common USB prong; another embodiment with at-least a pair of USB prongs; all offering faster conveniences to millions of global flash drive users in all walks of life, providing vast applicability for numerous personal, professional, educational, organizational and business works; providing to different manufacturers, distributors and merchandisers with greater range of practical applications and marketing advantages; broadly applicable to inter-link with desktop/laptop computers, netbooks, tablet PCs or other compatible portable hand-held or stationary electronic multi-media devices.
US09215819B2 Housing for accommodating electric and electronic components
A housing for accommodating electric and electronic components is EMC safe in the manner of a Faraday cage. At least one accommodating chamber, open toward the outside of the housing and otherwise substantially closed to all sides, is formed in at least one outer wall of the housing. At least one non EMC safe transmitter in the form of a non EMC safe transmitting or receiving device is adapted to provide wireless communication between housing side control electronics and an external control device. A functional component is adapted to be controlled by the housing side control electronics. The transmitter may be an antenna, the arrangement thereof inside the accommodating chamber ensuring that it is located outside the EMC protection or shielding. The functional component can be a peristaltic-type pump that is protected by the arrangement inside the accommodating chamber and does not protrude from the housing.
US09215818B2 Electronic device and hinge structure thereof
A hinge structure is provided. The hinge structure includes a fixing base, a pivot unit and a supporting element. The pivot unit includes a shaft, wherein the shaft passes through the fixing base, and the shaft is moved in a predetermined direction between a first shaft position and a second shaft position relative to the fixing base, and the predetermined direction is perpendicular to an extending direction of the shaft. The supporting element includes a first connection portion and a second connection portion, wherein the first connection portion and the second connection portion are respectively located at two ends of the supporting element, and the second connection portion pivots on the shaft.
US09215815B2 Display apparatus and television receiving apparatus
Disclosed is a display apparatus, in which a rectangular frame covering a peripheral part of a display unit is divided into four frame members, and when the end portions of the adjacent frame members are connected by connectors at the four corners of a rectangle, the frame members and the connector may be coupled with high positioning accuracy of the frame members and the connector. The connector includes two positioning parts which abut against the respective frame members and to be connected to position the frame members in a respective longitudinal direction thereof, and the frame members and includes a part to be positioned which abuts against the positioning part of the connector, and coupling means and are formed to couple the frame members and with the connector.
US09215809B2 Contact bumps methods of making contact bumps
Contact bumps between a contact pad and a substrate can include recesses and protrusions that can mate with the material of the substrate. The irregular mating surfaces between the contact bumps and the contact pads can enhance the bonding strength of the contacts, for example, against shear and tension forces, especially for flexible systems such as smart cards.
US09215807B2 Small form factor stacked electrical passive devices that reduce the distance to the ground plane
The described embodiments relate generally to electronic components and more specifically to a capacitor array that can increase component density on a printed circuit board and reduce a distance to a ground plane. An array of capacitors can be formed by coupling a group of capacitors on their sides interspersed with interposer boards. The resulting configuration can increase component density and reduce an amount of resistance and effective series inductance between a set of power decoupling capacitors and an integrated circuit.
US09215801B2 Via-holed ceramic substrate, metallized via-holed ceramic substrate, and method for manufacturing the same
A via-holed ceramic substrate can be manufactured in a simple method by providing a via-holed ceramic substrate comprising: a sintered ceramic substrate; an electroconductive via formed in the sintered ceramic substrate, the electroconductive via having an electroconductive metal closely filled in a through-hole, the electroconductive metal containing a metal (A) having a melting point of 600° C. to 1100° C., a metal (B) having a melting point higher than the melting point of the metal (A), and an active metal; and an active layer formed in the interface between the electroconductive via and the sintered ceramic substrate.
US09215800B2 Touch panel, display device including the touch panel, and method of manufacturing the touch panel
A external connecting terminal (35) includes a first interconnect layer (36A) formed of a same film as a first conductive pattern for touch position detection under an interlayer insulating film (23), and a second interconnect layer (36B) formed of a same film as a second conductive pattern for touch position detection on the interlayer insulating film (23). the first and the second interconnect layers are electrically connected to a lead line (31) at a portion overlapping the lead line (31), and electrically connected together at a portion outside the lead line (31).
US09215799B2 Terminal unit
The terminal unit includes a main board, electronic components implemented on the main board, a sub-board covering above the electronic components and a frame member so disposed between the main board and the sub-board as to surround the electronic components. A flexible printed circuit covers an outer side of a wall portion of the frame member and is so wound around the frame member from upper and lower sides of the wall portion as to cover at least part of an inner side of the wall portion. A wiring pattern formed on the flexible printed circuit is electrically connected to the electronic components, and information to be protected that is stored on the electronic components becomes unreadable if the wiring pattern is cut off or short-circuited.
US09215798B2 Imprinted multi-layer micro-structure method with multi-level stamp
A method of making an imprinted micro-wire structure includes providing a substrate, a first stamp, and a different multi-level second stamp. A curable bottom layer is provided over the substrate. One or more bottom-layer micro-channel(s) are imprinted in the curable bottom layer with the first stamp and a bottom-layer micro-wire formed in each bottom-layer micro-channel. A curable multi-layer is formed adjacent to and in contact with the cured bottom layer. First and second multi-layer micro-channels and a top-layer micro-channel are imprinted in the curable multi-layer with the multi-level second stamp. Either two bottom-layer micro-wires are electrically connected through the first and second multi-layer micro-wires and a top-layer micro-wire or two top-layer micro-wires are electrically connected through the first and second multi-layer micro-wires and a bottom-layer micro-wire.
US09215796B2 Touch panel
A touch panel has a substrate on which a first conductive layer, an insulating layer, a second conductive layer and a protective layer are formed in order. The second conductive layer and the first conductive layer form a touch-sensing area. The protective layer and the substrate have the same refractive index; and the first conductive layer, the insulating layer and the second conductive layer have the same refractive index so that the whole layered structure substantially has a symmetrical distribution of refractive indices, and leading to having optical characteristics of high transmittance and low reflectance.
US09215795B2 Via structure for transmitting differential signals
An electrical system including (1) a printed circuit board including first and second signal pads located on a top surface of the printed circuit board and arranged to transmit a first differential signal, first and second signal vias extending through the printed circuit board and arranged to transmit the first differential signal, a first signal trace located on the top surface of the printed circuit board and connecting the first signal pad and the first signal via, and a second signal trace located on the top surface of the printed circuit board and connecting the second signal pad and the second signal via; and (2) a connector including first and second signal contacts arranged to transmit the first differential signal. The first differential signal transmitted through the printed circuit board and the connector has a common central axis.
US09215793B2 System and method for connecting LED devices
To connect multiple LED devices, each LED device is placed in a holder. A first wire is connected to a first wire connection point on the holder and a second wire is connected to a second wire connection point on the holder. The first wire is also connected to a first wire connection point on a circuit board The second wire is also connected to a second wire connection point on the circuit board. A connector may be used to connect the wires to the wire connection points on the circuit board. The circuit board includes traces to connect the LED devices to each other or to other components.
US09215792B2 Connector devices, systems, and related methods for light emitter components
Connector devices and systems for light emitter components and related methods are provided. In some aspects, a connector device includes a body, at least a first trace, and a second trace. In some aspects, connector device can include multiple traces. The first and second traces can be disposed over portions of the body. In some aspects, portions of each of the first and second traces can be electrically and/or physically connectable to each of a first and a second light emitter component via an attachment material.
US09215790B2 Formation of multiple proton beams using particle accelerator and stripper elements
A particle acceleration system includes a particle accelerator and at least one beam-transparent stripper element. The particle accelerator is configured to accelerate charged particles along a trajectory. The beam-transparent stripper element(s) is/are positioned along the trajectory. Each beam-transparent stripper element has a surface normal to the trajectory, wherein said surface defines a plurality of apertures configured to cause a first plurality of charged particles that strike the surface to undergo a stripping process while a second plurality of charged particles pass through one or more of the plurality of apertures without undergoing the stripping process.
US09215789B1 Hybrid plasma source
Systems and methods for generating plasma are disclosed. A system for generating a plasma includes a helicon plasma source and an electron cyclotron resonance (ECR) plasma source structured and arranged together to generate a plasma in a tube.
US09215786B2 Lighting apparatus
Disclosed is a lighting apparatus. The lighting apparatus includes: a control module supplying power; a heat sink receiving the control module; a light source mounted on the heat sink and connected to the control module; and a communication module including a connection terminal inserted into the heat sink and connected to the control module, and an antenna device protruding from the heat sink. Since the lighting apparatus can be controlled in a wireless scheme, a user of the lighting apparatus can easily control the lighting apparatus.
US09215785B2 Network connection device based on light source
This invention reveals an indoor network connection device. This device is combined by indoor light source and master node module, which can effectively decrease the cost of setting up indoor web facilities and make ideal of smart architecture come true. In addition, setting up these web connecting devices can easily let other web users in and even to become micro-network achieving the goal of sharing resource.
US09215782B2 Medical light source device
It is an object to provide a medical light source device capable of securing a long illumination time required to use in operations in the medical field, and the medical light source device that is worn on the body of an operator to apply light to a target portion of the medical treatment is to cause an illumination section 81 to be worn on the body of the operator with a holder 7, and is provided with an acceleration sensor 80 that detects a motion of the operator, where a control section 84 controls a supply of current from a power supply section to the illumination section 81, while controlling to reduce illuminance of the illumination section 81 or to halt the passage of current to the illumination section 81 when the acceleration sensor 80 detects acceleration of a predetermined value or more.
US09215779B2 Light switch and control device having a touch screen interface
The touch screen lighting control device provides a multitude of graphical user interface (GUI) displays at a touch screen and is capable of detecting location specific selections based on the GUI to determine control actions for lighting devices, fans and other electrical fixtures. The device includes a mounting strap configured to couple the device to an in-wall junction box, a touch screen, and a thin film transistor communicably coupled to the touch screen for displaying the different displays and receiving selections at the touch screen. A glass panel can also be positioned between the touch screen and the thin film transistor. The GUI presents an interactive template to a user, and the touch screen and thin film transistor determines an interaction from the user based on the user interacting with the interactive template displayed on the GUI a the touch screen.
US09215773B2 Control methods and backlight controllers for light dimming
A control method is disclosed for light dimming. A dimming condition signal is provided to represent whether a light emitting device is expected to be emitting light. The duration when the dimming condition signal is at a logic value indicating the light emitting device is emitting light is a dimming-ON time, in which a close loop is provided to make a power converter convert electric energy to the light emitting device such that the light emitting device is capable of emitting light. A power-ON time is the duration when the power converter converts electric energy to the light emitting device. When the dimming-ON time ends and is less than a minimum power-ON time, the power converter continues converting the electric energy to the light emitting device so as to keep the power-ON time not less than the minimum power-ON time.
US09215772B2 Systems and methods for minimizing power dissipation in a low-power lamp coupled to a trailing-edge dimmer
A controller may predict an estimated occurrence of a high-resistance state of a dimmer, wherein the high-resistance state occurs when the dimmer begins phase-cutting an alternating current voltage signal. The controller may also be configured to operate in a trailing-edge exposure mode for a period of time wherein the period of time includes a time of the estimated occurrence of the high-resistance state in order to allow the controller to detect the occurrence of the high-resistance state, wherein energy is transferred from an input to a dissipative element during the trailing-edge exposure mode. The controller may further be configured to minimize a time between a beginning of the period of time and the estimated occurrence of the high-resistance state by modifying the period of time based on an estimated charging time of a capacitor of the dimmer.
US09215767B2 Device and system for load driving
A device and system for load driving. The device includes: an electric energy supplying unit including at least two units with output voltage adjustable; a sampling unit, with the input thereof connected to either end of a load unit for sampling the current of that end and sending the sampled current to an output voltage controller; the output voltage controller, with the input thereof connected to the output of the sampling unit for outputting voltage control signal to each unit with output voltage adjustable, according to the sampled current, so as to control the difference between the output voltage of each unit with output voltage adjustable and the maximum load voltage in a load branch to be not greater than a preset difference threshold, with the difference threshold being greater than or equal to zero. The device and system for load driving can improve the reliability of the driving device and can reduce the complexity of the circuit.
US09215766B2 Drive device for light-emitting element
A drive device for a light-emitting element that improves accuracy while driving the light-emitting element at small currents for which a comparatively simple configuration is provided. The drive device includes detecting means, comparing means, a driving voltage source, and offset means. The detecting means detects a voltage corresponding to a current flowing through a first resistor for current detection. The first resistor is coupled to a light-emitting element in series. The comparing means compares a magnitude of the detection voltage of the detecting unit with a comparison voltage. The driving voltage source applies a voltage corresponding to a comparison result by the comparing means to a series circuit of the light-emitting element and the first resistor. The offset means corrects the voltage corresponding to a current flowing through the first resistor by a correction voltage.
US09215764B1 High-temperature ultra-low ripple multi-stage LED driver and LED control circuits
Techniques for high temperature ultra-low ripple multi-stage LED driver circuit together with LED control circuits are disclosed.
US09215762B2 Light-emitting device and method of manufacturing the same
A method of manufacturing a light-emitting device includes placing a phosphor-containing film on a mold for compression molding, the mold having a concave portion of a predetermined shape and the film being placed along an inner wall of the concave portion, supplying a resin material on the phosphor-containing film in the concave portion, immersing a light-emitting element mounted on a substrate in the resin material in the concave portion, and applying pressure and heat to the resin material and the phosphor-containing film, thereby forming a transparent sealing resin for sealing the light-emitting element and a phosphor-containing layer covering a surface thereof.
US09215756B2 Device and method for controlling energy
Apparatuses and methods for applying EM energy to a load. The apparatuses and methods may include at least one processor configured to receive information indicative of energy dissipated by the load for each of a plurality of modulation space elements. The processor may also be configured to associate each of the plurality of modulation space elements with a corresponding time duration of power application, based on the received information. The processor may be further configured to regulate energy applied to the load such that for each of the plurality of modulation space elements, power is applied to the load at the corresponding time duration of power application.
US09215755B2 Base station and method of operating a base station
The invention relates to a base station (100) for a cellular communications network, wherein said base station (100) is configured to control at least one antenna system (110) which comprises a plurality of antenna elements (110a, 110b, 110c, . . . , 110η), wherein at least two antenna elements (110a, 110b) are arranged at different vertical positions (pa, pb) with reference to a virtual horizontal plane (P). The base station (100) is further configured to transmit specific pilot signals (D1, D2) on orthogonal radio resources associated with said specific pilot signals (D1, D2) via different antenna elements (110a, 110b).
US09215754B2 Wi-Fi virtual port uplink medium access control
Uplink medium access control on per-wireless device level. An access point sends a beacon frame to a wireless device. The beacon frame includes a BSSID that is unique to the wireless device. The beacon frame also includes embedded uplink configurations specifying uplink medium access for the wireless device. In one embodiment, a controller recognizes a device or user associated with the device, and sends corresponding uplink configurations for embedding in a subsequent beacon frame.
US09215748B2 Communication apparatus, control method for communication apparatus, and communication system
In a system that performs communication between master and slave, the device better suited as the master device is not always the master device, since the device that initially constructs the network becomes the master device. A device that enters the network later transmits a restart request on detecting the master device, and if a restart permission is received, the device transfers to a restart state and transmits a master inquiry before the device that was the master device up until that point. Thus, a device that newly enters a network is able to operate as the master device even if a master device already exists in the network.
US09215747B2 Method and apparatus of peer link setting, and method and apparatus of channel switching, in wireless mesh network
A method and apparatus for configuring mesh peer link and a method and apparatus for switching channel in wireless mesh network are provided. A method of configuring a mesh peer link in a wireless mesh network includes a first mesh station transmitting a mesh peering open frame to a second mesh station, and the first mesh station receiving a mesh peering confirm frame from the second mesh station in response to the mesh peering open frame, wherein the first mesh station and the second mesh station support a very high throughput (VHT), and wherein the mesh peering open frame and the mesh peering confirm frame comprise a VHT capability information element.
US09215739B2 Method for pairing users of wireless mobile communication device and server thereof
A method for pairing users of a wireless mobile communication device and a server thereof includes the following steps: (1) receiving the three-dimensional coordinates of a first wireless mobile communication device; (2) accessing a query database containing a piece of first relationship data and a plurality of pieces of second relationship data; (3) filtering at least one associated with the related attributes of the first relationship data from a plurality of pieces of second relationship data according to the related attributes of the first relationship data; (4) providing the three-dimensional coordinates of each said second wireless mobile communication device according to the filtered second relationship data; and (5) calculating the offset between the three-dimensional coordinates of the first wireless mobile communication device and the three-dimensional coordinates of each said second wireless mobile communication device.
US09215736B2 Method and apparatus for populating M2M relevant identities during access network bearer setup
The present invention enables populating one or more M2M-relevant identities in an access network when establishing an access bearer between the access network and an M2M device for connecting the M2M device with an M2M service provider (SP). The teachings herein provide, on the device side, for transmitting one or more selected M2M identifiers from an M2M device during the bearer establishment procedure. On the network side, the teachings herein provide for receiving the selected M2M identifier(s) during the bearer establishment procedure, associating them with the access bearer being established, and recording them as being associated with the access bearer. While such M2M identifiers have no specific meaning in the access network domain, one of the advantages of the teachings herein is that the recorded M2M identifiers can be used for improved billing reconciliation between the access network provider and the M2M SP.
US09215734B2 System and method for managing emergency requests
A network component is provided. The network component including a component configured such that the network transmits a response message containing an indicator indicating that a first message is an emergency-related request, and such that the network receives a second message containing information associated with a user equipment (UE).
US09215732B2 Systems and methods for collision management in a neighborhood aware network
Methods, devices, and computer program products for collision management of wireless devices in a peer-to-peer network are described herein. In one aspect, a method of communicating via a wireless medium by a wireless communications apparatus within a network is provided. The method includes determining first and second contention windows. The first contention window begins earlier than the second contention window. The method further includes beginning a first carrier sense multiple access (CSMA) countdown at the start of the first contention window. The method further includes beginning a second CSMA countdown when the first CSMA countdown does not end before the start of the second contention window. The method further includes transmitting the prepared frame at a time of the first CSMA countdown ending or the second CSMA countdown ending, whichever is earlier.
US09215731B2 Method and apparatus for transfer of a message on a common control channel for random access in a wireless communication network
Techniques for sending a message for random access by a user equipment (UE) are described. In an aspect, the UE may send the message on a control channel for random access and may send a reserved channel identifier to indicate the message being sent on the control channel. In another aspect, the UE may send the message in a protocol data unit (PDU) and may send additional information (e.g., a buffer status report) in the PDU if it can accommodate the additional information. In yet another aspect, the UE may generate a short message authentication code for integrity protection (MAC-I) for the message. The short MAC-I may have a smaller size and may be used to authenticate the UE. In yet another aspect, the UE may send a UE ID of one of multiple types for random access and may convey the UE ID type via a format field in the message.
US09215730B2 Method for transmitting the PDCCH signal
The present invention provides a method for transmitting a PDCCH (physical downlink control channel) signal, when the number of available resource blocks of the downlink bandwidth in a radio frame is less than or equal to k, 2 symbols are fixedly used to transmit the physical downlink control channel, wherein k is a natural number. The present invention further provides another method for transmitting a PDCCH signal. In a TDD Long Term Evolution system, when the number of available resource blocks of the downlink bandwidth in a radio frame is less than or equal to k and the uplink/downlink switching period is 10 ms, the transmitting end selects 2, 3 or 4 symbols to transmit the PDCCH signal in subframe 6. With the transmission method of the PDCCH signal provided in the present invention, the utilization efficiency of the system resources and the transmission performance of PDCCH can be improved.
US09215729B2 Method and arrangement in a telecommunications system
The present invention relates to a method and apparatus for requesting scheduling of resources to be used for uplink communication of data in a communications system. If the repeated transmission by a user equipment of scheduling requests on an uplink control channel is determined to be unsuccessful, a random access transmission on a random access channel is initiated as a fallback procedure.
US09215728B2 System, method, and computer-readable medium for schedule-based telecommunication policies
A system, method and computer-readable medium for enforcing user telecommunication privileges on a per-schedule basis are provided. Enterprise members may have a schedule associated therewith that defines scheduled locations of the users. Telecommunication service privileges may be coordinated with the users' schedules such that communication services are disabled at particular times based on the users' schedules. In other implementations, particular users may have telecommunication services disabled by an administrator in the event of a catastrophe or emergency. By this mechanism, users that are not proximate to a particular catastrophe or emergency area according to the users' schedule may have services disabled while other users that are located more proximate to the emergency may have their telecommunication services enabled. In this manner, the demand on a cellular network may be alleviated thereby increasing the likelihood that users directly impacted by the emergency may receive and place calls or access data services.
US09215726B1 Low latency wireless messaging
Technology for wireless transmission of messages to remote receiving devices is disclosed. The technology includes receiving a message for transmission, determining transmission parameters for transmission of the message, and transmitting the message to a remote receiving device according to the determined transmission parameters. The technology may also include encoding the message to effect message latency and may be employed for message transmission via the ionosphere or other atmospheric layer at frequencies in the Medium Frequency (MF), High Frequency (HF), or Very High Frequency (VHF) spectrum. Further, the disclosed technology may be employed for message transmission to effect low latency financial transaction execution, such as high speed high frequency trading.
US09215723B2 Method and device for maintaining the performance quality of a communication system in the presence of narrow band interference
A system that incorporates teachings of the subject disclosure may include, for example, a process for scanning wireless signals in a wide frequency band, identifying from the wireless signals power levels in frequency channels that lie within the wide frequency band, determining an adaptive threshold according to at least some of the power levels in the frequency channels, identifying a frequency channel interferer based on the adaptive threshold, obtaining identification information for a source of the frequency channel interferer, and developing a strategy for responding to interference in the wide frequency band caused by the detected frequency channel interferer. Other embodiments are disclosed.
US09215722B2 Method of managing interference in a wireless communication system
The present invention provides methods of managing interference in a wireless communication system. The methods may include receiving information indicative of a portion of an interfering signal received by a first wireless communication device, decoding the portion of the interfering signal, and providing at least one back-off instruction destined for a second wireless communication device based on the decoded portion of the interfering signal.
US09215719B2 Method and device for maintaining the performance quality of a communication system in the presence of narrow band interference
A system that incorporates teachings of the subject disclosure may include, for example, a method for determining a wideband power level by scanning a wide frequency band, determining a threshold, detecting from signals scanned in the wide frequency band interference associated with a plurality of channels, wherein the interference is detected according to one of the threshold, the wideband power level, or both, and modifying a variable bandwidth of a filter to substantially suppress the detected interference. Other embodiments are disclosed.
US09215716B2 Wireless communication apparatus and non-transitory computer readable storage medium
A wireless communication apparatus on the receiving side receives communication data that is a transmitted to the wireless communication apparatus using one of the plurality of channels. Subsequently, the wireless communication apparatus on the receiving side obtains channel information contained in the communication data received by the receiving unit and judges whether the obtained channel information is target information indicating a channel of a processing target. The wireless communication apparatus on the receiving side performs a receiving process on the received communication data, when the judging unit determines that the obtained channel information is the target information, performs a receiving process on the communication data received by the receiving unit and that, when the judging unit determines that the obtained channel information is not the target information, discards the received communication data.
US09215715B2 Dynamic spectrum allocation method, central control unit, base station and spectrum allocation system
A dynamic spectrum allocation method, a central control unit, a base station, and a spectrum allocation system are disclosed. The embodiments of the present invention further disclose a central control unit, a base station, and a spectrum allocation system to reduce the probability of failure of the spectrum allocation scheme.
US09215713B2 Antenna allocation based on feedback in a distributed antenna system
A data transmission and receiving method of a terminal in a distributed antenna system. The method includes: receiving information on antenna nodes within a cell from a base station; receiving channel measurement signals determined by each antenna node from the base station; determining a preferred antenna node by measuring the channel measurement signals; transmitting feedback information on the determined antenna node to the base station; receiving antenna allocation information determined on the basis of the feedback information; and receiving data from the base station through an antenna indicated by the antenna allocation information. The antenna node includes at least one antenna.
US09215705B2 Method and apparatus for monitoring control channel in wireless communication system
The present disclosure provides a method for monitoring a control channel in a wireless access system, including setting the number of maximum blind decoding times for each user equipment (UE)-specific search space and a common search space to which the control channel is transmitted; monitoring a plurality of candidate control channels in each of the search spaces, based on the number of maximum blind decoding times, set in the respective search spaces; and receiving downlink control information through a control channel which has succeeded in the blinding decoding among the plurality of candidate control channels, wherein the common search space is allocated to at least one carrier group that includes at least one component carrier.
US09215704B2 Channel state information transmitting method and user equipment, channel state information receiving method and base station
As channel state information of multiple nodes in a multiple node system, the present invention relates to a method and a device for transmitting and receiving information showing a correlation between said multiple nodes. Also, the present invention relates to a method and a device for transmitting and receiving a Channel Quality Indication (CQI), in consideration of signal through transmitted by multiple nodes.
US09215703B2 Method of transmitting scheduling request in mobile communication system and terminal apparatus for the same
A method and apparatus are provided for transmitting an uplink scheduling request in a mobile communication system. Scheduling request transmission cycles are set according to priorities between a terminal and a radio resource controlling node. The terminal transmits the scheduling request to the radio resource controlling node according to a scheduling request transmission cycle corresponding to a highest priority among priorities corresponding to uplink data or uplink control signals, if the uplink data or the uplink control signals are generated from an upper layer. The terminal receives scheduling information from the radio resource controlling node, and determines whether resource allocation information is included in the scheduling information. The terminal cyclically transmits the scheduling request to the radio resource controlling node in the scheduling request transmission cycle, if the resource allocation information is not included in the scheduling information.
US09215702B2 Method and apparatus for processing data and base station
The present invention provides a method and an apparatus for processing data and a base station. The method includes: receiving first service data sent by a first radio frequency device, where the first service data are received by at least one receiving set of the first radio frequency device; receiving at least one second service data sent by at least one second radio frequency device, where the at least one second service data are respectively received by at least one receiving set corresponding to the at least one second radio frequency device; and transferring the first service data and the at least one second service data to a baseband processing device through a baseband processing device channel corresponding to the first radio frequency device. The solution according to embodiments of the present invention is capable of effectively using channel resources of a baseband processing device.
US09215701B2 Random access channel enhancements for LTE devices
Described herein is a technique for aggregating background traffic packets by the background users instead of performing a random access procedure to request an uplink resource for each new packet. Since the same physical random access channel (PRACH) resources are used for random access procedures by multiple UEs, collisions can occur. The PRACH is expected to operate with very low collision rates, but if the number of users increases, the collision rate increases as well as the error rate. The disclosed technique reduces the collision rate by reducing the number of random access procedures used to transmit background traffic.
US09215699B2 Method for configuring subframe, method for processing data, base station and user equipment
Embodiments of the present invention provide a method for configuring a subframe, a method for processing data, a base station and a user equipment, wherein, the method for configuring a subframe includes: a first base station determines a first subframe to be configured according to priority information of the subframe; the first base station configures an operating mode of the first subframe according to the operating mode of a second subframe, corresponding to the first subframe, of a second base station, such that the operating mode of the first subframe is not subjected to collision with the operating mode of the second subframe.
US09215697B2 Methods and systems for CSI-RS resource allocation in LTE-advance systems
Systems and methods for the configuration of channel state information reference signals (CSI-RS) are disclosed. The systems and methods include providing user equipment with the locations of CSI-RS reuse information. Several encoding patterns and exemplary methodology for both the identification of the CSI-RS resource element locations are provided in exemplary embodiments. In addition, exemplary embodiments provide muting methods and systems for a physical downlink shared channel resource elements.
US09215696B2 System and method for uplink timing synchronization in conjunction with discontinous reception
Systems and methods for controlling sounding reference signal transmission are provided; a user equipment starts transmitting the sounding reference signal in anticipation of uplink data transmission, and then discontinues transmitting the sounding reference signal after completion of uplink data transmission.
US09215692B2 Resource allocation method in communication system, resource allocation system, and base station used for the same
The present invention aims to provide a resource allocation method in a communication system that can effectively suppress a transmission delay. Provided is a resource allocation system in a communication system which includes a terminal 110 and a base station 100, wherein data is regularly generated at the terminal, the base station allocates a resource to the terminal, and the terminal transmits data by using the resource. The terminal 110 includes a generated traffic monitoring unit 113 that monitors the data and, when a predetermined change occurs in the data, reports it to the base station. The base station 100 includes a resource management unit 102 that determines a resource allocation according to the report from the terminal.
US09215690B2 Method and a base station for prioritizing mobile terminals
A method for reducing collisions during the initial access by a plurality of mobile-terminal devices to a base station which comprises a control unit, wherein the control unit administers at least one random-access resource, wherein the method contains the following method steps: setting (S1) by the control unit of a priority which specifies which mobile-terminal device is allowed to connect to the at least one random-access resource; broadcast (S2) of the priority by the base station on at least one known channel.
US09215689B2 Method and apparatus for resolving call collisions in a digital conventional direct mode
A process for resolving call collisions in a digital conventional direct mode includes monitoring a direct mode communication channel for transmissions from other direct mode radios in the plurality of direct mode radios. In response to detecting a new call request: identifying a last radio to transmit on the direct mode channel, transmitting a new call request for receipt by the last direct mode radio to transmit, monitoring the direct mode channel for a response from the last radio to transmit, and if a call grant granting the new call request is received from the last radio to transmit, initiating the new direct mode call on the direct mode communication channel. If the call grant is not received, at least temporarily refraining from initiating the new direct mode call.
US09215687B2 Method of location information processing and access network device
Embodiments of the present disclosure provide a method of location information processing and an access network device, the method comprises: when a UE accesses a home network, the access network device acquires identification information and location information of the UE (101); and the access network device sends the identification information and the location information of the UE to a service server (102), such that the service server sends a service message to the UE according to the identification information and the location information of the UE. Embodiments of the present disclosure can avoid the problem that the service server cannot trigger a corresponding service message according to the location information of the UE since the HNB rejects the access of the UEs which are not in an admission list when operating in a close mode, thus improving flexibility and efficiency of a service message transmission.
US09215686B2 Wireless device, measuring node, network node, methods therein, computer program, and computer-readable storage medium
Embodiments herein relate to a method in a wireless device (10) for performing a positioning measurement procedure in a radio communications network, which positioning measurement procedure is performed using at least uplink transmitted signals from the wireless device (10). The wireless device (10) obtains information related to a maximum power reduction applied, or a maximum power reduction expected to be applied on uplink signals transmitted from the wireless device (10), which uplink signals are used for performing at least one positioning measurement. The wireless device (10) further takes the maximum power reduction applied, or the maximum power reduction expected to be applied into account when performing the positioning measurement procedure related to the at least one positioning measurement and/or a radio transmission procedure involving uplink radio signals transmitted by the wireless device (10) to enhance positioning measurement performance of the positioning measurement procedure.
US09215684B2 Methods and apparatus to maintain call continuity
Example methods and apparatus to maintain call continuity are disclosed. A disclosed example apparatus to control a user equipment (UE) mode includes the UE to initiate a tracking area updating (TAU) procedure in an evolved packet system (EPS) mobility management (EMM) connected (EMM_CONNECTED) mode, a state monitor to identify a lack of a voice service in response to the TAU procedure being successful, and a bearer monitor to identify a bearer context, the UE to stay in the EMM_CONNECTED mode until radio bearers associated with the bearer context are released.
US09215674B2 Method for selecting transport format in uplink multiple-input multiple-output system and related method and device
A method for selecting a transport format in an uplink multiple-input multiple-output system and a related method and a device are used by a user equipment to select a transport format in a case in which the user equipment is in a dual-stream transmission mode of the ULMIMO and inter-stream interference is considered.
US09215672B2 Method for controlling transmission power, and apparatus for same
A method for controlling transmission power by a communication apparatus in a wireless communication system supporting a plurality of component carriers. A total transmission power of a physical uplink shared channel (PUSCH) is calculated for a PUSCH transmission on a first component carrier and a sounding reference symbol (SRS) for a SRS transmission on a second component carrier. The PUSCH transmission is prioritized rather than the SRS transmission if the PUSCH transmission overlaps with the SRS transmission in a time domain and the total transmission power exceeds a maximum transmission power configured for the communication apparatus.
US09215670B2 Communication device, transmission power control method, and program
There is provided a communication device including: a communication unit that receives a beacon for a second communication service making secondary usage of a spectrum assigned to a first communication service; and a control unit that controls a transmission power to be used for transmission of a radio signal of the second communication service from the communication unit based on location data included in the beacon and indicating a location of a transmission source node of the beacon and a location of an interfered node interfered by the second communication service.
US09215664B2 Method and apparatus for power control
The present invention relates to a power control method, including: obtaining a current main carrier power of a main carrier and a current supplementary carrier power of a supplementary carrier; selecting a reference carrier from the main carrier and the supplementary carrier; calculating a difference between the main carrier power and the supplementary carrier power to obtain a first difference; determining a quantized value corresponding to the first difference by querying a preset configuration parameter table according to the first difference; and determining, according to the power of the reference carrier and the quantized value, a total transmit power for transmitting the main carrier and the supplementary carrier. In the whole process, a power of a previous timeslot does not need to be introduced, therefore, error accumulation can be avoided, thereby reducing a power control error and improving control precision.
US09215663B2 Methods and devices for controlling uplink transmit power at an access terminal
Apparatus and methods are provided to enable a ratcheting of uplink transmit power at an access terminal in a wireless communication network, such that the transmit power is maintained between an upper threshold and a lower threshold. Here, the decision whether to ratchet the power may be based on one or both of the open-loop transmit power and/or the closed-loop transmit power. Moreover, the decision whether to ratchet the transmit power may be based on the power per carrier in a multi-carrier wireless communication network. Other aspects, embodiments, and features are also claimed and described.
US09215661B2 Transmission power control method and device for cognitive radio device
A method and an apparatus for controlling transmit power of a CR device are provided. The method includes acquiring CR environment information regarding a licensed user or an unlicensed user occupying an adjacent channel or an adjacent cell of the CR device; determining a transmit power value of the CR device using the CR environment information; and generating transmit power control information including the transmit power value. The method and apparatus guarantee reliable communication of the CR device and minimize interference with the licensed user.
US09215659B2 Method and apparatus for disconnecting a wireless communication link between a communication device and a mobile device
A method and apparatus of determining whether to disconnect a wireless communication link between a communication device disposed in a vehicle and a mobile device is provided. The method comprises determining whether the communication device is moving or not moving, determining whether the mobile device has exited the proximity of the vehicle, and disconnecting the wireless communication link when the communication device is not moving and the mobile device has exited the proximity of the vehicle.
US09215657B1 Method and apparatus for adjusting windows during which request signals to discover network devices are transmitted and corresponding responses are received
A first device includes a physical-layer device, an adjusting module, and a power module. The physical-layer device transmits, during each of first windows, a request signal from the first device to discover one or more network devices. The first windows occur during a first period of time. The physical-layer device receives responses to the request signal from network devices. Each of the responses is received during a respective one of the first windows. The adjusting module, based on the responses to the request signal, determines whether to adjust lengths of second windows or a number of the second windows to occur during a second period of time. The second period of time occurs subsequent to and is a same length as the first period of time. The power module, during each of the second windows, transitions the first device between being powered ON and being at least partially powered OFF.
US09215656B2 Self-contained data transfer channel
A data transfer system may coordinate the transfer of user data and control data using a self-contained data channel without using a separate control channel in a time period between set-up and tear-down of the self-contained data channel. For example, a plurality of data transfer resources may be established in a self-contained data channel between user equipment and a network controller. User data is transferred between the user equipment and the network controller in at least one of the plurality of data transfer resources of the self-contained data channel. Additionally, control data is transferred between the user equipment and the network controller in at least one of the plurality of data transfer resources of the self-contained data channel.
US09215653B1 Invoking network-based transcoding in response to threshold low battery power
Methods and systems are provided for conserving battery charge of a wireless communication device (WCD). A radio access network (RAN) and a WCD communicate with data encoded based on one of two codecs. By default, the RAN and the WCD communicate based on a first codec of the two codecs. Communication based on the first codec provides a high-quality audio signal between the RAN and WCD but uses more battery charge. When the battery charge decreases, the WCD can communicate a low-battery indicator to the RAN. Upon receiving the low-battery indicator, the RAN enables a transcoder configured to convert the data encoded based on the first codec into data encoded based on the second codec. After transcoding, RAN and the WCD communicate with based on the second codec. Communication based on the second codec provides a lower-quality audio signal between the RAN and WCD but uses less battery charge.
US09215645B2 Controlling network accesses by radio terminals associated with access classes
A terminal's access to a network over a radio interface using access resources is controlled to reduce network load. The terminal is associated with one of a set of access classes and receives information from the network about limited access resources and permitted access classes. Terminals not associated with a permitted access class are prohibited from using the limited access resources. The terminal determines a first set of time periods during which available access resources, permitted for use by the access class of the terminal, may be used by the terminal to access the radio network. The first time period set is different from other sets of time periods permitted for use by other access classes. The terminal communicates using the available access resources during the first set of time periods to reduce network load.
US09215644B2 Distribution node and client node for next generation data network
A Next Generation Data Network is described. It leverages the “cloud” for data management, low frequency data computation and analytics. The wireless network is a single frequency network that permits limited non-line of sight operation. The wireless network using packet switched beams, the beams are formed and switched electronically. It utilizes advanced signal processing to compensate for low transmit signal power and multipath reflections that can be frequency or flat fades.
US09215643B2 Route selecting device and mobile radio communication system
A mobile radio communication system having one or more relay stations and base stations, a gateway, an external device having a route selection function, and a policy control device which selects a main route and a sub route on the basis of residual resources in a radio communication device. The mobile station connected to one radio communication device can select another radio communication device having a large amount of residual resources as a new access point when the one radio communication device cannot be used, to prevent shortage of the radio resources. Also, it is possible to enable a process of selecting the radio communication device as a new access point to be omitted when switching one route to another by determining a sub route as the new access point when a main route is disconnected in advance, to shorten a service disconnection time.
US09215642B2 Service packet forwarding and processing method and system, and access point AP
Embodiments of the present invention provide a service packet forwarding and processing method and system, and an access point AP. Change information of a packet forwarding path of a mobile terminal STA is obtained. A path update packet is sent to a forwarding device according to the change information of the packet forwarding path of the STA, so that the forwarding device performs update processing on the forwarding path of the STA according to the path update packet.
US09215638B2 Method and system for regulating frequent cell reselections by idle-mode mobile devices
Disclosed are systems and methods for regulating system reselections by idle-mode mobile devices. In one aspect, a femtocell may be configured to reduce frequency of its reselection beacon, which reduces probability that a fast moving mobile device will detect the reselection beacon and reselect to that femtocell. This aspect may also delay femtocell reselection for slow moving mobile devices. In another aspect, a macrocell may slow down system reselection by adjusting cell reselection parameters used by mobile devices to determine the time needed to evaluate cell reselection criteria. Yet in another aspect, a macrocell may instruct a collocated femtocell to decrease its effective coverage area to avoid premature reselection by fast moving mobile devices. Yet in another aspect, a femtocell may use power boosting techniques to increase its reselection radius.
US09215637B2 Buffer-aware radio resource management
Generally discussed herein are systems and apparatuses that are configured for scheduling device access to a cellular network resource. Also discussed herein are techniques of making and using the systems and apparatuses. According to an example a technique may include computing a media buffer level difference based on a current and previous buffer level of the device, computing a priority token parameter for the device based on the buffer level change rate, computing a priority of the device's access to the cellular network resources based on the priority token parameter, and scheduling the device time to access the cellular network resources based on the computed priority.
US09215635B2 Communication system and communication method
During a period of parallel-like radio communication with two or more first base stations, the first base station designates a second base station correlated with one of the two or more first base stations, and temporarily suspends the radio communication in accordance with a first communications standard to issue, to a mobile station, a request of measurement for the designated second base station. The first base station receives a result of the measurement for the designated second base station. The first base station notifies the mobile station of a handover from the first communications standard to a second communications standard, and also notifies the mobile station of a request for starting a coordination mode in which the two or more second base stations including the designated second base station establish communication with the mobile station in coordination with each other.
US09215632B2 Control channel transmission method and equipment
A control channel transmission method and a piece of equipment, where the method includes configuring, by a communications system, at least two control channels for a user equipment, where at least one of the control channels is a cell-specific control channel and at least one of the control channels is a user equipment-specific control channel; using, by the communications system, the cell-specific control channel and/or user equipment-specific control channel to send information about control over the user equipment. In the embodiments of the present invention, a communications system configures at least two control channels for a user equipment (UE). The communications system may use, in a process of reconfiguring a control channel, another control channel to send information about control over the UE to ensure that communication is not interrupted during cell handover of the UE.
US09215631B2 Method, apparatus and computer program product for source identification for single radio voice call continuity
An apparatus for enabling source identification for single radio voice call continuity (SR-VCC) in relation to a handover between different RATs may include at least one processor and at least one memory including computer program code. The at least one memory and the computer program code may be configured, with the processor, to cause the apparatus to perform at least receiving an indication of handover between a first radio access technology and a second radio access technology, defining an identity value for source identification associated with the first radio access technology by utilizing a source identification format associated with a third radio access technology, and providing the defined identity value to a network device associated with a target of the handover. A corresponding method and computer program product are also provided.
US09215624B2 Method and apparatus for non-access stratum message processing during handover in evolved network
A method and an apparatus for non-access stratum (NAS) message processing during handover in an evolved network are provided. The method includes the following steps. An evolved packet core (EPC) receives a message which indicates that a UE is being handed over sent by a source evolved NodeB (S-eNB), and stops sending an NAS message to the UE temporarily. The EPC receives a message which indicates that the UE returns to an S-eNB service area sent by the S-eNB. The EPC sends the NAS message to the UE through the S-eNB, if needed. With the method and the apparatus, the EPC can acquire a location of the UE in time in the case of a handover failure of the UE, a time limit of a retransmission timer is set precisely, and a specific implementation for forwarding an NAS message through an X2 interface is provided.
US09215617B2 DC offset compensation
A method for estimating an unwanted component that a receiver introduces into a signal at a known frequency, the method comprising applying a frequency offset to a signal, which comprises a wanted component at the known frequency, to form an offset signal having a frequency spectrum in which the wanted component is not positioned at the known frequency, processing the offset signal in the receiver and estimating a component positioned at the known frequency in the frequency spectrum of the processed signal.
US09215613B2 Wireless end-user device with differential traffic control policy list having limited user control
A wireless end-user device has wireless wide-area network (WWAN) and wireless local-area network (WLAN) modems. One or more processors classify whether an application is interacting with a user in a user interface foreground of the device. At a time when Internet service activities are communicated through a first wireless network type, the processors use a differential traffic control policy list to determine whether or not to apply a differential traffic control policy to Internet service activities for an application. When the policy is applicable, the policy may direct that Internet service activities by the application are blocked. A user of the device is allowed to augment the policy that will be applied for applications specified as controlled by the list, but not for other applications and/or services.
US09215612B2 Packet loss processing method, destination network node device and mobile transmission network system
Embodiments of the present invention provide a packet loss processing method, a destination network node device and a mobile transmission network system. The method includes: receiving, by a destination network node device, data sent through at least two transmission quality measurement protocol links by a source network node device, where service priorities of the at least two transmission quality measurement protocol links are different; and determining a reason for occurrence of packet loss according to packet loss ratios and the service priorities on the at least two transmission quality measurement protocol links when it is detected that packet loss occurs on the at least two transmission quality measurement protocol links. Technical solutions of the embodiments of the present invention for distinguishing bit error packet loss and congestion packet loss are high in efficiency.
US09215607B2 Main/standby switching interface module, network element system, and link information synchronization detection method
The present invention discloses an active and standby switching interface module, a network element system and a method for synchronizing and detecting link information. In the scheme of the present invention, the standby switching function interface module sends a synchronization detection request message to a synchronization module, and performs synchronization processing on the link information on the standby switching function interface module according to a synchronization detection reply message from the synchronization module, wherein the synchronization detection reply message encapsulates the link information on the active switching function interface module. The scheme provided by the present invention effectively performs the synchronization and consistent detection on the link information, thereby correctly switch the data on the active switching function interface module to the link of the standby switching function interface module when the active switching function interface module is required to perform the active and standby switching.
US09215605B2 Method for estimating frequency difference
A method for estimating a frequency difference between a transmission terminal and a reception terminal according to a reception signal is provided. The method includes steps of: in a first period, receiving and storing a first part of the reception signal; in a second period, frequency shifting the first part of the reception signal according to an L number of sweep frequencies, and correspondingly obtaining multiple first part correlation results, where L is a positive integer; in the second period, receiving and storing a second part of the reception signal; in a third period, frequency shifting the second part of the reception signal according to the L number of sweep frequencies, and correspondingly obtaining multiple second part correlation results; and estimating the frequency difference according to the first and second part correlation results.
US09215599B2 Method and apparatus of transmit power control in wireless local area network
A method and apparatus of controlling a transmit power in a wireless local area network is provided. A wireless device operated in a TV White Space transmits a white space map indicating a list of available channels, and transmits an extended power constraint indicating a plurality of transmission channels and a plurality of maximum transmit powers, wherein the plurality of transmission channels are selected among the list of available channels and each of the plurality of maximum transmit powers corresponds to a maximum transmit power for each of the plurality of transmission channels. Interference can be mitigated between wireless devices operated in the TV White Space.
US09215598B2 Optimizing dynamic spectrum access
A system and method for optimizing spectrum access in data communications is disclosed. The system comprises a case module, a selection engine, an evaluation module and an update module. The case module determines a present case based at least in part on sensor data and environmental data, determines a matching case for the present case and configures one or more channel profiles for the present case based at least in part on the matching case. The selection engine selects a first channel based on the one or more channel profiles. The first channel is associated with a first channel profile from the one or more channel profiles. The evaluation module evaluates a first channel performance for the first channel and generates a first channel reward for the first channel. The update module updates the first channel profile based at least in part on the first channel reward.
US09215592B2 Configurable personal digital identity device responsive to user interaction
A personal digital ID device provides a digital identifier to a service for a predetermined duration in response to user interaction. The user interaction may include a button press. The personal digital ID device may be in the form of a bracelet, a key fob, or other form factor. The service may be provided by a mobile device, in the cloud, or elsewhere.
US09215589B2 Methods and devices for establishing security associations and performing handoff authentication in communications systems
A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, an unsolicited security key from the base station; receiving, by the relay station, a signaling message from the mobile station; and authenticating, by the relay station, the mobile station using the security key. A method of providing secure communications between a base station, a relay station, and a mobile station in a communication network includes receiving, by the relay station, a signaling message from the mobile station; transmitting, by the relay station, subsequent to receiving the signaling message, a security key request to the base station; receiving, by the relay station, a security key from the base station in response to the previously sent security key request; and authenticating, by the relay station, the mobile station using the received security key.
US09215587B2 Methods and apparatuses for self-generating fault-tolerant keys in spread-spectrum systems
Self-generating fault-tolerant keys for use in spread-spectrum systems are disclosed. At a communication device, beacon signals are received from another communication device and impulse responses are determined from the beacon signals. The impulse responses are circularly shifted to place a largest sample at a predefined position. The impulse responses are converted to a set of frequency responses in a frequency domain. The frequency responses are shuffled with a predetermined shuffle scheme to develop a set of shuffled frequency responses. A set of phase differences is determined as a difference between an angle of the frequency response and an angle of the shuffled frequency response at each element of the corresponding sets. Each phase difference is quantized to develop a set of secret-key quantized phases and a set of spreading codes is developed wherein each spreading code includes a corresponding phase of the set of secret-key quantized phases.
US09215585B2 Acquiring identity parameters by emulating base stations
A method of acquiring the identity parameters of two or more mobile devices (20), the method comprising: obtaining a list of two or more base stations (1, 2, 3); and acquiring identity parameters from the devices (20) by emulating each base station in the list. Two or more base stations may be simultaneously emulated, and the list of two or more base stations may be obtained by simultaneously interrogating two or more base stations (1, 2, 3). The identity parameters may be IMSI and/or IMEI and/or TMSI codes.
US09215584B2 Method and apparatus for accommodating higher order modulation in wireless communication
A method and apparatus for reconfiguring a wireless transmit/receive unit (WTRU) are directed to receiving an active set update message indicating that a mode of operation allowing a certain modulation scheme is enabled or disabled and performing at least one of: performing a MAC reset procedure, updating a set of reference enhanced transport format combination indicators (E-TFCIs) and associated power offsets, determining actions related to E-DPCCH boosting, modifying information related to an enhanced dedicated channel (E-DCH), and modifying an index that indicates an E-DCH transport block size table. The update message includes at least one modified information element (IE).
US09215580B2 Method of managing reception of natural disaster warning notification messages for a wireless communication system and related communication device
A method of managing notification message reception corresponding to natural disaster warning for a user equipment of a wireless communication system includes managing the notification message reception according to configuration information broadcasted or paged by a network of the wireless communication system, and a connection state of the user equipment, wherein the connection state of the user equipment corresponds to a disaster notification disallowing mode and a disaster notification allowing mode, and the configuration information is a reception indication message indicating permission of the notification message reception.
US09215572B1 Mobile device alternative text messaging
A system is provided for mobile device alternative text messaging. The system includes a processor, a memory, and a messaging component stored in the memory. When executed by the processor, the messaging component receives a first text message sent by a first originator device via a first mobile directory number associated with a mobile device, sends a second text message to the first originator device via the first mobile directory number, receives a third text message sent by a second originator device via a second mobile directory number associated with the mobile device, and sends a fourth text message to the second originator device via the second mobile directory number. The messaging component may delete the association between the second mobile directory number and the mobile device, associate a third mobile directory number with the mobile device, receive a fifth text message sent by a third originator device via the third mobile directory number associated with the mobile device, and send a sixth text message to the third originator device via the third mobile directory number.
US09215562B1 Method and apparatus for optimized indoor position estimation
The disclosure relates to a method, apparatus and system for optimized indoor position estimation. Specifically, the disclosure relates to indoor position estimation by considering the likelihood that an access point may be an outlier. In one embodiment, the disclosure relates to a system to determine a device location. The system includes one or more antennas; a radio in communication with the at least one or more antennas; a processor to communicate with radio, the processor configured to: measure a distance from the device to a plurality of access points (APs); define a plurality of locations and calculating a distance from each of the plurality of locations to each of the plurality of APs; calculate a measurement error for each of the plurality of the calculated distances; for each location, determine a probability of measurement error as a function of both presence and absence of an outlier AP; for each location, sum the probability of measurement errors for the plurality of APs; and select the location with the highest probability of measurement error sum as an estimated device location.
US09215561B1 Luggage tracking assembly
A luggage tracking assembly includes a remote unit that may be carried by a user. A remote processor is coupled to the remote unit. A remote transceiver is coupled to the remote unit and the remote processor. The remote transceiver determines a location of the remote unit. A speaker is coupled to the remote unit and the remote processor. The speaker emits an alarm. An actuator is coupled to the remote unit and the remote processor. The actuator actuates the remote processor. A base unit may be coupled to an article of luggage. A base processor is coupled to the base unit. A base transceiver is coupled to the base unit and the base processor. The base transceiver determines a location of the base unit. The speaker emits the alarm when the base unit arrives at a trigger location with respect to the remote unit.
US09215559B2 Adding geo-fences based on time
A user can create geo-fences by providing a first identifier, e.g., a name of a store or a category of merchandise, and a location-based function that is triggered when the user's mobile device crosses a boundary of a geo-fence. An elapsed time that the geo-fences are not triggered can be monitored. If the elapsed time exceeds a threshold, additional geo-fences can be added based on a second identifier that is associated with the additional geo-fences. Whether the elapsed time is going to exceed the threshold can be predicted, and the additional geo-fences added at the time of the prediction, which may be before the elapsed time actually exceeds the threshold. Additionally, the user can be prompted regarding adding additional geo-fences before or after the elapsed time might exceed the threshold.
US09215556B2 System and method for determining the location of wireless sensors
A system and method for determining the location of wireless sensors are disclosed. The system may generally include a plurality of wireless sensor nodes communicatively coupled to a plurality of sensing devices. Additionally, the system may include a paging device configured to wirelessly transmit a page command to at least one of the wireless sensor nodes. Further, the paging device may receive a position indicator as a text string indicating a location of at least one of the plurality of wireless sensor nodes.
US09215555B2 Apparatus and method for guiding shadow area
An apparatus and method for guiding a shadow area is provided. The method includes identifying a vehicle position on a driving path based on map information and global positioning system (GPS) information from a navigation system and analyzing road information in the shadow area by receiving position information for the shadow area on the driving path from a database in which information of the shadow area is stored. A remaining distance of the shadow area is calculated based on the vehicle position in the shadow area on the driving path and the remaining distance information of the shadow area is output.
US09215552B2 Mechanism to prevent load in 3GPP network due to MTC device triggers
Embodiments of methods and apparatus to manage MTC device trigger load in a wireless network are described herein. Other embodiments may be described and claimed.
US09215542B2 Apparatus and method for measuring a plurality of loudspeakers and microphone array
An apparatus for measuring a plurality of loudspeakers arranged at different positions includes a generator of a test signal for a loudspeaker; a microphone device configured for receiving a plurality of different sound signals in response to one or more loudspeaker signals emitted by one of the loudspeakers in response to the test signal; a controller for controlling emissions of the loudspeaker signals by the loudspeakers and for handling the different sound signals so that a set of sound signals recorded by the microphone device is associated with each loudspeaker in response to the test signal; and an evaluator for evaluating the set of sound signals for each loudspeaker to determine at least one loudspeaker characteristic for each loudspeaker and for indicating a loudspeaker state using the at least one loudspeaker characteristic. This scheme allows automatic, efficient and accurate measurement of loudspeakers arranged in a three-dimensional configuration.
US09215540B2 Buzz detecting method and system
A buzz detecting method and a buzz detecting system are provided for testing whether an under-test sound playing device generates a buzz while playing sound. By an application program module, plural under-test sound signals from the under-test sound playing device are converted into plural under-test frequency-domain signals corresponding to the under-test sound signals through Fourier transform. Moreover, the application program module calculates plural under-test noise ratios corresponding to the frequencies of respective under-test sound signals according to respective under-test frequency-domain signals. After the plural under-test noise ratios are compared with plural standard noise ratios from a standard sound playing device, the application program module may automatically judge whether the under-test sound playing device generates a buzz while playing sound. Since the testing procedure does not need to be implemented by the trained testers, the overall efficiency is largely enhanced.
US09215535B2 Hearing assistance system and method
A hearing assistance system and method for wireless RF audio signal transmission from at least one audio signal source to ear level receivers, wherein a close-to-natural hearing impression is to be achieved. At least one parameter of the RF signal as received from a transmission unit at a respective receiver unit to create left ear RF signal measurement data and right ear RF signal measurement data, respectively. The angular localization of each transmission unit is obtained by comparing, for each transmission unit, the left ear RF signal measurement data and the right ear RF signal measurement data. The audio signals are processed and distributed according to the estimated angular localization of each transmission unit in a manner so that the angular localization impression of the audio signals from each transmission unit as perceived by the user corresponds to the estimated angular localization of the respective transmission unit.
US09215526B2 Circuit for microphone pin assignment detection and method thereof
A circuit for detecting microphone pin assignment and method thereof is provided. The circuit includes a pin switch unit and a detection unit. The pin switch unit switches the pin assignment of a headset connector. The detection unit receives microphone signals and outputs a test voltage to the microphone. According to the voltage difference between the pins, the pin assignment of the headset is determined and the pin switch unit automatically switches to the correct pins.
US09215520B2 Multi-function synthetic jet and method of manufacturing same
A synthetic jet assembly includes a synthetic jet having a cavity and an opening formed therein. The synthetic jet assembly also includes an actuator element coupled to a second surface of the body to selectively cause displacement of the second surface, and a control unit electrically coupled to the actuator element. The control unit is configured to transmit a multi-frequency drive signal to the actuator element, the multi-frequency drive signal comprising a cooling frequency component and an acoustic frequency component superimposed on the cooling frequency component. The cooling frequency component causes a cooling jet to eject from the opening of the body. The acoustic frequency component produces a desired audible output.
US09215513B2 Method and apparatus for presenting dynamic media content
A system that incorporates teachings of the present disclosure may include, for example, a set top box (STB) comprising a controller to analyze scheduled media content with limited temporal accessibility provided by a content provider, select a portion of the media content based on the analysis of the media content and a recipient media device to receive the portion of the media content, transmit the portion of the media content to a DVR to store the portion of the media content, and transmit a metadata pointer associated with the portion of the media content to a server. A request to accept the portion of the media content is received by the recipient media device via the server, and the portion of the media content is retrieved from the DVR by the server based on the metadata pointer when the recipient media device accepts the request. Other embodiments are disclosed.
US09215510B2 Systems and methods for automatically tagging a media asset based on verbal input and playback adjustments
Systems and methods for automatically tagging a media asset are provided. Verbal input is received from a user while the user is accessing the media asset. A request to adjust playback of the media asset is received from the user. Responsive to receiving the verbal input and the request, a combination of the verbal input and the request is cross-referenced with an attribute database to identify an attribute associated with the combination. The identified attribute is associated with the media asset.
US09215506B2 Phrase-based communication system
A client device, such as a digital video recorder, provides a phrase-based communication system in which users are presented with a dynamic messaging interface of selectable phrases and other elements. At least some of the phrases may be selected using algorithms that identify phrases that are likely to be useful to the particular user and/or the context in which the user is creating a message. In this manner, a user is able to generate useful messages quickly, without being limited to stale and fixed canned messages. Popular phrases may be identified by, for example, a server that relays based on messages exchanged between users. These popular phrases may then be harvested for use in the dynamic messaging interface. Moreover, context-sensitive metadata elements may be added to the dynamic messaging interface based on, for example, content that the user is currently viewing or about which the user is currently accessing information.
US09215501B2 Contextual matte bars for aspect ratio formatting
Systems, methods, and devices for adding contextual matte bars to format image data to another aspect ratio are provided. For example, a method may include receiving image data of a first aspect ratio into a processor. The processor may receive a characteristic of a destination display of a second aspect ratio, an indication of ambient lighting, an indication of a characteristic of the image data, or any number of these factors. The processor may add matte bars to the image data to cause the image data to be formatted to the second aspect ratio. The appearance of the matte bars may depend on the factors received by the processor. The formatted image data with these contextual matte bars then may be sent from the processor to the destination electronic display.
US09215499B2 Script based video rendering
Systems and methods are provided for cross-platform rendering of video content on a user-computing platform that is one type of a plurality of different user-computing platform types. A script is transmitted to the user-computing platform and is interpreted by an application program compiled to operate on any one of the plurality of user-computing platform types. The script is configured to cause the script to be interpreted by the application program to simulate a multi-threaded execution environment by: iteratively scheduling and performing a first simulated thread which involves decoding encoded video data received by the user-computing platform into decoded video data comprising one or more frame images; and iteratively scheduling and performing a second simulated thread which involves rendering the decoded video data by displaying the one or more frame images.
US09215498B2 Video data transmission processing method, video data sending processing method, apparatus, network system
Embodiments of the present invention provide a video data transmission processing method, a video data sending processing method, an apparatus, and a network system. The data transmission processing method includes: receiving a source stream sent from a source transmission network to a target transmission network; performing, according to respective packet loss rates of the source transmission network and the target transmission network as well as error tolerance aid information corresponding to the source stream, error tolerance coding processing on the source stream to obtain an error tolerance stream; and sending the obtained error tolerance stream to the target transmission network.
US09215497B2 Method for transmitting a broadcast service, and method and apparatus for receiving same
A broadcast receiver receives a packetized stream. The broadcast receiver extracts display time information from the header of the received packetized stream, and extracts preparation trigger information including a target service identifier from the payload of the received packetized stream. If a current time is a preparation time designated by the extracted display time information, the broadcast receiver starts to prepare an object corresponding to the target service identifier for activation at a later time.
US09215495B2 Authentication of distributed motion image data using data structures
A motion image distribution system includes a server and a user terminal. The server generates a feature quantity table CHT1 representing a data structure of motion image encoded data VDE, and authenticates the motion image encoded data VDE by using the generated feature quantity table CHT1. Then, the server transmits the motion image encoded data VDE and the feature quantity table CHT1 to the user terminal. The user terminal generates a feature quantity table CHT2 representing a data structure of the received motion image encoded data VDE, and authenticates received motion image encoded data VDE by using the generated feature quantity table CHT2. Then, the user terminal plays back the motion image encoded data VDE and outputs motion image playback information.
US09215492B2 Advertisement analysis and error correlation
A method includes receiving, from an advertisement monitor device, notification of a video stream that includes an advertisement insertion event. The advertisement insertion event includes a scheduled transition between the video program and at least one targeted advertisement associated with a corresponding target group of set top boxes. The method includes preparing resources to receive the video stream. A notification is sent to the advertisement monitor device to begin transmitting the video stream. The video stream, a unique identifier (ID) associated with the video stream and associated metadata for the video stream is received. The method includes analyzing the video stream to identify at least one issue in association with the advertisement insertion event, and generating a report that includes the identified at least one error, the unique ID, and the associated metadata for the video stream.
US09215489B2 Custom electronic program guides
Custom electronic program guides are disclosed. An example method includes collecting identifying information associated with media using at least one of a microphone or camera of a consumer electronics device, determining a characteristic of the consumer electronics device, the characteristic being at least one of a length of time during which the identifying information was collected, a percentage of the identifying information corresponding to a same program, or a geographic location at which the identifying information was collected, and determining, based on the characteristic, whether the collected identifying information is to be used in generating a custom electronic program guide for a user associated with the consumer electronics device.
US09215486B2 System and method for multiplexing of variable bit-rate video streams in mobile video systems
A method of transmitting a live video stream and a pre-recorded video stream over a wireless network to a mobile device, the method including: receiving the live video stream and the pre-recorded video stream for a current scheduling window; dividing the live video stream and the pre-recorded video stream into segments in the current scheduling window, each segment including an aggregate data amount, a transmission start time and a transmission end time; determining a transmission schedule for the current scheduling window, said transmission schedule including the segments; locating slack time slots, the slack time slots being time slots for which no segment is allocated; and scheduling bursts associated with the pre-recorded video stream in the slack time slots.
US09215483B2 Policies for content downloading and content uploading
Methods and arrangements for setting up a policy for downloading of IPTV media content from a Content Server (5) to a User Equipment (1), and/or for uploading media content from a User Equipment to a Content Server. The policy is typically a bandwidth reservation, and the type of content download/upload will be included in an initial request from the User Equipment, e.g. in an SDP Offer, sent to an IPTV controlling node (4).
US09215477B2 Publication of television content to television distribution sites
A device receives updated television content, and generates a file that provides an indication to copy the updated television content to multiple television distribution sites, where each television distribution site includes multiple television distribution devices. The device identifies one of the multiple television distribution devices, associated with each of the multiple television distribution sites, to receive the file, packages the updated television content with the file, for the identified one of the multiple television distribution devices, and provides the updated television content and the file to the identified one of the multiple television distribution devices.
US09215473B2 Sub-slices in video coding
A video encoder partitions a slice of a picture into a plurality of sub-slices. When the video encoder encodes the slice, the video encoder generates a coded slice that includes coded sub-slices that correspond to the sub-slices. Each of the sub-slices can be parsed independently of each other one of the sub-slices and can be reconstructed independently of each other one of the sub-slices. Accordingly, a video decoder may parse two or more of the sub-slices in parallel and decode two or more of the sub-slices in parallel.
US09215470B2 Signaling selected directional transform for video coding
In one example, an apparatus for encoding video data includes a video encoder configured to select an intra-prediction mode to use to encode a block of video data, determine whether the block includes a sub-block of a size for which multiple transforms are possible based on the size of the sub-block and the selected intra-prediction mode, when the block includes the sub-block of the size for which multiple transforms are possible based on the size of the sub-block and the selected intra-prediction mode, select one of the multiple possible transforms, transform the sub-block using the selected one of the multiple possible transforms, and provide an indication of the selected one of the multiple possible transforms for the size of the block.
US09215469B2 Intra-plane and inter-plane predictive method for RGB image coding
An apparatus and method for enhanced encoding of RGB images is presented. The use of intra-plane prediction, which relies on correlation between neighboring pixels of the same color, is enhanced by adding inter-plane prediction that relies on correlation between neighboring pixels of different colors. Inter-plane prediction is performed on at least one of the colors, and more preferably two of the colors, such as R and B, based on input from G. In at least one embodiment, multiple encoding modes are provided, in which different colors from the RGB image are differently coded with either pulse code modulation (PCM), or differential pulse code modulation (DPCM) at a given quantization level (qn). The quantization level and selection of mode being determined for optimizing coding (e.g., based on bit coverage).
US09215465B2 Spatial prediction method, image decoding method, and image coding method
A spatial prediction method capable of reducing the complexity of spatial prediction includes: detecting an edge (E) overlapping the current block by obtaining a horizontal gradient (Gy) and a vertical gradient (Gx) between pixels within a block adjacent to the current block; calculating an integer slope of the edge; determining, for each pixel position within the current block, a sub-pel position being an intersection between (i) a line that has the integer slope and passes through the pixel position and (ii) a boundary of the adjacent block; and predicting, for each pixel position, a pixel value at the pixel position based on a pixel value interpolated in the sub-pel position, wherein the boundary of the adjacent block is a row or a column that is the closest to the current block, among rows or columns of pixels included in the adjacent block.
US09215460B2 Apparatus and method of adaptive block filtering of target slice
Provided is an image processing apparatus including: area determination unit configured to determine whether or not an area of a control block functioning as control unit for filtering of an image includes a processing-target slice area of a plurality of slices formed in a frame of an encoded image; control information creation unit configured to create filter control information representing whether or not the filtering is performed for the area of the control block including a processing-target slice for each area of the control block including the processing-target slice when the area determination unit determines that the area of the control block includes the area of the processing-target slice; and filter unit configured to perform filtering for the image based on the filter control information created by the control information creation unit.
US09215459B2 Image processing apparatus, image capturing apparatus, and program
An exemplary image processing apparatus generates an interpolation frame to be inserted between two contiguous frames of a moving picture. The image processing apparatus includes: a motion vector calculation section configured to calculate a first motion vector by performing a matching operation between first and second frames, of a first frame, a second frame and a third frame of the moving picture contiguous with one another, and calculate a second motion vector by performing a matching operation between the second and third frames; and an interpolation frame generation section configured to generate an interpolation frame to be inserted between the second frame and the third frame through a process performed based on a magnitude of a difference vector between the first motion vector and the second motion vector.
US09215452B2 Stereoscopic video display apparatus and stereoscopic video display method
A stereoscopic video display apparatus includes: a two-dimensional display unit which selects, for each of parallax images having a parallax from a reference parallax image, at least one pixel sequence on a panel, and displays each of the parallax images using the selected pixel sequence; a barrier part which divides light from the pixel sequences such that the respective parallax images are displayed at predetermined positions; a position detecting unit which detects the positions of viewers; and a parallax image arrangement control unit which specifies viewing positions possible for the left eyes of the viewers from among the detected viewing positions other than the viewing positions for the right eyes, and cause the two-dimensional display unit to respectively display the parallax images predetermined for the left eyes at the specified positions.
US09215451B2 Liquid crystal display and method for generating 3D images by matching a software optical grating
A liquid crystal display for generating 3D images by matching a software optical grating includes a backlight module and a LCD panel having a color filter. The LCD panel has a plurality of first subpixels for generating a first image, a plurality of second subpixels for generating a second image, and a plurality of third subpixels for generating a black barrier image as the software optical grating. When the black barrier image is slightly spread to cover one part of the first image and one part of the second image, the first image is covered partially by the black barrier image to form a right-eye image, and the second image is covered partially by the black barrier image to form a left-eye image. Whereby, the right-eye and the left-eye images concurrently generated by the LCD are respectively projected onto the right and the left eyes of the viewer.
US09215449B2 Imaging and processing using dual clocks
A method for imaging includes capturing images of an object using a matrix of detector elements and performing a processing operation in the detector elements under control of a global clock. Results of the processing operation are read out under control of a rolling clock, which is unsynchronized with the global clock.
US09215434B2 Systems and methods for session recording and sharing
Systems and methods are provided to record and play back computer-based sessions including events and accompanying audio information. Recording computer-based sessions includes recording an event received at a computer device, the event being recorded in a format that does not involve a video screen shot of the event, recording audio information received at the computer device, the audio information being received in temporal proximity to the event, and storing the recorded event and the recorded audio information as a recorded session. Playing a recorded session includes accessing the recorded session, stepping through the recorded session in a time-based fashion while playing any audio information corresponding to a particular time, detecting a recorded event at a particular point in time, and playing back the recorded event in conjunction with any audio information corresponding in time to the recorded event, such that the recorded event is recreated on a playback device.
US09215429B2 Mirror monitor using two levels of reflectivity
A rear-view mirror and modular monitor system and method include an interior mirror that embeds a modular monitor behind see-through mirror glass. In some embodiments, the system includes multiple cameras, some in the vehicle, bus and/or truck, as well as some cameras outside the vehicle, bus and/or truck, advantageously providing the driver an opportunity to view what is happening, for example, in the back rows of the bus and/or cabin, while also using the mirror to look at objects in the bus and/or cabin that are visible using the mirror. The rear-view mirror and modular monitor system is configured to be easily assembled and/or disassembled when necessary for maintenance and/or to replace parts.
US09215425B1 Camera-aided focusing in optical metrology
A side camera is combined with a conventional optical metrology system to image the object during the focusing scan performed in normal focusing procedures. The camera is positioned in fixed spatial relation to the objective and with its focal plane in substantial alignment with the optical axis of the objective so as to image the object during the scan. The camera is used to monitor the illumination spot formed on the object by the beam projected through the system's objective. The in-focus position is found by moving the object such that the illumination spot coincides with the objective's focus seen through the camera.
US09215424B2 Content delivery
Wireless routers having an ADSL or cable connection to content data available via the Internet, a wired connection for connecting local clients in a LAN and a wireless controller for connecting to other wireless routers and clients in a wireless local area networks (WLANs). The WLANs often intersect and therefore it is possible to communicate between wireless routers in order to exchange content data via the wireless LAN in addition to the ADSL or cable connection. Further, each wireless routers has a cache data store to cache content data requested by the user, or any other information sent to the wireless router from another wireless router. A central server can schedule transfer of content data between wireless routers by considering information packets stored on the server
US09215418B2 Method and apparatus for sending stored advertising data from an internet protocol television end user network interface device
A computer program and system are disclosed for sending stored IPTV advertisement data from an IPTV network end user network interface device, the computer program including but not limited to instructions to intercept data from the end user device connected to the end user network interface device before the data reaches a destination intended by an end user associated with the end user device; instructions to determine at the end user network interface device whether a television subscription is active for the end user network device; and instructions to send the advertisement data from the television network device to the end user device for display when the television subscription is not active for the network interface device and instructions to connect the client device to a walled garden indicated by a uniform resource in the advertisement data.
US09215417B2 Managing media content for a personal television channel
A system that incorporates teachings of the present disclosure may include, for example, a media processor having a controller to categorize media content of a subscriber according to one or more image features, and present at least a portion of the categorized media content in a personal television channel procured by the subscriber from a service provider of a media communication system. Other embodiments are disclosed.
US09215416B2 Method and system for switching between video streams in a continuous presence conference
A media relay conferencing system includes a media relay multipoint control unit and a media relay endpoint that handle needs for Intra frames in an efficient way, improves the conferees experience, and reduces the load on the resources associated with that media relay videoconference by reducing the number of Intra frames and lowering the impact of Intra frames when they are needed. In some embodiments, when a requiring media relay endpoint requests an Intra frame for a video stream received from a presenting media relay endpoint, a media relay multipoint control unit may respond by requesting the presenting media relay endpoint to synchronize a reference frame in an encoder of the presenting media relay endpoint, which encodes the relevant relay compressed video stream, with a reference frame in a decoder of the requiring media relay endpoint.
US09215412B2 Multiparty communications systems and methods that optimize communications based on mode and available bandwidth
Improved methods, systems, and devices for managing communications are provided. A user device may display all ongoing communications so that a user can visualize the communications network or some subset thereof (e.g., a subgroup or group of users). A system may maintain the user device in an instant ready-on mode of communication with the other user devices. A user may then initiate communications with a subgroup (e.g., a pair) or group without initiating a new connection. Accordingly, a user can simultaneously and fluidly communicate at the subgroup level, at the group level, or at the inter-group level. Moreover, users can function as independent actors that can freely form and leave subgroups as well as groups.
US09215411B2 Enhancing video conferences
Implementations generally relate to enhancing video conferences. In some implementations, a method includes determining one or more characteristics of a video stream provided by a first camera. The method further includes determining one or more functions of the first camera based on the one or more characteristics. The method further includes enabling a browser to control the one or more functions of the first camera, and wherein the browser is remote relative to the first camera.
US09215410B2 Two-wire multichannel video door system
Two-wire multichannel video door system that comprises at least two street panels (20) with video camera (18) and home terminals, provided with an intercom, or with a monitor intercom. Characterized in that the street panels comprise the following: a digital BNFSK modulator and a digital BNFSK demodulator for transmitting audio and data to an intercom terminal, provided with a digital BNFSK modulator and a digital BNFSK demodulator; and a digital PPM modulator and a digital PPM demodulator for the transmission of audio and video to a monitor terminal, provided with a digital BNFSK modulator and a digital BNFSK demodulator and a digital PPM modulator and a digital PPM demodulator, to maintain at least two simultaneous bidirectional audio conversations between two terminals with two street panels, and to send video from the street panels to the terminals at the same time, using any type of conventional cabling.
US09215402B2 Video format for digital video recorder
Some embodiments provide a video recording device for capturing a video clip. The video recording device receives a selection of a non-temporally compressed encoding scheme from several different encoding schemes for encoding the video clip. The different encoding schemes include at least one temporally compressed encoding scheme and at least the selected non-temporally compressed encoding scheme. The video recording device captures the video clip as several frames. The video recording device non-temporally encodes each of the frames as several slices. The slices of a particular frame are for decoding by several processing units of a video decoding device. The video recording device stores the video clip in a storage.
US09215392B2 Impedance readout circuit and method having filter for determining an AC current component inversely proportional to the output impedance of a pixel
An impedance readout circuit receives an input signal from a pixel, or an array of pixels. The circuit includes an amplifier to amplify the input signal and detects a DC component of the input signal. The circuit establishes an AC sampling voltage at the output of the amplifier enabling a filter of the circuit to determine an AC current component of the amplifier output. The AC current component is inversely proportional to the output impedance of the pixel.
US09215389B2 Image pickup device, digital photographing apparatus using the image pickup device, auto-focusing method, and computer-readable medium for performing the auto-focusing method
An image pickup device is provided including a plurality of pixels arranged over an entire region of the image pickup device, each pixel including: a plurality of light-receiving sub-pixels that generate an image pickup signal from incident light; and a phase-difference detection sub-pixel having a confined light-receiving region. The plurality of pixels includes first group pixels and second group pixels that are each classified according to an arrangement of the confined light-receiving region of the phase-difference detection sub-pixel thereof, and the confined light-receiving region of the phase-difference detection sub-pixel of the first group pixels and the confined light-receiving region of the phase-difference detection sub-pixel in the second group pixels are arranged biased to opposite directions.
US09215381B2 Image blurring method and apparatus, and electronic devices
An image blurring method and apparatus, and an electronic device, and pertains to the field of image processing. The method includes acquiring a first image and a second image that are captured by a same camera and have a same viewfinder coverage; acquiring depth information according to the first image and the second image; determining a background area of the first image according to the depth information; and performing blurring processing on content in the background area of the first image. In the present invention, solving a problem in the prior art that a user needs to open an image using software and manually selects a background area, and achieving an effect of improving a blurring effect and simplifying a user operation.
US09215379B2 Imaging apparatus and imaging processing method for detecting and correcting flash band
A flash band processing circuit includes: a flash band detecting circuit that detects a start line and an end line of a flash band, which is a level difference for each line generated within a frame in accordance with flash light, based on a difference in exposure periods of a video signal output for each frame by a pixel included in an imaging device employing a rolling shutter system.
US09215377B2 Digital zoom with sensor mode change
An apparatus including at least one processor; and at least one non-transitory memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to, during a digital zoom having increasing or decreasing zoom values for first frames taken by a camera, and based upon a sensor mode changing from a first sensor mode to a different second sensor mode, using at least one new different zoom value to one of the first frames captured by the camera before the sensor mode change to form at least one new second frame.
US09215374B2 Image processing apparatus, image processing method, and imaging apparatus that corrects tilt of an image based on an operation input
There is provided an image processing apparatus including an operation display unit for displaying an image on a display screen and capable of an operation input on the image displayed on the display screen, an operation input detection unit for detecting an operation input in the operation display unit, an approximate straight line derivation unit for deriving first approximate straight line approximately indicating a trajectory of the operation input based on the detection result in the operation input detection unit, and an image correction unit for correcting a tilt of the image displayed on the display screen based on the derived first approximate straight line and a predetermined reference line.
US09215373B2 Apparatus and method for compensating hand blur
An apparatus and method for compensating hand blur are disclosed. The method according to an exemplary embodiment of the present invention comprises receiving an angular velocity by tilt of the camera module, determining a first driving signal for driving the second actuator using the angular velocity, calculating a ratio of effective focal length relative to a lens moving distance using the driving of the first actuator, and determining a second driving signal amplifying the first driving signal, using the ratio of effective focal length relative to the lens moving distance.
US09215364B2 Focus detection apparatus, image pickup apparatus, image pickup system and focus detection method
A focus detection apparatus which includes an image pickup element having first and second photoelectric conversion elements sharing a lens, wherein the first and second photoelectric conversion elements perform a photoelectric conversion of images passing through different exit pupils of an image pickup optical system so as to output a focus detection signal used for focusing by a phase difference detection method, the focus detection apparatus includes an image shift amount calculator which performs a correlation calculation by using each of signal values obtained independently from the first and second photoelectric conversion elements and calculate an image shift amount, a defocus amount calculator which calculates a defocus amount by multiplying the image shift amount by a coefficient, and a coefficient correcting portion which corrects the coefficient in accordance with the signal value obtained from the first photoelectric conversion element or the second photoelectric conversion element.
US09215361B2 Array cameras with light barriers
An imaging system such as an array camera may include an array of image sensors. The image sensors may each include an array of image pixels formed in a common image sensor substrate. A protective glass cover layer may be provided over the array of image sensors. The cover layer may be attached to the image sensor substrate using an adhesive. The adhesive may be formed on the image sensor substrate in a grid-like pattern in between adjacent image sensors in the array. A light blocking material may be formed on the adhesive grid to minimize optical crosstalk between neighboring image sensors. The light blocking material may fill or partially fill a trench in the adhesive, may coat the outer surfaces of the adhesive, and/or may coat the inner surfaces of the adhesive. If desired, light barriers may also be formed in openings in the glass cover layer.
US09215359B2 Antistatic device and electronic device with the same
An antistatic device includes a main body, a first conductive member, and a second conductive member. The main body with a first surface has a first annular groove and a second surface, opposite the first surface, has a second annular groove. The first conductive member, with a first end is in contact with a camera assembly of an electronic device and a second end, opposite the first end, is positioned in the first annular groove. The second conductive member, with a first end is positioned in the second annular groove and a second end, opposite the first end, is in contact with the conductive potion of a housing of the electronic device. Static electricity from the camera assembly is conducted from the camera assembly through the first conductive member to the main body and from the main body through the second conductive member to the conductive portion of the housing.
US09215355B2 Scene adaptive temporal filtering
Calculating a temporal filter values to filter video data for noise and ghosting artifacts. A sensor specific noise model may be derived using the video capture settings of the video source to estimate the noise variance for an image, and to determine the amount of the temporal filtering to be applied to a frame or pixel. The global motion and sensor specific noise model may be used to populate filter coefficient look-up tables based on the local motion and luma values of each pixel in the frame. The maximum absolute difference between frames may be used to estimate global motion between two frames such that filter strength may be reduced for frames exhibiting high global motion and increased for frames exhibiting low global motion. According to an embodiment, the increase in temporal filtering between frames may be capped to avoid sudden visible noise differences between frames.
US09215353B2 Image processing device, image processing method, image display device, and image display method
A three-dimensional noise reduction processing unit perform as a recursive noise reduction process to an input image X(n), using a motion vector MV detected by a motion vector detecting unit. A three-dimensional noise reduced image B(n) is output as a corrected original image Y(n). A two-dimensional noise reduction filter processing unit applies a two-dimensional noise reduction filter to the input image X(n). Using the motion vector MV, an interpolated image generating unit generates an interpolated image Y(n+0.5) based on a two-dimensional noise reduced image A(n). Significant degradation of an interpolated image due to false detection of a motion vector is prevented by generating the interpolated image based on the image resulted without performing the recursive noise reduction process.
US09215352B2 Pixel clock generator, digital TV including the same, and method of generating pixel clock
A pixel clock generator is provided. The pixel clock generator includes a phase-locked-loop (PLL) circuit that generates, from an oscillation signal having a first frequency of tens of MHz, a multi-phase oscillation signal having a second frequency of several GHz; and a frequency/phase adjusting circuit that synchronizes the multi-phase oscillation signal with a horizontal sync signal to generate a first oscillation signal, frequency-divides the first oscillation signal to generate a second oscillation signal, and adjusts a phase of the second oscillation signal to generate the pixel clock.
US09215350B2 Sound processing method, sound processing system, video processing method, video processing system, sound processing device, and method and program for controlling same
A sound processing device according to the present invention includes: a time-frequency analysis means which generates a time-frequency plane from a sound signal through time-frequency analysis; a region characteristic amount extraction means which, for a plurality of partial region pairs which is defined on the time-frequency plane and of which at least either of shapes of two partial regions or positions of the two partial regions differ from one another, extracts a region characteristic amount from each partial region; and a sound identifier generation means which generates a sound identifier which identifies the sound by using the region characteristic amount from the each partial region.
US09215346B2 Image forming apparatus
The image forming apparatus reads an original conveyed in the image forming apparatus, analyzes a feature value of information about an original image on the read original, generates an image to overwrite the original image with, using image data having the feature value obtained based on an analysis result, sets a predetermined area on the original image, and overwrites the predetermined area on the original image with the generated image.
US09215341B2 Image forming apparatus that performs function restriction, image formation method, and recording medium
Provided is an image forming apparatus that can prevent, when brought out from a setting location, outputting inaccurate image data illegally. An image forming apparatus includes an image output device, a communication device, and a master controller. The master controller includes a nonvolatile memory circuit and a CPU that can perform a plurality of processing capabilities. The plurality of storage areas where the nonvolatile memory circuit includes the area that memorizes the image data are provided. The processing capability includes function converting image data into an image, forming, and outputting it to the recording medium. An auxiliary equipment includes a positioning circuit that computes a geographic coordinates of a reception point by receiving a radio wave signal for positioning. Only if located in a designated range memorized in the nonvolatile memory circuit, performing of the plurality of processing capabilities is permitted.
US09215338B2 Image forming apparatus and image processing method
An image forming apparatus, comprising: an image reading unit configured to read the first image data printed on one side of an original and the second image data printed on the other side of the original; an image forming unit configured to carry out a image forming process for the first and second image data read by the image reading unit and a control unit configured to activate the image forming unit to carry out the image forming process for the first image data when the image reading unit reads a specified area related to the second image data.
US09215333B2 Charging of calls in a communication network
The present subject matter relates to a method for charging of calls in a communication network. The method includes, receiving subscription information pertaining to a discretionary charging feature, for a call between a first user and a second user, where the first user is subscribed to a first telecom operator and the second user is subscribed to one of the first telecom operator and a second telecom operator. The method further includes ascertaining whether the second user is subscribed to the discretionary charging feature based on the receiving, and applying discretionary charging for determining call charges for the first user, based on the ascertaining.
US09215332B2 Buddy list for blocked service
A buddy list is used to provide a service to a user if the service is blocked. A user may store multiple profiles in a user device, and each profile identifies a different buddy list. If the user's service is blocked, the user device is configured to retrieve a profile and send a request to use a buddy list from the profile to utilize the service. If a request is rejected, another profile is tried until the request is approved or until all the profiles have been exhausted.
US09215330B2 System, method, and apparatus for signaling a weather condition
The illustrative embodiments described herein are directed to a system, method, and apparatus for signaling a weather condition. In one embodiment, the system may include an optical network terminal. The optical network terminal may include a communication port adapted to be coupled to a fiber optic cable. The communication port may be further adapted to receive data that indicates a weather condition via the fiber optic cable. The optical network terminal may also include an output unit, in communication with the communication port, adapted to send a signal in response to the communication port receiving the data that indicates the weather condition.
US09215329B2 Emergency services routing proxy cluster management
Systems and methods for clustering emergency services routing proxies are provided. The described features allow a group of ESRPs running as individual servers or a group of virtual servers, to be referenced using a single URI. In one implementation, an emergency services routing proxy device includes an emergency services routing proxy node configured to route a call to a downstream entity, the call received from an upstream entity. The device further includes a cluster manager configured to receive registration information from the emergency services routing proxy node, the registration information including a routing service identifier. The cluster manager may be further configured to identify the emergency services routing proxy node for call routing based on a comparison of an identifier included in the call with the routing service identifier.
US09215324B2 Systems and methods for state awareness across communication channels and statefully transitioning between communication channels
A system for providing state awareness across communication channels and statefully transitioning a user between a source channel and a destination channel is disclosed. The method may comprise storing a unique identifier associated with the user and data associated with the user, retrieving the data associated with the user based upon the user identifier and in response to the user entering the destination channel that is different from the source channel, and populating the data associated with the user in the destination channel. The destination channel may comprise a display of a customer service representative, and the populating may occur automatically. Furthermore, the method may comprise placing a call to a telephone number associated with the user in response to at least one of: the user answering a requisite number of questions in the source channel and the user requesting a transition to a voice destination channel.
US09215323B2 Selective mapping of callers in a call center routing system
Systems and methods are disclosed for routing callers to agents in a contact center, along with an intelligent routing system. An exemplary method includes mapping a first portion (or fraction) of callers to agents according to a performance and/or pattern matching algorithm based on comparing caller data associated with the callers and agent data associated with the agents. The method further includes mapping a second portion of the callers (e.g., the remaining portion or fraction of all callers) to agents differently than the first portion of the callers (e.g., mapping based on queue order or performance based), which may provide a control group for monitoring or analyzing the effect of the pattern matching algorithm. The method may further include displaying the effect of the routing on at least one outcome variable, which may include revenue generation, cost, customer satisfaction, first call resolution, cancellation, or other variable outputs from the pattern matching algorithm of the system.
US09215322B1 Intelligent communication routing system and method
A communications routing system, and method, for representing a plurality of predicted characteristics of a plurality of communications sources, each having an economic utility; representing a plurality of predicted characteristics of a plurality of communications targets each having an economic utility; and determining an optimal routing between the plurality of communications sources and the plurality of communications targets, by maximizing an aggregate utility with respect to the respective predicted characteristics of communications source and communications destination represented by linkages.
US09215320B2 System and method for indexing automated telephone systems
A telephone subnet crawler is used to access automated telephone response systems and index the information, contents and structure contained therein. A database of the information, contents and structure of a plurality of automated telephone response systems is created by the telephone subnet crawler. A user interface provides callers with direct access to the information, contents and structure of the automated telephone response systems contained in the database. Where an automated telephone response system requires user input, the user interface calls the automated telephone response system and navigates to the node requiring user input, provides the user input and displays the results to the user. Where an automated telephone response system connects to an operator, the user interface calls the automated telephone response system, navigates to the node for an operator, and when an operator is detected, calls the user at a user provided callback number.
US09215319B2 System and method for executing originating services in a terminating network for IMS and non-IMS applications
A system, server and method of executing originating services in a terminating IP Multimedia Subsystem (IMS) network in which a triggered application may or may not support IMS.
US09215314B2 Voice input system and information storage medium storage voice input program
A voice input system (100) includes a processing receiving unit (104) that receives identification information of a telephone that is to receive a callback, in order to input a voice, together with a voice recognition process request, a call processing unit (106) that originates a callback based on the identification information of the telephone received by the processing receiving unit (104), a voice data receiving unit (108) that receives voice data of a voice when the callback originated by the call processing unit (106) is received and the user's voice is input, and a voice recognition result storage unit (122) that stores result data which is data of a voice recognition result of the voice data received by the voice data receiving unit (108) in association with the identification information of the telephone.
US09215313B2 Admission control of a communication system
Aspects of the disclosure relate to admission control of a communication session in a network. The admission control can be implemented by a network node at the boundary of the network or a subsystem thereof. In one aspect, the admission control can be implemented during a predetermined period and can be based at least on an admission criterion, which can be specific to an end-point device, e.g., a target device or an origination device. The admission criterion can be configurable and, in certain implementations, it can be obtained from historical performance associated with establishment of communication session. Such historical performance can be assessed within a period of a configurable span.
US09215312B2 Telecommunication diagnostic information management
A diagnostic tool is adapted to include the capability of initiating one or more diagnostic tests, collecting the raw data from the diagnostic test(s) and transporting the raw diagnostic data to an OSS. The OSS interprets the raw diagnostic data and stores the results in a database. The stored results can be searched, sorted, manipulated, analyzed, and the like. The results of any of these operations can then be, for example, displayed to one or more entities such as customer support, network operators, network planners, or the like.
US09215310B2 Media delivery platform
A method of delivering an audio and/or visual media file including, for example, one or more of full or partial master recordings of songs, musical compositions, ringtones, videos, films, television shows, personal recordings, animation and combinations thereof, over the air wirelessly, from one or more servers to an electronic device with or without an Internet connection, said method comprising transmitting and audio and/or visual media file in compressed format to said electronic device, and wherein the electronic device is effective to receive said audio and/or visual file and playback said audio and/or visual content on demand by a user.
US09215307B2 Device network technology selection and display in multi-technology wireless environments
Radio network technology and display thereof can be managed when multiple services and radio network technologies are available to a multi-technology mobile device. Management relies at least in part on a subscriber profile that comprises a network selection profile constructed through market policy, subscriber policy, and application policy for radio technology utilization. Network preference(s) profile is generated on per subscriber, or per subscriber type, basis and is conveyed to a subscriber station over the air. Initial subscriber profile can be delivered at a time of provisioning a multi-technology mobile device, and updated based at least upon subscriber demand, a schedule established by a network operator or service provider, or an event related to coverage area relocation or contracted services. Radio technology preferences and display of associated technologies available to a multi-technology mobile device can be dynamically controlled on a per-call and/or per-application basis.
US09215303B2 Case for a tablet shaped device and a method for making the case
A case for a tablet shaped device, the case including a body having a first face and a second face having a tablet shaped device receiving area; and a flap having a distal portion magnetically attracted to the body, and configurable between a first configuration in which the flap covers the tablet shaped device receiving area and the distal portion is wrapped around an edge of the body and contacts the first face such that the flap is secured by the magnetic attraction of the distal portion to the body, and a second configuration in which the flap is folded to form a stand secured by the magnetic attraction of the distal portion to the body.
US09215301B2 Electronic device with a flexible panel and method for manufacturing a flexible panel
The electronic device comprises a data processing facility (8), a flexible panel (3), and a facility (4,5) for arranging the panel at least into an extended shape (FIG. 1A) and into a compact shape (FIG. 1B). The flexible panel includes—a display structure (20) responsive to output signals (Sout) from the data processing facility (8), —a touch sensitive structure (22) arranged for providing input signals 10 (Sin) to the data processing facility (8) indicative for a change of capacitance at a position where a pointing device approaches the panel (3).
US09215300B2 Display module and mobile terminal including the same
The present invention relates to a display module which is able to prevent light-leakage and to protect a display provided therein against an external shock, and a mobile terminal including the same.
US09215298B2 Patient controlled brain repair system and method of use
A method of maintaining an information rate of a Brain-computer interface (BCI) system, implanted in a patient's brain, by regulating arousal level in the patient's brain is disclosed. The method includes selecting a patient with the implanted BCI device configured to receive neuronal activity from one or more electrodes connected to the patient's brain and to establish a communication channel between the patient and an external device controlled by the patient. Accordingly, a rate of information passage through the communication channel from the BCI device is measured, and a region of the patient's brain involved in arousal regulation, is stimulated in response to said measuring, under conditions effective to adjust the rate of information passing from the BCI device through the communication channel. A computer medium for carrying out this method and a BCI Arousal Regulation system are also disclosed.
US09215296B1 Method and apparatus for efficient radio unit processing in a communication system
The method and apparatus of the present invention provides for reduced power consumption and cost while supporting wide bandwidth signals from a large number of antennas, as is required by next generation systems. In accordance with the present invention, a method and apparatus are provided for processing data in a radio unit of a communication system by receiving compressed data at one or more interfaces or internal resources of a distributed switch of a radio unit, operating the distributed switch to match the interface bandwidth to the resource bandwidth and distributing the compressed data received at the one or more interfaces or internal resources to the one or more internal resources or interfaces of the radio unit through the distributed switch.
US09215293B2 System and method for augmented and virtual reality
One embodiment is directed to a system for enabling two or more users to interact within a virtual world comprising virtual world data, comprising a computer network comprising one or more computing devices, the one or more computing devices comprising memory, processing circuitry, and software stored at least in part in the memory and executable by the processing circuitry to process at least a portion of the virtual world data; wherein at least a first portion of the virtual world data originates from a first user virtual world local to a first user, and wherein the computer network is operable to transmit the first portion to a user device for presentation to a second user, such that the second user may experience the first portion from the location of the second user, such that aspects of the first user virtual world are effectively passed to the second user.
US09215290B2 Methods and systems for processing social interactive data and sharing of tracked activity associated with locations
A method includes determining a location of a first monitoring device used while performing an activity. The first monitoring device is worn by a first user. The method includes determining a location of a second monitoring device used while performing an activity. The second monitoring device is worn by a second user. The method further includes determining whether the locations of the first and second monitoring devices are within a range and whether the activities are similar. The method includes sending a prompt to the first monitoring device upon determining that the activities are similar and the locations are within the range. The prompt includes a request for permission from a first user account to allow a second user account to access information from the first user account regarding the activity performed using the first monitoring device.
US09215287B2 Method for notification of events on a device running multiple user identities
The present method and system implements a method for presenting notifications on an electronic device partitioned into two or more distinct instances, each instance being aware of separate sets of events associated to applications running in that instance. The method includes collecting for each instance the notifications corresponding to the separate sets of events, rendering in the active instance the active instance notifications using a first display mode, while rendering the other instance notifications using a second display mode.
US09215283B2 System and method for mobility and multi-homing content retrieval applications
A controller function residing underneath a client application in a TCP/IP stack or session layer monitors state and status information associated with session-based application layer functions (e.g., content retrieval) and uses this information to migrate one or more sessions from a first client interface to a second client interface (e.g., 3G, 4G, LTE, 802.11x, WiMAX) and to a different application function serving entity (e.g., a different content server, cache server, service provider).
US09215280B2 Systems and methods for downloading multiple files
In a system and method to allow a user to download multiple files in a SharePoint environment, the system includes a detection module configured to detect a selection of at least one item from a document library by a user. The item can be one or more of a file or folder including groups of files. The system further includes a packaging module configured to package the at least one item as a zip file. Furthermore, the system includes a downloading module configured to download the zip file.
US09215276B2 Apparatus and method of data transfer
A data transfer system comprises a server and a plurality of devices each operable as a client of the server. The server in turn comprises a notification arrangement to notify a device that it is to become a member of a peer group comprising other clients of the server. The server further comprises a client/server data transmitter to send data to the respective device upon such notification. Each device in turn comprises a client/server data receiver to receive respective data from the server, and a peer-to-peer communicator to send respective data received from the server to one or more peers, and to receive from one or more peers respective data that was sent to it or them by the server.
US09215275B2 System and method to balance servers based on server load status
A method, system, and computer program product for balancing servers based on server load status, include: receiving from a server a service response to a service request, the service response including a result from a processing of the service request and a server status indicating a computing load status of the server; obtaining the server status from the service response; receiving a next service request from a host, the next service request comprising a Uniform Resource Locator (URL); determining that the server is configured to process the URL; determining whether the server status indicates that the server is available to process the next service request; and in response to determining that the server status indicates that the server is available to process the next service request, sending the next service request to the server.
US09215270B2 System and method for determining a topology of at least one application in a computerized organization
A computerized method for determining a structure of at least one application in a computerized organization, the method comprising receiving at least one entry point including an identification of a virtual location on a computer network; for each entry point, receiving a determination of an individual applicative component that processes data arriving through that entry point; identifying at least some communicating entry points through which the first applicative component communicates with additional applicative components; and for each of the at least some communicating entry points, using a processor for determining the applicative component that processes data arriving through that communicating entry point; and providing at least a portion of a structure including: applicative components associated with the application and information with regard to which of the applicative component communicates with which.
US09215266B2 System and method for zero-footprint screen capture
A system for zero-footprint screen capture, comprising a communication server software module, a screen capture server software module, a web server software module, and a media upload server software module, wherein the web server, on receiving a request for a specific web page from a client application whose screen is to be captured, uploads a persistent screen capture software application to the client, and further wherein, upon receiving a connection request from the screen capture application, establishes a persistent connection to the screen capture application and, on receiving a notification from the communication server pertaining to an interaction involving a user of the client application, sends instructions via the persistent connection to the screen capture application, and wherein the media upload server receives via the established connection to the uploaded screen capture application one or more data packets containing screen capture graphics data.
US09215265B2 Caching directives for a file delivery protocol
An extension to a file delivery protocol which permits the signaling of cache control information to a receiving device. Various embodiments of the present invention permit a server or other sending device to signal instructions regarding cache control to a receiving device using the file delivery protocol. This signaling may include information such as whether the receiving device should cache a file, how long the file should be cached for, and/or a cache priority assignment for the file. Various embodiments of the present invention may be particularly useful in the transmission of rich media content, where some content may be sent over RTP while other information is transmitted via the file delivery protocol.
US09215264B1 Techniques for monitoring secure cloud based content
Techniques for monitoring secure cloud based content are disclosed. In one particular exemplary embodiment, the techniques may be realized as a method for monitoring secure cloud based content comprising monitoring, using a browser component, a secure session accessing cloud based content, the monitoring capable of accessing content other than content requested by a user of the browser, identifying content meeting a specified criteria, and performing a specified action based at least in part on the identified content.
US09215263B2 Method and apparatus for rapid setup of a telephony communication using multiple communication channels
A first telephony device sets up a first communication channel through an Internet protocol (IP) network for conducting an IP based telephony communication with a second telephony device. The first communication channel includes one or more media relays. The first telephony device then begins to conduct the telephony communication with the second telephony device over the first communication channel. While the initial stages of the telephony communication are ongoing, the first telephony device sets up a second communication channel with the second telephony device that does not utilize media relays. The telephony communication is then switched to the second communication channel. Proceeding in this fashion ensures that a communication channel can be rapidly established between the first and second telephony devices so that the telephony communication can quickly commence.
US09215262B2 Streaming with coordination of video orientation (CVO)
Technology to provide streaming with coordination of video orientation (CVO) is disclosed. In an example, a server can include computer circuitry configured to: receive a device capability for a client; and modify streamed content to the client based on an inclusion of a CVO attribute in the device capability.
US09215258B2 Methods for managing conferences
Described is a method for administering an online conference. The method includes receiving an electronic communication from a conference participant. A group is determined to be associated with the conference participant. An action is performed on the conference participant based on the group association.
US09215250B2 System and method for remotely managing security and configuration of compute devices
The present invention relates to a system that manages security of one or more computer systems and/or one or more different types of I/O channels such as USB, Ethernet, SATA, and SAS. According to certain aspects, the management system is distributed. That is, a central management system and computer subsystems are physically distributed within one or more geographical areas, and communicate with each other by passing messages through a computer network. According to certain additional aspects, the configuration and/or security functions performed by methods and apparatuses according to the invention can be logically transparent to the upstream host and to the downstream device.
US09215247B2 Application security testing
The present disclosure provides a system that includes a server hosting an application under test (AUT), an observer configured to monitor instructions executed by the AUT, and a computing device communicatively coupled to the AUT and the observer through a common communication channel. The computing device may be configured to send an application request to the AUT, wherein the application request is configured to expose a potential vulnerability of the AUT. The computing device may receive an application response from the AUT in accordance with the AUT's programming. The computing device may send a service request to the observer, and receive a service response from the observer that contains information corresponding to the instructions executed by the AUT due to the application request, information about the AUT, or information about a server hosting the AUT.
US09215244B2 Context aware network security monitoring for threat detection
The disclosed method involves monitoring behavior of at least one node, associated with at least one user, in a network to generate a behavior profile for the user(s). The method further involves comparing the behavior profile for at least one user with a baseline behavior profile for the user(s). Also, the method involves determining when there is a difference between the behavior profile for at least one user and the baseline behavior profile for the user(s). Further, the method involves flagging an event associated with the difference: when the difference exceeds a baseline threshold level, does not exceed a baseline threshold level, meets at least one criterion, and/or does not meet at least one criterion. Additionally, the method involves classifying the event to an event classification. Further, the method involves transmitting the event to at least one other node in the network and/or a network operations center.
US09215242B2 Methods and systems for preventing unauthorized acquisition of user information
The embodiments provide methods and systems for detecting and preventing phishing of a user's information, such as their username and password. In one embodiment, a website detects as a threshold matter whether the user has arrive at the site due to an automatic redirection from a prior visited site or by the user having clicked on a link to the website from the previous site. If this threshold is met, then the prior website is evaluated based on various criteria to determine if it appears to be a phishing site. If phishing is suspected, then the user may be notified and various other protective actions may be performed.
US09215239B1 Malware detection based on traffic analysis
Detecting malware is disclosed. A candidate malware application is caused to be executed using a virtual machine. Traffic analysis is performed on network traffic associated with the execution of the candidate malware application. A determination is made as to whether the candidate malware application is malicious or not, based at least in part on the traffic analysis and an application type associated with the candidate malware application.
US09215238B2 System and method for transmitting and utilizing attachments
A method of handling cryptographic information in a communication comprising body elements and attachment elements to a mobile device includes the steps of determining if the communication includes an attachment element comprising cryptographic information and converting the attachment element into a body element upon determining that the communication includes an attachment element comprising cryptographic information.
US09215234B2 Security actions based on client identity databases
Example embodiments disclosed herein relate to authentication based on Media Access Control (MAC) addresses. A network security device receives one or more client identity databases from one or more edge network devices. The client identity databases include MAC addresses of clients and secondary identification information for each of the clients. The network security device determines that a client device has been connected to one of the edge devices. A security action is performed based on whether the MAC address and respective secondary identification information of one of the clients matches the MAC address and respective secondary identification information of the connected client device.
US09215228B1 Authentication of devices having unequal capabilities
A system authenticates in-vehicle electronic devices having unequal capabilities such as having varying different communication and processing capabilities. A Connected Vehicle Gateway portion of a selected in-vehicle device acts as an onboard authentication proxy and onboard key server functionality for other in-vehicle devices, and serves as an interface between an in-vehicle network and one or more associated external networks, thereby eliminating the need for explicit peer discovery protocol and the requirement of devices to perform key establishment with each individual communication peer. Instead, each in-vehicle device establishes the group keys as a result of its authentication with the onboard key server and uses the group keys to locally generate and update its session keys. The onboard key server selectively obtains the keys from one or more off-board authentication servers and distributes them to selected in-vehicle devices.
US09215218B2 Systems and methods for secure workgroup management and communication
A secure data parser is provided that may be integrated into any suitable system for securely storing and communicating data. The secure data parser may split or share a data set into multiple portions that are stored or communicated distinctly. Encryption of the original data, the portions of data, or both may be employed for additional security. The secure data parser may be used to protect data in motion by splitting an original data set into portions of data that may be communicated using one or more communications paths. Secure workgroup communication is supported through the secure distribution and management of a workgroup key for use with the secure data parser.
US09215215B2 Method and device for passing through isolation device in surveillance network
The present invention provides a method for a surveillance node to pass through a network isolation device in an IP surveillance system. The method comprises steps of using a first IP address of a surveillance node per se to initiate a tunnel connection request towards a tunnel server, so as to establish a tunnel connection with the tunnel server. After establishing the tunnel connection, the step is obtaining a second IP address distributed by the tunnel server from the tunnel server, and decapsulating a tunnel packet received from the tunnel server to obtain an inner-layer IP packet indicating the content is surveillance signaling. The method further comprises the step of processing the surveillance signaling, encapsulating the surveillance signaling generated by the surveillance node into the inner-layer IP packet, and then encapsulating the inner-layer IP packet into the tunnel packet and sending the same to the tunnel server. The tunnel server forwards the inner-layer IP packet to a surveillance node of an outside network of a network isolation device. The present invention can effectively assist a surveillance node in a surveillance system to pass through a network isolation device, and solve various service problems caused by the isolation device.
US09215214B2 Provisioning firewall rules on a firewall enforcing device
Some embodiments of the invention provide a novel method for specifying firewall rules. In some embodiments, the method provides the ability to specify for a particular firewall rule, a set of network nodes (also called a set of enforcement points below) at which the particular firewall should be enforced. To provide this ability, the method of some embodiments adds an extra tuple (referred to below as the AppliedTo tuple) to a firewall rule. This added AppliedTo tuple lists the set of enforcement points at which the firewall rule has to be applied (i.e., enforced).
US09215211B1 System and method for automatically detecting and then self-repairing corrupt, modified or non-existent files via a communication medium
A system and method of guaranteeing the presence of secure and tamper-proof remote files over a distributed communication medium, such as the Internet, is provided. The system and method automatically detects, and then self-repairs corrupt, modified or non-existent remote files. The method first performs an integrity check on a remote file and then determines whether the integrity check passed. If the integrity check passed, then the user goes through the authentication process as normal. If the integrity check fails, then the present invention redirects to an install module in order to prepare to reinstall the remote file. Via the install module, the present invention then reinstalls the remote file and the user is then taken through the authentication process as normal.
US09215210B2 Migrating firewall connection state for a firewall service virtual machine
For a host that executes one or more guest virtual machines (GVMs), some embodiments provide a novel virtualization architecture for utilizing a firewall service virtual machine (SVM) on the host to check the packets sent by and/or received for the GVMs. In some embodiments, the GVMs connect to a software forwarding element (e.g., a software switch) that executes on the host to connect to each other and to other devices operating outside of the host. Instead of connecting the firewall SVM to the host's software forwarding element that connects its GVMs, the virtualization architecture of some embodiments provides an SVM interface (SVMI) through which the firewall SVM can be accessed to check the packets sent by and/or received for the GVMs.
US09215209B2 Source request monitoring
A method includes establishing an IP address whitelist including an acceptable IP address, establishing a resource whitelist including an acceptable resource request, establishing a resource blacklist including an indicator of a malicious resource request, and analyzing a resource request. Analyzing the resource request includes determining if a requestor IP address of the resource request is in the IP address whitelist, determining if the requested resource is in the resource whitelist, and determining if the requested resource is in the resource blacklist. A whitelist violation review is initiated, responsive to determining the requestor IP address is not in the IP address whitelist and the requested resource is not in the resource whitelist. A blacklist violation review is initiated, responsive to determining the requested resource is in the resource blacklist and the requestor IP address is not in the IP address whitelist and the requested resource is not in the resource whitelist.
US09215193B2 System and method for enhanced energy control policy for unmanaged switch applications
A system and method for enhanced energy control policy for unmanaged device applications. EEE control customizations are provided to a profile element (e.g., PROM, EEPROM, flash memory, system memory, input pins, etc.) that is included in the unmanaged device. The configuration information stored in profile element is accessed by an EEE control policy for customization of the EEE control policy. In one embodiment, the EEE control customization can be generated by another device (e.g., managed device) separate from the unmanaged device.
US09215192B2 Method and apparatus for an expandable switching element
An embodiment of the invention may comprise pairing a first switching module with a second switching module such that the first switching module is enabled to switch signals received via its first input ports and its second input ports to its first output ports and second output ports, wherein the signals received by the first input ports of the first switching module are communicated from the first output ports of the second switching module, and the signals communicated by the first output ports of the second switching module are signals received by the second input ports of the second switching module and forwarded to the first output ports of the second switching module.
US09215191B2 Information processing method, recording medium, and information processing device
An information processing method includes dispersively assigning a virtual machine and a storage device that stores data to be processed by the virtual machine, to a combination of data centers coupled to each other through a relay device, reducing a response time from a time when a request for a process is transmitted to the virtual machine to a time when a result of the process is returned from the virtual machine after accessing to the storage device through the relay device by the virtual machine.
US09215182B2 Enhancing performance of rapid channel changes and other playback positioning changes in adaptive streaming
Content is received within a network at a content receiver and that is communicated from a content source, where the content comprises packets to be sent to the content receiver that are marked with a first drop priority or a second drop priority. A network priority is detected at the content receiver that is based at least in part upon a ratio of packets marked with the first drop priority to packets marked with the second drop priority within the content and also a determination at the content receiver of a rate of packets dropped that are marked with the first drop priority and a rate of packets dropped that are marked with the second drop priority.
US09215180B1 File retrieval in real-time brokering of digital content
A method of transmitting digital content via a communication network. The method comprises receiving by a computer a request for a uniform resource identifier (URI), determining by a computer based on the request for the uniform resource identifier a communication service provider associated with a communication device, and when the communication service provider is affiliated with a digital content custom delivery offer building system, transmitting by a computer an image file to be presented by the communication device.
US09215175B2 Computer system including controller and plurality of switches and communication method in computer system
A computer system of the present invention includes a controller which sets a flow entry to each of a plurality of switches before a packet is forwarded from a plurality of nodes, and each of switches which transfers a reception packet which contains a destination address defined in the flow entry, to a destination node defined in the flow entry regardless of a transmission source address of the reception packet.
US09215173B1 Fiber node discovery using ranging delay data
Systems and methods can provide for fiber node discovery using ranging delay data for broadband communication infrastructure. In some implementations, such systems and methods can provide for determining and storing fiber node ranging delay windows. In other implementations, such systems and methods can also provide for using ranging delay data from CPE devices to ascertain the associated fiber node. Improved diagnosis and discovery of fiber node associated CPE devices can, for example, help operators plan maintenance and thereby reduce truck rolls.
US09215167B2 Network system
A network system includes a signaling network configured to perform signaling information exchange with client nodes, determine a data information transfer route, and generate setting information, and a data network configured to construct the data information transfer route according to the setting information from the signaling network and perform data exchange between the client nodes.
US09215163B2 Path calculating method, program and calculating apparatus
A calculating apparatus calculates a shortest path connecting two nodes of a network. A shortest-path group, which is a set of shortest paths having node Y as their starting points, can be calculated at once by having calculated a shortest path having node Y as its starting point for each of other nodes. When the shortest-path group having node Y as the starting point is calculated and further if a group of shortest paths having node X as their starting points is stored beforehand in a storing unit, then path portions, which belong to the group of shortest paths having node X as the starting points and further which are paths extending from node Y to the nodes located downstream from node Y, are utilized as part of a result of calculation of the shortest path group having node Y as the starting point.
US09215161B2 Automated selection of an optimal path between a core switch and teamed network resources of a computer system
A NIC teaming intermediate driver running on a computer system binds NIC resources into teams to provide a physical interface for the computer system to the network. When configuring a team, the teaming driver assigns one of the team members to be the primary resource and the others to be secondary. When one or more members of the team are coupled to more than one path through a layer 2 network to a core switch, the intermediate driver listens to frames transmitted over the layer 2 network regarding the cost (i.e. the bandwidth) of various connections between switches in the network and chooses the primary member to be that member coupled to the lowest cost path (i.e. highest bandwidth).
US09215160B2 Adjustment test apparatus for AI module
An adjustment test apparatus for AI module is disclosed, which includes a signal generator supplying analog electric quantity to a plurality of the same type of AI modules, and a maintenance PC connected to each AI module, the maintenance PC being connected to each AI module through a USB hub having a port corresponding to each AI module and a USB-RS232 converter connected to each port, the maintenance PC having a function of selecting a port to communicate with each AI module, and a function of monitoring a digital output value corresponding to an input signal provided by the signal generator to each AI module at the time of communication and setting each AI module to correct the output value to a proper value.
US09215152B2 High efficiency network monitoring system and methods
A system and methods for monitoring wireless local area networks (WLAN) and reporting essential data is disclosed. The system optimizes and decides fundamentals before monitoring to enhance network monitoring efficiency. The system improves over prior problematic solutions that inefficiently monitor all data communicated over a network before filtering. The system may include instructions storable in memory to be executed by a processor. The system may include analytical engines, such as a resource analysis engine, fundamentals analysis engine, traffic analysis engine, optimization engine, and monitoring engine. The invention monitors subsets of the network traffic fundamentals that can be at least partially identified via metadata. The system may include exploring networks, identifying fundamentals of network traffic, assessing and evaluating the chosen fundamentals, optimizing fundamentals, and using a list of optimized fundamentals for network traffic monitoring.
US09215149B2 Visualization for managing multiple IP address management systems
Visualization for managing multiple IP address management systems is provided. In some embodiments, visualization for managing multiple IP address management systems for an IP address management manager system includes communicating with a plurality of IP address management systems to determine IP address management information managed by each of the IP address management systems; and generating a graphical visualization of an IP address space managed by the plurality of IP address management systems based on the IP address management information managed by each of the IP address management systems, in which the graphical visualization of the IP address space managed by the plurality of IP address management systems indicates any gaps or overlaps in the IP address space managed by the plurality of IP address management systems.
US09215147B2 Flexible and scalable monitoring in a TRILL network
A monitoring session associated with a virtual nickname may be established in a TRILL network. A monitoring station may be connected to an edge switch of the TRILL network specifying the virtual nickname for the monitoring session. The monitoring station is set as a destination for the monitoring session and the virtual nickname is flooded throughout the TRILL network. A source may then be configured to the monitoring session by specifying the virtual nickname of the monitoring session without knowing the destination tied to the monitoring session. Network traffic through the source may then be forwarded to the destination tied to the monitoring session.
US09215145B2 Policy decision function addressing method, network element and network system
A policy decision function (PDF) addressing method includes: receiving a PDF allocation request that contains a user equipment (UE) identifier (ID) from a second network element (NE); obtaining ID information of a PDF associated with the UE ID according to pre-registered addressing information of the PDF, where the addressing information of the PDF is an association between the UE ID and the ID information of the PDF, and the PDF associated with the UE ID is accessed by a first NE; and sending the obtained ID information of the PDF to the second NE.
US09215142B1 Community analysis of computing performance
Embodiments of systems and methods are described for performing community analysis of computing performance. These systems and methods can collect and analyze community performance data from a plurality of physical or virtual infrastructure installations. The systems and methods can leverage this community performance data to identify and recommend areas where individual physical or virtual infrastructures can improve performance.
US09215139B2 System and method for utilizing environment information in UPNP audio/video
An environment variable for use cases such as UPnP AV use cases. The environment variable of the present invention is used to store the physical location of the user. For example, the environment variable can be used to identify a particular location as being a user's living room, kitchen, etc. The information stored in the environment variable can be used to enhance the user experience of the digital home or other environment by minimizing the number of manual selections that the user has to make in order to initiate a use case such as playing music in a bedroom or watching movies in a living room. The environment variable is used to trigger a change of a profile and select the devices needed to implement different use scenarios.
US09215136B2 Aggregated delivery of tunnel fault messages on common ethernet segments
In one embodiment, a device in a computer network determines one or more tunnels affected by a downstream fault in the computer network, and determines one or more common Ethernet segments of the device used by the affected tunnels. As such, the device generates, for each of the one or more common Ethernet segments, a respective fault message aggregating tunnel information of each of one or more particular affected tunnels on the corresponding common Ethernet segment, and sends each respective fault message with aggregated tunnel information over a selected tunnel of the one or more particular affected tunnels on the corresponding common Ethernet segment.
US09215134B2 Method and label forwarding router for initiating LDP session connection
Embodiments of the present invention provide a method and a label forwarding router for initiating an LDP session connection. The method includes: using an address of a first transport address family of a local device as a connection address, and starting an LDP session setup procedure for the local device and a peer device according to the address; setting a random time value in the procedure; determining that current time reaches the random time value and that the LDP session setup fails; and selecting an address of a second transport address family as a new connection address, and starting a new LDP session setup procedure according to the new address. The present invention can implement normal initiation of an LDP session connection.
US09215133B2 Methods, systems, and computer readable media for detecting orphan Sy or Rx sessions using audit messages with fake parameter values
A policy and charging rules function (PCRF), generates a Diameter audit message concerning an application level Diameter session for which local resources are maintained by the PCRF. The PCRF includes, in the audit message, a fake parameter value. The PCRF sends the audit message with the fake parameter value to the OCS or the AF over an Sy or Rx interface. The PCRF receives a response to the audit message from the OCS or AF. The PCRF determines, based on the response, whether the application level session comprises and orphan session. The PCRF, in response to determining that the application level Diameter session comprises an orphan session frees the local resources maintained by the PCRF for the orphan session.
US09215132B2 Scaling content communicated over a network
An architecture is provided that can scale content resolution in order to mitigate errors in a provisioned service of a communication network, such as a wireless service or a femtocell service that integrates with DSL or other broadband carriers. The architecture can identify fault conditions relating to e.g., bandwidth oversubscription or symbolization integrity. Based upon such identification, the architecture can alter encoding format codecs of certain types of content in order to reduce their resolution/quality, thereby mitigating bandwidth oversubscription fault conditions or freeing up space (without necessarily increasing bandwidth) to insert additional FEC code.
US09215129B2 Automatically constructing protection scope in a virtual infrastructure
An automated technique for constructing and updating protection scope is described. Preferably, the protection scope is MAC-address based. According to this technique, one or more packet processing units (PPUs) execute a MAC address learning algorithm to gather a list of MAC addresses. Packet processing units typically are one of: a kernel module residing on the hypervisor, a virtual appliance running a packet processing engine, and a software agent running on a virtual machine and that processes packet flows between and among associated virtual machines. Each of the one or more PPUs is provisioned to collect a set of MAC addresses; the PPUs exchange their lists, and the lists are then merged into a merged list from which a current protection scope is then generated. Each entry in the protection scope preferably contains information indicating which PPU is available to protect the MAC address associated with that entry.
US09215128B2 Port membership table partitioning
A firmware model is provided for a shared port membership table that is partitioned for different needs of a distributed network switch, such as broadcast groups, multicast groups, ACL rules, and other port membership groupings. The shared port membership table enables a control point to set the size of each of the types of port membership information based on their usage or expected usage. By shrinking one partition, the control point is able to use the port group entries for a different partition of port group information.
US09215124B2 Unified vehicle network frame protocol
A vehicle communication network includes a network fabric, a plurality of vehicle control modules, memory, one or more multimedia processing modules, and a network manager. The network manager is operable to coordinate communication of packets, via the network fabric, among the vehicle control modules, the memory, and the multimedia processing modules based on individual content of the packets and in accordance with a global vehicle network communication protocol. The network manager is further operable to facilitate network resource management to support the communication of packets via the network fabric in accordance with the global vehicle network communication protocol.
US09215115B1 Apparatus and method for improved integration circuitry in decision feedback equalization
An embodiment of the present invention implements a linear feedback shift register (LFSR) as a counting device for an integrator of a DFE circuit. In embodiments of the present invention, the particular count sequence need not be known, instead only boundary values need be known. For example, for a LFSR having a predetermined count sequence, a digital integrator controller need not know every value of the count sequence. Instead, the digital integrator controller detects predetermined boundary values such as a minimum or maximum count.
US09215113B1 Link training in a communication port
Techniques for training a link are described herein. An example electronic device includes a port coupled to a link partner. The port and the link partner use closed-loop equalizer training to obtain receiver equalization coefficients for the receiver of the port and obtain transmitter equalization coefficients for the transmitter of the link partner.
US09215112B2 Decision feedback equalizer
A decision-feedback equalizer (DFE) samples an analog input signal against M references during the same symbol time to produce M speculative samples. Select logic in the DFE then decodes N bits resolved previously for previous symbol times to select one of the M speculative samples as the present resolved bit. The present resolved bit is then stored as the most recent previously resolved bit in preparation for the next symbol time. The select logic can be can be programmable to accommodate process, environmental, and systematic variations.
US09215111B2 Transmission circuit for I/O interface and signal transmission method thereof
A transmission circuit including an equalizer circuit, a slicer circuit, a signal detection circuit, and a control circuit is provided. The equalizer circuit performs an equalizing operation on an input signal according to preset states to output an equalizing signal corresponding to each preset state. The slicer circuit performs a slicing operation on the equalizing signal to output a slicing signal. The signal detection circuit detects and compares the equalizing signal and the slicing signal and accordingly adjusts the equalizer circuit to one of the preset states. The control circuit receives the slicing signal corresponding to each preset state, compares the slicing signal corresponding to each preset state with a plurality of signal patterns to generate a comparison result, and selects one of the preset states according to the comparison result, such that the control circuit let the equalizer circuit perform the equalizing operation according to the selected preset state.
US09215106B2 Method and apparatus for pre-cursor intersymbol interference correction
A multi-stage system and method for correcting intersymbol interference is disclosed. The system includes a first estimation module configured to sample an input signal to produce a first set of estimated data bits. The system also includes a second estimation module configured to sample the input signal phase shifted by a predetermined phase shift unit to produce a second set of estimated data bits, wherein the second set of estimated data bits are produced at least partially based on the first set of estimated data bits and at least one pre-cursor coefficient.
US09215103B2 Partial response receiver and related method
A multi-phase partial response equalizer circuit includes sampler circuits that sample an input signal to generate sampled signals in response to sampling clock signals having different phases. A first multiplexer circuit selects one of the sampled signals as a first sampled bit to represent the input signal. A first storage circuit coupled to an output of the first multiplexer circuit stores the first sampled bit in response to a first clock signal. A second multiplexer circuit selects one of the sampled signals as a second sampled bit to represent the input signal based on the first sampled bit. A second storage circuit stores a sampled bit selected from the sampled signals in response to a second clock signal. A time period between the second storage circuit storing a sampled bit and the first storage circuit storing the first sampled bit is substantially greater than a unit interval in the input signal.
US09215102B2 Hypotheses generation based on multidimensional slicing
A receiver is configured to receive a sample of an inter-symbol correlated (ISC) signal, the sample corresponding to a time instant when phase and/or amplitude of the ISC signal is a result of correlation among a plurality of symbols of a transmitted symbol sequence. The receiver may linearize the sample of the ISC signal. The receiver may calculate a residual signal value based on the linearized sample of the ISC signal. The receiver may generate an estimate of one or more of said plurality of symbols based on a slicing of the residual signal value. The linearization may comprise applying an estimate of an inverse of a non-linear model. The non-linear model may be a model of nonlinearity experienced by the ISC signal in a transmitter from which the ISC signal originated, in a channel through which the ISC signal passed en route to the receiver, and/or in a front-end of the receiver.
US09215099B2 Pilot design for wireless system
The description herein relates to pilot designs for an Orthogonal Frequency Division Multiplexing (OFDM) based communication system. In at least one embodiment, the communication system is one operating according to the IEEE 802.16m, or WiMax, standard. In general, an OFDM transmitter operates to insert pilot symbols into a resource of a transmit frame according to a predetermined staggered pilot symbol pattern defining pilot symbol locations within the resource of the transmit frame. The predetermined pilot symbol pattern is defined such that pilot symbols are located at or near time boundaries of the resource, at or near frequency boundaries of the resource, or both. By doing so, when generating a channel estimate for the communication channel between the OFDM transmitter and an OFDM receiver based on the pilot symbols, extrapolations needed to estimate the channel near the boundaries of the resource are optimized, thereby improving overall channel estimation accuracy.
US09215094B2 Segmentation and reassembly of data frames
A system and method of transmitting data frames between a plurality of input ports to a plurality of output ports is described. The input ports segment portions of the received data frames to provide smaller data cells which are individually transmitted to an output port associated with a destination of the segmented data frame. Based upon information provided in the data cells received at the output port, the output port determines the ordinal positions of the received data cells within the segmented data frame and reassembles the data frame which was segmented at the input port. The output port then forwards the reassembled frame toward the associated destination.
US09215091B2 LAN emulation over infiniband fabric apparatus, systems, and methods
A method and device for local area network (LAN) emulation over an Infiniband (IB) fabric. An IB LAN driver at a first node on an IB fabric receives the port and associated local identifier (LID) of one or more remote peer nodes on the IB fabric. An IEEE 802.3 Ethernet MAC address with one LID imbedded is generated. The imbedded LID is for one or more remote peer nodes. The IB LAN driver sends the Ethernet MAC address to an Address Resolution Protocol (ARP). A logical address of a remote peer node is generated by a network protocol. The logical address is mapped to an Ethernet MAC address. The IB LAN driver sends the Ethernet MAC address onto the IB fabric to the one or more remote peer nodes. The remote peer nodes appear to reside on an Ethernet network to the network protocol.
US09215088B2 Identification of application sessions
A system and method to associate a packet transmitted using a grant in a Multiple Grants per Interval (MGI) service flow with a corresponding application session that generated the packet is provided. The method includes the steps of receiving a packet and generating a first identifier that identifies the application session that generated the packet based on packet characteristics. The method further includes the step of mapping the first identifier to a second identifier based on a mapping function, inserting the second identifier into the packet, and transmitting the packet to a destination in the grant of the MGI service flow.
US09215086B2 System and method for an integrated DSL/cable modem performance test
A modem, method, and system is presented for performing a data communications speed test or line speed test between a network node and a customer premises. The modem may be configured to perform calculations for determining the data communications speed without interference of network elements or overhead modules that cause data communications to be inaccurate or otherwise affected.
US09215083B2 System and method for supporting direct packet forwarding in a middleware machine environment
A system and method can support packet direct forwarding in a middleware machine environment. The middleware machine environment comprises one or more external ports on at least one network switch instance, wherein each external port can receive one or more data packets from an external network. Furthermore, the middleware machine environment comprises a plurality of host channel adapter (HCA) ports on one or more host servers, wherein each said HCA port is associated with a said host server, and each said host server can support one or more virtual machines that operate to process the one or more data packets. The at least one network switch operate to send a packet received at an external port to a designated HCA port associated with the external port. An external switch in the external network can send the data packet to the particular external port based on a packet distribution algorithm.
US09215082B2 Method and apparatus for hop-by-hop reliable multicast in wireless networks
A method and apparatus are described including performing hop-by-hop multicasting including network coding of data packets of a portion of content, wherein network coding further includes encoding data packets of a portion of content, multicasting said network coded data packets to downstream receivers, determining if an acknowledgement message has been received from at least one of the downstream receivers, determining if acknowledgement messages have been received from all of the downstream receivers responsive to the first determination.
US09215081B2 Multicast smart leave technologies
Smart leave technology for the Internet Group Management Protocol (IGMP) can reduce the amount of network bandwidth consumed by unintended multicast traffic resulting from a “lost leave” situation. A network device (such as a residential gateway) positioned between a host and an upstream router, upon receipt of unintended multicast traffic, sends a leave message to the router informing the router that the network device in no longer part of the group. The network device drops the uninterested multicast traffic and starts a countdown timer. Upon expiration of the timer, the network device sends another leave command to the router and starts the timer anew. This process repeats as long as unintended multicast traffic is received at the network device. If a host downstream from the network device joins the unintended multicast group, the network device delivers any subsequent packets associated with the multicast group to the host.
US09215078B2 Multicast method and multicast device
The present invention provides a multicast method and a multicast device. The method includes: receiving a multicast request from a user, where the multicast request includes multicast channel information and a user VLAN tag; selecting a first target multicast VLAN from pre-configured multiple multicast VLANs; after replacing the user VLAN tag in the multicast request with the first target multicast VLAN tag, forwarding the multicast request to a multicast router; receiving multicast traffic sent by the multicast router through the first target multicast VLAN, and forwarding the multicast traffic to the user. In the present invention, a target multicast VLAN is selected according to multicast channel information, so that multicast requests for the same multicast channel can be added to the same multicast VLAN. In this way, only one copy of multicast traffic of the same channel exists on a local area network, thereby saving network bandwidth resources.
US09215077B2 Method and system for supporting multiple time zones and charging method and system in IMS
The disclosure provides a method for supporting multiple time zones in an IP Multimedia Subsystem (IMS). The method comprises: a Proxy Call Session Control Function (PCSCF) network element sends a Session Initiation Protocol (SIP) message including time zone information to a control layer network element exclusive of the PCSCF network element (201); after obtaining the time zone information, the control layer network element receiving the SIP message sends an SIP message including the time zone information to a service layer network element (202); and the service layer network element receives the SIP message sent from the control layer network element and obtains the time zone information included in the SIP message (203). The disclosure also provides a system for supporting multiple time zones, a charging method and a charging system in an IMS. Through the solution of the disclosure, the time zone information can be transferred to each network element above in the IMS, and local time of a user in a call can be included in a Charging Data Record (CDR), thus, the accuracy of charging is improved.
US09215075B1 System and method for secure relayed communications from an implantable medical device
The present invention provides systems and methods for supporting encrypted communications with a medical device, such as an implantable device, through a relay device to a remote server, and may employ cloud computing technologies. An implantable medical device is generally constrained to employ a low power transceiver, which supports short distance digital communications. A relay device, such as a smartphone or WiFi access point, acts as a conduit for the communications to the internet or other network, which need not be private or secure. The medical device supports encrypted secure communications, such as a virtual private network technology. The medical device negotiates a secure channel through a smartphone or router, for example, which provides application support for the communication, but may be isolated from the content.
US09215072B1 Back-end matching method supporting front-end knowledge-based probabilistic authentication systems for enhanced credential security
A party can authenticate itself by interacting with multiple servers without revealing the shared secret to any of the involved parties. The stored shared secret is strengthened and broken into shares and saved on the servers. The shared secret is safe against offline brute force attack unless all servers where the shares are stored are compromised. The compromise of any single server, or multiple servers—but less than the maximum number—will not allow the attacker to do a brute force analysis on the shared secret. This back end security enhancement is suitable for probabilistic front end authentication algorithms.
US09215070B2 Method for the cryptographic protection of an application
A method is provided for cryptographic protection of an application associated with an application owner and executed in an external data processing center having a security module that stores private cryptographic material of the application owner. A first secure channel between the security module and application owner and a second secure channel between the application owner and the application are used for transmitting a cryptographic key. The cryptographic key is automatically made available to the secure module and the application via the secure channels, without the data processing center service operator being able to access said key. The application can authenticate itself using the key so that the cryptographic material can be transmitted to the application via a channel protected by the cryptographic key. The application data can be encrypted using the cryptographic material such that the application data cannot be accessed by the data processing center service operator.
US09215065B2 Media player security for full length episodes
A streaming video player and authentication server work in conjunction to provide secure streaming media. Player authentication is used to ensure that only users using an authorized media player authorized users can access and stream the media content. An encryption process protects unauthorized users from playing media streams that are intercepted between the content server and an authorized user. Additionally, timed tokens are used to ensure that a user authorized to access a stream during a specified time period cannot access the same stream at a later time when the user is no longer authorized.
US09215064B2 Distributing keys for decrypting client data
In some embodiments, a server can establish a session with a remote client. The server can generate a session key portion for the session and a client key portion for the remote client. The server can use a combined encryption key to encrypt client data received from the remote client during the session. The combined encryption key can be generated from a static key portion accessible by the server, the session key portion, and the client key portion. The server can associate the session key portion with the session. The session key portion is accessible by the server during the session. The server can delete the client key portion after providing the client key portion to the remote client. The server can obtain the client key portion from the remote client in response to determining that subsequent transactions during the session involve decrypting the encrypted client data.
US09215061B2 Eye width measurement and margining in communication systems
Generally, this disclosure describes eye width measurement and margining in communication systems. An apparatus may be configured to: decouple a phase detector from a CDR loop filter of a receiver under test in response to synchronizing a margining clock signal to a receiver clock signal; apply a margining input to the loop filter, the margining input configured to shift a frequency of the margining clock signal by a constant amount related to the margining input; compare a first bit stream and a second bit stream and configured to detect an error, the first bit stream related to a transmitted bit stream; and count cycles of the receiver clock signal or the margining clock signal, wherein an eye width associated with the receiver under test is related to the margining input, the frequency of the receiver clock signal and a count of clock cycles when the error is detected.
US09215058B2 Enhanced PHICH transmission for LTE-advanced
A method is provided for communication in a wireless telecommunication system. The method comprises generating a sequence of signals of an enhanced physical HARQ (hybrid automatic repeat request) indicator channel (E-PHICH). The method further comprises mapping the sequence of signals of the E-PHICH to a first set of resource elements, wherein the first set of resource elements is multiplexed with a second set of resource elements over a set of virtual resource blocks, and wherein the second set of resource elements carries at least one of an enhanced physical downlink control channel (E-PDCCH) and a physical downlink shared channel (PDSCH).
US09215057B2 Sub-carrier allocation in a wireless communication system
A radio base station, a relay node and a respective method therein are provided for communicating data to a user equipment, the relay node being associated with the base station, wherein a downlink transmission to the user equipment is scheduled on subframe(s) available for the base station. The method in the radio base station comprises detecting that at least a part of the available subframes are not needed for downlink transmission to the relay node; and un-reserving at least one of the not needed subframes. The method further comprises transmitting, to the relay node, a release notification message notifying the relay node of the unreserved subframes for enabling the relay node to use the unreserved subframes for downlink transmission.
US09215056B1 Radio communication apparatus and radio communication method
Provided is a radio communication device which can make Acknowledgement (ACK) reception quality and Negative Acknowledgement (NACK) reception quality to be equal to each other. The device includes: a scrambling unit (214) which multiplies a response signal after modulated, by a scrambling code “1” or “e−j(π/2)” so as to rotate a constellation for each of response signals on a cyclic shift axis; a spread unit (215) which performs a primary spread of the response signal by using a Zero Auto Correlation (ZAC) sequence set by a control unit (209); and a spread unit (218) which performs a secondary spread of the response signal after subjected to the primary spread, by using a block-wise spread code sequence set by the control unit (209).
US09215055B2 Medium access protection and bandwidth negotiation in a wireless local area network
Respective sub-channels of an OFDM channel are allocated by a first device to second devices. A first control frame, transmitted from the first device to the second devices, indicates that the second devices are requested to transmit a second control frame to the first device. Respective second control frames are received from at the first device from least some of the second devices. A second control frame received from a particular second device indicates that at least a portion of the sub-channel allocated to the second device is available. An OFDMA data unit is transmitted by the first device. The OFDMA data unit includes respective OFDM data units transmitted to the at least some of the second devices. Each OFDM data unit is transmitted to a particular second device in the portion of the sub-channel indicated to be available by the second control frame received from the second device.
US09215054B2 Method and apparatus for transmitting positioning reference signal in wireless communication system
Provided are a method and an apparatus for transmitting a positioning reference signal (PRS) in a wireless communication system. A terminal obtains positioning subframe configuration information to determine at least one positioning subframe among a plurality of downlink subframes in a wireless frame, obtains downlink subframe configuration information to determine the type of each downlink subframe in the wireless frame, receives PRSs in at least one positioning subframe from a plurality of cells, and reports measured time differences between the PRSs received from the plurality of the cells. The type of each downlink subframe of the wireless frame is classified into a 1st type subframe and a 2nd type subframe, and the type of at least one positioning subframe is either the 1st type subframe or the 2nd type subframe. In addition, the PRSs are mapped into at least one positioning subframe on the basis of a single PRS pattern.
US09215052B2 Method of allocating radio resources in multi-carrier system
A method of allocating radio resources in a multi-carrier system is disclosed, by which a signaling message can be efficiently transmitted according to necessity of a user equipment. In a user equipment of a mobile communication system transceiving data using a plurality of subcarriers, the present invention includes the steps of if the signaling message to be transmitted is generated in the user equipment, generating a preamble sequence according to a user equipment identifier to identify the user equipment, transmitting a preamble signal including the preamble sequence and the signaling message to a base station, and receiving an acknowledgement signal for the preamble signal generated according to the user equipment identifier.
US09215048B2 Fixed multiple access wireless communication
Disclosed is a user terminal for wireless communication with a remote access point, the user terminal comprising: a mapping module adapted to map one or more input data bits to an uplink symbol; a delay module adapted to apply a delay to the uplink symbol; a transmit module adapted to modulate the delayed symbol into a frequency channel; and a directional antenna oriented along a dominant path to the access point, the antenna being adapted to transmit the modulated symbol to the access point, wherein the delay is chosen such that the transmitted symbol arrives at the access point simultaneously with a further symbol modulated into the frequency channel and transmitted by a further user terminal.
US09215047B2 Signal processing device and method by use of wireless communication
It is an object to provide signal processing device and method by use of wireless communication, which is capable of analyzing status of the wireless communication in detail at a later date, compressing a wireless signal such that it can be reproduced, and reproducing the compressed signal to perform its re-reception. The signal processing device includes a reception processing unit that performs reception processing of a received signal wirelessly, a signal recording unit that records the signal, a signal compression unit that compresses an information amount of the received signal, and a signal output unit that stores the received signal that has been compressed or outputs the same to an external device. The signal compression unit divides a signal, obtained by frequency-transforming the wireless received signal, into a signal portion large in amplitude value and a non-signal portion small in amplitude value on a frequency spectrum, calculates a representative value based on a feature quantity of the non-signal portion and combines the signal portion and the representative value into a compressed signal.
US09215046B2 Fault diagnosis device for multiplexer
The fault diagnosis device is for a multiplexer having inner channels selectable by a selection signal. At least two of the inner channels are assigned with input channels. Two of the inner channels in a mutually exclusive relationship are assigned with first and second diagnostic channels. Input voltages of the first and second diagnostic channels are applied with first and second diagnostic voltages, respectively. The fault diagnostic device includes a voltage detection section configured to detect a first detection voltage appearing at the output channel when the first diagnostic channel is selected and a second detection voltage appearing at the output channel when the second diagnostic channel is selected, and a diagnosis section configured to determine that the multiplexer is faulty upon detecting that the first detection voltage is different from the first diagnostic voltage or the second detection voltage is different from the second diagnostic voltage.
US09215045B2 System and method of detecting and locating intermittent electrical faults in electrical systems
Signals are transmitted from at least one transmitter that is positioned in an electrical network. The signals that have been transmitted are received a single receiver positioned within the electrical network. At the single receiver, the received signals are analyzed and a determination from the analyzing the received signals is made as to whether a fault has occurred in the electrical network and the approximate location of the fault.
US09215044B2 Apparatus and method for transmitting/receiving the hybrid-ARQ ACK/NACK signal in mobile communication system
An apparatus and method are provided for a mobile communication system. The method includes receiving a signal; determining location information of symbol groups; and acquiring the symbol groups, to which an orthogonal sequence is applied, from the signal, based on the location information. The symbol groups are mapped to orthogonal frequency division multiple (OFDM) symbols and multiple antennas based on a symbol group index and a physical HARQ indicator channel (PHICH) group index, and the symbol groups are mapped to the OFDM symbols and the multiple antennas in an alternating pattern in accordance with the symbol group index.
US09215042B2 Apparatus and method for transmitting and receiving packet data in a wireless communication system using hybrid automatic repeat request
An apparatus and method for transmitting and receiving packet data in persistent resources in a wireless communication system using Hybrid Automatic Repeat reQuest (HARQ) are provided, in which a user buffer stores user data to be transmitted to a receiver, a controller allocates persistent resources to the receiver according to the data type of the user data and controls a Packet Start Indicator (PSI) to be included in an initial transmission subpacket, when the initial transmission subpacket is transmitted, and a transmission and reception processor transmits the user data and the PSI to the receiver and receives a response signal from the receiver.
US09215038B2 Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
An apparatus includes an encoder to encode service data corresponding to each of a plurality of Physical Layer Pipes, an encoder to encode signaling data by performing LDPC (Low Density Parity Check) encoding the signaling data by adding parity bits, block interleaving the LDPC encoded signaling data, and demultiplexing the block interleaved signaling data using shifting method. The shifting method is performed based on the modulation order and indices of bits. A frame builder builds at least one signal frame including the encoded service data, the encoded signaling data, a modulator modulates the at least one signal frame by an OFDM (Orthogonal Frequency Division Multiplex) scheme, and a transmitter transmits the broadcast signals carrying the at least one modulated signal frame.
US09215035B2 Method of transmitting and receiving physical downlink shared channel in wireless communication system
A method of transmitting and receiving a physical downlink shared channel in a wireless communication system is disclosed. A method of receiving physical downlink shared channels in a terminal which receives downlink data from a plurality of cells simultaneously in a wireless communication system includes receiving the physical downlink shared channel scrambled using a scrambling sequence determined according to same cell ID and same Radio Network Temporary Identity (RNTI) from the plurality of cells.
US09215032B2 Multi-channel optical transmitter assembly and methods of making and using the same
An optical multiplexer and methods of making and using the same are disclosed. The multiplexer generally includes a beam splitter and a polarization beam splitter. The beam splitter is generally configured to combine first and second polarized optical signals by reflecting a first polarized optical signal towards a first target and allowing a second polarized optical signal to pass through towards the first target. The polarization beam splitter is generally configured to combine the first and second polarized optical signals with a third polarized optical signal by either (i) reflecting the third polarized optical signal towards a second target and allowing the first and second polarized optical signals to pass through towards the second target, or (ii) reflecting the first and second polarized optical signals towards the second target and allowing the third polarized optical signal to pass through towards the second target.
US09215028B2 Photonic switch chip for scalable reconfigurable optical add/drop multiplexer
System and method embodiments are provided for a photonic switch chip for scalable reconfigurable optical add/drop multiplexer (ROADM). The embodiments enable a low-cost pay as you grow ROADM that scales as both the number of wavelengths added or dropped increases and the size of the node in terms of number of directions increase. In an embodiment, a ROADM includes an M degree optical cross-connect tandem component comprising M wavelength selective switch (WSS) coupled to M wavelength division multiplexing (WDM) node interfaces, where M is equal to a number of input or output directions; a routing stage wavelength selector switch (WSS) comprising a plurality of WSSs connected to the tandem component; and an N by M combiner/distributor for add/drop coupled to the routing stage WSS, wherein the combiner/distributor comprises one or more photonic integrated circuit (PIC) chips, and wherein N is a maximum number of add/drop wavelengths.
US09215025B2 Time division duplex TDD communication method, base station, and user equipment
The present invention discloses a time division duplex TDD communication method, including: reserving, by a base station, in a second subframe, acknowledgment channel resources for each subframe in a first subframe set, where acknowledgement channel resources reserved for at least two subframes in the first subframe set completely or partly overlap; and transmitting, by the base station, in the first subframe set, data with a first user equipment. By using the method of the present invention, because acknowledgement channel resources reserved for at least two subframes in the first subframe set completely or partly overlap, overheads of acknowledgment channel resources reserved for the first subframe set are small when there are a large quantity of subframes in the first subframe set.
US09215020B2 Systems and methods for providing personalized audio content
A method for providing audio content to a user device in a movie theater includes the steps of personalizing the audio content for the user device based on an identifier and providing the personalized audio content to the user device. In some embodiments, the identifier is based on demographic information about the user. According to some embodiments, the personalized audio content accompanies additional content that is not provided by the user device. In some embodiments, the personalized audio content accompanies a movie.
US09215017B2 Computing system with decoding sequence mechanism and method of operation thereof
A computing system includes: an inter-device interface configured to receive a receiver signal for representing a serving signal and an interference signal; a communication unit, coupled to the inter-device interface, configured to: dynamically generate a decoding target for decoding of the receiver signal, and decode the receiver signal based on the decoding target for decoding the receiver signal for the serving signal or the interference signal with an interference-aware receiver according to the decoding target.
US09215014B2 Wireless transmission system, and method for determining default gain of wireless transmission system
A method for determining a default gain of a wireless transmission system is provided. The wireless transmission system includes a signal transmission path and a signal feedback path coupled to the signal transmission path. The signal transmission path includes a power amplification circuit and a gain stage having a plurality of transmission gains. The method includes the following step: setting a gain of the gain stage as a specific transmission gain of the transmission gains; transmitting a plurality of test signals through the signal transmission path in sequence to generate a plurality of amplified test signals, wherein at least a portion of powers of the test signals correspond to the transmission gains, respectively; receiving the amplified test signals through the signal feedback path in sequence, and accordingly obtaining corresponding signal gains; and determining a default gain of the gain stage according to the signal gains.
US09215006B2 Apparatus and method for efficient optical loss measurement
A measurement system that includes a power source and a power meter, said power source is configured to generate both a measurement signal and a power source communication signal, and said power meter is in communication with said power source and configured to receive both said measurement signal and said power source communication signal.
US09215003B2 Communication apparatus, communication method, and computer readable recording medium
A communication apparatus includes an operation information converting unit that converts a relative position change between a portable apparatus and a communication apparatus into operation information in order to establish wireless communication with the portable apparatus, a transceiving unit that receives the operation information from the portable apparatus, and a transmission control unit that causes the transceiving unit to establish communication for transmitting content data to the portable apparatus when the operation information received by the transceiving unit matches operation information which is set in advance.
US09215002B2 Methods and systems for supporting wireless networks using relays
Methods and systems are provided for use with wireless networks having one or more cell in which each cell includes a base station (BS), at least one relay station (RS) and at least one mobile station (MS). The at least one relay station can be used as an intermediate station for providing communication between the BS and MS. Methods are provided for allocating OFDM resources for communicating between the BS, RS and/or MS for example dividing transmission resources into uplink and downlink transmissions and methods of inserting pilot symbols into transmission resources used by the RS. In some embodiments on the invention, the methods are consistent and/or can be used in conjunction with existing standards such as 802.16e.
US09215001B2 Prefiltering in MIMO receiver
Data signals transmitted by a plurality of transmitting antennas over a radio channel are demodulated. The method comprises receiving (202) on a plurality of receiving antennas, a first data signal, a reference signal and a second data signal, the contents of the reference signal being known a priori to the receiver. The contents of the reference signal are used for calculating (204) an estimated polynomial channel matrix and a time reversed version of the same. Polynomial pre-filter matrices are calculated (206, 208) by a decomposition of the estimated polynomial channel matrices into a respective product of a paraunitary polynomial matrix and an upper triangular polynomial matrix with minimum phase filters on its main diagonal, where the polynomial pre-filter matrices are obtained by calculating the paraconjugate of the paraunitary polynomial matrices. The received data signals are demodulated (212) where the received data signals are multiplied with the calculated polynomial pre-filter matrices.
US09214997B2 Operation of terminal for multi-antenna transmission
Embodiments of the present invention relate to a method and an apparatus for enabling a terminal to transmit a signal in a wireless communication system. According to one embodiment, a signal transmission method includes: receiving configuration information for multi-antenna transmission from a base station; configuring a multi-antenna transmission mode in accordance with the received configuration information; and transmitting an uplink channel having a plurality of symbols to the base station through multiple antennas.
US09214995B2 Joint transmission using interference alignment
Systems and methods can implemented to joint transmission for interference management in wireless communications. A first transmitter having M antennas can acquire a channel state information (CSI) matrix for each of a plurality of multiple-input-multiple output (MIMO) channels between a first transmitter and a plurality of receivers. The first transmitter can determine transmission ranks, wherein each of the transmission ranks corresponds to a number of one or more data streams to be transmitted from both the first transmitter and a second transmitter to a receiver of the plurality of receivers. A maximum transmission rank may be identified from the determined transmission ranks. Transmit data can be generated that include the one or more data streams to each of the corresponding plurality of receivers. A precoding matrix can be generated for the generated transmit data based, at least in part, on the acquired CSI matrix. The first transmitter can then encode the transmit data using the corresponding generated precoding matrix.
US09214994B2 Wireless communication system and wireless communication method
A base station includes: a MIMO precoding section (32) for converting transmission data addressed to a mobile station to two data streams that respectively correspond to two reception antennas included in the mobile station, by performing MIMO precoding on the transmission data; a weight calculating section for calculating a transmission weight to be used for forming a directivity pattern directed toward each of the two reception antennas; and a weighting/combining section (34) for generating two combined data streams that are to be supplied to the respective antennas (20-1 and 20-2), by weighting each of the two data streams with the transmission weight calculated with respect to the reception antenna of the mobile station that corresponds to the data stream, and combining the two weighted data streams for each of the antennas (20). The two combined data streams are respectively transmitted from the antennas (20-1 and 20-2).
US09214992B2 Methods of communicating data including symbol mapping/demapping and related devices
Data may be transmitted from a RAN node to a wireless terminal using a MIMO antenna array. A plurality of unmapped symbol blocks may be generated. Symbols of a first one of the plurality of unmapped symbol blocks may be mapped to first and second mapped symbol blocks so that the first mapped symbol block includes symbols of the first unmapped symbol block and so that the second mapped symbol block includes symbols of the first unmapped symbol block. The symbols of the first and second mapped symbol blocks may be precoded to provide precoded symbols of respective first and second MIMO precoding layers using a MIMO precoding vector. Each of the precoded symbols of the first and second MIMO precoding layers may be transmitted through the MIMO antenna array to the wireless terminal using a same TFRE. Related devices and terminals are also discussed.
US09214991B2 Method, device, and system for implementing microwave multiple-input multiple-output
A method, device and system for implementing microwave multiple-input multiple-output, relate to the field of wireless communications. The device includes a transmit channel correction module including a transmission energy distributor and a transmission coupler; the transmission energy distributor decomposes, according to a first energy distribution parameter, each channel of transmitted signals among N channels of transmitted signals into channels of transmitted sub-signals, where the number of the channels of transmitted sub-signals is the same as the number of transmit antennas, the number of transmit antennas is N, and N is a natural number greater than 1; and the transmission coupler performs phase processing on each channel of transmitted sub-signals according to a first phase parameter, selects one channel of phase-processed transmitted sub-signals from each of the N channels of transmitted signals, and combines them to obtain N channels of output signals.
US09214990B2 Method and apparatus for directional clear channel assessment in a wireless communications system
A method of communication is provided. The method includes detecting at least a portion of a preamble of a packet transmitted by a first device by sweeping over a plurality of receive directions; receiving and decoding a header of the packet based on a first receive direction to identify that the first device had transmitted the packet; and completing reception of the packet based on a second receive direction. An apparatus for performing the method is also disclosed.
US09214985B2 Coordinating power distribution line communications
Aspects of the present disclosure are also directed towards a method that includes maintaining a transmission period which has a start time and an end time synchronized to metrological time. Further, this method, in response to the start time, begins transmission of a frame, which includes a plurality of symbols. This transmission occurs over power distribution lines that carry power using alternating current (AC). This method also includes synchronizing a transmission time for each symbol of the plurality of symbols according to a time-based parameter of the AC. In response to reaching an end of the frame, a synchronization symbol period is determined for a synchronization symbol, as a function of the transmission times, for the plurality of symbols and time from the end of the frame to the end time. The synchronization symbol is then transmitted on the power distribution lines.
US09214981B1 Configurable antenna port selection for beam forming and MIMO in a telecommunications network
A switching device and a method and medium for using the switching device are provided. The switching device is associated with a remote radio unit (RRU) and an antenna of a base station and comprises a plurality of switching cables arranged in predetermined configurations including a single-layer beam forming configuration, a dual-layer beam forming configuration, and a MIMO configuration. In response to inputs received from UEs served by the base station, the switching device can implement the configuration best-suited to target the UEs.
US09214973B1 Time varying notch filter
The present disclosure includes systems and techniques relating to time-varying notch filter. In some implementations, an apparatus includes a time-variant notch filter and a controller. The time-variant notch filter includes a notch depth and a notch bandwidth. At least one of the notch depth or the notch bandwidth is based on a coefficient of the notch filter. The controller is configured to set at least one of the notch depth to a first depth or the notch bandwidth to a first bandwidth by setting a value of the coefficient to a first value during a ramp-up of the notch filter before a packet is received. The controller is also configured to set at least one of the notch depth to a second depth or the notch bandwidth to a second bandwidth by adjusting the value of the coefficient to a second value after the packet is received.
US09214972B2 Method and apparatus for on-demand interference rejection in multi-band GNSS receivers
In general, the present invention relates to an adaptive IF filter for a multiband receiver. According to certain aspects, the adaptive IF filter can be dynamically configured as a low-pass architecture or a complex band-pass architecture. According to further aspects, the adaptive IF filter enables a wideband receiver which can simultaneously receive multiple frequency bands, but still protect itself from close-in or in-band jammers by selecting a single frequency band or subset of frequency bands. This retains the multiband functionality of the receiver under nominal conditions, which is traded off dynamically for a single-frequency-band with high jammer resistance under severe jamming conditions. According to still further aspects, the approach of the invention is particularly useful for GNSS receivers, since unlike a cellular transceiver, a temporary loss of signal is not catastrophic to GNSS receivers due to the long integration times.
US09214963B1 Method and system for monitoring data channel to enable use of dynamically adjustable LDPC coding parameters in a data storage system
A data storage system configured to adaptively code data and related methods are disclosed. In some embodiments of the present invention, a data storage system includes a controller and a non-volatile memory array having a plurality of memory pages. The controller includes a channel monitor that determines the quality of read signals from the pages when they are read, and provides adjustment metrics to aid in the selection of a code rate, such as a code rate for a low-density parity-check (LDPC) code. In this way, the code rate used for data encoding can be dynamically adjusted to accommodate degradation of the non-volatile memory array over its useable life.
US09214954B2 Increasing speed of data compression
A computer implemented method of performing data compression includes applying, with a computing device, a hash function to a selected part of a character string to calculate a hash value; searching, using the hash value, through entries in a bucket chain having the hash value previously registered in a hash table, and finding a longest matching character string; acquiring, an index indicating that a longest matching character string cannot be found in the search through the entries and thus the search operation is wasted; and switching the hash function to a different hash function for expanding the selected part of the character string, without reconstructing the hash table, when the index exceeds a predetermined threshold.
US09214952B2 Sensor time
A sensor includes: a detection element; an analog front end; a digital back end, the digital back end being connected to a control unit via a digital interface, and the sensor providing sampled data in the digital back end; and a timer unit for providing pieces of time information of the sampled data in the digital back end which the control unit is able to access via the digital interface.
US09214948B2 Comparator tracking control scheme with dynamic window length
A comparator tracking scheme for an analog-to-digital converter (ADC) may implement a dynamic window size by varying, over time, a number of comparators powered up to convert an analog input signal to a digital output signal. A comparator-tracking scheme may be implemented, for example, in a controller coupled to a plurality of comparators in an ADC. For example, the controller may determine a window size for the ADC and determine a window position for the ADC. The controller may then activate comparators of the ADC within a window centered at the window position and having a width of the window size. The controller may determine a window size by analyzing an output of a filter. When the filter output indicates a rapidly changing analog input signal, the controller may dynamically increase a window size of the ADC, which may increase a number of comparators powered on.
US09214947B2 Phase-lock in all-digital phase-locked loops
This disclosure relates to an all digital phase-lock loop (ADPLL). The ADPLL determines an error generated by a digitally controlled oscillator (DCO) which is operated using a tuning word, stores information related to the error, and compensates for the error based on the stored information.
US09214939B2 Adaptive bus termination apparatus and methods
Termination impedance of a digital signal bus is adaptively selected as a function of a present or anticipated state of the bus. A variable termination resistor is arranged in series between a termination switch and a common voltage node at the termination end of each bus conductor. Information regarding the current or anticipated bus state is received from an external device such as a bus controller or may be derived by sensing activity on the bus. For example, clock frequency detection logic coupled to clock lines of the bus senses the current operational speed of the bus. A highest-value termination resistance predetermined to be consistent with reliable bus operation under conditions of the current or anticipated bus state is selected for each bus conductor. A bus conductor termination may be taken to a high impedance state by opening the associated termination switch. Decreased average bus power consumption may result.
US09214932B2 Body-biased switching device
Embodiments provide a switching device including one or more field-effect transistors (FETs). In embodiments, a body-bias circuit may derive a bias voltage based on a radio frequency signal applied to a switch field-effect transistor and apply the bias voltage to the body terminal of the switch field-effect transistor.
US09214930B2 Power supply voltage transition comparison circuit, power supply voltage transition comparison method, and semiconductor integrated circuit
The power supply voltage transition comparison circuit includes a comparator evaluation voltage setting circuit, a comparator, a voltage evaluation circuit, and an evaluation voltage setting value output circuit. The comparator evaluation voltage setting circuit generates a divided voltage of one of a power supply voltage and a reference voltage. The comparator compares the other of the power supply voltage and the reference voltage with the divided voltage. The voltage evaluation circuit evaluates the power supply voltage based on a result of a comparison between the other voltage and the divided voltage. The evaluation voltage setting value output circuit changes a ratio between the one voltage and the divided voltage based on a result of an evaluation of the power supply voltage.
US09214924B2 Integrated circuit and method for reducing an impact of electrical stress in an integrated circuit
An integrated circuit is provided that includes a plurality of modules comprising at least one clock-gated module and a controller unit, which is arranged to enable and disable provision of a clock signal to the at least one clock-gated module. The at least one clock-gated module includes one or more electronic circuits arranged to be in a first state of an electrical stress condition during a first portion of a period of time and in a second state of less electrical stress than in the first state during a second portion of the period of time. The at least one clock-gated module is further arranged to switch the one or more electronic circuits between the first state and the second state such that a change of a characteristic of at least one of the one or more electronic circuits caused by the electrical stress condition is at least partially reduced.
US09214923B2 Wireless communications system including dual-purpose clock reference for global positioning system and baseband
A wireless communications system includes a clock module, a global positioning system (GPS) module, an integrated circuit for a cellular transceiver, and a baseband module. The clock module is configured to generate a first clock reference that is not corrected using automatic frequency correction (AFC). The GPS module is configured to operate in response to the first clock reference. The integrated circuit includes a system phase lock loop (PLL) configured to (i) operate in response to the first clock reference, and (ii) generate a corrected clock reference by performing AFC on the first clock reference in response to an AFC signal. The baseband module is configured to (i) operate in response to the first clock reference from the clock module, and (ii) generate the AFC signal.
US09214921B2 Sampling rate conversion device
A position coordinate difference calculation section 5 calculates a position coordinate difference between a position coordinate of an output digital signal and a position coordinate of an input digital signal close to it. AN FIR coefficient memory 9 stores FIR coefficients of an FIR-LPF having such a characteristic as to cut off frequency components equal to or higher than ½ of an output sampling rate. When the position coordinate difference is input, the FIR coefficient memory outputs FIR coefficients corresponding to position coordinate differences between position coordinates of a certain number of input digital signals existing in the vicinity of the position coordinate of the output digital signal and the position coordinate of the output digital signal. AN FIR computation unit 3 performs FIR-LPF interpolation computation by using a certain number of the input digital signals and the FIR coefficients and obtains the output digital signal.
US09214919B2 Resonator element, resonator, oscillator, electronic apparatus, and moving object
A resonator includes a resonator element including a base section, vibrating arms extending from the base section, and a support arm disposed between the vibrating arms, a package adapted to support the resonator element, and electrically-conductive adhesives adapted to fix the support arm to the package, the support arm includes a tip portion and a width-decreasing portion having a width smaller than the width of the tip portion, and the electrically-conductive adhesive has contact with at least a part of the width-decreasing portion in a planar view.
US09214918B2 Power distributing duplexer system
A power distributing duplexer system is provided. In some aspects, the system includes a duplexer configured to couple an antenna to a transmitter and a receiver. The system also includes a balancing network coupled to the duplexer. The balancing network includes a network impedance. The balancing network is configured to adjust the network impedance to match an antenna impedance of the antenna. The balancing network includes a plurality of balancing network modules coupled to the duplexer. Each of the plurality of balancing network modules is configured to receive a portion of an output voltage from the duplexer.
US09214917B2 Stack type common mode filter for high frequency
A stack type common mode filter (CMF) for high frequency may improve high frequency characteristics, like removing an impedance difference between terminals by not overlapping terminal portions of multiple stack structures with upper and lower magnetic substances, and removing noise in a common mode and removing a signal distortion in a differential mode by removing an unnecessary parasitic impedance from terminal portions, and thus the stack type CMF for high frequency may be applicable at a high frequency compared to a conventional CMF.
US09214915B1 Modifying an estimated gain profile of an amplifier
The estimated gain profile of an amplifier can be modified during operation of the amplifier utilizing detected values of the amplification level of signals produced by the amplifier. The amplification levels can be detected at a location that is remote from the amplifier. New expected amplification levels can be determined for corresponding control signal values in the estimated gain profile. Digital filtering such as Kalman filtering can be used to determine the new expected amplification levels. The estimated gain profile can be modified with the new expected amplification levels.
US09214914B2 Audio device control program, mobile telephone, recording medium, and control method
Provided is a control program of an audio device which performs automatic control on the audio device so as not to interfere with a telephone call. A control unit of a mobile telephone equipped with a telephone communication unit is caused to function as an operation detector that detects a user operation, an incoming call detector that detects an incoming telephone call to the telephone communication unit, and a command transmitter that communicates with an audio device that outputs a reproduced sound, and the command transmitter transmits a command message containing control contents corresponding to the user operation to the audio device when the operation detector detects the user operation, and transmits a command message for controlling the reproduced sound to the audio device when the incoming call detector detects the incoming telephone call.
US09214911B2 System and method for adjusting the sensitivity of a capacitive signal source
In accordance with an embodiment, a system for amplifying a signal provided by a capacitive signal source includes an impedance converter having an input node configured to be coupled to a first terminal of the capacitive signal source, and an adjustable capacitive network having a first node configured to be coupled to a second terminal of the capacitive signal source and a second node coupled to an output node of the impedance converter.
US09214909B2 High reliability RF generator architecture
A scalable radio frequency (RF) generator system including at least one power supply, at least one power amplifier receiving input from the power supply, and a power supply control module, and a system controller. Output from the at least one power supply can be combined and applied to each of the power amplifiers. Output form each of the at least one power amplifiers can be combined to generate a single RF signal. A compensator module controls operation of the at least one power supply. The compensator module, system control module, and power supply controller communicate in a daisy chain configuration.
US09214901B2 Wideband AFT power amplifier systems with frequency-based output transformer impedance balancing
A radio frequency system includes a first power splitter, a first push-pull power amplifier and a second push-pull power amplifier. The first power splitter is configured to receive a first radio frequency signal and generate a first output signal and a second output signal. The first push-pull power amplifier is configured to amplify the first output signal. The first push-pull power amplifier comprises a first set of transistors including at least two radio frequency power transistors and a first output transformer. The second push-pull power amplifier is configured to amplify the second output signal. The second push-pull power amplifier includes a second set of transistors including at least two radio frequency power transistors and a second output transformer. An output of the first transformer is galvanically and directly connected to an output of the second output transformer.
US09214898B2 Triple cascode power amplifier
A triple cascode power amplifier is provided. The triple cascode power amplifier includes a first-stage transistor pair, a second-stage transistor pair and a third-stage transistor pair. The first-stage transistor pair comprises two first-stage transistors that respectively receive two dynamic bias voltages with opposite polarities. The second-stage transistor pair is coupled with the first-stage transistor pair to form a first node and comprise two second-stage transistors coupled with each other to form a second node. The third-stage transistor pair is coupled with the second-stage transistor pair and comprises two third-stage transistors for outputting a differential signal. The first-stage transistor pair and the second-stage transistor pair are low voltage components while the third-stage transistor pair is a high voltage component. The power amplifier transforms the differential signal into a single-ended signal for output.
US09214891B2 Clamp assembly
A clamp assembly for solar panels comprising a base and a clamp. The base has a baseplate and first and second spaced-apart struts connected to the baseplate to form a channel. Surfaces of the struts define slots adjacent to the channel. Beams are connected to the struts, and spacers are attached to the beams. Each spacer has an angled surface adjacent to the channel and a curved surface. The clamp includes a plate with fingers extending from the plate into the channel. The clamp further includes angled surfaces in contact with the spacer angled surfaces. Bolts extend through the plate so that most of the threaded portions are positioned between fingers. Corresponding nuts are positioned in the slots and inhibited from rotation during threading with the bolt by the slot surfaces. The clamp assembly is preferably made from a nonconductive material to inhibit arcing and the risk of electrical fire from incorrect or failed wiring.
US09214887B2 Apparatus and method for driving voice coil motor
An apparatus and a method for driving a voice coil motor (VCM) may include an instruction signal generating unit generating an instruction signal according to a digital signal generated from an input signal, and a driving unit driving the VCM by selecting a path for a driving current applied to the VCM according to the digital signal and controlling a duty of the driving current according to the instruction signal.
US09214883B2 Systems and methods for utilizing an active compensator to augment a diode rectifier
The subject matter described herein includes an active compensatory augmented diode bridge rectifier system. According to one aspect, the system includes a generator unit configured to generate a current flow made up entirely of active current and a diode rectifier configured to receive the active current from the generator unit, to direct the active current to a connected power grid, and to receive a reactive current. The system further includes an active compensator configured to optimize the generator unit to produce the active current and to generate the reactive power used to facilitate the operation of the diode rectifier.
US09214880B2 Switch type DC electric machine having auxiliary excitation winding and conduction ring and brush
The present invention provides an auxiliary excitation winding set to be installed at the rotary part of the electric machine (104) composed of a rotary part of the permanent magnetic electric machine or a rotary part of the reluctance electric machine of the switched DC electric machine with conduction ring and brush (1000), and an electric conductive annular brush device (107) is served as an interface for transmitting the electric power, thereby inputting the excitation electric power to the auxiliary excitation winding set; and through controlling the value and the polarity of excitation voltage and current, the magnetic pole of the rotary part of magnet-motive electric machine (104) of the switched DC electric machine with conduction ring and brush (1000) can be performed with the excitation effect of auxiliary excitation or differential excitation or auxiliary compound excitation or differential compound excitation.
US09214873B2 Method for operating an electrical power rectifier, as well as an electrical power rectifier
A method for operating an electrical power rectifier. The power rectifier comprises at least two branches that are connected in parallel to each other, each of the branches comprising at least two power semiconductor elements that are connected in series. The collector-emitter voltage Vce(t) and/or the collector current Ic(t) of one of the power semiconductor elements is detected by means of the method. Furthermore, it is determined whether at least one of the following conditions is met: dVce(t)/dt<(dVce/dt)crit, and/or dIc(t)/dt<(dIc/dt)crit, and or Ic(t_ent)
US09214872B2 Method for actuating the switching transistors of a rectifier
The invention relates to a method for actuating the switching transistors of a rectifier which is provided for converting the phase voltages that are provided by a vehicle generator into a direct current voltage. Each switching transistor comprises a parasitic diode. An activation signal for initiating the conducting phase and a de-activation signal for ending the conducting phase are supplied to each control terminal of the switching transistors. A timer is started simultaneously with the provision of an activation signal and the de-activation signal is provided once a predetermined time period has passed.
US09214869B2 Multiple use of a current transformer
A converter transformer (7) with a primary winding and a secondary winding, an integrated current transformer arranged to measure a winding current of the converter transformer, and a synchronous rectifier (11, 12) connected to the secondary winding of the converter transformer are provided. A controller is arranged to close respectively to open the synchronous rectifier depending on the measured winding current. The controller is arranged to close and/or to open the synchronous rectifier as a function of the winding current at a later and/or at an earlier time, whereby the time difference between the later and the earlier time is linearly dependent on the winding current difference, particularly to optimize a discharge process, and/or that an auxiliary supply circuit is arranged to provide auxiliary supply power, wherein the auxiliary supply circuit is arranged to derive auxiliary supply power from the integrated current transformer, in particular in overload situations.
US09214865B2 Voltage compatible charge pump buck and buck power supplies
The present disclosure relates to a flexible direct current (DC)-DC converter, which includes a charge pump buck power supply and a buck power supply. The charge pump buck power supply and the buck power supply are voltage compatible with one another at respective output inductance nodes to provide flexibility. In one embodiment of the DC-DC converter, capacitances at the output inductance nodes are at least partially isolated from one another by using at least an isolating inductive element between the output inductance nodes to increase efficiency. In an alternate embodiment of the DC-DC converter, the output inductance nodes are coupled to one another, such that the charge pump buck power supply and the buck power supply share a first inductive element, thereby eliminating the isolating inductive element, which reduces size and cost but may also reduce efficiency.
US09214864B2 Switch mode power supply with switchable output voltage polarity
A switch mode power supply has a first and second branch of an inductive element; a first switching element and a second switching element connected in series. Both branches are coupled to a power source in parallel. A controller controls said switching elements for operating said switch mode power supply in a plurality of consecutive time periods, wherein more than two of said switching elements are closed, i.e. at least one in each branch. The power supply has a polarity switching element coupled between said branches for receiving a pulsed voltage for providing an output voltage of a switchable polarity. The controller receives a feedback signal corresponding to the output voltage, compares the feedback signal to a reference waveform, and controls said switching elements and the polarity switching element in dependence of said comparing for generating the output voltage according to the reference waveform.
US09214863B2 Power supply control apparatus
A power supply control apparatus includes a first adder configured to generate a difference signal based on a target value and a feedback signal; a compensator having a first transfer function Wc(z) and configured to generate a control signal based on the difference signal; a control target having a second transfer function Wp(z) and configured to output an output signal generated in response to the control signal; a disturbance canceller having a third transfer function {l+Wc(z)·Wp(z)}/{Wc(z)·Wp(z)} and configured to generate a disturbance cancelling signal based on the output signal corresponding to a control amount y; a second adder configured to generate a differential disturbance signal based on an output of the first adder and the disturbance cancelling signal; and a filter circuit which generates the feedback signal based on the differential disturbance signal.
US09214858B2 Intermediate bus architecture power supply controller
In an intermediate bus architecture power system, a voltage controller that generates control signals for controlling an intermediate bus voltage (VIB) output from a first stage DC-to-DC power converter to at least one second stage DC-to-DC power converter via the intermediate voltage bus. A receiver receives values of the current input to the first stage converter, or the current and voltage output by the first stage converter. The controller determines a first value of an efficiency measure using the received values corresponding to a first VIB, and determines a second value of the efficiency measure for a second VIB higher than the first VIB. Control signals cause the first stage converter to set the VIB to a voltage higher than the second VIB if the second efficiency measure value represents a higher system efficiency than the first efficiency measure value, and to a voltage lower than the first VIB if the second efficiency measure value represents a lower system efficiency than the first efficiency measure value.
US09214854B2 Total harmonic current distortion control circuit and method thereof
A total harmonic current distortion (THDi) control circuit includes a power factor correction circuit and a control circuit. The power factor correction circuit includes a boost unit, an inverter unit, and a feedback unit. The boost unit includes a switch element and a current detection element series-coupled to the switch element. The feedback unit operatively detects an output voltage and an output current of the power factor correction circuit. The control circuit calculates an output power according to the output voltage and the output current, and calculates an input voltage and an input current according to the output power. The control circuit outputs a pulse width modulation signal and controls a conduction current generated by the switch element according to the input current. The control circuit adjusts the duty cycle of the pulse width modulation signal according to the conduction current detected by the current detection element.
US09214851B1 Trailing edge detector using current collapse
A controller for a power converter compares a voltage sense signal to a first reference and compares a current sense signal to a current sense signal. The voltage sense signal is representative of an input voltage of the power converter. The current sense signal is representative of a current through the power converter. A slope of the voltage sense signal is measured over time. An edge detection is asserted by the controller when (1) the voltage sense signal is larger than the first reference, (2) the current sense signal is lower than the second reference, and (3) the slope is a negative slope.
US09214849B2 Hybrid step motor
A stepper motor is provided in which a permanent ring magnet is sandwiched in an outer part of the stator winding assembly located far from the gap between rotor and stator teeth, so that magnetic flux in the gap is dominated by the Ampere-turns of energized stator coils and therefore more easily controlled for reduced vibration at low stepping speeds. The rotor need not contain any permanent disk magnet. If one is provided, it can be completely embedded within the rotor and merely supplement the primary flux from the stator to enhance torque. In most cases, where the rotor lacks any permanent magnet, the motor's axial shaft can have a larger diameter and may, together with the rotor, form a linear actuator.
US09214847B2 Motor, and motor production method
Provided is a motor comprising: a stator equipped with a coil basket, which is a distributed winding coil that uses flat wire, and a stator core; and a rotor with a central shaft. The motor is characterized in that: the coil end at one end of the coil basket has bent sections that are bent on the rotor side in relation to wire sections inside slots of the stator core; and a lower-side concentric section and horizontal sections, which comprise the coil end at the other end, are positioned further toward the shaft center side of the rotor than the inner peripheral surface of the teeth; and the coil end at one end and the coil end at the other end comprise five flat wires that are lap wound in a flatwise direction.
US09214846B2 Permanent magnet, motor rotor or stator, rotary electric machine
A permanent magnet includes two or more separate permanent magnet pieces each having a rectangular parallelepiped shape with a fractured surface formed when a permanent magnet block is fractured. The separate permanent magnet pieces include a first separate permanent magnet piece and a second separate permanent magnet piece. At the time when the permanent magnet block is fractured, the first and second separate permanent magnet pieces are adjacently located and a first fractured surface of the first separate permanent magnet piece and a second fractured surface of the second separate permanent magnet piece are adjacent to each other. The permanent magnet is configured such that the first fractured surface of the first separate permanent magnet piece and the second fractured surface of the second separate permanent magnet piece are located in positions out of contact with each other.
US09214845B2 Process for annealing of helical wound cores used for automotive alternator applications
In a method for manufacturing a helically wound alternator core, stamping an electrical steel strip to create a lamination strip having a back-iron and projecting teeth. The lamination strip is helically wound by bending to form the helically wound alternator core. The core is then welded. Thereafter the helically wound welded alternator core is annealed.
US09214842B2 Motor
A motor that is operable in response to an external power supply includes a stator core that is electrically connected to the external power supply and a rotor core positioned adjacent the stator core and rotatable about an axis in response to power being delivered to the stator core by the external power supply. A first encasement member is formed around the stator core to define a cavity and a second encasement member is formed around the rotor core and is sized such that at least a portion of the second encasement member and rotor core is disposed within the cavity. A quantity of coolant is disposed within the cavity.
US09214840B2 Fan motor, on-vehicle air conditioner using the fan motor, and method for assembling fan motor
A fan motor includes a motor having a shaft, a fan, and a fan fixing section for rigidly connecting the fan to the shaft. The fan has a first mounting face for the fan to be integrated with the motor. The fan fixing section has a fan mounting plate mounted to an end of the shaft and including a second mounting face in a radial direction, and an elastic plate having elastic force. The first mounting face is connected to the second mounting face via the elastic plate.
US09214835B2 Power supply system, image forming apparatus having the power supply system, and control method of the power supply system
A power supply system includes a switching power supply for outputting a predetermined DC voltage by converting an AC voltage from an AC power supply, a latching relay provided on an AC input line for switching a connection state of the switching power supply and the AC power supply in response to a relay drive signal, a storage circuit storing electricity from the switching power supply, a control device for receiving electric power from the storage circuit in a disconnection state, and a relay drive circuit for generating the relay drive signal and outputting it to the latching relay. The control device determines whether an amount of charge of the storage circuit has decreased to a predetermined amount of charge in the disconnection state, and generates and outputs the relay control signal to the relay drive circuit.
US09214830B2 Battery resetting process for scaffold fuel electrode
An electrochemical cell includes a fuel electrode configured to operate as an anode to oxidize a fuel when connected to a load. The cell also includes an oxidant electrode configured to operate as a cathode to reduce oxygen when connected to the load. The fuel electrode comprises a plurality of scaffolded electrode bodies. The present invention relates to an electrochemical cell system and method of resetting the electrochemical cell by applying a charge (i.e. voltage or current) to the cell to drive oxidation of the fuel, wherein the fuel electrode operates as an anode, and the second cell operates as a cathode, removing uneven distributions of fuel that may cause premature shorting of the electrode bodies to improve capacity, energy stored, and cell efficiency.
US09214829B2 Antenna sharing for wirelessly powered devices
Exemplary embodiments include an antenna for receiving electromagnetic radiation in a broadcast radiation band and a near-field radiation band to generate a Radio Frequency (RF) signal. A coupling element couples the RF signal to a first port and at least one additional port, which may be a second port and a third port. A wireless power receiver on the first port includes a rectifier for converting the RF signal to a DC signal when the antenna couples to radiation in the near-field radiation band in a coupling-mode region of the antenna. A near-field communication transceiver includes circuitry for communicating information on the antenna in the near-field radiation band when the coupling element couples the second port to the RF signal. A broadcast receiver on the third port includes circuitry for receiving and tuning the broadcast radiation band when the coupling element couples the third port to the RF signal.
US09214826B2 Alternating battery power supply system with inter-battery charging and rate of discharge management
A battery power supply system using a DC-DC step-up converter to increase voltage supplied from a battery in a load state. Output from the DC-DC step-up converter powers a load and supplies charging to a battery in a charge state. Each of a plurality of batteries is cycled between load and charge states. Thus, each battery supplies power to the DC-DC step-up converter to power the load and charging for another battery. Additionally, each battery receives a charge from the DC-DC step-up converter. A microcontroller and relays control the states and switching.
US09214820B2 Battery system balancing control method for performing balancing control with aid of reference voltage information and battery system thereof
A battery system balancing control method for performing balancing control with aid of reference voltage information and battery system are provided. The battery system balancing control method includes: after a specific reference resistor of a plurality of reference resistors is installed into a specific battery module of a set of battery modules connected in series within a power supply device and the reference resistors are electrically connected in series, converting a total voltage of the set of battery modules into the reference voltage information, wherein each battery module of the set of battery modules includes at least one battery cell, and the reference voltage information includes a plurality of sets of reference voltage levels respectively corresponding to the reference resistors; and performing balancing control of the specific battery module according to a set of reference voltage levels corresponding to the specific reference resistor within the sets of reference voltage levels.
US09214814B2 Secondary battery system
There is provided a secondary battery system which converts direct current power supplied from secondary batteries into alternating current power by power converters, and supplies the converted power to an electric power system on a load side, the secondary battery system including a control apparatus that stops operating the operating the power converter and starts operating the stopped the power converter when a residual stored power level of the secondary battery corresponding to operating the power converter becomes to be not greater than a predetermined rate of a residual stored power level of the secondary battery corresponding to stopped the power converter.
US09214799B2 Electrostatic discharge protection circuit for implantable medical device
An implantable medical device can include an integrated circuit comprising an electrostatic discharge (ESD) protection circuit. The ESD protection circuit can include an active circuit, a first passive circuit, and a second passive circuit. For example, at least one of the first or second passive circuits can include an array of capacitors in a series configuration, a parallel configuration, or a combination of series and parallel configurations. The first and second passive circuits can be configured to establish a specified time constant, and, in response to an applied ESD, the first and second passive circuits can provide a control signal to active circuit to switch the active circuit from a substantially non-conductive mode to a substantially conductive mode.
US09214796B1 Splicing assembly
A splicing assembly for electrically coupling a pair of electrical cables together includes a tubular housing that may insertably receive a pair of electrical cables. A coupling member is coupled to said tubular housing. The coupling member may be selectively operationally coupled between the pair of electrical cables. The pair of electrical cables is operationally coupled together.
US09214794B2 Messenger supported overhead cable for electrical transmission
A transmission line assembly for transmission and distribution of high voltage power which comprises a conductor, a separate messenger member and coupling means. The conductor has a predetermined length. The separate messenger member has a predetermined length. The coupling means couples the messenger to the conductor to the messenger. The messenger member and the conductor remain structurally separate from each other and functionally independent.
US09214793B2 Electrical connection box
An electrical connection box assembled by a lock structure has a first case, a second case, a plurality of lock pieces, an engagement protrusion, a plurality of lock recesses, and an engagement part. The plurality of lock pieces are provided to a peripheral wall of the first case and are elastically deformable toward an inner side of the first case. The engagement protrusion is provided to an outer surface of each lock piece. The plurality of lock recesses are provided to a peripheral wall of the second case. The engagement part is provided bridging each lock recess, the lock pieces being disposed between the lock recesses and the engagement parts, the engagement protrusions engaging the engagement parts to assemble the first and second cases, engagement between the engagement protrusions and the engagement parts being released by deformation of the lock pieces inside the lock recesses.
US09214792B2 Electrical junction box
A harness outlet through which a wiring harness is passed is provided on a sidewall of a case of an electrical junction box. A harness guide is extended form a circumference of the harness outlet to protect the wiring harness and to regulate a path (outlet direction) of the wiring harness. At a side near the harness outlet, the harness guide covers a whole circumference of the wiring harness. At a side away from the harness outlet, the harness guide covers both sides and an upper portion of the wiring harness, and a portion for covering the lower portion of the wiring harness is not provided on the harness guide.
US09214791B1 Fuse disconnect safety switch (FDSS)
Various embodiments provide safety disconnect systems for a power system. In one aspect, a safety switch system and method for a power system, including a plurality of sequentially interlocked switches capable of being operated in a predetermined sequence to isolate one or more fuses, is provided. The described safety switch system is a convenient and sequential approach to safely remove power from a system and access associated fuses.
US09214787B2 III-V photonic crystal microlaser bonded on silicon-on-insulator
Novel methods and systems for miniaturized lasers are described. A photonic crystal is bonded to a silicon-on-insulator wafer. The photonic crystal includes air-holes and can include a waveguide which couples the laser output to a silicon waveguide.
US09214785B2 Semiconductor laser light source having an edge-emitting semiconductor body
A semiconductor laser light source comprising an edge-emitting semiconductor body (10) is provided. The semiconductor body (10) contains a semiconductor layer stack (110) having an n-type layer (111), an active layer (112) and a p-type layer (113) which is formed for generating electromagnetic radiation which comprises a coherent portion (21). The semiconductor laser light source is formed for decoupling the coherent portion (21) of the electromagnetic radiation from a decoupling surface (101) of the semiconductor body (10) which is inclined with respect to the active layer (112). The semiconductor body (10) comprises a further external surface (102A, 102B, 102C) which is inclined with respect to the decoupling surface (101) and has at least one light-diffusing sub-region (12, 12A, 12B, 12C, 120A, 120B) which is provided in order to direct a portion of the electromagnetic radiation generated by the semiconductor layer stack (110) in the direction towards the further external surface (102A, 102B, 102C).
US09214782B2 Dielectric laser electron accelerators
A laser-driven dielectric electron accelerator is composed of a dielectric photonic crystal accelerator structure having an electron beam channel and buried grating whose elements are arranged linearly parallel to the electron beam channel. The accelerator structure preferably has a thin film material coating. The grating may have an asymmetric structure. The accelerator and undulator structures may be integrated with on-chip optical and electronic devices such as waveguide devices and control circuits so that multiple devices can be fabricated on the same chip.
US09214781B2 Fiber amplifier system for suppression of modal instabilities and method
Apparatus and method for suppressing modal instabilities (MI) in fiber-amplifier systems. In some embodiments, thermal effects drive the MI process, and in some such embodiments, the present invention provides a plurality of options for mitigating these thermal effects. In some embodiments, the present invention provides a hybrid fiber with a smaller core in the initial length where the thermal loads are highest, followed by a larger-core fiber. In some embodiments the length of the smaller-core section is chosen to keep the core heat-per-unit-length of the second section below a critical value for the onset of MI. In some embodiments, the hybrid fiber of the present invention avoids modal instabilities while yielding almost the same performance as compared to conventional fibers with regard to minimizing fiber nonlinearities such as Stimulated Brillouin Scattering (SBS). In some embodiments, the hybrid fiber outputs a signal beam with at least 1 kW of power.
US09214776B2 Light bulb socket having a plurality of thread locks to engage a light bulb
A threadless light socket assembly allows a light bulb to be changed by pushing or pulling the light bulb into or out of the socket provides an outer insulator housing and an insulator cap which carrying a ground socket in a medial channel that grounds a light bulb base to a power supply. Plural spring biased thread locks protrude into center of the ground socket and are staggered in height to align with threads defined in a light bulb base. A positive contact is in the socket assembly supplies positive power from a power supply to the light bulb base. The threadless light socket has interchangeable components to allow installation in new and existing light fixtures.
US09214775B2 Joint connector and method for identifying bus bar pattern in joint connector
A joint connector includes a bus bar and a housing. The bus bar juxtaposes plural tab pieces to be connected to mating terminals. The housing has a bus bar accommodating part accommodating the bus bar, and includes plural terminal receiving chambers for receiving the mating terminals. The housing is formed with plural continuity check holes at a back end of the housing so as to expose a back end of the bus bar. In a case where the plural bus bars are accommodated in the bus bar receiving parts, at least one of the continuity check holes is positioned between the adjacent bus bars, and the at least one of the continuity check holes is formed in a resin-sealed part filled with an insulating resin material.
US09214773B2 Configurable safety light receptacle
An electrical receptacle provide outlets and a cavity for receiving an insert. The insert connects to the electrical main through the receptacle and can provide additional functionality through the insert including emergency lighting, night lighting, gas detectors and charging connections.
US09214768B2 Communication connector and transmission module thereof
A transmission module of a communication connector includes a plurality of first signal terminals, a plurality of second signal terminals, and a plurality of ground terminals. The terminals are coupling along a coupling direction. Along the coupling direction, the grounding terminals respectively correspond to the first and second terminals, a main portion of each signal terminal is orthogonally projecting to an area of a main portion of the corresponding ground terminal, in which the area is located inside the contour of the main portion. Moreover, the width of the main portion is less than or equal to two times of the width of the main portion of the corresponding signal terminal. Thus, the instant disclosure provides the transmission module with novel type.
US09214767B1 Electrical connector and method of making the same
An electrical connector having an insulative housing, a middle grounding member and a pair of contact modules. The insulative housing has a mating portion, a body portion and an upper cavity and a lower cavity at upper and lower sides of the body portion. The mating portion has a top wall, a bottom wall, a pair of side walls and a receiving space therebetween. The middle grounding member is retained in the body portion. Each contact module has an insulator received in the upper or lower cavity, contacts and a locking spring in the insulator. The locking spring is at a lateral side of the contacts and has a fixing portion fixed in the insulator, a locking arm forwardly extending to the receiving space and an extension tab backwardly extending from a rear side of the fixing portion. Each contact has a contact arm extending to the receiving space.
US09214761B2 Plug-in connector having a cable sheath with two parts adjustable in different positions relative to each other
The invention relates to a plug-in connector for a data or telecommunication cable comprising several wires with a contact carrier, comprising connection contacts for a plug-in connection and with connecting contacts, connected thereto in an electrically-conducting fashion, for the wires of the cable, and with an accepting screen.
US09214757B2 Contamination avoidance combination high voltage interlock cover
The present disclosure is directed towards a high voltage interface cover system for inhibiting liquid contamination of high voltage connection areas of EV's and HEV's. This liquid contamination may come from atmospheric precipitation or road splash which comes in contact with the surface of either the HVDC connection block cover and/or the high voltage main device cover, and flows into the interface seals connecting them. The cover system comprises a pair of interlocking covers which provide a tortuous path for liquid contamination to penetrate the interface.
US09214752B2 Bus bar module
A bus bar module includes: a bus bar module body section formed of an insulating material, and including an output terminal installation section on which to install an output terminal, a part of the output terminal installation section projecting, and a cover latching section provided to a tip end side of the projecting output terminal installation section; and an output terminal cover configured to cover the output terminal on the output terminal installation section, provided to the bus bar module body section using a hinge section which is provided to a base end side of the output terminal installation section, and including a cover latch section provided to a tip end side of the output terminal cover, the cover latch section being fastened to the cover latching section of the bus bar module body section when the output terminal cover covers the output terminal on the output terminal installation section.
US09214751B2 Coaxial connector plug and coaxial connector receptacle
A coaxial connector plug and a coaxial connector receptacle that may be stably suctioned by a suction nozzle. A coaxial connector receptacle including a substantially cylindrical outer conductor and a center conductor surrounded by the outer conductor is mountable to a coaxial connector plug. An outer conductor has a substantially cylindrical shape extending in the z-axis direction, and is provided with a slit that connects between the upper end and the lower end of the outer conductor. A center conductor is surrounded by the outer conductor. A projection is positioned in the slit. The outer conductor of the coaxial connector receptacle is inserted into the outer conductor from the negative side in the z-axis direction. The center conductor of the coaxial connector receptacle is connected to the center conductor.
US09214749B2 Pluggable apparatus of circuit board, and server
A pluggable apparatus of a circuit board is provided, which solves the problem that hot plugging of a Peripheral Component Interconnect Express (PCI-E) card is difficult to implement. The pluggable apparatus of the circuit board includes a base plate, a pulling strip, a rotating member, and a carrier plate, where the pulling strip is movably connected to the base plate by using a transverse guide mechanism, sawteeth are formed on a body of the pulling strip, the pulling strip further includes a handle that extends out of the base plate; the rotating member is in a bending line shape; the carrier plate is movably connected to the base plate by using a longitudinal guide mechanism; and a clamping trough is disposed on the carrier plate and is configured to fasten the circuit board.
US09214747B2 Low profile electrical connector have a FPC
An electrical connector electrically connecting a chip module to a printed circuit board includes an insulative housing with a number of terminals therein and includes a substrate and a sidewall extending upwardly from the substrate, the substrate includes a top surface, a bottom surface opposite to the top surface and a number of through holes penetrated from the top surface to the bottom surface, wherein the electrical connector further includes a flex film located under the substrate, a frame located above the flex film and a number of solder balls electrically connecting the flex film to the printed circuit board, the four sides of the flex film and the frame are both insert-molded into the insulative housing.
US09214743B2 Right angle connector assembly
A connector assembly includes a dielectric having a right angle body including a first segment and a second segment and defining a right angle chamber extending through the first and second segments. At least one door at a right angle corner of the body provides access to the right angle chamber through a rear opening in an open state, and restricts access to the rear opening in a closed state. A female center contact in the right angle chamber in the first segment has a terminating end configured to electrically connect to a cable conductor of a cable received in the right angle chamber in the second segment. A front shield receives the dielectric and forces the door to move from the open state to the closed state upon loading the dielectric into the front shield. A rear shield couples to the front shield.
US09214739B2 Overlapped and staggered antenna arrays
An antenna structure includes a dielectric material in which antenna array elements are placed on either side. Elements on either side of the dielectric material overlap or are staggered opposing elements. The dielectric material may also include co-located, antenna arrays of array elements radiating in different directions. Antenna array elements may be formed using conformal shielding which applied and selectively removed to create antenna structures. Devices that include the antenna structure can include a casing that is a shaped lens to increase antenna aperture size and enhance antenna performance.
US09214737B2 Mobile wireless communications device including an electrically conductive director element and related methods
A mobile wireless communications device may include a portable housing, a printed circuit board (PCB) carried by the portable housing, a wireless transceiver carried by the PCB, and an antenna connected to the transceiver and carried by the PCB. The mobile wireless communications device may further include at least one director element for directing a beam pattern of the antenna. More particularly, the at least one director element may include an electrically conductive main branch carried by the portable housing, and an electrically conductive connector portion extending between the main branch and the PCB.
US09214736B2 Systems and methods for mitigating disturbances in a dual gridded reflector antenna
Methods and systems for mitigating disturbances in a dual gridded reflector antenna are provided. An antenna system that includes a first reflective surface, a second reflective surface, and an intercostal ring is provided. The intercostal ring is configured to connect the first reflective surface and the second reflective surface. A baffle is disposed between the intercostal ring and a path of the electromagnetic waves. The baffle is configured to redirect the electromagnetic waves away from the intercostal ring. Alternatively, the baffle is not present, and the intercostal ring is configured to redirect a perturbed portion of an electromagnetic wave away from wave paths of electromagnetic waves reflected by the first reflective surface and the second reflective surface, respectively.
US09214734B2 Multi-quadrifilar helix antenna
In accordance with one or more embodiments of the present invention, a quadrifilar helix antenna can be formed to accommodate multiple frequencies using a single microstrip feed system, illustratively comprising an infinite balun in combination with interspersed antenna conductors tuned for effective resonance at the desired frequencies around the single feed system. Accordingly, as an additional aspect, the present invention also combines the multiple frequency antenna elements and the single feed system into a unitary assembly of cylindrical geometry that is generally reduced in size, with the interspersed arrangement of the multiple (e.g., resonating) antenna conductors wrapped into a short cylindrical surface. Through the use of the single hybrid feed system and resonating antenna conductors for multiple frequencies, the need for complex feed networks having multiple circuits (hybrid circuits, transformers, etc.) is alleviated, while still maintaining acceptable levels of performance.
US09214733B2 Antenna device
Provided is an antenna device including a substrate, a metal chassis disposed adjacent a rear surface of the substrate, multiple patch antenna elements formed in an array on a front surface of the substrate, feeding lines formed on the front surface of the substrate and through which electricity is fed to the multiple patch antenna elements, and a ground conductor formed on the rear surface of the substrate in a portion opposite the feeding lines.
US09214731B2 Planar antenna having a widened bandwidth
A planar antenna with widened bandwidth comprises at least one first conducting element disposed above an earth plane and separated from the latter, and means for exciting said at least first conducting element, configured to excite two distinct orthogonal resonant modes, wherein said at least first conducting element is embodied by a substrate comprising at least one thin layer of an anisotropic material with relative permeability of greater than 10 for 2 GHz. The antenna applies notably to mobile communications terminals.
US09214726B2 High frequency phase shifter array testing
Aspects of the invention provide for an architecture and method for testing high frequency phase shifter arrays. In one embodiment, an architecture for testing a phase shifter array, includes: a plurality of power dividers, each power divider configured to receive an output from a phase shifter within the phase shifter array and split the output into a first signal and a second signal; a plurality of power clippers, each power clipper configured to receive the second signal and modify the second signal by limiting an amplitude of the second signal; a first power combiner configured to receive the first signal from each of the plurality of power dividers to generate a first output; and a second power combiner configured to receive the modified second signal from each of the plurality of power clippers to generate a second output.
US09214724B2 Antenna array with wide-band reactance cancellation
An antenna array containing two or more radiating elements, with nearest neighbor radiating elements connected together with a non-Foster circuit at terminals of the radiating elements such that mutual reactance of the elements is reduced over a wider bandwidth than which would be obtained if the non-Foster circuits were omitted.
US09214722B2 Origami folded antennas
An antenna includes a dielectric sheet and a conductive film. The dielectric sheet is folded into a plurality of fold segments and is configured to be compressed into a compressed state and to be expanded into an expanded state. The conductive film is disposed on a portion of the dielectric sheet. The conductive film has a pattern that defines a current path from the bottom of the dielectric sheet to the top of the dielectric sheet. The pattern is configured so that the each of the plurality of fold segments includes a portion of the pattern and so that the portion of the pattern on each fold segment is substantially non-juxtaposed with respect to the portion of the pattern on each adjacent fold segment when the dielectric sheet is fully compressed into the compressed state.
US09214720B2 Communication system node comprising a re-configuration network
The present invention relates to a node (1) in a wireless communication system, the node (1) comprising at least one antenna (2) which comprises an even number (A) of antenna ports (3, 4, 5, 6), at least four, where each antenna port (3, 4, 5, 6) is associated with a corresponding polarization (P1, P2), beam-width and phase center. The antenna ports (3, 4, 5, 6) are connected to a reconfiguration network (7) which is arranged for pair-wise linear combination of antenna ports (3, 4, 5, 6) of mutually orthogonal polarizations to a number (B) of virtual antenna ports (8, 9), which number (B) is equal to half the number (A) of antenna ports (3, 4, 5, 6). The virtual antenna ports (8, 9) correspond to virtual antennas and are connected to corresponding radio branches (10, 11). The present invention also relates to a corresponding method.
US09214717B2 Handheld electronic devices and methods involving improved antenna performance
Handheld electronic devices and methods involving improved antenna performance are provided. A representative device includes: a housing; a first antenna mounted at a first position of the housing; a second antenna mounted at a second position of the housing; a hand position monitoring system operative to determine a position of a hand of a user grasping the housing of the device; and an antenna selection system operative to selectively and alternately activate the first antenna and the second antenna such that, responsive to the hand position monitoring system determining that the hand is in a vicinity of the first antenna, the antenna selection system activates the second antenna, and responsive to the hand position monitoring system determining that the hand is in a vicinity of the second antenna, the antenna selection system activates the first antenna.
US09214713B2 Method of fabricating a microstrip line dielectric overlay
A printed circuit board has a dielectric constant different from the dielectric constant of free space, with at least two microstrip lines routed adjacent to one another on a surface of the printed circuit board. A dielectric coating is applied to at least one of the at least two microstrip lines such that the dielectric constant of the dielectric coating differs from the dielectric constant of free space. In a further embodiment, the dielectric coating comprises a material having a dielectric constant approximately equal to the dielectric constant of the printed circuit board.
US09214710B1 Hybrid battery power system
A hybrid battery is configured to power at least one of a low current circuitry and a high current circuitry. The hybrid battery includes a primary battery configured to supply relatively constant, low current to the low current circuitry and a secondary battery configured to supply intermittent, high peak current to the high current circuitry. The hybrid battery also includes a controller configured to monitor energy load requirements of the low current circuitry and the high current circuitry, adaptively direct energy generated by the primary battery and the secondary battery to the low current circuitry and the high current circuitry respectively, and maintain a state of charge of the secondary battery by directing electrical energy from the primary battery to the secondary battery.
US09214707B2 Metal/oxygen battery with precipitation zone
In one embodiment, an electrochemical cell includes a negative electrode, a positive electrode, a precipitation zone located between the negative electrode and the positive electrode and in fluid communication with the positive electrode, and a fluid electrolyte within the positive electrode and the precipitation zone, wherein the precipitation zone is configured such that a discharge product which is produced as the cell discharges is preferentially precipitated within the precipitation zone.
US09214706B2 Battery heating circuits and methods using resonance components in series based on charge balancing
Certain embodiments of the present invention disclose a battery heating circuit, wherein: the battery comprises a battery E1 and a battery E2. For example, the heating circuit comprises: a first charging/discharging circuit, which is connected with the battery E1, and comprises a damping component R1, a current storage component L1, a first switch unit 1 and a charge storage component C, all of which are connected in series to each other; and a second charging/discharging circuit, which is connected to the battery E2, and comprises a damping component R2, a current storage component L2, a second switch unit 2 and the charge storage component C, all of which are connected in series with each other.
US09214697B2 Lithium secondary battery
An incombustible lithium secondary battery, which has excellent battery capacity and high safety, contains a separator provided between a positive electrode and a negative electrode, and a nonaqueous electrolytic solution containing a lithium salt, in which the nonaqueous electrolytic solution employs an ionic liquid as a solvent, and the separator contains an electrically insulating porous inorganic membrane and a substrate. The ionic liquid may contain a bis(fluorosulfonyl)imide anion as an anionic component, and may contain a cation containing a nitrogen atom as a cationic component.
US09214696B2 Degassing method of secondary battery using centrifugal force
Disclosed is a method for manufacturing a battery cell including an electrode assembly and electrolyte provided in a battery case made of a laminate sheet having a resin layer and a metal layer, which includes: (a) mounting the electrode assembly in the battery case and sealing the periphery of the battery case except for one end part thereof through thermal fusion; (b) introducing the electrolyte through the unsealed end part and sealing the end via thermal fusion; (c) charging-discharging the battery cell to activate the same; (d) transferring gas generated during activation and excess electrolyte to the foregoing end part of the battery cell by centrifugal force; and (e) removing the gas and excess electrolyte from the end part.
US09214694B2 Assembly for reversible fuel cell
A membrane-electrode assembly for use in a reversible fuel cell comprises an ion conductive membrane having first and second surfaces; a first electrocatalyst layer in contact with the first surface of the membrane, such first electrocatalyst layer comprising at least one discrete electrolysis-active area (ELE1i) and at least one discrete energy generation-active area (EG1i). A second electrocatalyst layer is placed in contact with the second surface of the membrane, such second electrocatalyst layer comprising at least one discrete electrolysis-active area (ELE2i) and at least one discrete energy generation-active area (EG2i). Each of the discrete electrolysis-active area(s) (ELE1i) on the first electrocatalyst layer correspond and are aligned with each of the discrete electrolysis-active area(s) (ELE2i) on the second electrocatalyst layer, and each of the discrete energy generation-active area(s) (EG1i) on the first electrocatalyst layer correspond and are aligned with each of the discrete energy generation-active area(s) (EG2i) on the second electrocatalyst layer.
US09214693B2 Solid oxide fuel cell
Provided is a solid oxide fuel cell (SOFC), including: a fuel electrode for allowing a fuel gas to be reacted; an air electrode for allowing a gas containing oxygen to be reacted; an electrolyte film provided between the fuel electrode and the air electrode; and a reaction prevention film provided between the air electrode and the electrolyte film. The reaction prevention film includes two layers including one layer of a porous layer having an interface with the electrolyte film; and one layer of a dense layer having an interface with the air electrode. The dense layer has a porosity of 5% or less and the porous layer has a porosity of 5.1 to 60%. The porous layer includes closed pores each having a diameter of 0.1 to 3 μm. The porous layer includes closed pores each including a component (such as Sr) for the air electrode.
US09214692B2 Poly(benzimidazole-co-benzoxazole) and method for preparing the same
Provided is poly(benzimidazole-co-benzoxazole) having polybenzimidazole to which benzoxazole units are introduced, as a polymer electrolyte material. The polymer electrolyte material has both high proton conductivity and excellent mechanical properties even when it is obtained by in-situ phosphoric acid doping. The polymer electrolyte material may substitute for the conventional phosphoric acid-doped polybenzimidazole in a polymer electrolyte membrane fuel cell, particularly in a high-temperature polymer electrolyte membrane fuel cell.
US09214690B2 Solid oxide fuel cell device
A solid oxide fuel cell device is provided which prevents excessive rising of the temperature inside a fuel cell module during the startup process. In a startup process, control unit controls to cause a transition from a fuel gas reforming reaction process to a POX process, an ATR process, and a SR process, then to a generating process; when the cell stack temperature and reformer temperature in each process satisfy respectively set transition conditions, a transition to the next process takes place; if control unit determines a temperature rise assist state exists, it executes an excess temperature rise suppression control so that during at least the transition to the generating process, the reformer temperature does not exceed a predetermined value.
US09214689B2 Operation control device and operation control method for fuel cell power plant
A fuel cell power plant stops anode gas supply to a fuel cell stack 1 by an anode gas supply mechanism 20 when an anode gas pressure in the fuel cell stack 1 reaches an upper limit pressure, and resumes supplying the anode gas by the anode gas supply mechanism 20 when the anode gas pressure in the fuel cell stack 1 lowers to a lower limit pressure. A sensor 52-54 detects if a hydrogen supply amount supplied to the fuel cell stack 1 satisfies a required amount to generate a target generated power, and a controller 51 corrects the lower limit pressure in an increasing direction when the hydrogen supply amount does not satisfy the required amount, thereby suppressing a generated power of the fuel cell stack 1 from reducing even when a flooding takes place in the fuel cell stack 1.
US09214688B2 Fuel cell system
A fuel cell system for generating power by supplying anode gas and cathode gas to a fuel cell includes a valve provided in the fuel cell system and to be driven by a stepping motor, a stop-time valve control unit for controlling a valve body of the valve to a predetermined initialization position by controlling the stepping motor when a request to stop the fuel cell system is made, and a valve initializing unit for rotating the stepping motor by a predetermined initialization step number smaller than a maximum step number of the stepping motor so that the valve body of the valve moves toward the initialization position when a request to start the fuel cell system is made.
US09214685B2 Fuel cell system
Piping interconnecting a fuel cell and a humidifier is laid with a rising gradient from the end on the humidifier side of the piping toward the end on the fuel cell side of the piping. The piping is first bent vertically downward and then vertically upward, and this forms a water containing trap in the piping. Problems caused by freezing of condensed water occurring in the piping can be avoided.
US09214681B2 Extended duration power supply
The present invention concerns a power supply (10) comprising a primary cell (11) adapted to provide a primary cell current. The primary cell (11) comprises an anode, a cathode current collector and an electrolyte, whereby a passivation layer is formed on a surface of the anode as a result of a chemical reaction between the anode and the electrolyte. To ensure that the passivation layer remains essentially intact for the lifetime of the primary cell, the power supply (10) further comprises a current limiter (12) that is configured to prevent the magnitude of the primary cell current exceeding a value that would damage the passivation layer.
US09214675B2 Electrolytic manganese dioxide and method for producing same, and method for producing lithium-manganese complex oxide
The invention provides electrolytic a manganese dioxide with a BET specific surface area of 20 to 60 m2/g, and a volume of at least 0.023 cm3/g for pores with pore diameters of 2 to 200 nm. Also provided is a method for producing an electrolytic manganese dioxide including a step of suspending a manganese oxide in a sulfuric acid-manganese sulfate mixed solution to obtain the electrolytic manganese dioxide, wherein a manganese oxide particles are continuously mixed with a sulfuric acid-manganese sulfate mixed solution, for a manganese oxide particle concentration of 5 to 200 mg/L in the sulfuric acid-manganese sulfate mixed solution. Still further provided is a method for producing a lithium-manganese complex oxide, including a step of mixing the electrolytic manganese dioxide with a lithium compound and heat treating the mixture to obtain a lithium-manganese complex oxide.
US09214674B2 Coated active material and lithium solid state battery
The problem of the present invention is to provide a coated active material having a soft coating layer and capable of improving a contact area. The present invention solves the above-mentioned problem by providing a coated active material comprising a cathode active material and a coating layer for coating the above-mentioned cathode active material, containing an Li ion conductive oxide, wherein the above-mentioned coating layer further contains lithium carbonate.
US09214669B2 Non-aqueous electrolyte secondary battery
A non-aqueous electrolyte secondary battery includes a positive electrode containing active material particles composed of a core section formed of olivine type LiFePO4; an intermediate section that lies on the outer side of the core section and has LiFexPyOz; and a surface section that lies on the outer side of the intermediate section and has LiFeaPbOc; and a negative electrode containing lithium titanate, in which battery the molar concentration ratio of Fe relative to P at the core section is greater than the average of x/y of LiFexPyOz, the average value of a/b of LiFeaPbOc at the surface section of the positive electrode active material particles is smaller than the average of x/y of LiFexPyOz, and the positive electrode active material particles include a region in which x/y of LiFexPyOz at the intermediate section increases continuously or intermittently in the direction from the surface section toward the core section.
US09214667B2 Lithium-ion secondary battery, anode for lithium-ion secondary battery, power tool, electric vehicle and energy storage system
A lithium-ion secondary battery allowed to improve cycle characteristics and initial charge-discharge characteristics is provided. The lithium-ion secondary battery includes: a cathode; an anode including an anode active material layer; and an electrolytic solution. The anode active material layer includes an anode active material and an inorganic compound, and the inorganic compound includes one or both of an alkoxysilane compound and a hydrolysate thereof.
US09214662B2 Electrode manufacturing method
An electrode manufacturing method includes: a coating process of applying a coating material to a metal foil while the metal foil is fed forward to form a coated foil; and a drying process of drying the coated foil by heating while the coated foil is fed forward to pass through a drying oven of a drying machine placed in line on a feeding path. The drying oven includes at least a first drying chamber which the coated foil first passes through in the drying process and a second drying chamber which the coated foil passes through following the first drying chamber. The first drying chamber has a smaller area in cross section perpendicular to the feed direction along the feeding path than an area of the second drying chamber to provide a smaller volume than a volume of the second drying chamber.
US09214655B2 Power storage device
A power storage device includes a plurality of power storage elements (10) lined up along a predetermined arrangement direction; a dividing member (40) that is made of insulating material and arranged between two adjacent power storage elements; a pair of end plates (31) that sandwich the plurality of power storage elements, and apply restraining force thereto, in the arrangement direction; and a metal connecting member (32) that extends in the arrangement direction and is fixed to the pair of end plates. The dividing member includes a retaining portion (42) that is positioned between the power storage elements and the connecting member, and that retains the connecting member.
US09214653B2 Secondary battery comprising terminal insulating members
Terminal insulating members 7A, 7B have inner side surfaces of a first support base 71A facing each other, and an engaging recesses 75 extending along a surface of a cover 6 are formed in inner surfaces of both the terminal insulating members. An outer surface along a short side of the cover in a second support base 72A is formed with an engaging recess 76 extending along a cover surface. The engaging recesses 75 and 76 of both the terminal insulating members are arranged to face each other. Further, both the terminal insulating members are also provided with engaging recesses 77 having a substantially circular cross-sectional shape on both side surfaces along a long side of the cover. The configuration can be used for positioning or fixing an accessory loaded into a secondary battery SB. As a result, a part only for loading an external part is unnecessary.
US09214648B2 Light extraction substrate and organic light-emitting device having the same
A light extraction substrate which can realize a superior light extraction efficiency when applied to an organic light-emitting device, and an organic light-emitting device having the same. The light extraction substrate includes a base substrate and a matrix layer. One surface of the matrix layer adjoins to the base substrate, and the other surface of the matrix layer adjoins to an organic light-emitting diode. The light extraction substrate also includes a rod array disposed inside the matrix layer. The rod array includes at least one rod which is arranged in a direction normal to the one surface of the matrix layer. The rod array and a cathode of the organic light-emitting diode form an antenna structure which guides light generated from the organic light-emitting diode to be emitted in the normal direction.
US09214645B1 Inverted top emitting device and method for producing same
An inverted top emitting device includes an TIO/Ag/ITO substrate, a cathode layer, an electron transport layer, an emissive layer, a hole transport layer, and an anode layer. The TIO/Ag/ITO substrate, the cathode layer, the electron transport layer, the emissive layer, the hole transport layer, and the anode layer are stacked in sequence. The cathode layer is made of cesium carbonate. The inverted top emitting device and its producing method provided by the present invention change the current structure of ITO/Ag/ITO/HTL/EML/ETL/Mg:Ag of the device to ITO/Ag/ITO/Cs2CO3/ETL/EML/HTL/MoO3/Ag. This avoids use of low work function metals, such as magnesium. Thus, even if the encapsulation is not satisfactory, the device is less likely to be oxidized by water and oxygen, providing the device with a longer service life.
US09214644B2 Active matrix dilute source enabled vertical organic light emitting transistor
Various embodiments are provided for dilute source enabled vertical organic light emitting transistors. In various embodiments, a display panel includes an array of pixels. In one embodiment, among others, at least one pixel includes a switching transistor and a driving transistor coupled to the switching transistor, where the driving transistor is configured to emit light responsive to activation by the switching transistor. The driving transistor may be a dilute source enabled vertical organic light emitting transistor (DS-VOLET). The switching transistor may include a dilute source enabled vertical-field effect transistor (DS-VFET). In another embodiment, a double dilute source enabled vertical-field effect transistor (DS-VFET) includes a first DS-VFET coupled to a second DS-VFET.
US09214640B2 Flexible display device having flexible display substrate with bending area between display area and peripheral circuit area
A flexible display device and a method of manufacturing the same are provided. The flexible display device comprises a first flexible substrate including a display area including an organic light emitting layer, and a peripheral circuit area, and a second flexible substrate coming in contact with the first flexible substrate and including a pattern for facilitating bending thereof, wherein the second flexible substrate has a certain shape according to the pattern, and the first flexible substrate has a shape corresponding to the certain shape. Various embodiments of the present invention provide a flexible display device capable of realizing a narrow bezel-type or bezel-free display device and simultaneously realizing improved types of design, facilitating bending of a bezel area so as to realize a narrow bezel-type or bezel-free display device, and minimizing damage to an area to be bent.
US09214639B2 Conductive polymer on a textured or plastic substrate
A conducting material can include a fibrous substrate and a conductive polymer coating on a surface of the fibrous substrate.
US09214637B2 Chalcogen-containing aromatic compound, organic semiconductor material, and organic electronic device
Provided are a novel chalcogen-containing aromatic compound and an organic electronic device using the compound. This compound is a chalcogen-containing aromatic compound represented by the formula (1). Among the organic electronic devices each using this chalcogen-containing aromatic compound are an organic EL device, an organic TFT device, a photovoltaic device, and the like. In the formula (1): X represents oxygen, sulfur, or selenium; A represents an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, or an amino group; and n's each independently represent an integer of 0 to 2, provided that a sum of two n's is 1 to 4.
US09214635B2 Anthradithiophene-based semiconducting polymers and methods thereof
Compositions, synthesis and applications for benzene, furan, thiophene, selenophene, pyrole, pyran, pyridine, oxazole, thiazole and imidazole derivatized anthra[2,3-b:6,7-b′]dithiophene (ADT) based polymers, namely, poly{5,11-bis(5-(2-ethylhexyl)thiophen-2-yl)anthra[2,3-b:6,7-b′]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl}, poly{5,11-bis(5-(2-ethylhexyl)furan-2-yl)anthra[2,3-b:6,7-b′]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl and poly{5,11-bis(5-(2-ethylhexyl)selenophen-2-yl)anthra[2,3-b:6,7-b′]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl} are disclosed. Further, an organic solar cell constructed of a derivatized anthra[2,3-b:6,7-b′]dithiophene (ADT) based polymer is discussed.
US09214630B2 Method of making a multicomponent film
Described herein is a method and precursor composition for depositing a multicomponent film. In one embodiment, the method and composition described herein is used to deposit a germanium-containing film such as Germanium Tellurium, Antimony Germanium, and Germanium Antimony Tellurium (GST) films via an atomic layer deposition (ALD) and/or other germanium, tellurium and selenium based metal compounds for phase change memory and photovoltaic devices. In this or other embodiments, the Ge precursor used comprises trichlorogermane.
US09214629B2 Resistive memory and method for fabricating the same
A resistive memory having a leakage inhibiting characteristic and a method for fabricating the same, which can suppress a sneak current in a large scaled crossing array of a RRAM. A memory cell forming the resistive memory comprises a lower electrode, a first semiconductor-type oxide layer, a resistive material layer, a second semiconductor-type oxide layer and an upper electrode which are sequentially stacked. Each of the semiconductor-type oxide layers may be a semiconductor-type metal oxide or a semiconductor-type non-metal oxide. The sneak current may be effectively reduced by means of a Schottky barrier formed between the semiconductor-type oxide layer and the metal electrode, the fabrication process is easy to be implemented, and a high device integration degree can be achieved.
US09214627B2 Memory cell arrays
Some embodiments include memory cells. The memory cells may have a first electrode, and a trench-shaped programmable material structure over the first electrode. The trench-shape defines an opening. The programmable material may be configured to reversibly retain a conductive bridge. The memory cell may have an ion source material directly against the programmable material, and may have a second electrode within the opening defined by the trench-shaped programmable material. Some embodiments include arrays of memory cells. The arrays may have first electrically conductive lines, and trench-shaped programmable material structures over the first lines. The trench-shaped structures may define openings within them. Ion source material may be directly against the programmable material, and second electrically conductive lines may be over the ion source material and within the openings defined by the trench-shaped structures.
US09214625B2 Thermally assisted MRAM with increased breakdown voltage using a double tunnel barrier
A mechanism is provided for a thermally assisted magnetoresistive random access memory device (TAS-MRAM). A non-magnetic heating structure is formed of a barrier seed layer disposed on a buffer layer. A non-magnetic tunnel barrier is disposed on the barrier seed layer. A barrier cap layer is disposed on the non-magnetic tunnel barrier. A top buffer layer is disposed on the barrier cap layer. An antiferromagnetic layer is disposed on the top buffer layer of the non-magnetic heating structure. A magnetic tunnel junction is disposed on the antiferromagnetic layer. The magnetic tunnel junction includes a ferromagnetic storage layer disposed on the antiferromagnetic layer, a non-magnetic active tunnel barrier disposed on the ferromagnetic storage layer, and a ferromagnetic sense layer disposed on the non-magnetic active tunnel barrier.
US09214624B2 Amorphous spacerlattice spacer for perpendicular MTJs
A perpendicular magnetic tunnel junction (MTJ) apparatus includes a tunnel magnetoresistance (TMR) enhancement buffer layer deposited between the tunnel barrier layer and the reference layers An amorphous alloy spacer is deposited between the TMR enhancement buffer layer and the reference layers to enhance TMR The amorphous alloy spacer blocks template effects of face centered cubic (fcc) oriented pinned layers and provides strong coupling between the pinned layers and the TMR enhancement buffer layer to ensure full perpendicular magnetization.
US09214621B2 Piezoelectric multilayer component and method for forming an external electrode in a piezoelectric multilayer component
A piezoelectric multilayer component is specified. At least one external electrode is fixed to a stack of piezoelectric layers and electrode layers arranged therebetween. At least one region of the external electrode projects beyond the stack and the external electrode is at least partly pressure-deformed in said region. Furthermore, a method for forming an external electrode in a piezoelectric multilayer component is specified.
US09214620B2 Piezoelectric actuator with outer electrode
A piezoelectric actuator of a multilayer design has a stack of piezoelectric layers and electrode layers arranged in between. The electrode layers are contacted by way of two outer electrodes, which have a multiplicity of wires. The outer electrodes are fastened in fastening regions on first side faces of the stack and are led around the edge of the stack that is closest to the respective fastening region.
US09214616B2 Solid state light sources based on thermally conductive luminescent elements containing interconnects
Solid state light sources based on LEDs mounted on or within thermally conductive luminescent elements provide both convective and radiative cooling. Low cost self-cooling solid state light sources can integrate the electrical interconnect of the LEDs and other semiconductor devices. The thermally conductive luminescent element can completely or partially eliminate the need for any additional heatsinking means by efficiently transferring and spreading out the heat generated in LED and luminescent element itself over an area sufficiently large enough such that convective and radiative means can be used to cool the device.
US09214610B2 Method and apparatus for fabricating phosphor-coated LED dies
A lighting apparatus includes a first doped semiconductor layer, a light-emitting layer disposed over the first doped semiconductor layer, a second doped semiconductor layer disposed over the light-emitting layer, a first conductive terminal, a second conductive terminal, and a photo-conversion layer. The second doped semiconductor layer has a different type of conductivity than the first doped semiconductor layer. The first conductive terminal and the second conductive terminal each are disposed below the first doped semiconductor layer. The photo-conversion layer is disposed over the second doped semiconductor layer and on side surfaces of the first and second doped semiconductor layers and the light-emitting layer. A bottommost surface of the photo-conversion layer is located closer to the second doped semiconductor layer than bottom surfaces of the first and second conductive terminals.
US09214606B2 Method of manufacturing light-emitting diode package
A method of manufacturing a light-emitting diode package is illustrated. A light-emitting diode chip is manufactured. A material layer is formed on side surfaces and a rear surface of the light-emitting diode chip. The material layer is then oxidized to convert the material layer into an oxidized layer to form a reflective layer on the side surfaces and the rear surface of the light-emitting diode chip. The light-emitting diode chip is packaged.
US09214605B2 Nitride semiconductor light emitting device
A nitride semiconductor light emitting device includes a laminate, first and second electrodes, a conductive layer, and a phosphor layer. The laminate includes a first layer including a first electroconductive-type layer, a second layer including a second electroconductive-type layer, a light emitting layer between the first and second layers, and a nitride semiconductor. The laminate has a recessed portion extending from the first layer to the second layer in a central portion or an outer peripheral portion. The first electrode arranged on the first layer reflects light emitted from the light emitting layer. The second electrode is surrounded by the light emitting layer or on the periphery thereof and connected to a bottom surface of the recessed portion. The conductive layer is arranged on a surface of the second layer at a side opposite to the light emitting layer. The phosphor layer overlies the second layer and the conductive layer.
US09214600B2 Optoelectronic semiconductor chip
An optoelectronic semiconductor chip includes a number active regions that are arranged at a distance from each other and a substrate that is arranged on an underside of the active regions. One of the active regions has a main extension direction. The active region has a core region that is formed using a first semiconductor material. The active region has an active layer that covers the core region at least in directions perpendicular to the main extension direction of the active region. The active region has a cover layer that is formed using a second semiconductor material and covers the active layer at least in directions perpendicular to the main extension direction of the active region.
US09214592B2 Method of making interposer package for CMOS image sensor
An image sensor package and method of manufacture that includes a crystalline handler with conductive elements extending therethrough, an image sensor chip disposed in a cavity of the handler, and a transparent substrate disposed over the cavity and bonded to both the handler and image sensor chip. The transparent substrate includes conductive traces that electrically connect the sensor chip's contact pads to the handler's conductive elements, so that off-chip signaling is provided by the substrate's conductive traces and the handler's conductive elements.
US09214583B2 Method to build transparent polarizing solar cell
The present disclosure provides a means to build a solar cell that is transparent to and polarizes visible light, and to transfer the energy thus generated to electrical power wires.
US09214580B2 Multi-junction solar cell with dilute nitride sub-cell having graded doping
A lattice-matched solar cell having a dilute nitride-based sub-cell has exponential doping to thereby control current-carrying capacity of the solar cell. Specifically a solar cell with at least one dilute nitride sub-cell that has a variably doped base or emitter is disclosed. In one embodiment, a lattice matched multi junction solar cell has an upper sub-cell, a middle sub-cell and a lower dilute nitride sub-cell, the lower dilute nitride sub-cell having doping in the base and/or the emitter that is at least partially exponentially doped so as to improve its solar cell performance characteristics. In construction, the dilute nitride sub-cell may have the lowest bandgap and be lattice matched to a substrate, the middle cell typically has a higher bandgap than the dilute nitride sub-cell while it is lattice matched to the dilute nitride sub-cell. The upper sub-cell typically has the highest bandgap and is lattice matched to the adjacent sub-cell. In further embodiments, a multi junction solar cell according to the invention may comprise four, five or more sub-cells in which the one or more sub-cells may each comprise exponentially doped dilute nitride alloys.
US09214567B2 Nanowire compatible E-fuse
An e-fuse is provided in one area of a semiconductor substrate. The E-fuse includes a vertical stack of from, bottom to top, base metal semiconductor alloy portion, a first metal semiconductor alloy portion, a second metal semiconductor portion, a third metal semiconductor alloy portion and a fourth metal semiconductor alloy portion, wherein the first metal semiconductor alloy portion and the third metal semiconductor portion have outer edges that are vertically offset and do not extend beyond vertical edges of the second metal semiconductor alloy portion and the fourth metal semiconductor alloy portion.
US09214566B2 Semiconductor device
A semiconductor device in which release of oxygen from side surfaces of an oxide semiconductor film including c-axis aligned crystal parts can be prevented is provided. The semiconductor device includes a first oxide semiconductor film, a second oxide semiconductor film including c-axis aligned crystal parts, and an oxide film including c-axis aligned crystal parts. In the semiconductor device, the first oxide semiconductor film, the second oxide semiconductor film, and the oxide film are each formed using a IGZO film, where the second oxide semiconductor film has a higher indium content than the first oxide semiconductor film, the first oxide semiconductor film has a higher indium content than the oxide film, the oxide film has a higher gallium content than the first oxide semiconductor film, and the first oxide semiconductor film has a higher gallium content than the second oxide semiconductor film.
US09214565B2 Semiconductor device and method for manufacturing semiconductor device
Provided is a miniaturized transistor having high electrical characteristics. The transistor includes a source electrode layer in contact with one side surface of the oxide semiconductor layer in the channel-length direction and a drain electrode layer in contact with the other side surface thereof. The transistor further includes a gate electrode layer in a region overlapping with a channel formation region with a gate insulating layer provided therebetween and a conductive layer having a function as part of the gate electrode layer in a region overlapping with the source electrode layer or the drain electrode layer with the gate insulating layer provided therebetween and in contact with a side surface of the gate electrode layer. With such a structure, an Lov region is formed with a scaled-down channel length maintained.
US09214564B2 Thin film transistor and organic light emitting diode display having minimal overlap of gate electrode by source and drain electrodes
A thin film transistor (TFT) includes a gate electrode disposed on a substrate. An oxide semiconductor layer is disposed on the gate electrode. An insulation layer is disposed on the oxide semiconductor layer. The insulation layer includes a first contact hole that exposes a first part of the oxide semiconductor layer corresponding to a first end of the gate electrode and a second contact hole that exposes a second part of the oxide semiconductor layer corresponding to an opposite end of the gate electrode. A source electrode is disposed on the insulation layer and contacts the first part of the oxide semiconductor layer through the first contact hole. A drain electrode is disposed on the insulation layer and contacts the second part of the oxide semiconductor layer through the second contact hole.
US09214562B2 Method of manufacturing field-effect transistor, field-effect display device and electromagnetic wave detector
There is provided a method of manufacturing a field-effect transistor, in which on a electroconductive layer including a source electrode, a drain electrode and pixel electrode formed by a conductive layer-forming, an inorganic insulating layer containing an inorganic material as a main component is formed so as to cover the electroconductive layer and an oxide semiconductive layer, and after a photoresist film is formed on the inorganic insulating layer and is exposed in a pattern shape, a resist pattern is formed by being developed using a developer in development, and by removing the area exposed from the resist pattern in the inorganic insulating layer by using the developer as an etching liquid, a part of the electroconductive layer is exposed, thereby forming a contact hole; a field-effect transistor, a display device and an electromagnetic wave detector.
US09214556B2 Self-aligned dual-metal silicide and germanide formation
A method includes growing an epitaxy semiconductor region at a major surface of a wafer. The epitaxy semiconductor region has an upward facing facet facing upwardly and a downward facing facet facing downwardly. The method further includes forming a first metal silicide layer contacting the upward facing facet, and forming a second metal silicide layer contacting the downward facing facet. The first metal silicide layer and the second metal silicide layer comprise different metals.
US09214553B2 Methods of forming stressed channel regions for a FinFET semiconductor device and the resulting device
One method disclosed includes, among other things, forming an initial fin structure comprised of portions of a substrate, a first epi semiconductor material and a second epi semiconductor material, forming a layer of insulating material so as to over-fill the trenches that define the fin, recessing a layer of insulating material such that a portion, but not all, of the second epi semiconductor portion of the final fin structure is exposed, forming a gate structure around the final fin structure, further recessing the layer of insulating material such that the first epi semiconductor material is exposed, removing the first epi semiconductor material to thereby define an under-fin cavity and substantially filling the under-fin cavity with a stressed material.
US09214550B2 Quasi-vertical structure having a sidewall implantation for high voltage MOS device
A semiconductor device includes a buried layer in a substrate, the buried layer having a first dopant type. The semiconductor device further includes a first layer over the buried layer, the first layer having the first dopant type. The semiconductor device further includes at least one first well in the first layer, the at least one first well having a second dopant type. The semiconductor device further includes an implantation region in a sidewall of the first layer, the implantation region having the second dopant type, wherein the implantation region is below the at least one first well. The semiconductor device further includes a metal electrode extending from the buried layer to a drain contact, wherein the metal electrode is insulated from the first layer and the at least one first well by an insulation layer.
US09214548B1 High voltage integrated devices, methods of fabricating the same, electronic devices including the same, and electronic systems including the same
A high voltage integrated device includes a drift region in a substrate, a source region in the substrate and spaced apart from the drift region, a drain region in the drift region, a trench insulation layer in the drift region between the source region and the drain region, and a gate insulation layer and a gate electrode sequentially stacked on the substrate between the source region and the drift region and extending onto the trench insulation layers. The upper sidewall of the first trench insulation layer has a first angle to the bottom surface thereof and the lower sidewall of the first trench insulation layer has a second angle, which is smaller than the first angle, to the bottom surface thereof.
US09214546B2 Silicon carbide switching device with novel overvoltage detection element for overvoltage control
A semiconductor device includes a silicon carbide semiconductor substrate, a silicon carbide layer, a switching element section, and an overvoltage detection element section whose area is smaller than that of the switching element section. The switching element section includes a first electrode pad, a first terminal section surrounding the first electrode pad and provided in the silicon carbide layer, and a first insulating film covering the first terminal section. The overvoltage detection element section includes a second electrode pad, a second terminal section surrounding the second electrode pad and provided in the silicon carbide layer, and a second insulating film covering the second terminal section and being in contact with the silicon carbide layer. A breakdown field strength of at least part of a portion of the second insulating film being in contact with the silicon carbide layer is lower than that of the first insulating film.
US09214545B2 Dual gate oxide trench MOSFET with channel stop trench
A semiconductor device has a plurality of gate electrodes over a gate insulator layer formed in active trenches located in an active region of a semiconductor substrate. A first gate runner is formed in the semiconductor substrate and electrically connected to the gate electrodes. The first gate runner abuts and surrounds the active region. A second gate runner is connected to the first gate runner to make contact to a gate metal. A dielectric filled trench surrounds the first and second gate runners and the active region and a highly doped channel stop region is formed under the dielectric filled trench.
US09214544B2 Source and body contact structure for trench-DMOS devices using polysilicon
A semiconductor device includes a gate electrode, a top source region disposed next to the gate electrode, a drain region disposed below the bottom of the gate electrode, a oxide disposed on top of the source region and the gate electrode, and a doped polysilicon spacer disposed along a sidewall of the source region and a sidewall of the oxide. Methods for manufacturing such device are also disclosed. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
US09214542B2 Semiconductor device with integrated electrostatic discharge (ESD) clamp
A device includes a substrate, a body region in the substrate and having a first conductivity type, source and drain regions in the substrate, having a second conductivity type, and spaced from one another to define a conduction path that passes through the body region, a doped isolating region in the substrate, having the second conductivity type, and configured to surround a device area in which the conduction path is disposed, an isolation contact region in the substrate, having the second conductivity type, and electrically coupled to the doped isolating region to define a collector region of a bipolar transistor, and first and second contact regions within the body region, having the first and second conductivity types, respectively, and configured to define a base contact region and an emitter region of the bipolar transistor, respectively.
US09214541B2 Self-aligned contact for replacement gate devices
A conductive top surface of a replacement gate stack is recessed relative to a top surface of a planarization dielectric layer by at least one etch. A dielectric capping layer is deposited over the planarization dielectric layer and the top surface of the replacement gate stack so that the top surface of a portion of the dielectric capping layer over the replacement gate stack is vertically recessed relative to another portion of the dielectric layer above the planarization dielectric layer. The vertical offset of the dielectric capping layer can be employed in conjunction with selective via etch processes to form a self-aligned contact structure.
US09214539B2 Gallium nitride transistor with a hybrid aluminum oxide layer as a gate dielectric
Some embodiments of the present disclosure relates to a hybrid gate dielectric layer that has good interface and bulk dielectric properties. Surface traps can degrade device performance and cause large threshold voltage shifts in III-N HEMTs. This disclosure uses a hybrid ALD (atomic layer deposited)-oxide layer which is a combination of H2O-based and O3/O2-based oxide layers that provide both good interface and good bulk dielectric properties to the III-N device. The H2O-based oxide layer provides good interface with the III-N surface, whereas the O3/O2-based oxide layer provides good bulk properties.
US09214538B2 High performance multigate transistor
A novel semiconductor power transistor is presented. The semiconductor structure is simple and is based on a FET structure, where multiple channels and multiple gate regions are formed in order to achieve a lower specific on-resistance, and a higher control on the transport properties of the device. No dielectric layer is present between gate electrodes and device channels, decreasing the parasitic capacitance associated with the gate terminal. The fabrication of the device does not require Silicon On Insulator techniques and it is not limited to Silicon semiconductor materials. It can be fabricated as an enhancement or depletion device with much more control on the threshold voltage of the device, and with superior RF performance.
US09214536B2 Lateral insulated gate bipolar transistor
A lateral insulated gate bipolar transistor includes a semiconductor substrate including a drift layer, a collector region, a channel layer, an emitter region, a gate insulating layer, a gate electrode, a collector electrode, an emitter electrode, and a barrier layer. The barrier layer is disposed along either side of the collector region and is located to a depth deeper than a bottom of the channel layer. The barrier layer has an impurity concentration that is higher than an impurity concentration of the drift layer. The barrier layer has a first end close to the collector region and a second end far from the collector region. The first end is located between the channel layer and the collector region, and the second end is located on the bottom of the channel layer.
US09214535B2 Semiconductor device
A collector layer of a first conductivity type is provided in the IGBT region and the boundary region and functions as a collector of the IGBT in the IGBT region. A cathode layer of a second conductivity type is provided in the diode region apart from the collector layer and functions as a cathode of the diode. A drift layer of the second conductivity type is provided in the IGBT region, the boundary region, and the diode region, the drift layer being provided on sides of the collector layer and the cathode layer opposite the first electrode. A diffusion layer of the first conductivity type is provided in the boundary region on a side of the drift layer opposite the first electrode.
US09214530B2 Methods of forming semiconductor devices including a stressor in a recess
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
US09214529B2 Fin Fet device with independent control gate
A FinFET device with an independent control gate, including: a silicon-on-insulator substrate; a non-planar multi-gate transistor disposed on the silicon-on-insulator substrate, the transistor comprising a conducting channel wrapped around a thin silicon fin; a source/drain extension region; an independently addressable control gate that is self-aligned to the fin and does not extend beyond the source/drain extension region, the control gate comprising: a thin layer of silicon nitride; and a plurality of spacers.
US09214528B2 Method to fabricate self-aligned isolation in gallium nitride devices and integrated circuits
A method for forming an enhancement mode GaN HFET device with an isolation area that is self-aligned to a contact opening or metal mask window. Advantageously, the method does not require a dedicated isolation mask and the associated process steps, thus reducing manufacturing costs. The method includes providing an EPI structure including a substrate, a buffer layer a GaN layer and a barrier layer. A dielectric layer is formed over the barrier layer and openings are formed in the dielectric layer for device contact openings and an isolation contact opening. A metal layer is then formed over the dielectric layer and a photoresist film is deposited above each of the device contact openings. The metal layer is then etched to form a metal mask window above the isolation contact opening and the barrier and GaN layer are etched at the portion that is exposed by the isolation contact opening in the dielectric layer.
US09214527B2 Methods of forming diodes
Some embodiments include methods of forming diodes in which a first electrode is formed to have a pedestal extending upwardly from a base. At least one layer is deposited along an undulating topography that extends across the pedestal and base, and a second electrode is formed over the least one layer. The first electrode, at least one layer, and second electrode together form a structure that conducts current between the first and second electrodes when voltage of one polarity is applied to the structure, and that inhibits current flow between the first and second electrodes when voltage having a polarity opposite to said one polarity is applied to the structure. Some embodiments include diodes having a first electrode that contains two or more projections extending upwardly from a base, having at least one layer over the first electrode, and having a second electrode over the at least one layer.
US09214526B2 Semiconductor device
A semiconductor device includes: a drift layer having a first conductivity type; a body layer having a second conductivity type; a first semiconductor region having the first conductivity type; a gate insulation film; a trench gate electrode; a first main electrode; a second semiconductor region having the second conductivity type; and a conductor region. The first main electrode is electrically connected with the body layer and the first semiconductor region. The second semiconductor region is disposed on a bottom part of the gate trench, and is surrounded by the drift layer. The conductor region is configured to electrically connect the first main electrode with the second semiconductor region and is configured to equalize, when the semiconductor device is in an off-state, a potential of the second semiconductor region and a potential of the first main electrode.
US09214521B2 Reverse conducting IGBT
A semiconductor device includes a first emitter region of a first conductivity type, a second emitter region of a second conductivity type complementary to the first type, a drift region of the second conductivity type, and a first electrode. The first and second emitter regions are arranged between the drift region and first electrode and each connected to the first electrode. A device cell of a cell region includes a body region of the first conductivity type adjoining the drift region, a source region of the second conductivity type adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. A second electrode is electrically connected to the source and body regions. A parasitic region of the first conductivity type is disposed outside the cell region and includes at least one section with charge carrier lifetime reduction means.
US09214519B2 In2O3—SnO2—ZnO sputtering target
A sputtering target including indium (In), tin (Sn) and zinc (Zn) and an oxide including one or more elements X selected from the following group X, the atomic ratio of the elements satisfying the following formulas (1) to (4): Group X: Mg, Si, Al, Sc, Ti, Y, Zr, Hf, Ta, La, Nd, Sm 0.10≦In/(In+Sn+Zn)≦0.85  (1) 0.01≦Sn/(In+Sn+Zn)≦0.40  (2) 0.10≦Zn/(In+Sn+Zn)≦0.70  (3) 0.70≦In/(In+X)≦0.99  (4).
US09214516B2 Field effect silicon carbide transistor
In a SiC-MOSFET power device for which a SiC substrate is used, a laminated insulating film having a charge-trapping characteristic is employed as a gate insulating film of the SiC-DiMOSFET, and charges are injected into the laminated insulating film, thereby suppressing a change in the gate threshold voltage.
US09214515B2 Method for making a semiconductor structure with a buried ground plane
The invention relates to a method for making a semiconducting structure, including: a) forming, on the surface of a semiconductor substrate (2), called the final substrate, a semiconducting layer (4), doped with elements from columns III and V of the Periodic Table so as to form a ground plane, b) forming a dielectric layer (3), c) then assembling, by direct adhesion of the source substrate, on the final substrate (2), the layer (4) forming the ground plane between the final substrate and the source substrate, the dielectric layer being between the source substrate and the ground plane, d) then thinning the source substrate, leaving, on the surface of the semiconductor structure, a film (20) made from a semiconducting material.
US09214514B2 Mechanisms for forming semiconductor device having stable dislocation profile
Embodiments that relate to mechanisms for providing a stable dislocation profile are provided. A semiconductor substrate having a gate stack is provided. An opening is formed adjacent to a side of the gate stack. A first part of an epitaxial growth structure is formed in the opening. A second part of the epitaxial growth structure is formed in the opening. The first part and the second part of the epitaxial growth structure are formed along different directions.
US09214513B2 Fin structure and method for forming the same
According to an exemplary embodiment, a method of forming a fin structure is provided. The method includes the following operations: etching a first dielectric layer to form at least one recess and a first core portion of a fin core; form an oxide layer as a shallow trench isolation layer in the recess; etching back the oxide layer to expose a portion of the fin core; and forming a fin shell to cover a sidewall of the exposed portion of the fin core.
US09214510B2 OLED lighting device with short tolerant structure
A first device that may include a short tolerant structure, and methods for fabricating embodiments of the first device, are provided. A first device may include a substrate and a plurality of OLED circuit elements disposed on the substrate. Each OLED circuit element may include a fuse that is adapted to open an electrical connection in response to an electrical short in the pixel. Each OLED circuit element may comprise a pixel that may include a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. Each of the OLED circuit elements may not be electrically connected in series with any other of the OLED circuit elements.
US09214509B2 Display device
A display device includes a pixel unit including a plurality of pixels coupled to a plurality of control lines and to a plurality of power lines to commonly receive same control signals and power source, a plurality of inlet pads positioned outside the pixel unit, the plurality of inlet pads being configured to apply the power source to the plurality of power lines, a pad bar electrically coupling the plurality of inlet pads, and a plurality of coupling patterns contacting end portions of the plurality of power lines and corresponding end portions of the pad bar, the plurality of coupling patterns electrically connecting the plurality of power lines and the pad bar, and one or more of the end portions of the pad bar and the ends portions of the plurality of power lines have different contact areas with the plurality of coupling patterns.
US09214506B2 Pixel unit driving circuit, method for driving pixel unit driving circuit and display device
A pixel unit driving circuit provides a method for driving a pixel unit for operating a display device. The circuit comprises four TFT transistors and two capacitors. The display process is divided into three processes, which are a pre-charging phase, a compensation phase and a display phase. As compared with the conventional pixel structure, the nonuniformity and the shift of the threshold voltage of the depleted TFT or the enhanced TFT driving transistor, and the nonuniformity of the OLED voltage may be effectively compensated.
US09214502B2 Photodetector and up-conversion device with gain
Embodiments of the invention are directed to IR photodetectors with gain resulting from the positioning of a charge multiplication layer (CML) between the cathode and the IR sensitizing layer of the photodetector, where accumulating charge at the CML reduces the energy difference between the cathode and the CML to promote injection of electrons that result in gain for an electron only device. Other embodiments of the invention are directed to inclusion of the IR photodetectors with gain into an IR-to-visible up-conversion device that can be used in night vision and other applications.
US09214500B2 Pixel structure of electroluminescent display panel
A pixel structure of an electroluminescent display panel includes display pixel units. Each display pixel unit is composed of one first sub-pixel, one second sub-pixel, and one third sub-pixel. Each first sub-pixel is disposed adjacent to another first sub-pixel along a column direction to form a first pixel unit with a first frame. Each second sub-pixel is disposed adjacent to another second sub-pixel along the column direction to form a second pixel unit with a second frame. Each third sub-pixel is disposed adjacent to another third sub-pixel along the column direction to form a third pixel unit with a third frame. Each first, second, and third pixel units respectively have an identical first length along the column direction. Each first pixel unit and one adjacent first pixel unit disposed in a different row are shifted relatively along the row direction by the first length.
US09214498B2 Organic light emitting display device and driving method of the same
An organic light emitting display device comprises: a lower substrate; a underlying wire formed on the lower substrate; and red, green, and blue subpixels each comprising a transistor section formed on the lower substrate and an organic light emitting diode, wherein the white subpixel comprises a first electrode which is non-overlapped with the underlying wire and is spaced apart from the underlying wire.
US09214495B1 Memory cell structure and formation method thereof
A memory cell structure is provided. A first doping region is formed in a substrate. A second doping region is formed in the substrate. A first gate is formed on the substrate. The first and second doping regions and the first gate constitute a first transistor. A first word line is electrically connected to the first gate. The first word line firstly extends along a first direction and then along a second direction which is different from the first direction. A resistive layer is electrically connected to the first doping region. A conductive layer comprises a first source line and a bit line. The first source line is electrically connected to the second doping region, and the bit line is electrically connected to the resistive layer. The first and second doping regions extend along a third direction which is different from the first and second directions.
US09214493B2 Light emitting device
It is an object of the invention to provide a light emitting device in which burden on a light emitting element having low luminous efficiency is relieved, and the deterioration of a light emitting element, the reduction in color reproduction due to the deteriorated light emitting element, and increase in electric power consumption can be suppressed. A light emitting device according to the invention has light emitting elements each of which emits one of colors corresponding to three primary colors. Further, one feature of the light emitting device according to the invention has a light emitting element which emits a neutral color. The light emitting device according to the invention has a structure in which a plurality of pixels having light emitting elements each of which emits one of colors corresponding to three primary colors, and a light emitting element which emits a neutral color as one group, are arranged.
US09214492B2 Multispectral sensor
The present invention relates to a color and non-visible light e.g. IR sensor, namely a multispectral sensor which can be used in a camera such as a TOF camera for depth measurement, reflectance measurement and color measurement, and for generation of 3D image data or 3D images as well as the camera itself and methods of operating the same.
US09214484B2 Image sensor packages
An image sensor package may include: a package substrate including a chip attachment area on an upper surface thereof, a pad area having a plurality of pads around the chip attachment area, and a holder attachment area at an outside of the pad area, wherein an upper surface of the holder attachment area is at a lower level than an upper surface of the pad area; an image sensor chip mounted on the chip attachment area of the package substrate; a transparent member above the package substrate and configured to cover the image sensor chip; and a holder on the holder attachment area of the package substrate and configured to fix the transparent member.
US09214480B2 Display device and method of manufacturing the same
A display device and a method of manufacturing the same are disclosed, in which a sensing electrode for sensing a touch of a user is built in a display panel, whereby a separate touch screen is not required on an upper surface of the display panel unlike the related art and thus thickness and manufacturing cost are reduced.
US09214476B1 Pixel structure
A pixel structure includes a first conductive layer, a semiconductor layer, an insulating layer, a second conductive layer, a passivation layer, and a first electrode layer. The first conductive layer includes a scan line and a bottom electrode. The semiconductor layer includes a first semiconductor pattern having a first source region, a first drain region, and a first channel region. The insulating layer is disposed on the semiconductor layer. The second conductive layer is disposed on the insulating layer and includes a top electrode, a first gate, a first source, a first drain, and a data line connected with the first source. The bottom electrode and the top electrode overlap to form a capacitor. The passivation layer covers the first and second conductive layers and the semiconductor layer. The first electrode layer is disposed on the passivation layer and provides electrical connection to different layers.
US09214471B2 Memory architecture of 3D array with diode in memory string
A 3D memory device includes a plurality of ridge-shaped stacks, in the form of multiple strips of conductive material separated by insulating material, arranged as strings which can be coupled through decoding circuits to sense amplifiers. Diodes are connected to the bit line structures at either the string select of common source select ends of the strings. The strips of conductive material have side surfaces on the sides of the ridge-shaped stacks. A plurality of conductive lines arranged as word lines which can be coupled to row decoders, extends orthogonally over the plurality of ridge-shaped stacks. Memory elements lie in a multi-layer array of interface regions at cross-points between side surfaces of the conductive strips on the stacks and the conductive lines.
US09214470B2 Non-volatile memory device with vertical memory cells and method for fabricating the same
A non-volatile memory device includes a plurality of gate electrodes stacked over a semiconductor substrate and stretched in a first direction along the semiconductor substrate and a plurality of junction layers having a first region protruding from the semiconductor substrate and crossing the gate electrodes and a second region formed between the gate electrodes.
US09214463B2 Methods of forming metal silicide regions on a semiconductor device
An integrated circuit device includes a PMOS transistor and an NMOS transistor. The PMO transistor includes a gate electrode, at least one source/drain region, a first sidewall spacer positioned adjacent the gate electrode of the PMOS transistor, and a multi-part second sidewall spacer positioned adjacent the first sidewall spacer of the PMOS transistor, wherein the multi-part second sidewall spacer includes an upper spacer and a lower spacer. The NMOS transistor includes a gate electrode, at least one source/drain region, a first sidewall spacer positioned adjacent the gate electrode of the NMOS transistor, and a single second sidewall spacer positioned adjacent the first sidewall spacer of the NMOS transistor. A metal silicide region is positioned on each of the gate electrodes and on each of the at least one source/drain regions of the PMOS and the NMOS transistors.
US09214457B2 Method of integrating high voltage devices
The present invention is directed to a method for forming multiple active components, such as bipolar transistors, MOSFETs, diodes, etc., on a semiconductor substrate so that active components with higher operation voltage may be formed on a common substrate with a lower operation voltage device and incorporating the existing proven process flow of making the lower operation voltage active components. The present invention is further directed to a method for forming a device of increasing operation voltage over an existing device of same functionality by adding a few steps in the early manufacturing process of the existing device therefore without drastically affecting the device performance.
US09214455B2 Stub minimization with terminal grids offset from center of package
A microelectronic package includes a microelectronic element having memory storage array function overlying a first surface of a substrate, the microelectronic element having a plurality of contacts aligned with an aperture in the substrate. First terminals which are configured to carry all address signals transferred to the package can be exposed within a first region of a second substrate surface, the first region disposed between the aperture and a peripheral edge of the substrate. The first terminals may be configured to carry all command signals, bank address signals and command signals transferred to the package, the command signals being write enable, row address strobe, and column address strobe.
US09214453B2 Optical device and method for manufacturing same
The present invention relates to an optical device and a method for manufacturing the same. The technical object of the invention is to realize a surface emitting body which allows heat generated from a light-emitting chip to be easily dissipated, eliminates the need for an additional wiring layer, and allows a singular light emitting chips or a plurality of light emitting chips to be arranged in series, in parallel, or in series-parallel. The present invention discloses an optical device comprising: a substrate; a plurality of light emitting chips disposed on the substrate; a plurality of conductive wires which electrically connect the substrate with the light emitting chips such that the plurality of light emitting chips are connected to each other in series, in parallel or in series-parallel; and a protective layer which covers the plurality of light emitting chips and the plurality of conductive wires on the substrate.
US09214452B2 Semiconductor package and method for fabricating the same
A semiconductor package includes a package substrate on which a substrate pad is disposed, a structure disposed over the package substrate, a semiconductor chip disposed over the structure using an adhesive member having a magnetic material layer disposed therein, a chip pad disposed on a top surface of the semiconductor chip, and a bonding wire coupling the substrate pad and the chip pad.
US09214450B2 Package-on-package with via on pad connections
An interposer includes a core dielectric material, a conductive pipe penetrating through the core dielectric material, and a metal pad underlying the conductive pipe. The metal pad includes a center portion overlapped by a region encircled by the conductive pipe, and an outer portion in contact with the conductive pipe. A dielectric layer is underlying the core dielectric material and the metal pad. A via is in the dielectric layer, wherein the via is in physical contact with the center portion of the metal pad.
US09214439B2 Forming in-situ micro-feature structures with coreless packages
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, forming dielectric material surrounding the die, forming buildup layers in the dielectric material to form a coreless bumpless buildup package structure, and patterning the carrier material to form microchannel structures on the package structure.
US09214430B2 Semiconductor device and method for manufacturing semiconductor device
Provided are a semiconductor device in which abrasive grain marks are formed in a surface of a semiconductor substrate, a dopant diffusion region has a portion extending in a direction which forms an angle included in a range of −5° to +5° with a direction in which the abrasive grain marks extend, and the dopant diffusion region is formed by diffusing a dopant from a doping paste placed on one surface of the semiconductor substrate; and a method for manufacturing the semiconductor device.
US09214425B2 Low-stress vias
A component can include a substrate having a front surface and a rear surface remote therefrom, an opening extending from the rear surface towards the front surface, and a conductive via extending within the opening. The substrate can have a CTE less than 10 ppm/° C. The opening can define an inner surface between the front and rear surfaces. The conductive via can include a first metal layer overlying the inner surface and a second metal region overlying the first metal layer and electrically coupled to the first metal layer. The second metal region can have a CTE greater than a CTE of the first metal layer. The conductive via can have an effective CTE across a diameter of the conductive via that is less than 80% of the CTE of the second metal region.
US09214419B2 Power semiconductor device and preparation method thereof
A preparation method for a power semiconductor device includes: providing a lead frame containing a plurality of chip mounting units, one side edge of a die paddle of each chip mounting unit is bent and extended upwardly and one lead connects to the bent side edge of the die paddle and extends in an opposite direction from the die paddle; attaching a semiconductor chip to the top surface of the die paddle; forming metal bumps on each electrode at the front of the semiconductor chip with a top end of each metal bump protruding out of a plane of the top surface of the lead; heating the metal bump and pressing a top end of each metal bump by a pressing plate forming a flat top end surface that is flush with the top surface of the lead; and cutting the lead frame to separate individual chip mounting units.
US09214418B2 Lead frame with radiator plate, method for manufacturing lead frame with radiator plate, semiconductor device, and method for manufacturing semiconductor device
A lead frame with a radiator plate on which a semiconductor chip 50 is to be mounted is provided with a radiator plate 30, and a lower surface side lead frame 40 including an upper surface 41 and a lower surface 42. The lower surface side lead frame 40 overlaps and fixes the radiator plate 30 with the lower surface 42 making contact with the radiator plate 30. A through hole 43 piercing the lower surface side lead frame 40 from the upper surface 41 to the lower surface 42 is formed at a position where the lower surface side lead frame 40 overlaps the radiator plate 30, and an opening area of the through hole 43 at the lower surface 42 is larger than an opening area of the through hole 43 at the upper surface 41.
US09214415B2 Integrating multi-output power converters having vertically stacked semiconductor chips
A packaged multi-output converter (200) comprising a leadframe with a chip pad (201) as ground terminal and a plurality of leads (202) including the electrical input terminal (203); a first FET chip (sync chip, 220) with its source terminal affixed to the leadframe and on its opposite surface a first drain terminal (221) positioned adjacent to a second drain terminal (222), the drain terminals connected respectively by a first (241) and a second (242) metal clip to a first (204) and second (205) output lead; a second FET chip (control chip, 211), positioned vertically over the first drain terminal, with its source terminal attached onto the first clip; a third FET chip (control chip, 212), positioned vertically over the second drain terminal, with its source terminal attached onto the second clip; and the drain terminals (213, 214) of the second and third chips attached onto a third metal clip (260) connected to the input lead (203).
US09214414B2 Lead frame for mounting LED elements, lead frame with resin, method for manufacturing semiconductor devices, and lead frame for mounting semiconductor elements
A lead frame for mounting LED elements includes a frame body region and a large number of package regions arranged in multiple rows and columns in the frame body region. The package regions each include a die pad on which an LED element is to be mounted and a lead section adjacent to the die pad, the package regions being further constructed to be interconnected via a dicing region. The die pad in one package region and the lead section in another package region upward or downward adjacent to the package region of interest are connected to each other by an inclined reinforcement piece positioned in the dicing region.
US09214412B2 Semiconductor device
A semiconductor device includes a first chip mounting portion, a first semiconductor chip arranged over the first chip mounting portion, a first pad formed in a surface of the first semiconductor chip, a first lead which serves as an external coupling terminal, a first conductive member which electrically couples the first pad and the first lead, and a sealing body which seals a part of the first chip mounting portion, the first semiconductor chip, a part of the first lead, and the first conductive member. The first conductive member includes a first plate-like portion, and a first support portion formed integrally with the first plate-like portion. An end of the first support portion is exposed from the sealing body, and the first support portion is formed with a first bent portion.
US09214408B2 Fluid cooled thermal management technique for a high-density composite focal plane array
A fluid cooled thermal management technique for a high-density composite focal plane array (CPFA) is disclosed. In one embodiment, a high density CFPA assembly includes a plurality of imaging dies mounted on a front surface of a printed wiring board (PWB) and a base plate. The base plate has a substantially matched coefficient of thermal expansion (CTE) to that of the high density CFPA. Further, the high density CFPA is disposed on a front side of the base plate. Furthermore, the base plate has a plurality of integral serpentine fluid flow channels configured to receive and circulate fluid and further configured such that the heat generated by the CFPA is transferred via conduction into the base plate and to the integral serpentine fluid flow channels and to the circulating fluid to dissipate the generated heat.
US09214403B2 Stacked semiconductor package
A stacked semiconductor package including a first printed circuit board and a second printed circuit board is provided. The first printed circuit board may include a first surface upon which a first semiconductor chip is mounted and a second surface upon which at least one connecting structure is attached. The first printed circuit board may further include at least one thermal via and a heat sink and the at least one thermal via and the heat sink may be disposed under the first semiconductor chip with the heat sink being disposed between the first surface and the second surface. The second printed circuit board may include a third surface upon which a second semiconductor chip is mounted. The second printed circuit board may be disposed under the first printed circuit board with the at least one connecting structure connecting the first printed circuit board to the second printed circuit board.
US09214401B2 Display substrate, method of manufacturing the same and display apparatus having the same
A display substrate includes a base substrate including a display area and a peripheral area surrounding the display area, a switching element in the display area, a main-test-line in the peripheral area, extending in the second direction and electrically connected with a data line, a sub-test-line in the peripheral area, and a test pad in the peripheral area and electrically connected with the main-test-line and the sub-test-line. The switching element is electrically connected with a gate line extending in a first direction and the data line extending in a second direction crossing the first direction. The sub-test-line is electrically connected with the data line. The sub-test-line is in a different layer from the main-test-line.
US09214399B2 Integrated circuit with matching threshold voltages and method for making same
An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.
US09214397B2 Structure and method to modulate threshold voltage for high-K metal gate field effect transistors (FETs)
A method for forming an electrical device that includes forming a high-k gate dielectric layer over a semiconductor substrate that is patterned to separate a first portion of the high-k gate dielectric layer that is present on a first conductivity device region from a second portion of the high-k gate dielectric layer that is present on a second conductivity device region. A connecting gate conductor is formed on the first portion and the second portion of the high-k gate dielectric layer. The connecting gate conductor extends from the first conductivity device region over the isolation region to the second conductivity device region. One of the first conductivity device region and the second conductivity device region may then be exposed to an oxygen containing atmosphere. Exposure with the oxygen containing atmosphere modifies a threshold voltage of the semiconductor device that is exposed.
US09214396B1 Transistor with embedded stress-inducing layers
A method of forming a transistor device is provided, including the subsequently performed steps of forming a gate electrode on a first semiconductor layer, forming an interlayer dielectric over the gate electrode and the first semiconductor layer, forming a first opening in the interlayer dielectric at a predetermined distance laterally spaced from the gate electrode on one side of the gate electrode and a second opening in the interlayer dielectric at a predetermined distance laterally spaced from the gate electrode on another side of the gate electrode, the first and second openings reaching to the first semiconductor layer, forming cavities in the first semiconductor layer through the first and second openings formed in the interlayer dielectric, and forming embedded second semiconductor layers in the cavities.
US09214391B2 Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces formed using such methods
Methods for forming interconnects in microelectronic workpieces and microelectronic workpieces having such interconnects are disclosed herein. One aspect of the invention is directed toward a method for manufacturing a microelectronic workpiece having a plurality of microelectronic dies. The individual dies include an integrated circuit and a terminal electrically coupled to the integrated circuit. In one embodiment, the method includes forming an opening in the workpiece in alignment with the terminal. The opening can be a through-hole extending through the workpiece or a blind hole that extends only partially through the substrate. The method continues by constructing an electrically conductive interconnect in the workpiece by depositing a solder material into at least a portion of the opening and in electrical contact with the terminal. In embodiments that include forming a blind hole, the workpiece can be thinned either before or after forming the hole.
US09214389B2 Methods of forming memory arrays
Some embodiments include methods of forming memory arrays. An assembly is formed which has an upper level over a lower level. The lower level includes circuitry. The upper level includes semiconductor material within a memory array region, and includes insulative material in a region peripheral to the memory array region. First and second trenches are formed to extend into the semiconductor material. The first and second trenches pattern the semiconductor material into a plurality of pedestals. The second trenches extend into the peripheral region. Contact openings are formed within the peripheral region to extend from the second trenches to the first level of circuitry. Conductive material is formed within the second trenches and within the contact openings. The conductive material forms sense/access lines within the second trenches and forms electrical contacts within the contact openings to electrically couple the sense/access lines to the lower level of circuitry.
US09214388B2 Bonded structure employing metal semiconductor alloy bonding
Vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with vertical stacks of a metal portion and a semiconductor portion formed on a second substrate. Alternately, vertical stacks of a metal portion and a semiconductor portion formed on a first substrate are brought into physical contact with metal portions formed on a second substrate. The assembly of the first and second substrates is subjected to an anneal at a temperature that induces formation of a metal semiconductor alloy derived from the semiconductor portions and the metal portions. The first substrate and the second substrate are bonded through metal semiconductor alloy portions that adhere to the first and second substrates.
US09214382B2 Semiconductor devices including air gap spacers
A spacer covering a sidewall of a contact plug includes a relatively more damaged first portion and a relatively less damaged second portion. An interface of the first and second portions of the spacer is spaced apart from a metal silicide layer of the contact plug. Thus reliability of the semiconductor device may be improved. Related fabrication methods are also described.
US09214377B2 Methods for silicon recess structures in a substrate by utilizing a doping layer
Embodiments of the present invention provide a methods for forming silicon recess structures in a substrate with good process control, particularly suitable for manufacturing three dimensional (3D) stacking of fin field effect transistor (FinFET) for semiconductor chips. In one embodiment, a method of forming recess structures in a substrate includes etching a first portion of a substrate defined by a second portion formed in the substrate until a doping layer formed in the substrate is exposed.
US09214374B2 Semiconductor devices including stress relief structures
A microelectronic device includes a substrate having at least one microelectronic component on a surface thereof, a conductive via electrode extending through the substrate, and a stress relief structure including a gap region therein extending into the surface of the substrate between the via electrode and the microelectronic component. The stress relief structure is spaced apart from the conductive via such that a portion of the substrate extends therebetween. Related devices and fabrication methods are also discussed.
US09214372B2 Substrate processing system, carrying device and coating device
A substrate processing system includes a processing unit, a substrate loading unit, a substrate unloading unit, and a carrying unit. A carrying device has a constitution in which a suction portion suctioning and holding a substrate is rotatable about an arm portion provided in a base portion and the substrate is rotated in the state where the substrate is held by a holding portion. A coating device has a constitution in which a liquid material is ejected from a nozzle to both surfaces of the substrate rotating in an upright state.
US09214369B2 Dynamic pitch substrate lift
An apparatus for dynamically adjusting the pitch between substrates in a substrate stack comprises first and second lift portions. The first lift portion supports a first group of the plurality of substrates, and the second lift portion supports a second group of the plurality of substrates. The first and second lift portions are operable to move the first and second groups of substrates in a first direction independently from each other. This independent movement enables the pitch, or spacing, between adjacent substrates to be dynamically adjusted so that an end effector of a robot can be positioned between such adjacent substrates to pick one of the substrates without inadvertently engaging another substrate that is not being picked. Other embodiments are disclosed.
US09214359B2 Method and apparatus for simultaneously removing multiple conductive materials from microelectronic substrates
A method and apparatus for simultaneously removing conductive materials from a microelectronic substrate. A method in accordance with one embodiment of the invention includes contacting a surface of a microelectronic substrate with an electrolytic liquid, the microelectronic substrate having first and second different conductive materials. The method can further include controlling a difference between a first open circuit potential of the first conducive material and a second open circuit potential of the second conductive material by selecting a pH of the electrolytic liquid. The method can further include simultaneously removing at least portions of the first and second conductive materials by passing a varying electrical signal through the electrolytic liquid and the conductive materials. Accordingly, the effects of galvanic interactions between the two conductive materials can be reduced and/or eliminated.
US09214355B2 Molecular radical etch chemistry for increased throughput in pulsed plasma applications
As device feature size shrinks, plasma induced damage is a major concern affecting micro-electronic and nano-electronic device fabrication. Pulsed plasmas are a means of mitigating the damages. However, in conventional standard etch chemistry, the etch rate for pulsed plasmas is reduced significantly resulting in a substantially decreased throughput of tech processes. A new etch chemistry is disclosed in the present invention to increase throughput in pulsed plasma applications driven mainly by the molecular radicals.
US09214354B2 Manufacturing method for semiconductor device
In a manufacturing method of sequentially forming a gate electrode film of the MOSFET, forming a gate electrode film of the non-volatile memory FET, patterning the gate electrode of the non-volatile memory FET, and patterning the gate electrode of the MOSFET, in order to form the MOSFET and the non-volatile memory FET on the same semiconductor substrate. The value of the product of S/L and H/L is specified in a case that the line of the gate electrode of the non-volatile memory FET is set to L, the space thereof is set to S, and the height thereof is set to H so that the thickness of a resist film on the gate electrode of the non-volatile memory FET which is formed in advance is set to a thickness which is not lost by etching for forming the gate electrode of the MOSFET.
US09214349B2 Method for manufacturing semiconductor device
A method for manufacturing a semiconductor device is provided. The method includes forming an insulation film including a trench on a substrate, forming a first metal gate film pattern along side and bottom surfaces of the trench, forming a second metal gate film on the first metal gate film pattern and the insulation film, and forming a second metal gate film pattern positioned on the first metal gate film pattern by removing the second metal gate film to expose at least a portion of the insulation film and forming a blocking layer pattern on the second metal gate film pattern by oxidizing an exposed surface of the second metal gate film pattern.
US09214348B2 Semiconductor device including a gate dielectric layer
A semiconductor device is fabricated by, inter alia, forming a sacrificial liner on an active portion of a semiconductor substrate, oxidizing the sacrificial liner to transform the sacrificial liner into a gate dielectric layer, and forming a gate on the gate dielectric layer.
US09214344B1 Pillar-supported array of micro electron lenses
One embodiment relates to a pillar-supported array of micro electron lenses. The micro-lens array includes a base layer on a substrate, the base layer including an array of base electrode pads and an insulating border surrounding the base electrode pads so as to electrically isolate the base electrode pads from each other. The micro-lens array further includes an array of lens holes aligned with the array of base electrode pads and one or more stacked electrode layers having openings aligned with the array of lens holes. The micro-lens array further includes one or more layers of insulating pillars, each layer of insulating pillars supporting a stacked electrode layer. Another embodiment relates to a method of fabricating a pillar-supported array of micro electron lenses. Other embodiments, aspects and features are also disclosed.
US09214343B2 ZNSNO3/ZNO nanowire having core-shell structure, method of forming ZNSNO3/ZNO nanowire and nanogenerator including ZNSNO3/ZNO nanowire, and method of forming ZNSNO3 nanowire and nanogenerator including ZNSNO3 nanowire
A ZnSnO3/ZnO nanowire, a method of forming a ZnSnO3/ZnO nanowire, a nanogenerator including a ZnSnO3/ZnO nanowire, a method of forming a ZnSnO3 nanowire, and a nanogenerator including a ZnSnO3 nanowire are provided. The ZnSnO3/ZnO nanowire includes a core and a shell that surrounds the core, wherein the core includes ZnSnO3 and the shell includes ZnO.
US09214342B2 Method for producing compound semiconductor crystal, method for producing electronic device, and semiconductor wafer
A method for producing a compound semiconductor crystal, includes; a sacrificial layer formation step of forming a sacrificial layer containing Cx1Siy1Gez1Sn1-x1-y1-z1 (0≦x1<1, 0≦y1≦1, 0≦z1≦1, and 0
US09214341B2 Method for manufacturing a semiconductor structure and semiconductor component comprising such a structure
Method for manufacturing at least one semiconductor structure (130) on the surface (105) of a substrate (100) wherein the surface comprises silicon. The method comprises steps consisting of providing the substrate (100), forming in contact with an area (101) of the surface (105), referred to as the formation area, a layer (120) of a first material, the remainder (102) of the surface (105), referred to as the free area, remaining free from the first material, the dimensions of the formation area (101) and the first material being suitable for forming the structure (130), the first material comprising gallium, the formation of said layer (120) taking place at a temperature less than 600° C., and forming the structure (130) in contact with the layer (120).
US09214338B2 Method of making graphene layers, and articles made thereby
There is provided a method for forming a graphene layer. The method includes forming an article that comprises a carbon-containing self-assembled monolayer (SAM). A layer of nickel is deposited on the SAM. The article is heated in a reducing atmosphere and cooled. The heating and cooling steps are carried out so as to convert the SAM to a graphene layer.
US09214337B2 Patterned silicon-on-plastic (SOP) technology and methods of manufacturing the same
A semiconductor device and methods for manufacturing the same are disclosed. The semiconductor device includes a semiconductor stack structure attached to a wafer handle having at least one aperture that extends through the wafer handle to an exposed portion of the semiconductor stack structure. A thermally conductive and electrically resistive polymer substantially fills the at least one aperture and contacts the exposed portion of the semiconductor stack structure. One method for manufacturing the semiconductor device includes forming patterned apertures in the wafer handle to expose a portion of the semiconductor stack structure. The patterned apertures may or may not be aligned with sections of RF circuitry making up the semiconductor stack structure. A following step includes contacting the exposed portion of the semiconductor stack structure with a polymer and substantially filling the patterned apertures with the polymer, wherein the polymer is thermally conductive and electrically resistive.
US09214333B1 Methods and apparatuses for uniform reduction of the in-feature wet etch rate of a silicon nitride film formed by ALD
Disclosed herein are methods of depositing a SiN film having a reduced wet etch rate. The methods may include adsorbing a film precursor comprising Si onto a semiconductor substrate in a processing chamber to form an adsorption-limited layer of precursor, and then removing unadsorbed precursor from the volume surrounding the adsorbed precursor. The adsorbed precursor may then be reacted by exposing it to a plasma comprising N-containing ions and/or radicals to form a SiN film layer on the substrate, and the SiN film layer may then be densified by exposing it to a He plasma. The foregoing steps may then be repeated to form another densified SiN film layer on the substrate. Also disclosed herein are apparatuses for depositing SiN films having reduced wet etch rates on semiconductor substrates which employ the foregoing techniques.
US09214329B2 Electrodeless plasma discharge lamp
A discharge lamp (20) for providing visible and/or infrared radiation comprising a stationary light transmitting bulb (21) filled with a composition that emits light when in plasma state, a radiofrequency source (41) having an output terminal (44) radiating a radiofrequency field for ionizing and heating the composition in the bulb to bring it in a plasma state (35), and a dielectric rod (22) aligned with the output terminal and positioned between the output terminal (44) and the bulb (21) acting as dielectric waveguide for the radiofrequency field.
US09214320B2 Inert-dominant pulsing in plasma processing systems
A method for processing substrate in a processing chamber, which has at least one plasma generating source and a gas source for providing process gas into the chamber, is provided. The method includes exciting the plasma generating source with an RF signal having RF frequency. The method further includes pulsing the gas source, using at least a first gas pulsing frequency, such that a first process gas is flowed into the chamber during a first portion of a gas pulsing period and a second process gas is flowed into the chamber during a second portion of the gas pulsing period, which is associated with the first gas pulsing frequency. The second process gas has a lower reactant-gas-to-inert-gas ratio relative to a reactant-gas-to-inert-gas ratio of the first process gas. The second process gas is formed by removing at least a portion of a reactant gas flow from the first process gas.
US09214314B1 Ion beam manipulator
An ion beam manipulator including a suppression electrode, a ground electrode connected to the suppression electrode in a parallel, spaced-apart relationship therewith by three electrically insulating connectors, the connectors being spaced 120 degrees apart from one another around a circumference of the suppression electrode and the ground electrode, a plurality of linkages extending from the electrically insulating connectors, at least one of the linkages including a pair of parallel support arms connected at a first end to a corresponding one of the electrically insulating connecters by a first pair of universal joints and connected at a second end to a bracket by a second pair of universal joints, and a drive shaft extending from the bracket, the drive shaft coupled to an actuator configured to extend and retract the drive shaft along a longitudinal axis of the drive shaft.
US09214313B2 Ion source with independent power supplies
An ion source is disclosed which utilizes independently powered electrodes that are isolated with a series of insulators. The ion source comprises an anode electrode with a hollow interior, where the anode is disposed between a cathode and an anti-cathode. A magnet or electro-magnet imposes a magnetic field in an axial direction through the bore of the anode. Gas is introduced into the anode area at a controllable pressure. The ion source includes a first voltage differential between the anode and cathode for the production of plasma and a second voltage differential between the anode and the anti-cathode for extraction of ions from the plasma, forming an ion beam, which is preferably of a narrow diameter at low beam energy. In particular, the voltage differential between the anti-cathode and anode is adjusted to control the initial beam divergence of extracted ions. An optional focus electrode with an independent power supply further focuses the ion beam. A final electrode defines the output boundary of the ion source to provide un-perturbed drift of the ions into the vacuum chamber.
US09214312B2 X-ray tube with a backscattering electron trap
An x-ray tube has a backscatter electron trap to prevent extra focal radiation caused by backscattered electrons from the focal spot from passing through the beam exit window to an exterior of the x-ray tube. The backscatter electron trap has a surface that faces the x-ray beam in the x-ray tube. No portion of that surface is visible both from an arbitrary point in the x-ray beam outside of the x-ray tube and from an arbitrary point at the focal spot.
US09214309B2 Two-pole circuit breaker with trip bar apparatus and methods
A two-pole circuit breaker has an internal rotating trip bar that causes a second pole to trip (i.e., interrupt power) in response to a first pole tripping. A first pole may trip when the two-pole circuit breaker senses an electrical fault in the first pole. The tripping of the second pole in response to the first pole tripping may be referred to as common tripping. The trip bar may be connected to a tripping mechanism in each pole and may have interface features that result in less force required to trip the second pole, greater trip bar design tolerances, and/or ultimately more reliable common tripping. Methods of assembling a two-pole circuit breaker are also provided, as are other aspects.
US09214302B2 Electric current switching apparatus
A rotary switch module includes a first stationary contact, a second stationary contact, and a movable contact for making an electrical connection between the first stationary contact and the second stationary contact. A rotary actuator is provided for rotating the movable contact, the rotary actuator having on its surface a first indication indicating an open position of the switch, and a second indication indicating a closed position of the switch. A first window indicates the first indication, and a second window separate from the first window indicates the second indication.