Document | Document Title |
---|---|
US08611638B2 |
Pattern inspection method and pattern inspection apparatus
According to an embodiment, a pattern inspection apparatus includes an imaging unit, a defect detection unit, and an inspection control unit. The imaging unit is configured to image a pattern on a substrate to acquire a pattern image. The defect detection unit is configured to detect a defect of the pattern by a first outer shape comparison in associate with the pattern image and design information for the pattern or by a comparison in pixel values between images of patterns designed to be formed into the same shape in the substrate. The inspection control unit is configured to select an inspection based on the amount of the defect detected by the first outer shape comparison or based on a value of a gradient of an edge profile of the pattern image and to control the imaging unit and the defect detection unit in accordance with the selected inspection. |
US08611637B2 |
Wafer plane detection of lithographically significant contamination photomask defects
Provided are novel methods and systems for inspecting photomasks to identify lithographically significant contamination defects. Inspection may be performed without a separate reference image provided from a database or another die. Inspection techniques described herein involve capturing one or more test images of a photomask and constructing corresponding test “simulation” images using specific lithographic and/or resist models. These test simulation images simulate printable and/or resist patterns of the inspected photomask. Furthermore, the initial test images are used in parallel operations to generate “synthetic” images. These images represent a defect-free photomask pattern. The synthetic images are then used for generating reference simulation images, which are similar to the test simulation images but are free from lithographically significant contamination defects. Finally, the reference simulation images are compared to the test simulation images to identify the lithographically significant contamination defects on the photomask. |
US08611635B1 |
Duplicate check detection
Images from checks may be compared with each other to detect a twice-deposited or represented check. An image of a check may be parsed into regions or tiles, for example. In an implementation, values for regions or tiles over a predetermined area (e.g., an area from a character in the magnetic ink character recognition (MICR) line at the bottom of the check to the dollar sign symbol) may be compared. In an implementation, a virtual overlay of two check images may be performed and a correlation may be determined. |
US08611630B1 |
Algorithm for motion estimation from the tomographic data
The methods and systems of the present invention is an algorithm which estimates motion inside objects that change during the scan. The algorithm is flexible and can be used for solving the misalignment correction problem and, more generally, for finding scan parameters that are not accurately known. The algorithm is based on Local Tomography so it is faster and is not limited to a source trajectory for which accurate and efficient inversion formulas exist. |
US08611627B2 |
CT spectral calibration
The present disclosure relates to the performing spectral calibration of a CT imaging system. In accordance with certain embodiments, spectral calibration phantoms are scanned while positioned on a table in the imaging volume of the CT imaging system. The scans of the calibration phantoms, in conjunction with air sans performed on the CT imaging system, are used to derive information about the deviation of the measured phantom scans from an ideal. The deviation information is in turn used to derive spectral calibration vectors that may be used with the CT imaging system. |
US08611626B2 |
System and methods for fast implementation of equally-sloped tomography
A system and method for projection number and radiation dose reduction in tomographic imaging that creates a three dimensional cross sectional image of an object by the reconstruction of its projections. Images of a superior quality can be obtained with a fewer number projections than seen with conventional methods by reconstruction of projections that have been pre-processed and preferably placed in the Fourier domain with a Fractional Fourier Transform (FrFT) or forward Pseudo-polar Fast Fourier transform (PPFFT). The projections are iteratively refined through formulation of a constrained optimization problem with constraints in object space and Fourier space preferably solved with a gradient descent algorithm incorporating a Bregman iterative regularization or a continuative regularization. By using an exact Fourier-based iterative algorithm as well as physical and mathematical constraints, convergence to a lowest-possible noise state that is also strictly consistent with the measured data can be obtained. |
US08611625B2 |
Tomographic apparatus
The tomographic apparatus of this invention has an attenuation quantity calculating and adjusting unit, a filter length calculating unit, an attenuation correction function calculating unit and a transmission length calculating unit in an arithmetic processing unit. Thus, sectional images with a beam hardening correction can be acquired. The beam hardening correction can be made without using an iterative method. The attenuation correction function calculating unit calculates a correction function by approximating and expressing the correction function by a linear function linking, between two transmission lengths, ratios between measured attenuation quantities for two transmission lengths measured by an X-ray detector, and calculated attenuation physical quantities calculated and adjusted for these transmission lengths. |
US08611622B2 |
Method for determining an estimation of a topological support of a tubular structure and use thereof in virtual endoscopy
A method for determining an estimation of a topological support of a tubular based structure comprising an inner wall and a plurality of distinct regions, the method comprising (a) obtaining image data representative of the tubular based structure; (b) placing an initial seed in an initial region selected from one of the distinct regions; (c) performing an initial region growing until an initial resulting area comprises at least a portion of the inner wall and at least a portion of a neighboring region corresponding to one of the distinct regions; (d) starting a tree comprising an initial tree node corresponding to the initial region; (e) for each neighboring region: placing a subsequent seed in the neighboring region; performing a corresponding subsequent region growing until a subsequent resulting area comprises at least a portion of the inner wall and at least a portion of an additional neighboring region; and adding a tree node corresponding to the neighboring region in the tree; (f) performing processing step (e) for each of the additional neighboring regions; and (g) filtering the tree according to predetermined topological parameters to thereby determine the estimation of the topological support of the tubular based structure. Applications of the method for estimating a colon topology for virtual colonoscopy are also disclosed. |
US08611621B2 |
System and method for automatic detection of in vivo contraction video sequences
A system and method for comparing captured sequences of in-vivo images with (e.g., template or model) sequences, for example, for computer-automated recognition of contractions. The size of the opening of an in-vivo lumen passageway represented in each frame in a subset of frames of an image stream captured in vivo may be measured. Frames in the subset of frames of the image stream having a local minimum size of the lumen passageway may be identified. The subset of frames may be divided into segments of sequential frames at frames having local maximum lumen sizes before and after the identified frame having a local minimum size of the lumen passageway to generate contraction sequences. A plurality of the contraction sequences may be compared to template sequences. A plurality of the contraction sequences may be displayed. |
US08611619B2 |
Read-out method and apparatus
A read-out method for a diagnostic point-of-care assay device, the device including a read-out substrate having at least one response area capable of producing a colored indication of a response, the response area including a marker at least one marker whose color changes in response to binding of an analyte thereto and which is used for indication of response. The method includes registering an image of the response area; calculating a color saturation value S for the image using at least two distinct wavelengths; using the S-value for determining a result of the assay. A read-out system (10) for an allergy point-of-care assay device is described. The system includes an illumination device (12; 21, 22) capable of delivering at least two different wavelengths of light; a color image capturing device (14); a control unit (19) for calculating a color saturation value on images recorded by the color image capturing device. |
US08611618B2 |
Apparatus and method for generating representative fingerprint template
An apparatus for generating a representative fingerprint template is provided. The apparatus includes a calculation unit configured to calculate levels of similarity between N fingerprint templates; and a selection unit configured to select at least one fingerprint template from among the N fingerprint templates as a representative fingerprint template. |
US08611615B2 |
Image processing apparatus and method, and program
The present invention relates to an image processing apparatus and method, and a program that are capable of more appropriately evaluating the image-capture state of an image.A blur degree score calculation unit 23 through to a chroma score calculation unit 27 extract a feature quantity of a pre-specified feature from an input image, and calculate a feature-by-feature score indicating an evaluation for the input image on the basis of the feature. For example, the luminance score calculation unit 24 extracts, as a feature quantity, a luminance value from the input image, and calculates a luminance score indicating an evaluation based on the distribution of the luminance values in the subject portion of the input image. The overall score calculation unit 28 calculates an overall score indicating the evaluation of the image-capture state of the input image from each feature-by-feature score. As described above, when each feature-by-feature score is to be calculated, by extracting each feature quantity and obtaining a score from the area of the input image suitable for the feature, it is possible to more appropriately evaluate the input image. The present invention can be applied to an image processing apparatus. |
US08611614B2 |
Personal authentication device and electronic device
An image taking unit including a lens array, a light shielding member, and an image taking unit that acquires a compound eye image of a vein pattern of a living body held at a lens array. A shift estimation unit estimates an image shift amount between ommatidium images of the compound eye image. An image restructuring unit restructures a single image from the compound eye image by using the image shift amount. In at least one embodiment, a size correction unit corrects the size of the restructured single image with a magnification ratio determined by the estimated image shift amount and an image shift amount stored in a registration pattern storage unit so as to correspond to a registration pattern. As a result, it is possible to perform personal authentication while compensating influences due to fluctuations in a subject distance. |
US08611612B2 |
Block matching method
A block matching method for estimating a motion vector of an estimation block of an image frame is provided, which includes comparing the estimation block with at least one reference block corresponding to a first object to obtain a plurality of pixel difference values, determining a mask area corresponding to the first object and a calculation area corresponding to a second object in the estimation block, and performing blocking matching operations on the calculation area to determine a motion vector of the second object as the motion vector of the estimation block. |
US08611608B2 |
Front seat vehicle occupancy detection via seat pattern recognition
What is disclosed is a system and method for determining whether a front seat in a motor vehicle is occupied based on seat pattern recognition. The present invention takes advantage of the observation that an unoccupied seat of a motor vehicle exhibits features which are distinguishable from an occupied seat. An unoccupied motor vehicle seat typically features long contiguous horizontal line segments and curve segments, and substantially uniform areas encompassed by these segments which are not present in an occupied seat. The present method provides a long horizontal edge test which uses location information within a defined window of the image, edge linking, softness of the edge, number of lines, line/curve fitting, and other techniques to locate horizontal edges in the image which define a seat, and a uniformity step which determines whether the area bounded by the horizontal edges is relatively uniform indicating an unoccupied seat. |
US08611607B2 |
Multiple centroid condensation of probability distribution clouds
Systems and methods are disclosed for identifying objects captured by a depth camera by condensing classified image data into centroids of probability that captured objects are correctly identified entities. Output exemplars are processed to detect spatially localized clusters of non-zero probability pixels. For each cluster, a centroid is generated, generally resulting in multiple centroids for each differentiated object. Each centroid may be assigned a confidence value, indicating the likelihood that it corresponds to a true object, based on the size and shape of the cluster, as well as the probabilities of its constituent pixels. |
US08611599B2 |
Information processing apparatus, information processing method, and storage medium
An information processing apparatus performs verification processing between an input image and a parameter while referring to the parameter having data to identify an object in the input image. The information processing apparatus includes a calculation unit adapted to perform verification processing to identify the object from the input image by referring to a fixed parameter or variable parameter in one of the series-connected processing step group and one processing step group out of the plurality of processing step groups, a determination unit adapted to determine, based on the calculation result of the calculation unit, whether the calculation unit executes the verification processing next in the series-connected processing step group or one processing step group out of the plurality of processing step groups connected via the branches, and a selection unit adapted to select the fixed parameter or variable parameter. |
US08611598B2 |
Vehicle obstacle detection system
A computer-implemented method of detecting objects in a path of a vehicle is provided. An image frame that depicts the path of the vehicle is obtained. An edge-image corresponding to the image frame is generated. A binary image corresponding to the edge-image is also generated. One or more blobs in the binary image that respectively correspond to one or more objects in the image frame are identified. Based on an analysis of the blobs in the binary image, a determination is made that one of the objects in the image frame is an obstacle in the path of the vehicle. |
US08611596B2 |
Display device and control method thereof
A display device and a control method thereof are provided. The display device includes a camera obtaining an image and a controller obtaining the direction of a user included in the obtained image and correcting the image such that the direction of the user is synchronized with the photographing direction of the camera. Even when the direction of the user does not correspond to the photographing direction of the camera, an image of the user can be corrected to correctly recognize a user's gesture. |
US08611591B2 |
System and method for visually tracking with occlusions
Described herein are tracking algorithm modifications to handle occlusions when processing a video stream including multiple image frames. Specifically, system and methods for handling both partial and full occlusions while tracking moving and non-moving targets are described. The occlusion handling embodiments described herein may be appropriate for a visual tracking system with supplementary range information. |
US08611588B2 |
Method of measuring progress of alopecia
Disclosed herein is a method of measuring the progress of alopecia in which the progress of alopecia of a hair loss region of a measured person is accurately determined through a mathematical algorithm. In the method, a value indicating the progress of alopecia of the hair loss region is numerically calculated based on the numbers of hairs, thicknesses of the hairs and the numbers of the hairs of a normal region and a hair loss region of the measured person, thereby more accurately determining the progress of alopecia compared to a conventional method of measuring the progress of alopecia from the observation with the naked eye and the experience of a measurer. Further, the progress of alopecia is accurately determined, and thus a proper treatment is carried out according to the progress of alopecia, thus effectively treating alopecia. |
US08611586B1 |
Fast target extraction from thermal imagery
A method for extracting a target from a series of images includes the steps of: (a) estimating an ambient temperature value of pixels in the series of images; (b) finding a band of pixel values having temperature values above the ambient temperature value, the band of pixel values forming a histogram; and (c) differentiating the histogram to estimate a threshold. Also included are steps (d) extracting the target having pixel values above the threshold; and (e) colorizing the target for display. |
US08611583B2 |
Compact coaxial crossover-free loudspeaker
A loudspeaker assembly that converts electrical signal into sound waves in the full spectral range of an audio voltage. The loudspeaker assembly includes: a plurality of drivers; and a hollow volume permanent magnet that accommodates the voice coils. Each driver includes a cylindrically shaped voice coil affixed to a matching diaphragm. Each voice coil is configured coaxially in a cylindrical assembly, which is in electrical communication with an incoming audio voltage. Each driver is adapted to reciprocally move along the main longitudinal axis of each voice coil when stimulated by said incoming audio voltage. |
US08611581B2 |
Earphone device
An earphone device includes a housing having a driver unit, and a sound guide tube mounted on a front surface of the housing to protrude from the front surface, in which the sound guide tube is disposed at a position deviated from a center position of the housing. |
US08611580B2 |
Cheek stabilizer for audio headset
Cheek stabilizers for audio headsets are disclosed. The audio headset generally include a headset body having first and second regions for positioning near a user's ear and toward the user's mouth, respectively, and a stabilizer extending from the second region of the headset body, the stabilizer being configured to position the second region at a distance away from the user's cheek. The stabilizer may facilitate positioning any metal contacts on the headset body away from the user. The stabilizer may be inverted U-shaped to form a channel over the metal contact or may be configured as one or more ribs disposed adjacent to the metal contact. The stabilizer may also facilitate in positioning a microphone port away from the user's cheek. Where the headset is used with an earpiece worn in the ear, the stabilizer may facilitate maintaining the earpiece within the user's ear. |
US08611576B2 |
Adaptive noise generating device
An acoustic adaptive noise generating device in the form of a flat panel loudspeaker is suitable for increasing people's powers of concentration in acoustically difficult surroundings. The adaptive noise generating device includes a carrier panel, an actuator arranged on the carrier panel. A control device is connected to the actuator and permits adjustment of noise signals emitted by the actuator. |
US08611574B2 |
Bendable hearing device
Within a casing of a hearing device to be worn in an area of an auricle such as behind an ear, comprises bendable portions such that the hearing device can be at least partially deformed. |
US08611573B2 |
Hearing aid with audio shoe
A hearing aid has an audio-shoe interface, and a hearing-aid system includes a hearing aid and an audio shoe. The hearing aid has a housing, in which an undercut and an abutment are provided. The abutment is arranged opposite to the undercut. Undercut and abutment are embodied such that a retaining lug of an audio shoe can be inserted into the undercut by a rotational movement. The abutment is embodied such that a retaining lug inserted into the undercut can only be removed from the undercut again by a rotational movement in the opposite direction. A lock prevents a rotational movement of an inserted audio shoe in the opposite direction. When the electrical contacts between audio shoe and hearing aid are disposed in the undercut, these too are hidden from view and well protected against external influences. |
US08611566B2 |
MEMS-microphone
A MEMS microphone having an improved noise performance due to reduced DC leakage current is provided. For that, a minimum distance between a signal line of the MEMS microphone and other conducting structures is maintained. Further, a DC guard structure fencing at least a section of the signal line is provided. |
US08611560B2 |
Method and device for voice operated control
Methods and devices for voice operated control are provided. The method can include measuring an ambient sound received from at least one Ambient Sound Microphone, measuring an internal sound received from at least one Ear Canal Microphone, detecting a spoken voice from a wearer of the earpiece based on an analysis of the ambient sound and the internal sound, and controlling at least one voice operation of the earpiece if the presence of spoken voice is detected. The analysis can be a sound pressure level (SPL) difference, a correlation, a coherence, or a spectral difference. |
US08611558B2 |
System and method for dynamic range extension using interleaved gains
A method and system is presented for sampling analog signals in a manner that avoids the effects of signal clipping due to a limited dynamic range. A method and device for sampling an analog input using multiple gains, or gain mask, is described. By using different gains during different time quanta, a subset of the sampled points may effectively be attenuated before being sampled and converted to a digital representation. If clipping occurs during the sampling process, the true values of the clipped samples may be interpolated using the amplitudes of the non-clipped samples, which may not have been attenuated. Such interpolation may include constructing and/or solving a constraint optimization problem using linear programming. In one embodiment, such a problem may be constructed and/or solved by using sign information from the clipped samples and/or by imposing a sparsity assumption on the signals during the reconstruction process. |
US08611554B2 |
Hearing assistance apparatus
A hearing assistance device includes two transducers which react to a characteristic of an acoustic wave to capture data representative of the characteristic. The device is arranged so that each transducers is located adjacent a respective ear of a person wearing the device. A signal processor processes the data to provide relatively more emphasis of data representing a first sound source the person is facing over data representing a second sound source the person is not facing. At least one speaker utilizes the data to reproduce sounds to the person. An active noise reduction system provides a signal to the speaker for reducing an amount of ambient acoustic noise in the vicinity of the person that is heard by the person. |
US08611552B1 |
Direction-aware active noise cancellation system
Robust feedforward active noise cancellation is provided which can overcome or substantially alleviate problems associated with the diverse and dynamic nature of the surrounding acoustic environment. A multi-faceted analysis is performed to determine the direction (or directions) of propagation of noise in the surrounding acoustic environment. The direction of propagation is then utilized to determine direction-dependent characteristics of the acoustic path between a reference position where the noise is captured and a desired position where the noise is to be cancelled. These characteristics are used to form a feedforward signal adapted to cancel the noise at the desired position. By forming the feedforward signal based on direction-dependent characteristics of the acoustic path, the techniques described herein can achieve optimal noise cancellation at the desired location, regardless of the direction of propagation of the noise. |
US08611548B2 |
Noise analysis and extraction systems and methods
Systems and methods are described which facilitate quick and accurate extraction of the true noise level from a noise signal that includes additional signals, such as speech, in a cost effective implementation. Aspects of the invention allow the use of one microphone to simultaneously detect background noise as well as speech, while avoiding problems associated with artificially high background noise indication due to inclusion of the speech component in the noise determination. Additionally, systems and methods are described for altering system gain based on accurate noise level determinations. |
US08611539B2 |
Group key security in a multihop relay wireless network
A security zone key is used to secure data traffic/control messages in a multi-hop wireless relay network. In one embodiment, the security zone key is generated by a base station and passed to relay stations and optionally mobile stations that are to be associated with the security zone. A given base station may implement multiple security zones on the wireless network. The members in each zone share a unique group security association. One or more connections may be assigned to a particular security zone. Data traffic/control messages directed to relay stations in a security zone are processed using the security zone key to enable all relay nodes within the security zone to verify the authenticity of the management message and optionally decode the messages. From a management perspective, since a common security zone key is in use by all relay stations in the security zone, the management messages may be broadcast/multicast to the relay nodes in the security zone and the key distribution and management protocols have much less complexity. |
US08611530B2 |
Encryption via induced unweighted errors
A method for encrypting data is provided. The method includes formatting data represented in a weighted number system into data blocks. The method also includes converting the data blocks into a residue number system representation. The method further includes generating a first error generating sequence and inducing errors in the data blocks after converting the data blocks into a residue number system representation. It should be understood that the errors are induced in the data blocks by using the first error generating sequence. After inducing errors into the data blocks, the data of the data blocks is formatted into a form to be stored or transmitted. The method also includes generating a second error generating sequence synchronized with and identical to the first error generating sequence and correcting the errors in the data blocks using an operation which is an arithmetic inverse of a process used in inducing errors. |
US08611523B2 |
Methods and systems for determining segments of a telephonic communication between a customer and a contact center to classify each segment of the communication, assess negotiations, and automate setup time calculation
The invention relates to a method and system for analyzing an electronic communication, more particularly, to analyzing a telephone communication between a customer and a contact center to determine communication objects, forming segments of like communication objects, determining strength of negotiations between the contact center and the customer from the segments, and automate setup time calculation. |
US08611521B2 |
Systems and methods for multi-media control of audio conferencing
An exemplary method and system are described for providing an easy to use interface for establishing multi-media audio conference calls involving a leader and a plurality of participants. A web-based interface can be used by the leader for establishing, controlling, and providing information associated with the call. Participants can also access the web-site for receiving information associated with the call and receiving status information regarding the conference call. In one embodiment, an address organizer can be used to select participants by the leader and schedule an audio conference call with the recipients having the opportunity to accept, decline, or indicate an alternative telephone number at which they can be reached. |
US08611518B1 |
System and method to display calling area
A system and method for delivering calling area information to a called party device within a telecommunications system are provided. The calling area information is stored in a network and/or a device calling area database and is accessible by their respective call processors. Upon receipt of an incoming call, a called party device can obtain calling area information from either database and can present it to the called party on a device display in the subscriber's preferred language. |
US08611516B2 |
Method and communication device for establishing an alternative communication transmission
The invention relates to methods and a communication device for establishing a communication transmission (ALTV), wherein upon detecting an original signaling (SIGRA) directed from a first terminal (EG2) to a second terminal (EG2) within the scope of an establishment of a connection, the second terminal (EG2) being addressed via a target address associated with the second terminal (EG2), it is recorded in what quantity further signalings (SIGRA) having the same sender address specifying the first terminal (EG1) and the same target address are detected within the scope of further attempts to establish a connection. An evaluation of time information is carried out with regard to the times of the detection of the detected original signaling (SIGRA) and the detected further signalings (SIGRA) in relation to at least one predetermined time period. In case of a positive evaluation result, and upon exceeding the recorded number of detected further signalings having the same sender address and the same target address compared to a comparison value, an alternative communication transmission (ALTV) is established for a connection establishing attempt detected last of the further connection establishing attempts. |
US08611514B2 |
Systems and methods for identifying, determining, or otherwise verifying the telephone number of fax line
The present specification discloses systems and methods for verifying facsimile numbers associated with facsimile lines. The facsimile line may be provided in a standalone facsimile machine or may be part of a multi-function device. The present specification also discloses a routine for verifying and, if required, correcting an inaccurate telephone number displayed associated with a facsimile line. The verification may be performed automatically at predefined intervals or upon receiving a prompt from a user. |
US08611509B1 |
Phone URL exchange for unified communications
A system and for exchanging information to enable embodiment IP communication comprises a first endpoint corresponding to a first user, a second endpoint corresponding to a second user, and an information exchange (PURLX) unit. The PURLX unit comprises: a processor, a table and a phone URL exchange engine. The processor is configured for communication over the communications channel with a first endpoint and a second endpoint. The table stores information about the first user and the second user including a first association between the first user and one or more endpoint device addresses and a second association between the second user and one or more endpoint device addresses. The table is coupled for communication with the processor. The exchange engine establishes IP communication between the first user and the second user using information from the table. The exchange engine is coupled to retrieve information from the table and store information in the table and coupled to the processor for communication with the first endpoint and the second endpoint. |
US08611507B2 |
Systems and methods for intelligent call transcription
Intelligent call transcript systems and methods are disclosed. An intelligent call transcript system can create a transcript of a telephonic communication and supplement the transcript with additional information automatically or upon request. Additional information may be added when key words are detected, such as adding acronym expansion when an acronym is detected or adding identifying information to an important task when mention of the task is detected. Portions of the transcript may also be sent as messages, text-based or audio, upon detection of key words or at the instruction of a user or device. |
US08611504B2 |
Alignment plate apparatus and method of use
A dimensioned grid apparatus for determining: 1) leg length, offset, and cup position during arthroplasty replacement surgery; 2) fracture reduction/correction position during trauma procedures and 3) an apparatus to be used for deformity correction planning is provided. |
US08611497B2 |
Portable orthovoltage radiotherapy
A portable orthovoltage radiotherapy system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, the ocular structures are placed in a global coordinate system based on ocular imaging. In some embodiments, the ocular structures inside the global coordinate system lead to direction of an automated positioning system that is directed based on the ocular structures within the coordinate system. |
US08611492B2 |
Imaging method for rotating a tissue region
An imaging method, more particularly a mammography method, includes rotating a tissue region in the virtual domain. Projection recordings of a tissue region are generated by way of radiation emitted by an emitter, which radiation is captured by a detector after passing through the tissue region. Slice images are generated from the projection recordings. A slice image region corresponding to a partial tissue region is rotated virtually. The virtually rotating partial tissue region can be displayed as a set of virtual projections. |
US08611490B2 |
Tetrahedron beam computed tomography
A method of imaging an object that includes directing a plurality of x-ray beams in a fan-shaped form towards an object, detecting x-rays that pass through the object due to the directing a plurality of x-ray beams and generating a plurality of imaging data regarding the object from the detected x-rays. The method further includes forming either a three-dimensional cone-beam computed tomography, digital tomosynthesis or Megavoltage image from the plurality of imaging data and displaying the image. |
US08611484B2 |
Receiver having clock recovery unit based on delay locked loop
A receiver for receiving an input signal (a clock-embedded data (CED) signal), in which a clock signal is periodically embedded between data signals, includes a clock recovery unit configured to recover and output the clock signal and a serial-to-parallel converter configured to recover and output a data signal. The input signal (the CED signal) comprises a single level signal in which the clock signal is periodically embedded between the data signals at the same level. The clock recovery unit is configured based on a delay locked loop (DLL) without using an internal oscillator for generating a reference clock signal. |
US08611479B2 |
Method for correcting imbalance errors in a direct conversion receiver
A communication system comprises a direct conversion receiver for correcting imbalance errors. The direct conversion receiver receives a radio frequency (RF) signal and converts the RF signal to baseband signals. The direct conversion receiver further translates the baseband signals to digital signals having a direct current (DC) offset and applies a DC offset correction to the digital signals having the DC offset to generate first DC offset corrected signals. An imbalance correction unit of the direct conversion receiver applies an imbalance correction to the first DC offset corrected signals by estimating an error between an average envelope of the first DC offset corrected signals and an average envelope of second DC offset corrected signals. The imbalance correction unit is fixed at initial imbalance parameter values. The direct conversion receiver further updates the initial imbalance parameter values of the imbalance correction unit based on the estimated error for correcting imbalance errors. |
US08611476B1 |
Phase-adjusted channel estimation for frequency division multiplexed channels
A method and apparatus for estimating a frequency response of a channel. The method includes adjusting phase components of estimates of the frequency response to provide phase-adjusted estimates; performing a smoothing operation on the phase-adjusted estimates to provide smoothed phase-adjusted estimates; and generating an output of a reverse phase adjustment, wherein the reverse phase adjustment is performed on the smoothed phase-adjusted estimates. |
US08611471B2 |
Method and system for reliable CFO and STO estimation in the presence of tuner induced impairment
A system and method for reducing implementation complexity for estimation of a Carrier Frequency Offset (CFO) and a Symbol Timing Offset (STO) for an input signal for spectrally shaped multiple communication standards. The system is implemented by replacing multiplier with shifters. The system includes a CFO estimation block, a STO estimation block, and a band extraction block that extracts a lower band edge and an upper band edge of the input signal. The STO estimation block includes (i) a sample error generation block that computes a sampling timing error value, and (ii) a Phase Lock Loop block that estimates a frequency error and a phase error corresponding to the sampling timing error value. The CFO estimation block includes (i) a carrier offset error generation block that generates a carrier offset error value, and (ii) a leaky average block for performing a filter operation. |
US08611470B2 |
Identifying rogue GSM base stations by intercepting downlink beacon channels
System and methods and memory media for identifying a rogue base station. A receiver captures an input signal that includes a mixture of the rogue station's transmission and the transmission of a victim base station. The victim station's transmission is removed from the mixture. A plurality of channel signals are extracted from the residual signal. The channel signals are analyzed which of them are “valid”, i.e., contain a GMSK-modulated GSM signal. The “valid” channel signals are low pass filtered and then analyzed to determine which of them corresponds to the beacon channel. Information identifying the rogue base station is extracted from the beacon channel. |
US08611469B2 |
MIMO receiver and method for receiving spatially-multiplexed OFDM signals
In a multiple-input multiple-output (MIMO) system, multiple receive antennas produce a received signal vector, Y, which includes an element for each of the receive antennas. In an embodiment of a de-mapping method performed within a MIMO receiver, a quadrature phase shift keying (QPSK) search is performed within a search space that includes the full constellation of symbol points. Based on the results of the QPSK search, the search space is reduced to fewer than all of the quadrants, and the received signal vector data is scaled and transformed to the reduced search space. A lower-level QPSK search is performed, and the process is repeated until the modulation order is reduced to a QPSK constellation. Hard or soft decisions corresponding to the search results may then be passed to a decoder. |
US08611466B2 |
Discrete time receiver
Provided is a discrete time receiver having a structure capable of processing various broadband signals. The discrete time receiver uses a discrete time filter having a sampling frequency in a constant range so as to process a signal having an input frequency in a wide range and a wide bandwidth, so that it is possible to reduce current consumption and the area of the discrete time receiver. Since the discrete time receiver is easily integrated with a digital device, it is easy to design a chip using system on chip (SoC). |
US08611465B2 |
Digital receiver for reactive radio
A digital receiver is disclosed. In one aspect, the receiver includes a receiving module for receiving packetized data. The receive may further include a first processing module for packet detection having a first programmable processor. The receiver may further include a second processing module for demodulation and packet decoding having a second programmable processor. The receiver may further include a first digital receive controller having a third processor arranged for being notified of detection of data by the first processing module and for activating the second processing module. |
US08611464B2 |
Method and apparatus for information transmission in a radio communication system
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information. |
US08611462B2 |
Data transfer method using phase-shift based precoding and transmitter implementing the same
A method of transmitting data using phase-shift-based precoding in a multiple antenna system using a plurality of subcarriers is disclosed. More specifically, the method includes determining a phase-shift-based precoding matrix for transmitting the data by adjusting a transmission phase angle for each antenna, applying an offset for applying offset information fed back from a receiving terminal to the determined precoding matrix, and performing precoding by multiplying the offset applied precoding matrix by a symbol of each subcarrier. |
US08611459B2 |
Transmitter linearized using look-up table with unadaptable data and method therefor
A transmitter (50) includes a low power nonlinear predistorter (58) that inserts predistortion configured to compensate for a memoryless nonlinearity (146) corresponding to gain droop and another memoryless nonlinearity (148) corresponding to a video signal. When efforts are taken to reduce memory effects, such as configuring a network of components (138) that couple to an HPA (114) to avoid resonance frequencies within a video bandwidth (140), high performance linearization at low power results without extending linearization beyond that provided by the memoryless nonlinear predistorter (58). A unadaptable look-up table (370) has address inputs responsive to a magnitude parameter (152) of a communication signal (54), a magnitude derivative parameter (204) of the communication signal (54), and a parameter (346, 366) related either directly or indirectly to battery voltage. The unadaptable look-up table (370) produces a gain-correcting signal (284) that adjusts the gain applied to the communication signal (54) prior to amplification. |
US08611453B2 |
CQI table for wireless MIMO network
A Channel Quality Indicator table for wireless multiple input multiple output (MIMO) networks is disclosed. In one embodiment, a method of generating a table for channel quality indicator (CQI) for an open loop MIMO transmission includes calculating performance of a link between a transmitter and a user end unit for each MIMO transmission mode over a range of average signal-to-noise ratio, and selecting the MIMO transmission mode that maximizes performance for each subset of the range of average signal-to-noise ratio. The method further includes storing the selected MIMO transmission mode and the corresponding subset of the range of average signal-to-noise ratio in a CQI table, the CQI table being stored in an user end unit and a base transceiver station of the open loop MIMO network. |
US08611452B1 |
MIMO decoding in the presence of various interfering sources
A method includes obtaining a first set of one or more parameters associated with a plurality of transmitters transmitting a plurality of intended streams and obtaining a second set of one or more parameters associated with an interference source. The first set of parameters includes a first MIMO mode associated with the plurality of transmitters and the second set of parameters includes a second MIMO mode associated with the interference source. The method also includes receiving a plurality of streams, including the plurality of intended streams and a plurality of interfering streams transmitted by the interference source, and selecting a pre-processing scheme based at least in part on the first MIMO mode and the second MIMO mode. |
US08611450B2 |
Multiple-input multiple-output signal detectors based on relaxed lattice reduction
System and methodologies for reduced-complexity signal detection and decoding in a wireless communication system are provided herein. Systems and methodologies presented herein can utilize a relaxed form of the Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm to reduce the complexity of lattice reduction operations in the context of MIMO detection. Additional systems and methodologies presented herein can apply lattice reduction in the context of a maximum likelihood (ML) detector for spherical or elliptical lattice space-time (LAST) codes. |
US08611446B2 |
Communication system using initial likelihood information for performing maximum likelihood sequence estimation (MLSE)
A communication system is provided for communicating over a network. A plurality of transmission devices are disposed within a network and connected by transmission channels. A control device calculates initial data required during an initial operation of the transmission devices and sets the initial data to the transmission devices. The transmission devices perform reception processing using maximum likelihood sequence estimation, and the control device obtains, as the initial data, with respect to paths that are signal communication pathways between the transmission devices and in accordance with transmission states of individual paths, initial likelihood information that is initial-stage likelihood information for performing the maximum likelihood sequence estimation. |
US08611445B2 |
Multiple-input multiple-output wireless transceiver architecture
A wireless transceiver includes a receiver and a transmitter, the receiver and transmitter implemented to have multiple receive and transmit channels respectively, to provide multiple-input multiple-output (MIMO) capability. In an embodiment, the transceiver is implemented to include two transmit channels and two receive channels. Some blocks/circuitry of each of the receive and transmit channels are implemented with reduced area and current consumption, with a corresponding increase in noise. In a single-input single-output (SISO) mode of operation, the receiver combines the output of both the receive channels to compensate for the increase in noise due to the implementation with smaller area and lower current consumption. Similarly, the transmitter combines the output of both the transmit channels to compensate for the increase in noise. The transceiver operates with no signal degradation in SISO mode, and with a small degradation in signal quality in the MIMO mode. |
US08611441B2 |
Method for transmission interference cancellation for MU-MIMO
The present invention relates to a transmission interference cancellation method for a multiuser MIMO system. The method includes decomposing a channel matrix to represent formulae of permutation matrixes including a first matrix and a second matrix; determining an optimal permutation matrix among a plurality of available permutation matrixes using a norm of multiplication of the second matrix and a transmitting data vector; and determining the second matrix using the determined optimal permutation matrix and calculating a transmitting precoding vector using the determined second matrix and the transmitting data vector. |
US08611440B2 |
Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation
A method for generating sequences that are nearest to a set of sequences with minimum average cross-correlation is described. Each element of a set of sequences is projected to a nearest constellation point. The set of sequences is converted into a time domain representation. An inverse discrete Fourier Transform (IDFT) is performed on the set of sequences. A cubic metric of each sequence of the set of sequences is evaluated. A sequence is removed from the set if the cubic metric exceeds a threshold. A minimum maximum cross-correlation is obtained for the set of sequences. |
US08611438B2 |
Broadcast receiver
When switching from a digital broadcast to a analog broadcast, a broadcast receiver switches to the analog broadcast after adjusting the reproduced frequency band and the degree of left-right separation of the digital broadcast to be equal to the values of the analog broadcast specified from the receiving state of the analog broadcast respectively, and, when switching from the analog broadcast to the digital broadcast, after adjusting the reproduced frequency band and the degree of left-right separation of the digital broadcast to be equal to the specified values of the analog broadcast respectively and then switching to the digital broadcast, adjusts the reproduced frequency band and the degree of left-right separation of the digital broadcast to be equal to values set for the digital broadcast respectively. |
US08611432B2 |
Digital broadcasting transmission/reception system utilizing SRS and TRS code to improve receiving performance and signal processing method thereof
A digital broadcasting transmission and/or reception system having an improved reception performance and a signal-processing method thereof. A digital broadcasting transmitter comprises a TRS encoder for to TRS-encode an MPEG-2 transmission stream having null data for inserting an SRS data and a TRS parity at predetermined positions, randomizer to input and randomize data stream from the TRS encoder, a SRS exchanger to replace the null data for inserting the SRS data to the known data, and an encoder for encoding a data streams to which the Known data is inserted. Accordingly, the present invention detects the known data from a signal received from a reception side and uses the detected known data for synchronization and equalization and further uses the TRS parity for correcting error of the received signal, so that the digital broadcasting reception performance can be improved at poor multipath channels. |
US08611429B2 |
Digital broadcasting transmission/reception system utilizing SRS and TRS code to improve receiving performance and signal processing method thereof
A digital broadcasting transmission and/or reception system having an improved reception performance and a signal-processing method thereof. A digital broadcasting transmitter comprises a TRS encoder for to TRS-encode an MPEG-2 transmission stream having null data for inserting an SRS data and a TRS parity at predetermined positions, randomizer to input and randomize data stream from the TRS encoder, a SRS exchanger to replace the null data for inserting the SRS data to the known data, and an encoder for encoding a data streams to which the Known data is inserted. Accordingly, the present invention detects the known data from a signal received from a reception side and uses the detected known data for synchronization and equalization and further uses the TRS parity for correcting error of the received signal, so that the digital broadcasting reception performance can be improved at poor multipath channels. |
US08611426B2 |
Image-sensing apparatus
An image is divided into blocks, and each of the blocks is categorized as a block of interest or a block of non-interest. In signal processing in a camera signal processing unit (9), a block of interest is controlled using a parameter given by a main control unit (22) such that a larger amount of high-frequency components are left than in a block of non-interest. A compression/decompression processing unit (19) allocates a large amount of codes to a block of interest to effectively suppress a deterioration of image quality in a region of interest. There is provided an image-sensing apparatus which can compress an image into a limited amount of codes such that any deterioration of image quality is unnoticeable. |
US08611425B2 |
Method and system for providing multicast and broadcast service using scalable video coding
A method and system for efficiently transmitting data, to which scalable image coding has been applied over a single frequency network is provided. The system includes a control server which re-packetizes data packets, received from a multimedia server, into a scalable bit stream by separately encoding the data packets into a base layer and one or more enhancement layers, and at least one base station which adaptively multicasts and broadcasts the scalable bit stream, received from the control server, to a plurality of terminals located in the area of a cell. The at least one base station multicasts and broadcasts the base layer across the area of the cell, and adaptively transmits the one or more enhancement layers depending on channel status or terminal performance of the plurality of terminals. |
US08611424B2 |
Image processing apparatus and image processing method
The present application provides an image processing apparatus, including: a correlation value calculation section configured to determine a correlation value between a target block and a each of reference blocks; a section configured to determine a highest value from among the correlation values; a motion vector detection section configured to detect a motion vector of the target block; and a section configured to calculate an index to reliability of the motion vector detected by the motion vector detection section. |
US08611420B2 |
Image encoding method and device, and decoding method and device therefor
A video encoding method and apparatus and a video decoding method and apparatus. In the video encoding method, a first predicted coding unit of a current coding unit that is to be encoded is produced, a second predicted coding unit is produced by changing a value of each pixel of the first predicted coding unit by using each pixel of the first predicted coding unit and at least one neighboring pixel of each pixel, and the difference between the current coding unit and the second predicted coding unit is encoded, thereby improving video prediction efficiency. |
US08611412B2 |
Method and apparatus for constructing reference picture lists for scalable video
In video coding, prediction of P- and B-frames is based on reference frames, which are indicated by reference picture lists. Scalable video coding (SVC) requires this for both, base-layer and enhancement-layer. The invention describes a decoding process for reference picture list construction for spatial enhancement layer. With just one flag of syntax modification, it provides simpler and direct reference lists construction process. By using this, complicated RPLR and other syntaxes can be skipped, and the RPLR process for spatial enhancement layer can also be avoided. The process also can be used as for error concealment when the spatial enhancement layer slice is lost. |
US08611410B2 |
Variable modulus mechanism for performing equalization without a priori knowledge of modulation type or constellation order
A system, method and memory medium for performing blind equalization. A block {un} of the baseband samples is received. A function J of a vector f is minimized to determine a minimizer fMIN. The function J depends on vector f according to J(f)=Σ(|yn|2−γ)2. The summation Σ corresponds to a sequence {yn} of equalized samples. The sequence {yn} of equalized samples is related to the block {un} according to a convolution relation {yn}={un}*f. Parameter γ is a current modulus value. The current modulus value γ is updated to equal a ratio of a fourth moment of the sequence {yn} to a second moment of the sequence {yn}. The minimization and parameter update operations are repeated for a series of received blocks of baseband samples. The minimizer fMIN from a last of the repetitions is used to determine final equalized samples. |
US08611409B2 |
Method and apparatus for performing channel equalization on a MIMO signal
A method is provided for performing channel equalization on a wireless signal. The method includes: (i) formulating an equalizer associated with sub-carriers of the wireless signal, wherein the equalizer is a function of a quantity relating to signal quality (305); (ii) determining an adjoint of the equalizer over a selected number of the subcarriers (310); (iii) interpolating the adjoint determined in (ii) to obtain an adjoint of the equalizer over remaining ones of the subcarriers of the wireless signal (315); and (iv) generating an equalized signal for each of the subcarriers using the adjoint of the equalizer over the selected number of subcarriers and the interpolated adjoint over the remaining ones of the subcarriers (320). |
US08611408B2 |
Apparatus for and method of developing equalized values from samples of a signal received from a channel
An equalizer (200A) comprises a feedforward filter (210), wherein the feedforward filter includes a plurality of feedforward filter taps, coefficients are associated with the plurality of feedforward filter taps, and values of all of the coefficients associated with the plurality of feedforward filter taps are dynamically determined. In some embodiments, the equalizer also comprises a decision feedback equalizer (216). |
US08611405B2 |
Detecting faults affecting communications links
A modem or associated computing or testing device is configured to detect the presence of one or more faults that affect DSL communications, and upon their detection, generate, for example, an indication, communication or message that recommends corrective action. In this context, a fault is generally caused by one or more unfiltered devices, impulsive noises, malfunctioning modems, or other factor that does not affect measured attenuation or measured noise, but does affect the signal-to-noise ratio (SNR) of the link. In addition to being able to generate a message guiding a user through corrective action, the system can estimate the rate impact of the detected fault. |
US08611404B2 |
Multicarrier transmission system with low power sleep mode and rapid-on capability
A multicarrier transceiver is provided with a sleep mode in which it idles with reduced power consumption when it is not needed to transmit or receive data. The full transmission and reception capabilities of the transceiver are quickly restored when needed, without requiring the full (and time-consuming) initialization commonly needed to restore such transceivers to operation after inactivity. |
US08611402B2 |
Fast envelope system calibration
Disclosed is a transceiver for an envelope following system that includes a power amplifier (PA) having a signal input, a signal output, and a power input that receives power from a power management system that modulates a supply voltage provided to the PA in response to an envelope signal. The transceiver includes a calibration subsystem that is adapted to provide a first test signal to the signal input of the PA and to provide a second test signal to the power management system in place of the envelope signal. The calibration subsystem is programmed with calibration methods that sweep the first test signal through a first range and to sweep the second test signal through a second range in order to derive values that make up a pseudo-envelope look-up table (LUT) that is usable by the transceiver. |
US08611398B2 |
Process for processing MIMO data streams in a 3GPP HSDPA receiver, and receiver for doing the same
A MIMO receiver for processing N data streams received by N antennas for a direct-sequence spread-spectrum wireless communication system comprising a linear equalizer operating at the chip level for performing linear chip level Inter-Chip Interference and all Inter-Stream Interference cancellation of said N data streams, and generating N output chip level data streams; de-spreading blocks for separately de-spreading the N outputs of the linear equalizer; and a non linear detector for performing spatial equalization and multi-stream detection. |
US08611397B2 |
Method and system for efficient DSSS FFT processing employing prime factor decomposition
A direct-sequence spread spectrum (DSSS) receiver may be operable to process signal samples in frequency domain utilizing a prime factor fast Fourier transform (FFT) circuit and a pseudorandom noise (PRN) code. The DSSS receiver may be operable to transform the signal samples into FFT signal samples using the prime factor FFT circuit, transform the PRN code into a FFT PRN code using the prime factor FFT circuit and multiply the FFT signal samples with the FFT PRN code using the prime factor FFT circuit. The DSSS receiver may be operable to inversely transform the multiplied FFT signal samples into correlated signal samples using a prime factor inverse FFT (IFFT) implemented by the prime factor FFT circuit. The prime factor FFT circuit may comprise a prime length FFT core, a FFT memory, a register bank, a switch, a multiplier and a FFT controller. |
US08611394B2 |
Reception device
A reception device is provided with an expander for frequency-converting a reception signal, by multiplying a station-transmitted signal output from an oscillator and having a frequency different from a center frequency of the reception signal, and the reception signal, and outputting an intermediate signal. The oscillator intermittently operates in synchronization with generation timings of short pulse waves included in the reception signal. Thus, the reception device can reduce power consumption more using an ultra wide band (UWB) communication system. |
US08611385B2 |
Optical source driver circuit with controllable termination
A driver circuit for a laser diode or other optical source comprises a controllable termination for a transmission line coupled between the driver circuit and the optical source, with the controllable termination being switchable between at least first and second termination configurations. The transmission line comprises a first conductor coupled to a first terminal of the optical source and a second conductor coupled to a second terminal of the optical source, and the driver circuit comprises a first current source configured to drive the first conductor, and a second current source configured to drive the second conductor. By way of example, the first termination configuration may comprise an alternating current (AC) termination configuration and the second termination configuration may comprise a direct current (DC) termination configuration. |
US08611381B2 |
Laser oscillator control device
A laser oscillator control device includes a controller having a transmitter section and a receiver section; a laser oscillator having a transmitter section and a receiver section and communicating with the controller via a communication line; wherein the laser oscillator control device outputs a control signal from the controller to the laser oscillator, based on a status signal indicating operational state of the laser oscillator sent from the laser oscillator to the controller. The controller has an alternating signal transmitter circuit that generates an alternating signal that changes at a predetermined period, and sends this alternating signal to the laser oscillator, and the laser oscillator has a return signal transmitter circuit which generates a return signal that changes periodically in correspondence to the alternating signal from the controller, and sends this return signal to the controller. Furthermore, the controller has a monitoring circuit monitoring the return signal from the laser oscillator, and if it determines that there is an abnormality in the return signal, outputs a stop control signal for stopping laser beam irradiation by the laser oscillator. |
US08611379B2 |
Resonant clock amplifier with a digitally tunable delay
A programmable frequency receiver includes a slicer for receiving data at a first frequency, a de-multiplexer for de-multiplexing the data at a second frequency, a programmable clock generator for generating a clock at the first frequency, and first and second resonant clock amplifiers for amplifying clock signals at the first and second frequencies. The resonant clock amplifiers include an inductor having a low Q value, allowing them to amplify clock signals over the programmable frequency range of the receiver. The second resonant clock amplifier includes digitally tunable delay elements to delay and center the amplified clock signal of the second frequency in the data window at the interface between the slicer and the de-multiplexer. The delay elements can be capacitors. A calibration circuit adjusts capacitive elements within a master clock generator to generate a master clock at the first frequency. |
US08611378B2 |
Message handling multiplexer
A method and apparatus for processing message is described. In one embodiment, an application programming interface is configured for receiving and sending messages. A multiplexer receives messages from different servers. A service name is coupled to each message with the corresponding destination service. A single shared channel is formed. The messages are processed over the single shared channel. |
US08611375B2 |
Method for EMBS-unicast interactivity and EMBS paging
A method of paging a mobile station is provided. The method includes requesting to receive a page that announces when a program is to be broadcast. The method also includes sending the page to the mobile station before the program is to be broadcast. The method further includes receiving the page at the mobile station. A method for providing interactive feedback in a wireless communication network is also provided. The method includes broadcasting a program from a server to a mobile station. The method also includes receiving at least part of the program at the mobile station. The method further includes providing feedback about the program from the mobile station. |
US08611374B2 |
Method for PDU reordering in wireless communication system
The present invention relates to a protocol data unit (PDU) reordering method in a wireless communication system. The terminal maintains the number of bytes of PDUs stored in the buffer for reordering PDUs received in a sequence that is changed due to HARQ error correction to thereby prevent overflow of the reordering buffer. When the HARQ function unit transmits a PDU received at the radio access control RAS (S101), the PDU reordering unit of the access terminal sets a current frame number as an arrival frame number of the received PDU (S102). When a current frame number is stored as an arrival frame number of a received frame, the PDU reordering unit compares a sequence number (SN) of a received PDU with a sequence number of a PDU that is about to be reordered (S 103). If the PDU has already been reordered, the received PDU is discarded (S 104). Else, the PDU reordering unit calculates an average size of a buffer that is required for storing the received PDU by using a moving average calculation equation (S 105). |
US08611373B2 |
Communication device
A first communication device includes: a control unit functioning as: a first selection unit which, for a first case where first type data is to be transmitted from the first communication device to a second communication device, selects one or more band guarantee values from a plurality of band guarantee values determined on a basis of transmission capability with which the first communication device transmits the first type data; a request unit which provides a first request command indicating the one or more band guarantee values to the second communication device; a communication unit that acquires a first response command indicating one band guarantee value selected from the one or more band guarantee values by the second communication device; and a first transmission execution unit which transmits the first type data to the second communication device in accordance with the one band guarantee value indicated by the first response command. |
US08611370B2 |
System and method to provide bundled services through a communication device
Systems and method to provide bundled services through a communication device. A particular method may include determining a first bundle of services to offer a user of an end user communication device, where the first bundle of services has a total bandwidth consumption rate computed based on stored bandwidth consumption rates corresponding to services within the first bundle of services. The total bandwidth consumption rate is less than a predicted bandwidth capacity. The particular method may also include comparing a predicted bandwidth capacity to measured bandwidth statistics to identify an additional bandwidth capacity of a set of transport facilities and determining a first additional service to offer a user of the end user communication device to utilize the additional bandwidth capacity. |
US08611369B2 |
Methods and apparatuses for performing random access in a telecommunications system
A method of enabling a user equipment to perform a contention based random access, includes maintaining a set of non-dedicated random access preambles for contention-free random access and a set dedicated random access preambles for contention-based random access. The method also includes determining a random access preamble identifier and transmitting a message to the user equipment containing the determined random access preamble identifier. Additionally, the method includes receiving from the user equipment a non-dedicated random access preamble that is selected by the user equipment based on the random access preamble identifier comprised in the transmitted message. |
US08611361B2 |
Switching hub, line card and frame relay method
A switching hub includes a plurality of ports including receiving ports for receiving a frame from outside and transmitting ports for transmitting the frame to outside, a distributed ID calculation portion for calculating a distributed ID based on the frame received by one of the receiving ports of the plurality of ports and adding the distributed ID to the frame, a first distribution table that stores a port ID for identifying the transmitting port for transmitting the frame associated with the distributed ID to outside, a second distribution table that stores the port ID associated with the distributed ID so that the correspondence relation is different from that of the first distribution table, a distribution table identification information adding portion for adding first table identification information for identifying the first distribution table or second table identification information for identifying the second distribution table to the frame, and a transmission distribution table access portion for obtaining the port ID stored in the first or second distribution table so as to be associated with the distributed ID that is added to the frame by referring to the first distribution table when the first table identification information is added to the frame and by referring to the second distribution table when the second table identification information is added to the frame. |
US08611355B1 |
Buffer-less virtual routing
A network includes a plurality of endpoint routers and intermediate routers. When a new data stream is detected at any endpoint router, the first packet is sent to a virtual routing server with knowledge of the entire network topology. Based on the topology, current usage, and historical usage, the virtual routing server determined a path for the data stream and begins to update the routing tables of the intermediate routers to reflect the determined path. Until the update is complete, all packets in the data stream are routed first to the virtual routing server and then to their destination. Once the update is complete, packets in the data stream are routed directly along the determined path. |
US08611354B2 |
Method and apparatus for relaying packets
Apparatus for relaying packets between a first host and a second host and methods for sending packets between a first and second host are provided. The apparatus includes a memory for registering for the first host the following information: a relayed address of the first host, an address of the second host, and an outbound higher layer identifier and/or an inbound higher layer identifier. The apparatus further includes an outbound packet inspector for inspecting packets received from the first host and addressed to an address of the apparatus to determine whether they contain a registered outbound higher layer identifier and, if so, for forwarding the packets to the address of the second host and/or an inbound packet inspector for inspecting packets received from the second host and addressed to the relayed address to determine whether they contain a registered inbound higher layer identifier and, if so, for forwarding the packets to the address of the first host. |
US08611353B2 |
Failure localisation in a MPLS-TP network
The present invention relates to methods and arrangements in an MPLS-TP network, comprising a plurality of interconnected routers configured for MPLS-TP, wherein at least a first router is defined as an originating Maintenance End Point, MEP, a second router is defined as a targeting MEP and the third router is defined as a Maintenance Intermediate Point, MIP. The basic idea of the present invention is to associate a table with each MIP and MEP, wherein the tables comprises information related to the MEPs of the MPLS-TP network and the information from the tables is inserted in the reply packets and forwarded packets. By using this information, the OAM packets can find the subsequent MIP or MEP and failure localization may be performed. |
US08611352B2 |
System and method for adapting a packet processing pipeline
An apparatus for forwarding packets includes a packet processing pipeline having a processing unit that processes packets compliant with a recognized communication protocol. A first port coupled to the packet processing pipeline is configured to receive a packet that does not comply with the recognized communication protocol and has a header that conforms to a second communication protocol. A data extraction unit extracts first destination information from the header of the packet and, based on the first destination information, generates second destination information that conforms to the recognized communication protocol. The processing unit determines, based on the second destination information, an egress interface to which the packet is to be forwarded. |
US08611351B2 |
Marked packet forwarding
A network, network devices, and methods are described for marked packet forwarding. A network device includes a network chip having a number of network ports for receiving and transmitting packets. The network chip includes logic to decapsulate a packet received from a tunnel, mark the packet with a handle associated with an originating network device of the packet using information from an encapsulation header, and forward the marked packet to a checking functionality having a destination address different from an original destination address of the packet. |
US08611350B2 |
Apparatus and method for layer-2 to 7 search engine for high speed network application
High-speed networking application equipments with a layer-2 to layer-7 hardware search engine and method are with flexibility and performance improvement. The multi-layer switches/routers, network address translation (NAT) gateway, firewall/VPN router and network attached storage (NAS) may use the search engine for fast and efficient search requirement. |
US08611347B2 |
Point-to-multipoint service in a layer two ethernet network
Techniques are described for providing point-to-multipoint (P2MP) Ethernet service in a L2 network. Routers providing the Ethernet service allow an administrator to classify local attachment circuits as either “leaf” attachment circuits or “root” attachment circuits to define a tree-like architecture for forwarding Ethernet frames within a VPLS domain. Based on the classifications, each of router constructs flood domains, referred to herein as mesh groups, that control switching behavior between attachment circuits and pseudowires that transport the L2 communications through the VPLS domain. The routers utilize the mesh groups when switching L2 communications to enforce the requirements of E-TREE service or other L2 services in which L2 traffic is constrained within the L2 VPN to tree-like connectivity. |
US08611341B2 |
Lower main device and non-IP terminal housing method
The objective of the present invention is to provide a lower main device capable of connecting a non-IP terminal such as a digital terminal to an upper main device using an IP network and of accommodating call control. The lower main device behaves as one or more IP terminals toward the upper main device and houses one or more non-IP terminals which each correspond to the one or more IP terminals. |
US08611337B2 |
Adaptive subscriber buffering policy with persistent delay detection for live audio streams
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an adaptive subscriber buffering policy with persistent delay detection for live audio streams. In one aspect, a method includes decoding frames of multimedia data received from a first network; storing the decoded frames of multimedia data in a buffer; monitoring the buffer to determine a level of delay; and providing an output, based on the monitoring of the buffer, to cause a reduction in the level of delay during retrieval and encoding of the stored frames of multimedia data. |
US08611333B2 |
Systems and methods of mobile relay mobility in asynchronous networks
A system and method of managing adjustment of synchronization timing for handover of a mobile relay is disclosed. The method includes repositioning coverage of the mobile relay from a first network access point to a second network access point and adjusting a synchronization timing of the mobile relay in an asynchronous network of the wireless communication system. |
US08611331B2 |
Time division duplexing (TDD) configuration for access point base stations
Systems and methodologies are described that facilitate establishing synchronization and/or mitigating interference with a time division duplexing (TDD) access point base station in a wireless communication environment. For example, a TDD configuration can be selected for the access point base station based upon received information to control interference. By way of another example, the access point base station can be synchronized with a disparate base station based upon the received information. Moreover, the received information can relate to the disparate base station, a served user equipment (UE) (e.g., served by the access point base station, . . . ), and/or a non-served UE (e.g., served by a base station other than the access point base station, . . . ). For example, the served UE can transmit a measurement related to the disparate base station to the access point base station. |
US08611330B2 |
Digital multimedia local area wireless transmission system and local area wireless transmission method using the same
A local area wireless transmission system includes: at least one transmitter transmitting a multimedia data signal with a first speed; at least one receiver receiving the multimedia data signal; and at least one master receiver transmitting a synchronization control signal with a second speed lower than the first speed, the at least one master receiver receiving the multimedia data signal from the at least one transmitter wirelessly and from the at least one receiver wiredly. |
US08611325B2 |
Method and apparatus for plug-and-play venue-cast co-channel with wide-area network
A system, method, and apparatus for providing venue-cast service in a wireless access network are disclosed. A local transmitter can request reservation of air link resources on the wireless access network for a venue-cast transmission. The local transmitter can receive a forward link signal with a timing reference for data transmitted on the wireless access network such as, for example, the forward link signal in an EV-DO network or a FLO-based media distribution system. Based on the timing reference, the local transmitter can transmit venue-cast information in a same frequency band as the forward link signal utilizing the reserved air link resources. Optionally, the venue-cast system can include a collocated network repeater and the local transmitter can synchronize its timing and transmit power to the forward link signal from the repeater. |
US08611324B2 |
Location aware background access point scanning for WLAN
Respective distances between a communication device and a plurality of wireless local area network (WLAN) access points are determined. One of the plurality of WLAN access points with which the communication device is to associate is selected based on the determined distances. |
US08611318B2 |
Method and system for connecting mobile communication terminal with access point
Disclosed is a method for connecting a mobile communication terminal with an access point located in a local area providing a Wireless Local Area Network (WLAN) service in which a server managing the access point compares Media Access Control (MAC) information of the mobile communication terminal or MAC information of the access point transferred from the mobile communication terminal through a mobile communication network with MAC information previously stored in the server and transfers network setting information required for connection to the access point to the mobile communication terminal if the MAC information of the mobile communication terminal or access point is identical to the MAC information previously stored in the server. |
US08611317B2 |
Simultaneously maintaining bluetooth and 802.11 connections to increase data throughput
A device for wirelessly communicating between one or more mobile communication devices over a wireless network. A primary mobile communication device is configured to establish one or more connections to one or more secondary mobile communication devices. The primary mobile communication device is further configured to establish a first connection and a second connection to at least one of the secondary mobile communication devices. The first connection is a Bluetooth (BT) connection and the second connection is a Wireless Fidelity (WiFi) connection. The primary mobile device is also configured to establish a third connection to another secondary mobile communication device wherein the third connection is a WiFi connection. Additionally, the primary mobile communication device is configured to simultaneously maintain the BT connection and the WiFi connections during the bi-directional transmission of data between the primary mobile communication device and the secondary mobile communication devices. |
US08611315B2 |
Communication device, communication method, and computer program for causing computer to execute communication method
A communication device has a plurality of operation modes and a plurality of communication modes. The plurality of communication modes includes a first communication mode, in which a terminal station in a wireless network carries out communications via a control station, and a second communication mode, in which a plurality of terminal stations carry out communications with each other directly without an intervening control station. The communication device connects to at least one other communication device either in the first communication mode or the second communication mode, and switches an operation mode when a communication mode is switched. |
US08611312B2 |
Wireless communication system, wireless communication device, program and wireless communication method
A wireless communication device that performs wireless communication with another wireless communication device using a set time band set in advance from among time bands included in a frame with a predetermined cycle. The wireless communication device includes: a selector, that, when a set time band is changed, selects a new time band for after the change from the time bands included in the frame; a communication portion that transmits in a block information showing the new time band to the other wireless communication device as a set time band change request; and a setting portion that, based on the response received from the other wireless communication device with regard to the set time band change request, changes the setting of the set time band to the new time band. |
US08611306B2 |
Context fetching after inter-system handover
Systems and methodologies are described that facilitate fetching a native security context between network nodes in a core network after an inter-system handover of a mobile device. For instance, a mobility message that is integrity protected by a security context (e.g., the native security context, a mapped security context, . . . ) can be obtained at a network node from the mobile device. Further, the network node can send a request to a disparate network node within a core network. The request can include information that can be used by the disparate network node to establish that the mobile device is authenticated. Moreover, the native security context can be received from the disparate network node in response to the request. Accordingly, the native security context need not be recreated between the network node and the mobile device. |
US08611302B2 |
Dynamic network selection using kernels
A method for determining whether to perform vertical handoff between multiple network. The method comprises obtaining a plurality of selection metrics for each network, calculating, for each of the other communication networks, a predicted utility value from at least the corresponding plurality of selection metrics using a variable kernel regression function, obtaining, for the current communication network, a second plurality of selection metrics; calculating a second predicted utility value for the current communication network from at least the corresponding second plurality of selection metrics using a second variable kernel regression function, comparing each of the predicted utility values for each of the plurality of other communication networks with the second predicted utility value and switching to one of the other communication networks having the highest predicted utility value, if the highest predicted utility value is greater than the second predicted utility value. |
US08611298B2 |
Method, access point and terminal for selecting channel in wireless local area networks
A method for selecting a channel for an access point (AP) in a Wireless Local Area Network (WLAN). The method includes the AP receiving network conditions of APs within the sensing range of a terminal sent by the terminal, and the AP selecting a channel based on the received network conditions. By forwarding the network conditions of other APs which can be detected by the terminal, the method of the present invention enables an AP to select a channel from the view of a terminal to avoid conflicts at the terminal, thereby improving the available bandwidth of the terminal, and giving a better experience to users. |
US08611297B2 |
Method for transmitting and receiving random access request and transmitting and receiving random access response
A base station transmits a random access response in response to a random access request (random access preamble) of a user equipment. The random access response includes information about a time when the random access request is transmitted and sequence number information of the random access request (random access preamble). The user equipment checks whether the received random access response is the response of the random access request transmitted by the user equipment, using the information about the time when the random access request is transmitted and the sequence number information included in the received random access response. |
US08611285B2 |
Method and system for managing video data based on a predicted next channel selection
A method of processing video data with an electronic equipment where the video data is available from a time-sliced data stream having video data corresponding to each of a plurality of channels. The method includes receiving video data corresponding to one of the channels from the plurality of channels that is currently selected by the user and driving a display in accordance with the video data corresponding to the currently selected channel, and predicting which one of the remaining channels from the plurality of channels that the user may next select. Video data corresponding to the predicted channel is received and buffered to improve switching time from the currently selected channel to the predicted next channel. |
US08611284B2 |
Use of supplemental assignments to decrement resources
Systems and methodologies are described that facilitate dynamically supplementing or decrementing resource assignments to mobile devices in a wireless network environment without requiring transmission of replacement assignments. Supplemental assignments can be generated based on information related to mobile device need and resource availability. Moreover, resource assignments can be persisted for a mobile device. |
US08611281B2 |
Method for transmitting ACK/NACK signal in wireless communication system applied carrier aggregation and apparatus therefor
A method for transmitting ACK/NACK signal in a wireless communication system applied carrier aggregation is disclosed herein. More specifically, the method includes receiving multiple transmission blocks respectively through multiple downlink component carriers from a base station, determining ACK/NACK responses corresponding to each of the multiple transmission blocks by decoding the multiple transmission blocks, mapping the ACK/NACK responses to a ACK/NACK state information, and transmitting the ACK/NACK state information through a single uplink component carrier, wherein ACK information included in the ACK/NACK state information indicates a number of ACK response among the ACK/NACK responses. |
US08611279B2 |
Method for building sets of mobile stations in MIMO systems, corresponding mobile station, base station, operation and maintenance centre and radio communication network
When building sets of mobile stations in a radio communication network, reference signals are transmitted from a base station to at least two mobile stations to determine channel properties of a downlink channel between the base station and the at least two mobile stations. First and second feedback information are determined at the at least two mobile stations respectively, each feedback information comprising a first component indicating a channel quality. The first and the second feedback information are transmitted from the first and second mobile stations to the base station. A mobile station set is built according to the first and the second feedback information at the base station, wherein the channel quality is a parameter of a downlink beam with a largest received carrier power of at least three downlink beams of said downlink channel. |
US08611278B2 |
Mobile device, base stations, backhaul network device, and method and computer program storage product for the mobile device
A mobile device, base stations, a backhaul network device for a wireless network system, and a method and a computer program storage product for the mobile device are provided. Each of the base stations is connected to the backhaul network device via a wired connection. The mobile device selects a primary base station and a backup base station from the base stations according to base station information of each base station. The mobile device performs a data transmission procedure with the primary base station during an available interval of a low-duty mode to communicate with the backhaul network device via the primary base station, and performs a connection keeping procedure with the backup base station during an unavailable interval of the low-duty mode. While the data transmission procedure fails, the mobile device performs a data transmission recovery procedure with the backup base station immediately so as to continuously communicate with the backhaul network device via the backup base station. |
US08611277B2 |
Reselection in a wireless communication system
A wireless communication device includes a transceiver coupled to a controller configured to cause the device to receive a downlink transmission including a reference signal from a base station while camped on the base station in idle mode, to estimate a quality metric of a hypothetical paging channel reception based on the reference signal, and to determine perform reselection evaluation of a neighboring base stations based on the estimated quality metric. |
US08611271B2 |
Robust cooperative relaying in a wireless LAN: cross-layer design
A distributed and opportunistic medium access control (MAC) layer protocol for randomized distributed space-time coding (R-DSTC), which may be deployed in an IEEE 802.11 wireless local area network (WLAN), is described. Unlike other cooperative MAC designs, there is no need to predetermine, before packet transmission, which stations will serve as relays. Instead, the MAC layer protocol opportunistically recruits relay stations on the fly. Network capacity and delay performance is much better than legacy IEEE 802.11g network, and even cooperative forwarding using one relay station. Avoiding the need to collect the station-to-station channel statistics considerably reduces overhead otherwise required for channel measurement and signaling. |
US08611269B2 |
Mesh network control using common designation wake-up
Each of a plurality of network nodes in an ad hoc mesh network utilizes a data communication device that includes a two-way communications component, comprising a first receiver and transmitter, and a second receiver. The second receiver activates the communications component from a dormant state when it receives a broadcast including a wake-up identifier of the communication device. A method of activating and deactivating a mesh network includes, first, transmitting a broadcast that includes a wake-up identifier such that each second receiver of each communication device identified by the wake-up identifier, upon receipt, activates the communications component of the communication device, which then engages in mesh networking communications, and, second, transmitting a second broadcast including a second identifier such that the communications component of each communication device identified by the second identifier, upon receipt, will cease its mesh networking communications and will return to the dormant state. |
US08611267B2 |
Communication method of a terminal and an access point for power saving
Provided is a communication method of an access point and a terminal that may decrease power consumption by changing an operation state of a terminal from an awake state to a sleep state when there is no stream to be transmitted to the terminal during a transmission opportunity (TXOP). |
US08611265B2 |
Methods and systems for performing HARQ ACK with scanning and sleep in WiMAX systems
Embodiments of the present disclosure provide techniques for processing a HARQ data burst and/or a HARQ ACK message in the event a HARQ ACK message falls within a scanning or an unavailable interval of an MS. For certain embodiments, a HARQ ACK message may be postponed if it falls within the scanning or the unavailable interval of the mobile station. For certain embodiments, the HARQ data burst transmission may be postponed if the corresponding HARQ ACK message falls within a scanning or an unavailable interval of the mobile station. For certain embodiments, the HARQ ACK may be transmitted or received even if it falls within the scanning or the unavailable interval of the mobile station. However, the HARQ ACK message may not be processed during the scanning/unavailable interval. |
US08611260B2 |
Systems and methods for distance estimation between electronic devices
A distance estimation system is disclosed for estimating a distance between two electronic devices. The system includes a power adjustable transmitter that is capable of having its power level adjusted between successive transmissions of packets of data, a remote device that is remote from the power adjustable transmitter for receiving the packets of data, and a distance estimation unit. The distance estimation unit is for generating a distance estimation signal responsive to the packets of data received at the remote device such that the distance estimation signal is associated with a power level at which the power level adjustable transmitter is not able to sufficiently transmit the packets of data to the remote device. |
US08611255B2 |
Technology for flushing and relearning MAC addresses in telecommunication networks
A technique for performing a flushing process at a port of a network switch, where the flushing process comprises a flooding operation and an operation of relearning MAC addresses. In the method, these two operations are made independent, and the operation of relearning MAC addresses is started before termination of the flooding operation. An operation of forwarding packets to the relearned MAC addresses can be started before termination of the flooding operation. |
US08611254B2 |
Systems and methods for configuring a network for multicasting
In one embodiment, a method for configuring a network for multicasting includes receiving with a first router a first message from a second router, updating a listing of candidate rendezvous points on the first router in relation to information contained in the first message, and sending a second message from the first router to a third router, the second message containing information as to rendezvous point mapping. |
US08611252B2 |
Method of routing multicast traffic
A method of routing multicast traffic in a computer network is disclosed. The method comprises associating a plurality of multicast group addresses on a network device with respective multicast routing topologies. A network device and a network are also disclosed. |
US08611251B2 |
Method and apparatus for the distribution of network traffic
A packet network device, such as a router or switch, includes functionality that operates to receive network traffic, process the traffic as needed and to forward the traffic to its destination. Additionally, each router includes a weighted equal cost multipath routing function that operates to identify equal cost paths over which to forward the network traffic, to calculate a path weighting that is dependent upon the path bandwidth and to forward the traffic ingressing to it over each of the equal cost paths according to the calculated path weighting. |
US08611249B2 |
Method and apparatus for transmission and reception in multi-carrier wireless communication systems
Data transmission and reception is provided by configuring control channels in a wireless communication system using a plurality of carriers. User equipment (UE) may monitor physical downlink control channel (PDCCH) candidates within common search spaces (CSSs) and User Equipment-specific search spaces (USSs). If the UE is configured with cross-carrier scheduling, when two PDCCH candidates originating from a CSS and a USS, respectively, have cyclic redundancy check (CRC) scrambled by the same Radio Network Temporary Identifier (RNTI) and have a common payload size and the same first control channel element (CCE) index, the UE may interpret that only the PDCCH originating from the CSS is transmitted, thereby solving ambiguity of downlink control information (DCI) detection. |
US08611247B2 |
Dynamic data retrieval in a WLAN positioning system
A WLAN positioning system for calculating the geographic location of a mobile device minimizes the amount of data retrieved from a remote access point location server by dynamically switching between public fetching operations and private fetching operations in response to one or more parameters including, for example, whether the mobile device is in motion, the data retrieval history of the mobile device, and/or the capacity and utilization of local memory provided within the mobile device. |
US08611245B2 |
Distributed admission control
A first network client requests initiation of a data transfer with a second network client. An admission control facility (ACF) responds to the initiation request by performing admission analysis to determine whether to initiate the data transfer. The ACF sends one or more packets to the second network client. In response, the second network client sends acknowledgment packets back to the ACF. The ACF performs admission analysis based on the packets sent and the acknowledgment packets, and determines whether the data transfer should be initiated based on the analysis. The admission analysis may be based on a variety of factors, such as the average time to receive an acknowledgment for each packet, the variance of the time to receive an acknowledgment for each packet, a combination of these factors, or a combination of these and other factors. |
US08611241B2 |
Process for selection of resources to be released in case of an overload in a cellular land mobile system
Process and land mobile system for operating a cellular land mobile network in which in case of an overload certain resources of the land mobile network currently being used can be released in order to be available for higher priority applications, and resources can be usable at the same time by several applications, characterized in that selection of the resource to be released takes place, for all resources under consideration an efficiency factor being determined and the resource with the lowest efficiency factor being released. |
US08611233B2 |
System and method for testing network elements using a traffic generator with integrated simple network management protocol (SNMP) capabilities
A system and method in accordance with exemplary embodiments may receive, from a management system, configuration data associated with a management protocol. In addition, the system and method may generate test data traffic at least based on the configuration data. Further, the system and method may transmit, to one or more network elements, the test data traffic. Even further, the system and method may receive, from the management system, a query associated with the management protocol that requests data traffic information associated with at least one of the generated test data traffic, transmitted test data traffic, and received test data traffic. The system and method may transmit, to the management system, the requested data traffic information in response to the query. |
US08611230B2 |
Systems and methods for proactive management of a communication network through monitoring a user network interface
Systems and methods for proactive management of a communication network through monitoring a user network interface are disclosed. Example disclosed methods include determining that a first network component associated with first information obtained from a first received exception message is related to both a first user network interface and a second user network interface, determining that a second network component associated with second information obtained from a second received exception message is related to both the first and second user network interfaces, determining that a third network component associated with third information obtained from a third received exception message is related to both the first user network interface and a third user network interface, combining the first, second and third information to proactively assess performance of the first user network interface, and combining the first and second information to proactively assess performance of the second user network interface. |
US08611229B2 |
Retransmission method, base station, and user device in multicast system
Disclosed are a retransmission method, a base station, and a user device in a multicast system. In order to reduce uplink signaling resource, a new MNI (Multiple NACK Indicator) message is added to an uplink common feedback channel in an existing E-MBMS system. The MNI message enables decision of an XOR retransmission group which satisfies the XOR retransmission condition. As compared to a conventional XOR retransmission, the number of uplink signalings does not depend on the number of receivers. That is, when a plenty of receptions are present, it is possible to significantly reduce uplink signalings. |
US08611223B2 |
Method and apparatus for providing processor occupancy overload control
A method and apparatus for handling an overload condition in a communication network are disclosed. For example, the method calculates a call target rate by at least one core signaling network element for at least one edge signaling network element. The method then sends the call target rate by the at least one core signaling network element to the at least one edge signaling network element, when a processor occupancy of the at least one core signaling network element exceeds a predefined high threshold within a measurement interval, wherein the call target rate is used by the at least one edge signaling network element in an overload control that throttles signaling traffic. |
US08611222B1 |
Selectively enabling packet concatenation based on a transaction boundary
A system, apparatus, and method are directed towards selectively combining data into a packet to modify a number of packets transmitted over a network based on a detection of a transaction boundary. If it is determined to concatenate the data, such concatenation may continue until an acknowledgement (ACK) is received, or a predetermined amount of data is concatenated in the packet, or a transaction boundary is detected. If at least one of these conditions is satisfied, concatenation may be inhibited, and the packet may be sent. Concatenation is then re-enabled. In one embodiment, Nagle's algorithm is used for concatenating data into a packet. In one embodiment, an ACK may be sent based on a write completion indicator included within a packet. Receipt of the ACK may disable concatenation. |
US08611221B2 |
Transport block size signaling for semi-persistent scheduling
A method is provided for improving reliability in semi-persistent scheduling activation/reactivation is provided. The method includes a user agent receiving a first data element from an access device specifying at least one first transport block size. The method further includes the user agent deriving a second transport block size based on a second data element received from the access device. The method further includes the user agent comparing the first transport block size with the second transport block size. The method further includes, when the first transport block size differs from the second transport block size, the user agent ignoring the received semi-persistent scheduling activation/reactivation data. |
US08611220B2 |
Network system, controller, and network control method
When an appliance, which has a packet discard function, discards a packet, transmits packet discard information as information related to the discarded packet to a controller. A controller performs a switch control process in response to the packet discard information. In the switch control process, the controller selects a target switch from the network, creates entry setting information for instructing the target switch to create an entry such that a packet belonging to the same flow as the discarded packet is discarded, and transmits the created entry setting information to the target switch. The target switch sets an entry in its own flow table in response to the entry setting information transmitted from the controller. |
US08611215B2 |
Systems and methods for digital data transmission rate control
The present invention provides systems and methods for adaptive digital data transmission rate control. A digital data transmission system for adaptively transferring packets over a transmission link includes a client device having a bandwidth control module and a host device coupled to the client device over the transmission link. The host device includes one or more bandwidth control registers and a packet builder. The bandwidth control module determines a packet speed and/or size for packets transmitted from the host device to the client device over the transmission link. The bandwidth control registers store the requested packet size and/or rate. The packet builder accesses these registers when transmitting packets to determine the requested packet size and/or rate. |
US08611209B2 |
Autonomic error recovery for a data breakout appliance at the edge of a mobile data network
A mechanism provides autonomic recovery for a breakout appliance at the edge of a mobile data network from a variety of errors using a combination of hardware, software and network recovery actions. The recovery actions proceed upon a sliding scale depending on the severity of the problem to achieve the goals of minimizing disruption to traffic flowing through the NodeB while also maintaining an acceptable cost of ownership/maintenance of the system by automatically recovering from as many problems as possible. The error recovery functions within the breakout system hide the error recovery complexities from the management system upstream in the mobile data network. For critical, non-recoverable errors, the autonomic recovery mechanism works in conjunction with a fail-to-wire module to remove the breakout system in the event of a failure in such a way that the mobile data network functions as if the breakout system is no longer present. |
US08611208B2 |
Autonomic error recovery for a data breakout appliance at the edge of a mobile data network
A mechanism provides autonomic recovery for a breakout appliance at the edge of a mobile data network from a variety of errors using a combination of hardware, software and network recovery actions. The recovery actions proceed upon a sliding scale depending on the severity of the problem to achieve the goals of minimizing disruption to traffic flowing through the NodeB while also maintaining an acceptable cost of ownership/maintenance of the system by automatically recovering from as many problems as possible. The error recovery functions within the breakout system hide the error recovery complexities from the management system upstream in the mobile data network. For critical, non-recoverable errors, the autonomic recovery mechanism works in conjunction with a fail-to-wire module to remove the breakout system in the event of a failure in such a way that the mobile data network functions as if the breakout system is no longer present. |
US08611199B2 |
Objective lens element and optical pickup device
An optical pickup device is provided which is compatible with at least two types of optical disc standards having different NAs and which controls an effective NA when a light beam for an optical disc standard having a relatively small NA is converged, thereby forming a desired spot. An inner part 131B and an outer part 131F of an objective lens element 143 are provided with diffraction structures different from each other. A condition (1), DO11×DO12>0, and a condition (2), DO21×DO22<0, are satisfied (DO11 (DO21) is the diffraction order of the diffracted light beam having the highest diffraction efficiency among light beams of the wavelength λ1 (λ2) diffracted by the diffraction structure on the inner part; and DO12 (DO22) is the diffraction order of the diffracted light beam having the highest diffraction efficiency among light beams of the wavelength λ1 (λ2) diffracted by the diffraction structure on the outer part). |
US08611193B2 |
Method and apparatus for coupling a laser diode to a magnetic writer
A write head includes a cavity configured to couple a laser diode to the write head. A bottom of the cavity includes a heat conductive element configured to contact the laser diode, a plurality of thermal studs disposed below the heat conductive element, and a substrate disposed below the thermal studs. The heat conductive element, thermal studs, and substrate are thermally coupled to draw heat from the laser diode. |
US08611184B2 |
Method for estimating absorption parameter Q(T)
A method and apparatus for a method for generating an estimated value of absorption parameter Q(t). In one embodiment, the method includes receiving an input seismic trace, applying a time variant Fourier transform to the input seismic trace to generate a time variant amplitude spectrum of the input seismic trace, dividing the natural logarithm of the time variant amplitude spectrum by −πf, and performing a power series approximation to the result with an index starting from one to generate an estimated value of R(t). R(t) is a ratio between traveltime t and the absorption parameter Q(t). The method further includes dividing t by R(t) to generate the estimated value of the absorption parameter Q(t). |
US08611178B2 |
Device and method to perform memory operations at a clock domain crossing
A device and method to perform memory operations at a clock domain crossing is disclosed. In a particular embodiment, a method includes providing a first clock signal to a write clock input of a memory to write data to the memory. The data is read from the memory according to a second clock signal that is different from the first clock signal. A third clock signal is provided to a read clock input of the memory. The third clock signal has a frequency that is substantially an integer multiple of a frequency of the second clock signal. The integer multiple is greater than one. |
US08611176B2 |
Counter circuit, latency counter, semiconductor memory device including the same, and data processing system
To provide a counter circuit capable of accurately counting a high-frequency signal in which hazard or the like is easily generated. There are provided: a frequency dividing circuit that generates first and second frequency dividing clocks, which differ in phase to each other, based on a clock signal; a first counter that counts the first frequency dividing clock; a second counter that synchronizes with the second frequency dividing clock to fetch a count value of the first counter; and a selection circuit that exclusively selects count values of the first and second counters. According to the present invention, a relation of the count values between the first and second counters is kept always constant, and thus, even when hazard occurs, the count values are only made to jump and the count values do not fluctuate. |
US08611174B2 |
Semiconductor memory device
A semiconductor memory device is configured to have a first memory cell array having a plurality of blocks (cell arrays corresponded to one I/O bit), each block having a plurality of columns and being corresponding respectively to one of data terminals, wherein the blocks being arranged side by side in the column-wise direction, and a second memory cell array configured similarly to the first memory cell array, and is also configured to assign addresses while classifying the even-number-th memory blocks in the first memory cell array and the odd-number-th memory blocks in the second memory cell array into a first set, whereas the odd-number-th memory blocks in the first memory cell array and the even-number-th memory blocks in the second memory cell array into a second set, so as to output data from every other block in each memory cell array upon being accessed with a certain address. |
US08611173B1 |
Buffer circuitry with multiport memory cells
Integrated circuits with first-in-first-out (FIFO) buffer circuits are provided. A FIFO may be implemented using multiport memory elements arranged in an array. The array may be coupled to first and second row address decoders and column multiplexers. The first and second row address decoders may be respectively controlled using first and second row address signals, whereas the column multiplexers may be controlled using column address signals. A FIFO control circuit may generate the row and column address signals. In one suitable arrangement, the FIFO control circuit may be configured to compare the first and second row address signals to determine whether read and write access requests can be simultaneously performed. In another suitable arrangement, the FIFO control circuit may be configured to monitor a count value reflective of the number of data words the FIFO is currently storing to determine whether simultaneous read and write access requests are permitted. |
US08611171B2 |
Voltage down converter for high speed memory
A voltage down converter (VDC) applicable to high-speed memory devices. The VDC includes a steady driver and active driver along with at least one additional transistor. The steady driver and active driver are coupled by a transistor switch during device start-up to provide fast ramp-up to operating voltage and current. After start-up, the steady driver and active drive function to maintain a steady operating voltage and current. An additional transistor is digitally controlled to drive up operating voltage and current upon issuance of an active command representing read, write, and/or refresh of memory. In this manner, the additional transistor provides fast compensation for fluctuations in operating voltage and current brought on by activity in the memory array. |
US08611170B2 |
Mechanisms for utilizing efficiency metrics to control embedded dynamic random access memory power states on a semiconductor integrated circuit package
Power management of an embedded dynamic random access memory (eDRAM) using collected performance counter statistics to generating a set of one or more eDRAM effectiveness predictions. Using a set of one or more eDRAM effectiveness thresholds, each corresponding to one of the set of eDRAM effectiveness predictions, to determine whether at least one eDRAM effectiveness prediction has crossed over threshold. In the case that at least one eDRAM effectiveness prediction has crossed over its threshold, transitioning the eDRAM to a new power state. Power management is achieved by transitioning to a power-off state or self-refresh state and reducing the amount of power consumed by the eDRAM as compared to a power-on state. |
US08611164B2 |
Device and method for detecting resistive defect
The invention provides a device and method for detecting a resistive defect in a static random access memory (SRAM) device. A first aspect of the invention provides a static random access memory (SRAM) device comprising: a bitline; a wordline; a bitline precharge circuit electrically connected to the bitline and adapted to provide to the bitline a first precharge voltage for precharging the bitline during normal operation of the SRAM device and a second precharge voltage less than the first precharge voltage for testing the SRAM device for a resistive defect between the bitline and the wordline. |
US08611161B2 |
Integrated circuit, system including the same, memory, and memory system
A system includes integrated circuit chip including a first buffer configured to receive signals and a second buffer configured to receive signals, wherein the first buffer receives signals of a higher frequency than the second buffer, a controller chip configured to control the integrated circuit chip, an I/O channel formed between the controller chip and the integrated circuit chip to transfer a first signal and a second speed signal, wherein the first signal has a higher frequency than the second signal, and a status channel formed between the controller chip and the integrated circuit chip to transfer at least one status signal, wherein the integrated circuit chip is configured to select one of the first buffer and the second buffer and actives the selected buffer in response to the at least one status signal and receive a signal transferred through the I/O channel. |
US08611157B2 |
Program temperature dependent read
Methods and non-volatile storage systems are provided for using compensation that depends on the temperature at which the memory cells were programmed. Note that the read level compensation may have a component that is not dependent on the memory cells' Tco. That is, the component is not necessarily based on the temperature dependence of the Vth of the memory cells. The compensation may have a component that is dependent on the difference in width of individual Vth distributions of the different states across different temperatures of program verify. This compensation may be used for both verify and read, although a different amount of compensation may be used during read than during verify. |
US08611156B2 |
Sensing operations in a memory device
Methods for sensing, method for programming, memory devices, and memory systems are disclosed. In one such method for sensing, a counting circuit generates a count output and a translated count output. The count output is converted into a time varying voltage that biases a word line coupled to memory cells being sensed. Target data for each memory cell is stored in a data cache associated with that particular memory cell. When it is detected that a memory cell has turned on, the translated count output associated with the count output that is indicative of the voltage level that turned on the memory cell is compared to the target data. The comparison determines the state of the memory cell. |
US08611155B2 |
Semiconductor memory device and program methods thereof
Programming a semiconductor memory device includes: performing a program loop using a blind program operation until the selected cell threshold voltages reach a first verification level; upon detecting a cell having the threshold voltage reaching the first verification level, verifying whether a cell having the threshold voltage reached a second verification level higher than the first verification level; upon verifying a cell having the threshold voltage reaching the second verification level, continuously performing program loops on cells having the first verification level as a target level and on cells having the second verification level as a target level; and upon verifying no cell having the threshold voltage reaching the second verification level, performing a program loop on memory cells having a target level higher than the first verification level, after programming the memory cells having the first verification level as the target level. |
US08611153B2 |
Biasing system and method
Embodiments are provided that include a memory system that includes a memory system, having an access device coupled between a global line and a local line and a voltage source coupled to the global line and configured to output a bias voltage on the global line when the memory system is in a non-operation state. The access device is selected when the memory system is in the non-operation state, and the access device is deselected when the memory system is in an other state. Further embodiments provide, for example, a method that includes coupling a global access line to a local access line, biasing the local access line to a voltage other than a negative supply voltage while a memory device is in a first state and uncoupling the global access line from the local access line while the memory device is in an other state. |
US08611149B2 |
Programming based on controller performance requirements
A solid state drive is adapted to receive and transmit analog data signals representative of bit patterns of three or more levels (such as to facilitate increases in data transfer rates relative to devices communicating data signals indicative of individual bits). Programming of the solid state drive, including an array of non-volatile memory cells, might include adjusting the level of each memory cell being programmed in response to a desired performance level of a controller circuit. |
US08611138B1 |
Circuits and methods for hardening volatile memory circuits through one time programming
Circuits and techniques for operating a memory cell on an integrated circuit (IC) are disclosed. A disclosed memory cell includes a first inverter coupled to a second inverter to form a first connection and a second connection. The first connection is operable to receive at least a first data signal at a first voltage and the second connection is operable to receive at least a second data signal at a second voltage. A first oxide capacitor and a second oxide capacitor are coupled to the first and second connections respectively. Both the first and second oxide capacitors are coupled to receive a programming signal at a third voltage that may be operable to rupture either one of the first or second oxide capacitor. |
US08611135B2 |
Method for programming a resistive memory cell, a method and a memory apparatus for programming one or more resistive memory cells in a memory array
A method for programming a resistive memory cell is provided. The method may include providing a programming signal to the resistive memory cell. The programming signal may include an electrical pulse and a bias pulse coupled with the electrical pulse. The electrical pulse includes an electrical pulse portion, and the bias pulse includes at least two bias pulse portions, wherein the electrical pulse portion is positioned between the at least two bias pulse portions. The bias pulse includes a voltage below a threshold switching voltage of the resistive memory cell. The programming signal includes a peak voltage above the threshold switching voltage of the resistive memory cell. |
US08611134B2 |
Systems and methods for row-wire voltage-loss compensation in crossbar arrays
Embodiments of the present invention are directed systems and methods for reading the resistance states of crossbar junctions of a crossbar array. In one aspect, a system includes one or more sense amplifiers connected to column wires of the crossbar array, a reference row wire connected to each sense amp, and a wire driver connected to the reference row wire and configured to drive the reference row wire. The sense amplifiers are configured so that when a selected row wire of the crossbar array is driven by a sense voltage, the column wires are held at approximately zero volts and pass currents through the column wires and sense amplifiers to the reference row wire so that resistive voltage losses along the reference row wire substantially mirror the resistive voltage losses along the selected row wire, allowing the sense amplifiers to determine the crossbar junction resistance states. |
US08611128B2 |
ROM memory device
A memory device includes a plurality of read only memory cells, a precharge circuit, and a sense amplifier. A read only memory (ROM) cell of the plurality of ROM cells is coupled to a word line and a bit line. The ROM cell comprises a transistor having a first current electrode coupled to receive a reference voltage, a second current electrode selectively coupled to the bit line based on the programmed state of the ROM cell, and a control electrode coupled to the word line. The precharge circuit is coupled to the bit line. The precharge circuit precharges the bit line to a precharge voltage, wherein the precharge voltage is less than the reference voltage. The sense amplifier is coupled to the bit line and to a power supply voltage terminal for receiving a power supply voltage, wherein the reference voltage is less than the power supply voltage. |
US08611121B2 |
Stacked memory devices
A stacked memory device may include a substrate, a plurality of memory groups sequentially stacked on the substrate, each memory group including at least one memory layer, a plurality of X-decoder layers, at least one of the plurality of X-decoder layers being disposed between every alternate neighboring two of the plurality of memory groups, and a plurality of Y-decoder layers disposed alternately with the plurality of X-decoder layers, at least one of the plurality of Y-decoder layers being disposed between every alternate neighboring two of the plurality of memory groups. |
US08611119B2 |
Contactless interface
Power extracted from an antenna inductively coupled to an alternating magnetic field is regulated to provide voltage supplies. In some implementations, a first voltage supply (e.g., 3.8 volts) provides regulated voltage to analog circuits and a second, lower, voltage supply (e.g., 1.4 volts) provides regulated voltage to digital circuits. The first voltage supply is regulated, using shunt regulation, by a first voltage regulator circuit. The second voltage supply is regulated, using a series regulation, by a second voltage regulator circuit. The second voltage regulator circuit is supplied by the shunted current from the first voltage regulator. Excess shunt current provided by the first regulator circuit can be bypassed (e.g., bypassed to ground). The second voltage regulator circuit can use a timer circuit to control the amount of charge transferred to a second voltage supply rail. The timer circuit can compensate for different currents from the first voltage regulator circuit. |
US08611118B2 |
Gate drive controller circuit with anti-saturation circuit and power up circuit therefor
A high side isolated gate drive controller circuit is presented with an on-time limiting circuit to prevent isolation transformer saturation as well as a universal power up circuit adaptable to power the driver with constant voltage for different input voltage levels. |
US08611117B2 |
Solar energy generation system tracking adaptive maximum power point and its method
Provided are a solar energy generation system having an adaptive maximum power point tracking function and a method thereof. The solar energy generation system includes: a minimum maintenance voltage determination unit configured to output a minimum maintenance voltage which enables the inverter to maintain an operation thereof corresponding to a grid voltage of the grid; a maximum power point tracking controller configured to determine a maximum power point tracking voltage at a maximum power point of the photovoltaic module, using the minimum maintenance voltage and an output voltage and output current of the photovoltaic module, and to output a reference voltage to track the maximum power point; a voltage calculator configured to calculate a difference between the reference voltage and the output voltage of the photovoltaic module; and a voltage adjuster configured to generate a reference current value using an output of the voltage calculator. |
US08611115B2 |
Resonant capacitor clamping circuit in resonant converter
A resonant converter comprises first and second input terminals (1, 2) to connect a voltage source (VBulk). A series connection of a first switch (S1) and a second switch (S2) is connected between the input terminals. A resonant circuit with a resonant inductance, at least one resonant capacitor (C1, C2, Cs), and at least a primary winding of a transformer (T1, T1—a, T1—b) is connected to the common Terminal of the first switch (S1) and the second switch (S2). A diode (D3) is connected in conduction direction from the first input Terminal (1) to the clamping capacitor (Cclamp). Another diode (D4) is connected in conduction direction from the clamping capacitor (Cclamp) to the second input terminal (2). A comparator (5) is connected across the clamping capacitor (Cclamp). The comparator (5) is further connected to a pulse control unit (3) to control the first and second switches (S1, S2). |
US08611110B2 |
Switching power supply apparatus
A switching control IC conducts on-off control on a first switching element. A second switching control circuit is provided between a high-side driving winding of a transformer T and a second switching element. The second switching control circuit discharges a capacitor in a negative direction with a constant current during an on period of the first switching element, and then after the second switching element is turned on, charges the capacitor in a positive direction with a constant current. A transistor controls the on period of the second switching element in accordance with the ratio of a charging current to a discharge current such that the ratio of the on period of the second switching element to the on period of the first switching element is substantially always constant. |
US08611109B2 |
Flyback converter with an adaptively controlled rectifier arrangement
A flyback converter includes input terminals and output terminals. A transformer with a first winding and a second winding are inductively coupled. A first switching element is connected in series with the first winding and a first series circuit with the first switching element, the first winding being coupled between the input terminals. A rectifier arrangement is connected in series with the second winding and a second series circuit with the rectifier arrangement, the second winding being coupled between the output terminals. The rectifier arrangement includes a second switching element. A control circuit is configured in one drive cycle to switch on the first switching element for a first time period. After the first time period the second switching element is switched on for a second time period. A third time period is determined between an end of the second time period and the time at which the transformer assumes a predetermined transformer state. The control circuit is further configured to adapt the second time period to be applied in a subsequent drive cycle dependent on the second time period applied in the one drive cycle and the third time period is determined in the one drive cycle. |
US08611105B2 |
Slide button, switching assembly, and electronic device using the same
A slide button, used for activating a mode of an electronic device by operating a toggle switch on a circuit board of the electronic device, includes an operating member, an activating member, and a positioning member. The operating member defines a first surface used for applying a force therein and a second surface opposite to the first surface. The activating member includes two tail fins and a positioning member respectively extending from the second surface. The tail fin defines an opening. The toggle switch is received in the opening. The connecting board is received in the opening and used for enhancing the strength of the two tail fins. The positioning member is connected to the two tail fins and spaced apart from the operating member. The positioning member and the operating member together secure the slide button to the electronic device. |
US08611103B2 |
Latching injector/ejector
A latching apparatus provides selective injection and ejection of an electronic module relative to a chassis that includes a support member. The apparatus includes a housing to be coupled to the electronic module, and a handle pivotably coupled to the housing and movable between a latched position and an unlatched position. A catch in a first position retains the handle in the latched position. An actuator is coupled to the handle and operable to move the catch to a second position. In response to movement of the actuator in a direction the same as the direction of the handle toward the unlatched position, the catch is moved to its second position. As a result, the handle is movable between the latched and unlatched positions to permit the electronic module to be injected or ejected relative to the chassis. |
US08611089B2 |
Heat pipe and circuit board with a heat pipe function
A heat pipe for cooling an exothermic body by the vaporization and condensation of an enclosed cooling medium is disclosed. The heat pipe comprises a flat plate-like upper plate, a flat plate-like lower plate opposed to the upper plate, and a plurality of flat plate-like intermediate plates overlaid on each other between the upper plate and the lower plate and having internal through-holes. The internal through-holes formed in each of a plurality of the intermediate plates are adapted such that only part of each through-hole is overlapped on each other to form capillary tube paths, each having a cross-sectional area smaller than the cross-sectional area of the through-hole in the flat surface direction. |
US08611087B2 |
Cooling system for information device
To cool a blade type server disposed in an air-conditioned room, the following arrangements are made. The first is at least one shell having a ventilation passage disposed in the air-conditioned room. The second is, the following are disposed in a ventilation passage: racks, in which blade type servers each composed of a case with slim boards housed therein are stacked; cooling coils each having a coolant passage and a cooling fin and cooling a passing air; and at least one fan unit having axial-flow fans placed therein and producing air currents in one direction. The third is the fan unit forces a cooling air to flow in one direction in the ventilation passage thereby to cool the servers in the racks. The cooling coils and racks are disposed alternately so that warmed cooling air after passing through the rack is cooled by the cooling coil and then cools the next rack. |
US08611085B2 |
Latching mechanism and electronic device
An electronic device includes a main body, a cover, and a latching mechanism latching the cover to the main body. The latching mechanism includes a latching assembly and a hook assembly secured to the cover. The latching assembly includes at least one latching member slidably received in the main body. The hook assembly includes at least one hook member. The at least one hook member engages with the at least one latching member to latch the cover to the main body, and disengages from the at least one latching member allowing the cover to unlatch from the main body. The at least one hook member is hidden in the cover when the cover is unlatched from the main body, and extends out of the cover engaging with the at least one latching member latching the cover to the main body. A latching mechanism is also provided. |
US08611079B2 |
Data card
The utility model provides a data card that includes a circuit board, a holder, an upper cover, a connecting wire, and an interface. The circuit board is fixed in the holder. One end of the flexible connecting wire is connected with the circuit board, and the other end of the flexible connecting wire is connected with the interface. The upper cover covers the holder. When the data card is idle, the interface and the flexible connecting wire are located in the cavity formed by the upper cover and the holder. When the data card is connected with an external device by the interface, the interface is located outside the cavity formed by the upper cover and the holder. The data card enables flexible adjustment of the location of the interface, and fixes the upper cover on the data card when the data card is connected for use. |
US08611077B2 |
Electronic devices with component mounting structures
Electronic devices are provided that have components. A housing protrusion may be interposed between a display cover layer and display components. A button may have a button member. A support structure for a dome switch in the button may have a screw hole. A housing may have screw holes through which a screw passes. The screw may also pass through the screw hole of the support structure to hold the switch structure near the button member. A clip may have a spring. A metal plate may prevent the clip from becoming worn by the spring. A display may be mounted on a ledge in a device housing. The ledge may have gaps with supports and removed corners. |
US08611075B2 |
Apparatus for mounting an audio player
Disclosed is a mounting dock with an integral jack for digital audio players, preferably that incorporate a built-in clip, including, but not limited to the iPod Shuffle® and iPod Nano® manufactured by Apple, Inc. The dock includes a tapered and beveled mounting stem that inserts into the audio player's clip and a jack that inserts into and provides electrical connection with the audio player's audio port. The stem and jack are positioned and aligned so as to enable simultaneous mounting and electrical connection with the audio player, thereby effecting connection with a desired output device, such as earphones, with one hand in a single motion. |
US08611071B2 |
Power supply structure of a multi-power-supply system
A power supply structure of a multi-power-supply system which is electrically connected to at least one power supply to get an output power provided by the power supply. The multi-power-supply system includes a power integration back panel and a casing. The power integration back panel is electrically connected to a DC output port and has at least one output cord to receive the power provided by the power supply. The casing has a housing compartment to hold the power integration back panel, an opening for loading the power supply into the housing compartment, and at least one partition to divide the housing compartment to form a space to hold the power supply, a wiring space threaded through by the output cord, and a power supply port exposed outside the surface of the casing to electrically connect to the output cord. |
US08611070B2 |
Process for encapsulating metals and metal oxides with graphene and the use of these materials
The invention relates to a process for coating nanoparticles with graphene, comprising the steps of (a) providing a suspension comprising a suspension medium and nanoparticles with positive surface charge, (b) adding graphene oxide particles to the suspension from step (a), the graphene oxide particles accumulating on the nanoparticles, and (c) converting the graphene oxide particles accumulated on the nanoparticles to graphene, to graphene-coated nanoparticles comprising at least one metal, a semimetal, a metal compound and/or a semimetal compound, and to the use of these graphene-coated nanoparticles in electrochemical cells and supercapacitors, and to supercapacitors and electrochemical cells comprising these nanoparticles. |
US08611067B1 |
Energy storage device
The present invention features an energy storage device and methods of storing electromagnetic energy that take advantage of the resonance transfer of energy in a dielectric matrix placed between two oppositely charged electrodes and subjected to a high voltage bias. Electromagnetic energy is stored in high-quality cavities in coated semiconducting nanoparticles. |
US08611066B2 |
Non-radioactive bipolar charger for aerosol particles
A bipolar charger includes a housing with a main chamber and positive and negative electrode chambers facing each other. The electrode chambers each have a ground electrode and a high voltage electrode that cooperate to create a cloud of ions. An aerosol flowing from an inlet passage through the main chamber and out an outlet passage mixes with the clouds of ions, thereby providing an aerosol with a steady-state electric charge distribution. |
US08611064B2 |
Magnetization apparatus
A magnetization apparatus includes a power supply unit, an energy storage element and a voltage clamp unit. The power supply unit generates at least one exciting signal to excite at least a coil of a magnetic field generating apparatus. The voltage clamp unit has a clamping voltage. The voltage level of the clamp voltage is higher than the voltage level of the exciting signal, and lower than the rated voltage of the energy storage element. When the exciting signal turns to a low voltage level, the voltage clamp unit controls the voltage level of the energy storage element to be less than or equal to the voltage level of the clamp voltage. This configuration with the voltage clamp unit can extend the lifetime of the energy storage element and reduce the energy loss to enhance the efficiency. |
US08611062B2 |
Surge current sensor and surge protection system including the same
The present invention may provide a surge current sensor and a surge protection system that deploys one or more surge current sensors. The surge current sensor may be placed on or near to a conduit, and it may be used for sensing the surge current conducted therein. The surge current sensor may include a current transformer and a processor. The current transformer may be used for receiving a magnetic flux generated by the surge current and transforming the received magnetic flux to a voltage. The processor may be coupled with the current transformer, such that it may be configured to generate a digital signal based on the voltage. Once the digital signal indicates that the magnitude of the surge current has exceeded a predefined threshold, the surge protection system may initiate a surge protection mechanism. |
US08611061B2 |
Transmitter/receiver circuit for protection circuit
A transmitter/receiver circuit includes secondary batteries connected in series, a first protection circuit in a high voltage side of the secondary batteries and including a transmitter circuit increasing a voltage of a binary signal to a level that is a first voltage higher than an anode voltage of a first secondary battery connected to the first protection circuit, and a second protection circuit in a low voltage side of the secondary batteries and including a receiver circuit that receives the binary signal from the transmitter circuit via a wiring and including a shift part decreasing the voltage of the binary signal to a level that is a second voltage lower than a cathode voltage of a second secondary battery connected to the second protection circuit, and a detection part that determines that the wiring is disconnected when the voltage of the binary signal is lower than a reference voltage. |
US08611058B2 |
Combination ESD protection circuits and methods
Circuits, integrated circuits, apparatuses, and methods, such as those for protecting circuits against electrostatic discharge events are disclosed. In an example method, a thyristor is triggered to conduct current from a signal node to a reference voltage node using leakage currents provided by a transistor formed in a semiconductor doped well shared with the base of the thyristor. The leakage currents are responsive to a noise event (e.g., electrostatic discharge (ESD) event) at the signal node, and increase the voltage of the semiconductor doped well to forward bias the base and the collector of the thyristor. The triggered thyristor conducts the current resulting from the ESD event to the reference voltage node. |
US08611057B2 |
LED module for sign channel letters and driving circuit
An LED module for use in sign letter channel lights comprises a substrate, a reflector mounted on the substrate, an LED mounted within the reflector on the substrate and a Zener diode shunt element connected in parallel across the LED, a printed circuit board on the substrate, wherein the LED is mounted on the printed circuit board, and an insulating cover. The module may be entirely encapsulated. An LED driving protection circuit provides ground fault protection for a plurality of series connected LED modules. |
US08611056B2 |
Superconducting fault current limiter
A superconducting fault current limiter (SCFCL) includes a cryogenic tank defining an interior volume, a superconductor disposed in the interior volume, and a refrigeration system configured to adjust a temperature of the superconductor in response to a condition during a steady state operation of the SCFCL. A method of operating a SCFCL includes cooling a superconductor disposed within an interior volume of a cryogenic tank to a temperature less than a critical temperature of the superconductor, and adjusting the temperature of the superconductor in response to a condition during a steady state operation of the SCFCL. |
US08611054B1 |
Antiferromagnetically-coupled soft bias magnetoresistive read head, and fabrication method therefore
A magnetic read transducer is described with a magnetoresistive sensor that has a free layer, and an antiferromagnetically-coupled (AFC) soft bias layer for magnetically biasing the free layer. The free layer has a first edge in a track width direction along an air-bearing surface (ABS). At least a portion of the AFC soft bias layer is conformal to at least a portion of a second edge of the free layer, and situated to form a magnetic moment at an angle with respect to a center line of the free layer. The center line of the free layer extends in the same direction as the free layer first edge that is in the track width direction along the ABS. |
US08611053B2 |
Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with multilayer reference layer including a Heusler alloy
A current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) sensor has a multilayer reference layer containing a Heusler alloy. The multilayer reference layer may be a simple pinned layer or the AP2 layer of an antiparallel (AP)-pinned structure. The multilayer reference layer is formed of a crystalline non-Heusler alloy ferromagnetic layer on either an antiferromagnetic layer (in a simple pinned structure) or an antiparallel coupling (APC) layer (in an AP-pinned structure), a Heusler alloy layer adjacent the sensor's nonmagnetic electrically conducting spacer layer, and an intermediate substantially non-crystalline X-containing layer between the crystalline non-Heusler alloy layer and the Heusler alloy layer. The element X is selected from one or more of tantalum (Ta), hafnium (Hf), niobium (Nb) and boron (B). |
US08611052B1 |
Systems and methods for aligning components of a head stack assembly of a hard disk drive
Embodiments of the present invention relate to an alignment comb and a subassembly of a head stack assembly for a hard disk drive using the alignment comb. The subassembly includes a flexible printed circuit (FPC) having a plurality of first apertures, a flexure configured to be coupled to the FPC, the flexure having a second aperture configured to overlap a corresponding one of the first apertures, and an alignment comb including a plurality of fingers configured to align the FPC with the flexure, the plurality of fingers being spaced apart in a first direction and a finger of the plurality of fingers configured to extend into the corresponding one of the first apertures and the second aperture. |
US08611047B2 |
Servo writer with closely spaced large-diameter tape guides supported by compressed air
In a servo writer, a write signal generator circuit is configured to output a signal for writing a servo signal to a servo write head disposed to allow a magnetic tape to slidably contact therewith and configured to write the servo signal thereon, and a plurality of tape guides are configured to guide the magnetic tape supplied from a supply reel to the servo write head and to a take-up reel. The plurality of tape guides include a first tape guide disposed to contact with the magnetic tape at a position directly upstream of the servo write head and a second tape guide disposed to contact with the magnetic tape at a position directly downstream of the servo write head. Each of the first and second tape guides includes a guide roller rotatably supported by an air bearing and having a diameter of 19 mm or greater. |
US08611046B2 |
PMR writer with graded side shield
A perpendicular magnetic recording (PMR) head is fabricated with a pole tip shielded laterally by a graded side shield that is conformal to the shape of the pole tip at an upper portion of the shield but not conformal to the pole tip at a lower portion. The shield includes a trailing shield, that is conformal to the trailing edge of the pole tip and may include a leading edge shield that magnetically connects two bottom ends of the graded side shield. |
US08611041B2 |
Servo control method and apparatus in seek retry condition and disk drive apparatus using the same
A servo control method in a seek retry condition includes determining whether the seek retry condition is generated, and terminating a servo control process that is currently performed and decelerating a voice coil motor such that a speed of the voice coil motor is minimized using a back electromotive force when the seek retry condition is generated. |
US08611032B2 |
Directional write retry for shingled disk drive application
Embodiments described herein include systems and methods for correcting for errors caused by disturbances to disk drives, such as disturbances due to shocks or vibrations incident on the drive. For example, systems and methods described herein advantageously correct for corruption to current data as well as previously written. Data may be rewritten in the current track that was being written to when the disturbance occurred, and may also be rewritten to one or more nearby previously written tracks, such as one or more adjacent tracks. According to some aspects, the direction of head deviation is used to select the appropriate corrective action. |
US08611025B2 |
Optical system
An optical system for imaging an object on an image acquisition unit includes a first lens unit, a second lens unit, a third lens unit, a fourth lens unit, a fifth lens unit, and a sixth lens unit disposed from the object in the direction of the image acquisition unit. The second lens unit is manufactured from a material whose deviation of the relative partial dispersion fulfills the condition: Δθg F>0.025. The third lens unit is manufactured from a material whose deviation of the relative partial dispersion fulfills the condition: Δθg F<−0.0015. The fifth lens unit is manufactured from a material whose deviation of the relative partial dispersion fulfills the condition: Δθg F<−0.005. According to the disclosed system, the secondary spectrum is reduced and a relative aperture is sufficient so that the optical system is usable in a telescopic sight. |
US08611021B2 |
Image pickup apparatus that drives plural lens units using motors different from each other and drive control method of lens
An image pickup apparatus includes a first drive unit, a first lens unit configured to be driven by the first drive unit to perform a magnification-varying operation, a second drive unit, a second lens unit configured to be driven by the second drive unit, and a controller configured to control the first drive unit and the second drive unit so as to drive the second lens unit with reference to a position of the first lens unit in performing the magnification-varying operation. The controller controls the second lens unit so as to move only in a first direction in performing the magnification-varying operation. |
US08611020B2 |
Piezoelectric actuator, lens barrel, and imaging device
A piezoelectric actuator includes a first piezoelectric element that performs thickness-shear vibration in a first direction, a first member that is driven by the first piezoelectric element and that vibrates in the first direction, a second piezoelectric element that is supported by the first member and that performs thickness-shear vibration in a second direction, a second member that is driven by the second piezoelectric element and that vibrates in the second direction, a pressurizing section that generates a pressure between the second member and a driving target member driven by the second member. The pressurizing section includes a third piezoelectric element that changes the pressure between the second member and a driving target member on the basis of a driving state of the driving target member. |
US08611018B2 |
Zoom lens system, interchangeable lens apparatus and camera system
A zoom lens system, in order from an object side to an image side, comprising a first lens unit having negative optical power, a second lens unit having positive optical power, a third lens unit having negative optical power, and a fourth lens unit having positive optical power, wherein the third lens unit moves along an optical axis in focusing from an infinity in-focus condition to a close-object in-focus condition, and the conditions: 0.5<|f3/fW|<2.0 and 0.005 |
US08611012B2 |
Light guide plate
A light guide plate includes a substrate and horizontally oriented elongated prisms. The substrate is positioned on mounted on an outside surface of a window of a building and includes a first surface and an opposing second surface. The second surface faces the outside surface. The substrate is made of transparent material. The prisms are arranged on the first surface and parallel to each other. Each prism includes a flat side surface facing upward and a curved side surface facing downward. The flat side surface and the curved side surface extend from the first surface and intersect at a line away from the first surface. Each curved side surface is configured for reflecting light passing through the flat side surface to a ceiling of the building. |
US08611011B2 |
Dual-stage sunlight redirection system
A system providing consistent and intense sunlight to light-guiding structures for redirecting sunlight to the interior of a building is presented. One aspect of the inventive subject matter includes an illumination system comprising a solar redirector and at least one optical converter. The solar redirector can be configured to extend outward from a wall of a building and to redirect sunlight to exterior sections of the wall below the solar redirector. The optical converter can be configured to mount on at least one of the exterior sections of the wall and to receive the redirected sunlight and distribute the redirected sunlight to an interior of the building. |
US08610998B2 |
Coloured organic electrophoretic particles
The present invention relates to the preparation and use of (colored) organic particles carrying electric charge as electrophoretic (image) displaying particles, to electrophoretic dispersions comprising the organic particles carrying electric charge, electrophoretic (image) devices (especially displays) comprising the colored organic particles carrying electric charge, to the novel functionalized particles, and to their use. The particles are obtainable according to a method represented by the reaction scheme as given in FIG. 1. |
US08610993B2 |
Light control device and light control method
A light control device 1 includes a light source 10, a prism 20, a spatial light modulator 30, a drive unit 31, a control unit 32, a lens 41, an aperture 42, and a lens 43. The spatial light modulator 30 is a phase modulating spatial light modulator, includes a plurality of two-dimensionally arrayed pixels, is capable of phase modulation in each of these pixels in a range of 4π, and presents a phase pattern to modulate the phase of light in each of the pixels. This phase pattern is produced by superimposing a blazed grating pattern for light diffraction with a phase modulation range of 2π or less and a phase pattern having a predetermined phase modulation distribution with a phase modulation range of 2π or less. |
US08610992B2 |
Variable transmission window
A variable transmission window includes a first substrate having a first transparent conductor coated surface and a second substrate having a second transparent conductor coated surface. The second substrate is positioned relative to the first substrate with the first and second transparent conductor coated surfaces facing each other. An electrochromic medium is disposed between the first and second substrates whereby the transmission of light through the electrochromic medium is changed when an electrical potential is applied thereto. The electrochromic medium includes a cross-linked film. The window may be one of (i) an aeronautical glazing and (ii) a vehicle glazing, and/or the window may be a large area glazing of an area of at least 99 square inches. |
US08610990B2 |
Driver for a Pockels cell
The invention relates to an activation circuit for a Pockels cell, comprising a first circuit node (P1), which can be connected to a first connection of the Pockels cell (CP), and a second circuit node (P2), which can be connected to a second connection of the Pockels cell (CP), wherein the first circuit node (P1) is connected by means of a first line to a first electrical potential (HV1) across a first switch (S1B) and by means of a second line to a second electrical potential (HV2) across a second switch (S1A), and the second circuit node (P2) is connected by means of a third line to a third electrical potential (HV3) across a third switch (S2B) and to a fourth electrical potential (HV4) across a fourth switch (S2A), and HV1 is more positive than HV2 and HV3 is more positive than HV4, wherein the difference of the potentials (HV1−HV4) is greater than the difference of the potentials (HV1−HV2) and the difference of the potentials (HV3−HV4). |
US08610984B2 |
Scanning optical apparatus
A scanning optical apparatus includes a light source, a deflecting element for deflecting a beam of light emitted from the light source, and an optical device for causing the beam to be imaged into a linear shape long in the main scanning direction on the deflecting surface of the deflecting element. The device comprises a first optical element and a second optical element, and a third optical element for causing the deflected beam of light to be imaged into a spot-like shape on a surface to be scanned. The third element includes a single lens, the opposite lens surfaces of which both include a toric surface of an aspherical surface shape in the main scanning plane, the curvatures of the opposite lens surfaces in the sub scanning plane being continuously varied from the on-axis toward the off-axis in the lens's effective portion. |
US08610983B2 |
Actuator and optical scanning device using actuator
An actuator which tilts and drives an object to be driven around an axis of rotation includes: a pair of supporting beams arranged to support the object to be driven from both sides thereof in a direction parallel to the axis of rotation; a pair of movable beams arranged to sandwich the object to be driven and the pair of supporting beams from both sides in a direction perpendicular to the axis of rotation; a drive source arranged to apply bending vibration to the movable frames; and a pair of connection parts arranged to connect the movable frames and end portions of the supporting beams by a multiple-beam structure, convert the bending vibration into torsional vibration, and transmit the torsional vibration to the supporting beams. |
US08610979B2 |
Image pickup apparatus
An image pickup apparatus includes a pixel area including an arrangement of a plurality of pixels each having a photoelectric conversion portion and a common output portion for sequentially amplifying and outputting signals from the plurality of pixels included in the pixel area. The pixel area is formed on a single semiconductor substrate and includes a power supply unit for effecting power supply control of the common output portion independently of control of the power supply to the pixel area, and a control circuit for effecting control to supply no power to the common output portion in a predetermined period after starting photo charge accumulation in the photoelectric conversion portion and to supply the power to the common output portion before the end of a photo charge accumulation period in the photoelectric conversion portion. |
US08610973B2 |
Image reading apparatus and multilayer substrate
An image reading apparatus includes a light source that irradiates a document with light, the light source including a multilayer substrate and light emitting elements linearly arranged on a first surface of the multilayer substrate; and a light receiver that receives reflected light reflected from the document. The multilayer substrate has at least a pair of through holes each having an inner surface on which a reinforcement member is formed, the at least a pair of through holes being formed so that one of the light emitting elements is interposed therebetween. The reinforcement members contact wiring formed on the first surface of the multilayer substrate and wiring formed on a second surface of the multilayer substrate opposite the first surface. |
US08610969B2 |
Illumination assembly for a scanner with thermally conductive heat sink
An illumination assembly for a scanner according to one example embodiment includes a scan head frame. A thermally conductive heat sink component has an elongated base portion that is mounted along a longitudinal edge of the scan head frame and a protruding portion having a generally L-shaped structure that includes a first portion extending from the base portion and a second portion extending from and generally orthogonal to the first portion. A light source is coupled to the second portion of the protruding portion of the heat sink component. A first reflector is removably coupled to the first portion of the protruding portion of the heat sink component and is positioned directly in the optical path of the light source. |
US08610964B2 |
Image forming apparatus having lateral cover with inwardly-dented handgrip
An image forming apparatus is provided. The image forming apparatus includes a lateral cover, which is an external covering to cover a lateral side of the image forming apparatus, and a connector member having at least one protrusion, by which the lateral cover is connected to the connector member. The lateral cover is formed to have an inwardly-dented handgrip, which has an open end and a closed end, and at least one opening on an upper section of the handgrip. The at least one protrusion protrudes downwardly from a surface of the connector member. The at least one protrusion is inserted in the at least one opening of the lateral cover to penetrate the connector member and to protrude downwardly from the upper section of the handgrip. |
US08610963B2 |
Image corner sharpening method and system
An image processing system, apparatus and method are disclosed for corner enhancing a digital image for rendering on an image output device. According to one exemplary method, pixels associated with corner regions of the digital image are determined using a plurality of vector windows. Subsequently, one or more corner pixels are modified to sharpen the rendering of the digital image on the image output device. |
US08610962B2 |
Screen design for process variation artifact reduction
In a method for designing a halftone screen configured to reduce artifacts in a printed image, artifacts due to a process variation resulting from printing of the image through use of a halftone screen design are modeled and the halftone screen is designed to have threshold values that substantially reduce the artifacts due to the process variation. |
US08610958B2 |
Synthesis of authenticable color multi-halftone images
The present invention enables creating authenticable continuous tone color multi-ink multi-halftone images offering means of verifying their authenticity. The invention relies on color halftones, color separation into different ink surface coverages for different halftoning methods, mapping of an input gamut into a gamut defined by a set of inks, calculating the optimal boundary between region halftones created with different halftoning methods, and color multi-halftone image generation. The basic authentication is performed by examining the color multi-halftone image under a reference illumination and verifying that the message incorporated within the color multi-halftone is hidden and revealed under a different illumination. Authentication can further be performed by observing the color multi-halftone image both in reflection and transmission modes and verifying that in one of these modes the message is hidden and that in the other mode the message is revealed. |
US08610954B2 |
Apparatus and method for image processing of ground pattern
In order to prevent illegal copying more effectively in an image forming apparatus, when a specified ground pattern for preventing copying is detected in input image data, the detected ground pattern is emphasized in the image data. Alternatively, information for detecting the specified ground pattern is stored in a storage device, in order to detect the ground pattern with the stored information. When the ground pattern is not detected, a ground region in the image data is analyzed further to determine whether a different ground pattern exits or not. When a ground pattern is detected, information for detecting the ground pattern is stored in the storing device. |
US08610953B2 |
Image retouching program
Provided is photo retouching software which is easy for photo studio personnel to use. Upon opening photo image(s), special photo retoucher 11 converts photo image data thereof to working color space image data. At such time(s), if working ICC profile(s) is/are set which is/are different from ICC profile(s) previously embedded in such photo image file(s), color perceptual matching is carried out on the photo image data thereof based on such embedded ICC profile(s) and working ICC profile(s) when such photo image file(s) is/are opened. Furthermore, when such photo image(s) is/are displayed at monitor(s), such image data is converted to monitor color space image data through color matching using working ICC profile(s) and monitor ICC profile(s). |
US08610948B2 |
Spectral gamut mapping by constrained subdivision of gamut
Color management in which a spectral gamut is determined for spectral gamut mapping by constructing subdivisions of a set of samples spanning the spectral gamut. The samples are designated by specifying device values and are subdivided based on their lightness, chroma and hue under a reference illuminant such that the number of samples in each subdivision is limited by a predetermined number. A color value to be spectrally gamut mapped is accepted, and converted into a colorimetric value under the reference illuminant. The converted colorimetric value includes a lightness, a chroma and a hue. Subdivisions within a tolerance of the converted colorimetric value are identified using its lightness, chroma and hue. Samples within the identified subdivisions are searched to find a sample that matches acceptably to the color value relative to an objective function. |
US08610945B2 |
Image forming apparatus and image forming method having a pixel clock generator to switch an image signal sent to a laser beam modulator
An image forming apparatus multiplies a first clock to drive the apparatus, thereby forming a second clock, and holds (1) a frequency of a third clock used by a print unit of the apparatus, (2) a magnification setting of the multiplying, (3) a resolution of the print unit, and (4) a micro zoom ratio. The apparatus sets a magnification of the multiplying based on the held values, discriminates whether a pixel is a target pixel to which a micro zoom is executed by using the held micro zoom ratio, and switches a count comparison value of the second clock formed by the multiplying based on the discrimination, thereby forming the third clock. The apparatus then forms a pixel segment based on image data of the target pixel corresponding to the discrimination and inserts the formed pixel segment based on a period of the third clock. |
US08610941B2 |
Method for printing printed material, which is individualized with logistic print-image elements
The invention relates to a method for printing printed material which is individualized with logistical printed image elements, wherein at least one printed image, particularly a static printed image, which is printed in a printing machine, is individualized by technically adding at least one dynamic logistical printed image element. According to the invention, data of the/each dynamic logistical printed image element is combined in such a way that the/each printed image and the/each logistical printed image element are automatically updated by comparing data between a data bank provided by a print job user and a data bank provided by a logistics provider prior to printing the printed material individualized with the/each logistical printed image element. |
US08610940B2 |
Displaying settings of a re-output condition for data
An image processing apparatus includes an input control unit that receives the input of document data that is a target to be output and the output condition of the document data, an image output unit that outputs the document data in accordance with the received output condition, an HDD that stores therein the output condition under which the document data has been output, as a re-output condition to be set at a time when the document data is re-output, and a display control unit that displays the re-output condition on an operation display unit and, when a dependent item that is determined to be set together with a different item is present in the re-output condition, the display control unit displays a dependence-destination item that is the different item together with the re-output condition. |
US08610937B2 |
Printing system, printing apparatus, control method and program
A printing system includes a plurality of print data generation units that shares content serving as print source data and generates print data, a storage unit configured to store generated print data in a storage of the server in the generated order, an inquiry unit that periodically inquires whether print data is stored in the server, a document generation unit that, when there is an inquiry and generated print data is stored in the server, generates a document including a storage location of the print data, an analysis unit that receives the document from the server and analyzes information contained in the document, and a print control unit that, when a first page number of the print data analyzed and a last page number of print data already acquired by the printing apparatus are continuous, acquires the print data from the analyzed storage location and print the acquired print data. |
US08610935B1 |
Printing and scanning using mobile devices
Embodiments of the present disclosure provide a method comprising transmitting, by a mobile device, a print request to a print server to print a file; in response to transmitting the print request, displaying on the mobile device a bar code, wherein the bar code embeds information associated with the print request; and scanning the bar code from the mobile device to a printing device, to facilitate subsequent printing of the file by the printing device based on the information embedded in the bar code. |
US08610933B2 |
Operation console providing a plurality of operation methods for one command, electronic device and image processing apparatus provided with the operation console, and method of operation
In an image forming apparatus including a touch-panel display allowing a touch operation and a gesture operation, in order to enable easy customization of print setting screen image, a CPU of the image forming apparatus executes a program including: the step of displaying the print setting screen image in the custom-set display mode; upon detection by a user input, analyzing an input trajectory; if a request for changing preview display is made by a gesture, storing an icon mode with larger preview area as a custom-setting; and changing the preview on the print setting screen image displayed in the icon mode. |
US08610932B2 |
Job based calibration, calibration guard, and profile advisor
A method and apparatus for launching a calibrator process by which the user is guided through the process of calibrating the conditions used by a particular print job is provided. Techniques are provided which calculate which print conditions will be used by the particular print job, which guarantees that the user is calibrating the correct conditions to get the best color quality for the particular job. The method and apparatus further provides techniques that allow the user to specify the conditions under which a calibration is considered expired in terms of time since the last calibration and the number of prints since the last calibration The method and apparatus further provides techniques for when the user encounters a new media type or print condition, the system can measure such and inform the user whether to create a new profile and/or new calibration set to get the optimal color quality. |
US08610924B2 |
Scanning and capturing digital images using layer detection
A mechanism for scanning and capturing digital images using document layer detection. Upon detecting a document placed on a scanning surface of a scanning device, the illustrative embodiments identify one or more layers within the document. The illustrative embodiments then scan the one or more layers within the document on a layer by layer basis. |
US08610922B2 |
Information processing apparatus, image input apparatus, document distribution system, and control method therefor
Upon a user selecting and associating document data and a digital multifunction peripheral on a computer screen, the document data associated with the selected digital multifunction peripheral is searched for, scan settings using the document data as model data are extracted, and the extracted scan settings, as well as information as to a storage location of the document data are transmitted to the digital multifunction peripheral, in order to request button registration. The digital multifunction peripheral receiving the request presets the received scan settings, registers a scan and transmit button using the received storage location as a transmission destination, and displays it through a user interface. Upon pressing the scan and transmit button, a document is scanned with the scan settings associated therewith and the acquired document data is transmitted to the transmission destination associated with the scan and transmit button. |
US08610921B2 |
Systems and methods for message based determination of printer capabilities
Methods disclosed facilitate the identification of printers from among a plurality of network accessible printers based on information about at least one printer sub-state using commonly available messaging techniques such as e-mail. In some embodiments, an email message, which includes queries with search criteria pertaining to the at least one printer sub-state, is received and a sub-state database is queried based on the search criteria pertaining to the printer sub-state to obtain a set of printers that satisfy the search criteria. The sub-state database comprises information that correlates printer identification information with corresponding printer sub-state information of the plurality of network accessible printers. The response to the query is used to respond to the e-mail request with the e-mail response including identification information about printers in the set of printers that satisfy the search criteria. |
US08610920B2 |
Visualizer and job control director for printing systems
A system is utilized to view and configure one or more print job scenarios within a print system. A preference module allows a user to select one or more preferences related to a print job in view of a job set and one or more limitations related to hardware within the print system. A rules component creates one or more rules for use within the print system to output a hard copy based at least in part upon the preferences selected via the preference module. A scheduler receives one or more rules from the rules component and configures the print system to execute the print job according to the preferences and/or the rules. A visualizer displays a scenario associated with each print system configuration, wherein the preferences and the rules can be edited to create one or more scenarios for execution of the print job. |
US08610914B2 |
Communication apparatus, communication method, computer readable medium and image forming apparatus
The communication apparatus including: a communication unit communicating with external apparatuses via a communication line; a notification unit notifying, from the communication unit, the external apparatuses of stop of electric power supply to a controller controlling operation, when electric power supply to the controller is stopped; an identification information memory for storing identification information of one of the external apparatuses when, after the notification unit makes the notification, the notification unit again makes the notification to the one of the external apparatuses upon receipt of a signal from the one of the external apparatuses; and a signal processor processing a signal received from any of the external apparatuses by the communication unit. The signal processor discards a signal, when a transmission source of the signal is one of the external apparatuses having the identification information matching the identification information stored in the identification information memory. |
US08610913B2 |
Server apparatus and method for the same
A driver management unit of a management server develops non-[1:1] type association information generated in a batch association creation mode into [1:1] type association information. On the other hand, the driver management unit stores association information created in an ordinary association creation mode in a data storage unit without performing the development. Further, the driver management unit transmits a list of the association information stored in the data storage unit to a client in response to a request, and distributes a driver selected from the list to the client in such a way as to create a logical printer of a device that corresponds to the association information selected from the list for the client. |
US08610900B2 |
Apparatus for low coherence optical imaging
The present invention relates to an apparatus for low coherence optical imaging, and more particularly to an apparatus for low coherence optical imaging which can obtain the information of the different depths of a sample simultaneously. The apparatus comprises a phase transformation unit or a beam shift unit. The phase transformation unit or beam shift unit transforms and reflects the reference light, such that the reflected reference light comprises different phases at the different positions of a cross-section. When the reference light and a information light from the sample are superimposed on a photo detector, the information of the different depths of the sample is obtained. By using the apparatus of the present invention, the elements, the volume, and the cost of the apparatus are reduced. Because of only two-dimensional scanning is required, the scanning rate is improved. |
US08610899B2 |
Rotational and linear system and methods for scanning of objects
A scanning system comprised of a multi-axis drive module comprised of a first linear drive operable along a first axis, a second linear drive joined to the first linear drive and operable along a second axis non-parallel to the first axis, and a first rotary drive mounted on the second linear drive, operable around an axis parallel to the first axis, and comprised of a rotary fixture for holding the object. A first optical probe is provided for scanning the object. The rotary fixture for holding the object may include a central object-receiving port. A first fluid circuit may be provided, which is in communication with the central object-receiving port. In that manner, an internal cavity of the object may be pressurized through a passageway in the portion of the object that is disposed in the central object-receiving port, thereby stabilizing a region of the object to be scanned. |
US08610898B2 |
Self-referencing interferometer, alignment system, and lithographic apparatus
A self-referencing interferometer includes an optical system to split an alignment beam to create a reference beam and a transformed beam. The optical system includes a beam splitter to combine the reference beam and the transformed beam so that the diffraction orders in the reference beam spatially overlap with their respective opposite orders in the transformed beam. A detector system receives the spatially overlapping reference beam and transformed beam from the optical system and determines a position signal. The detector system includes a polarizing system for manipulating the polarization of the beams so that they interfere, and for directing the interfering reference beam and transformed beam to a detector for determining a position signal from the variation of intensity of the interfering beams. |
US08610896B2 |
Apparatus and method for detecting pressure signals
An apparatus for detecting data in a fluid pressure signal in a conduit comprises an optical fiber loop comprises a measurement section and a delay section wherein the measurement section is disposed substantially circumferentially around at least a portion of the conduit, and wherein the measurement section changes length in response to the fluid pressure signal in the conduit. A light source injects a first optical signal in a first direction into the measurement section and a second optical signal in a second direction opposite the first direction into the delay section. An optical detector senses an interference phase shift between the first optical signal and the second optical signal and outputs a first signal related thereto. |
US08610885B2 |
Coated optical-fiber bend-fatigue and reliability tester
Apparatus and methodology for testing coated optical-fiber bend fatigue and operational reliability by subjecting a coated optical-fiber carrying an optical signal to bending motion. The motion can be either: (1) in the same angular direction for multiple revolutions or (2) alternating clockwise and counterclockwise directions for repetitive single revolutions. The motions are achieved by using either a single conical-cylindrical form or two conically-shaped forms separated from each other by a constant gap width with the coated optical-fiber under test strung in the gap between the forms. With the two cones, the fiber is wrapped over each form in an alternating manner by a rotating arm that makes only single revolutions in clockwise and counterclockwise directions. With either embodiment, varied circumferences are controllably presented to the optical fiber resulting in varying bend radii. Fiber tension, signal strength and optical wavelength are parameters that can also be varied under computer control, the computer providing spreadsheet data for clear analysis. |
US08610884B2 |
Method for optical visualization of graphene domains
The present invention relates to a method for optical visualization of graphene domains, and more particularly to a method for optical visualization of graphene domains, which can optically visualize the domains and domain boundaries of graphene by forming on a substrate a graphene layer to be measured, forming a liquid crystal layer on the formed graphene layer, and then measuring the optical properties of the formed nematic liquid crystal layer. The method for optical visualization of graphene domains according to the invention uses a liquid crystal-coating method, which is simpler and easier than a conventional method for observing graphene domains. Thus, the method of the invention is simple, time-saving and inexpensive and, at the same time, enables very-large-area graphene domains to be observed with a polarizing microscope or the like. Therefore, the inventive method will be very useful in the research of graphene's properties. |
US08610881B2 |
Lidar measurement device with target tracking and method for use of same
A Lidar measurement device for vehicular traffic surveillance and method for use of same are disclosed. In one embodiment, video circuitry acquires video of a field of view having a target therein. A steerable laser progressively scans the field of view to identify targets. The steerable laser then progressively, repeatedly scans a sub-field of the field of view containing the target. A processing circuit portion determines target data of the target based upon range and time measurements associated with reflected laser range-finding signals from the scans of the sub-field. The processing circuit then integrates the target data into the video such that the video may displayed with an image of the target and target data, such as a speed measurement, associated therewith. |
US08610880B2 |
Distance measuring apparatus and distance measuring method
A distance measuring apparatus and method that enable high-precision and high-speed measurement by canceling variations of a delay circuit in the apparatus are provided. Pulsed light is branched into first and second reference light, and transmitted measurement light, and the difference in detection time among the first reference light along a first path with no optical variations, the second reference light along a second path with an optical delay, and received measurement light from an object to be measured is measured. The received measurement light and the first reference light are temporally separate, distance is calculated from the difference in detection time between the received measurement light and the first reference light. When the received measurement light and the first reference light are not temporally separate, distance is calculated from a difference in detection time between the first reference light and the second reference light and a difference in detection time between the received measurement light and the second reference light. |
US08610878B2 |
Lithographic apparatus and method
A lithographic apparatus includes an illumination system configured to provide a first beam of radiation, which forms a first mask illumination region, and configured to substantially simultaneously provide a second beam of radiation, which forms a second mask illumination region. The first and second illumination regions being configured to substantially simultaneously illuminate a same mask. The lithographic apparatus also includes a projection system configured to project the first radiation beam such that it forms a first substrate illumination region and configured to simultaneously project the second radiation beam such that it forms a second substrate illumination region. |
US08610875B2 |
Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
An immersion exposure apparatus and method exposes a substrate with an exposure beam via an optical element and immersion liquid. The apparatus includes a substrate stage having a table and a member. The table mounts the substrate and is configured to maintain the immersion liquid below the optical element when located opposed to the optical element. The member is configured to maintain the immersion liquid below the optical element when located opposed to the optical element. The substrate stage is configured such that, when the table is located opposed to the optical element, the table and the member are movable relative to the optical element in a state in which a surface of the table and a surface of the member are arranged adjacent to each other so that the immersion liquid below the optical element is thereby transferred from the table to the member. |
US08610872B2 |
Liquid crystal alignment process
A liquid crystal alignment process comprises steps of: providing a first substrate and a second substrate to form a liquid crystal accommodating space therebetween; pouring a liquid crystal composition into the liquid crystal accommodating space, the liquid crystal composition comprising liquid crystal molecules, a first monomer material, and a second monomer material; applying a voltage difference to the first and second substrates for arranging the liquid crystal molecules at a pre-tilt angle; and exposing the liquid crystal composition by mixed multi-spectrum rays for polymerizing the first monomer material and the second monomer material to form at least one type of liquid crystal alignment polymer on opposite surfaces of the first and second substrates. The liquid crystal alignment process is capable of improving the efficiency of exposure procedure, reducing time to manufacture products, and is capable of solving the problems of high costs and waste pollution. |
US08610871B2 |
Method for forming multilayer structure, method for manufacturing display panel, and display panel
A method for forming a multilayer includes a process for forming a first conductive layer on a substrate; a process for forming a first insulating layer on the first conductive layer; a process for forming a second conductive layer on the first insulating layer and patterning the deposited second conductive layer; a process for forming a second insulating layer over the substrate so as to cover the patterned the second conductive layer; a process for forming a third insulating layer on the second insulating layer, wherein an etching speed of the third insulating layer is faster than that of the second insulating layer; and a process for forming contact holes at once that expose at least a part of the first conductive layer to the first insulating layer, the second insulating layer and the third insulating layer. |
US08610868B2 |
Liquid crystal display device and manufacturing method thereof
In order to prevent dielectric breakdown of TFT or an interlayer insulating film by static electricity with a reduced area at low cost, a liquid crystal display device has a configuration in which an interlayer insulating film and an a-Si film are formed in a display area and a control area inside terminals. Image signal lines and scan lines are insulated from each other through the interlayer insulating film and a-Si film in their intersections. On the other hand, only the interlayer insulating film is formed between static electricity protection lines and an earth line outside the terminals. When static electricity is induced, dielectric breakdown is caused to occur in the area outside the terminals. Thus, the display area and the control area are protected from the static electricity. |
US08610867B2 |
Liquid crystal display and liquid crystal composition included therein
Provided are a liquid crystal composition and a liquid crystal display (LCD) including the liquid crystal composition. The LCD includes a first display panel a second display panel facing the first display panel, and a liquid crystal composition disposed between the first display panel and the second display panel. If a dielectric constant in a direction parallel to a long axis of liquid crystals is defined as a horizontal dielectric constant ∈∥, a dielectric constant in a direction perpendicular to the long axis of the liquid crystals is defined as a vertical dielectric constant ∈⊥, and the difference between the vertical dielectric constant ∈⊥ and the horizontal dielectric constant ∈∥ is defined as dielectric anisotropy Δ∈, then a ratio Δ∈/∈⊥ of the dielectric anisotropy Δ∈ to the vertical dielectric constant ∈⊥ of the liquid crystal composition is 0.5 or less. |
US08610864B2 |
Liquid crystal display
A liquid crystal display according to an exemplary embodiment of the present invention includes: a pixel electrode including a first subpixel electrode and a second subpixel electrode with a gap therebetween; a common electrode facing the pixel electrode; and a liquid crystal layer formed between the pixel electrode and the common electrode, and including a plurality of liquid crystal molecules, wherein the first and second subpixel electrodes include a plurality of minute branches, the first and second subpixel electrodes include a plurality of subregions having different length directions of the minute branches, and the width of the minute branches is wider than an interval between the neighboring minute branches. |
US08610863B2 |
Liquid crystal display panel
An LCD panel is provided for improving a contrast ratio by suppressing light leakage around gate lines of an assembly that is structured to support a liquid crystal alignment mode that enhanced side view visibility of the LCD image. The LCD panel includes a first base substrate, a plurality of gate lines and a plurality of data lines disposed on the first base substrate and crossing each other, a pixel electrode comprising a first oblique line and a second oblique line disposed on the first base substrate and inclined in a different direction from each other with respect to the gate lines, a second base substrate, a common electrode disposed on the second base substrate and alternately positioned with the pixel electrode, wherein a portion of the common electrode overlaps the gate line segment, and a liquid crystal layer disposed between the first and second base substrates. |
US08610860B2 |
Array substrate and manufacturing method thereof, and liquid crystal display
The disclosed technology relates to an array substrate and a method of manufacturing the same, and a liquid crystal display. The array substrate comprises a base substrate. The base substrate comprises a pixel region and a peripheral region; data lines and gate lines are formed to transversely and longitudinally cross each other on the base substrate to form a plurality of pixel units, and each of the pixel units comprises a switching element, a pixel electrode and a common electrode above the pixel electrode; the common electrode has slits in each pixel unit and is a plate-shaped electrode in the pixel region, when powered on, the common electrode forms a horizontal electric field together with the pixel electrode of the pixel unit; and a common electrode line formed in the pixel region and connected with the common electrode. |
US08610857B2 |
Liquid crystal display having transparent conductive film on interlayer insulating film formed by coating
A liquid crystal display is fabricated which has bus wires disposed in a grid shape, switching elements coupled to the bus wires, and pixel electrodes which are disposed on an interlayer insulating film formed by coating and which are coupled with the switching elements. In fabricating the liquid crystal display, when a transparent conductive film is formed on the interlayer insulating film which is formed by coating, the temperature of the substrate is controlled to become 100° C.-170° C. In another embodiment, when the transparent conductive film is formed on the interlayer insulating film in a non-heated condition, an oxygen flow rate ratio is set to 1% or lower, and annealing is performed after forming the film. Thereby, when etching the ITO film on the interlayer insulating film, etching residue is not produced. Further, contact resistance between the ITO film and the lower layer metal can be uniformly decreased, and display defects can be obviated. |
US08610855B2 |
Liquid crystal display device
Provided is a liquid crystal display device having a structure in which one surface of the alignment film contacts a liquid crystal layer, the other surface of the alignment film contacts an underlying layer, the refractive index of the alignment film monotonically increases in a film thickness direction of the alignment film from a boundary surface between the liquid crystal layer and the alignment film to a boundary surface between the underlying layer and the alignment film, and the minimum refractive index nLC of the liquid crystal layer, the refractive index nF2 of the alignment film at the boundary surface between the liquid crystal layer and the alignment film, the refractive index nF1 of the alignment film at the boundary surface between the alignment film and the underlying layer, and the refractive index nS2 of the underlying layer have a relationship of an equation (I) in which nLC≦nF2 |
US08610852B2 |
Patterned retardation film and method for manufacturing the same
A patterned retardation film includes: a substrate; a first alignment film and a second alignment film disposed on the substrate, processed by different alignment processes and having different alignment directions; and a liquid crystal layer disposed on the first alignment film and the second alignment film, wherein the liquid crystal layer is patterned into a first region, which is aligned by the first alignment film, and a second region, which is aligned by the second alignment film. |
US08610851B2 |
Liquid crystal display devices and methods of manufacturing liquid crystal display devices
A liquid crystal display device includes a first substrate having a reflective region and a transmissive region, a second substrate corresponding to the first substrate, and a liquid crystal structure located between the first substrate and the second substrate, the liquid crystal structure including a first liquid crystal layer located in the reflective region and a second liquid crystal layer located in the transmissive region, wherein the first liquid crystal layer is configured to control movement of the second liquid crystal layer. |
US08610847B2 |
Liquid crystal display and fabricating method thereof
A liquid crystal display (LCD) includes an array substrate having pixel regions, the pixel regions including thin film transistors and pixel electrodes, a color filter substrate above the array substrate, the color filter substrate including a plurality of color filters corresponding to respective pixel regions in the array substrate, a black matrix in spaces between the plurality of color filters, and a color frame layer surrounding the plurality of color filters and the black matrix, and a liquid crystal layer interposed between the array substrate and the color filter substrate. |
US08610844B2 |
Liquid crystal display
In a liquid crystal display (1), a transparent electrode (100) constituting a display liquid crystal cell (30) has a plurality of patterns (102, and the like) for forming a desired pattern in the outer circumferential part (101) forming the whole display region, and transparent electrodes (13a, 13b) are sandwiching at least a part of liquid crystal molecules of a liquid crystal layer (20). When voltage application control of the plurality of patterns (102, and the like) is performed, respectively, for the whole display region displayed by bright display or dark display, a desired pattern can be displayed by reversed bright/dark display of the bright/dark display of the whole display region. Furthermore, the bright/dark display of at least a part of the whole display and the desired pattern can be reversed by applying a voltage to the transparent electrodes (13a, 13b) and changing the orientation of whole liquid crystal molecules of the liquid crystal layer (20) to the direction parallel with the normal to a substrate (11). |
US08610839B2 |
Optical processing
An optical processing system is described that allows rapid evaluation of derivatives and partial derivatives by means of optical Fourier transformation. In embodiments, separate filtering steps are used to provide phase and amplitude changes. |
US08610837B2 |
Display device and manufacturing method thereof
Disclosed is a display device in which reliable bonding strength and high reparability are compatible when a panel-like member is bonded to a display panel.The display device comprises: a display panel; and a panel-like member bonded to the display panel with an adhesive made of an ultraviolet curable resin; wherein the adhesive includes a first adhesive portion and a second adhesive portion, the first adhesive portion being provided outside of a display area of the display panel and formed in a circular shape to surround the display area, the second adhesive portion prevailing in an area surrounded by the first adhesive portion, the first adhesive portion being different in a modulus of elasticity from the second adhesive portion, and wherein the modulus of elasticity of the second adhesive portion is smaller than the modulus of elasticity of the first adhesive portion. |
US08610834B2 |
System and method for effectively implementing a charging base for a remote control device
A system and method for effectively implementing a charging base for a remote control includes a television device that is controlled by the remote control over a wireless RC-TV communications link. The charging base recharges a battery of the remote control when the remote control is docked to the charging base. In addition, the remote control may be docked to the charging base for bi-directionally communicating with the television and other external entities over a wireless base-TV communications link. Furthermore, various compatible peripheral devices may also recharge their batteries and bi-directionally communicate with the television and the external entities over the base-TV communications link while the peripheral devices are docked to the charging base. |
US08610833B2 |
Channel control techniques
Techniques involving the reception of content are disclosed. For example, an apparatus may include a tuning detection module, a channel selection module, and a remote tuning module. The tuning detection module determines a local tuning of a user device. This determination may be made from a leakage signal (e.g., local oscillator (LO) leakage) generated by the user device. Based on the determined local tuning, the channel selection module selects an output channel from a remote digital tuner. The output channel may then be tuned by the remote tuning module for reception by the user device at its local tuning. |
US08610823B2 |
Optical module for a camera device, baffle substrate, wafer scale package, and manufacturing methods therefor
An optical module for a camera device, the camera device including an image capturing element arranged on a base substrate portion, and has a top lens element and optionally further lens elements for imaging an object on the image capturing element, and further a baffle defining a predetermined field of view of the image capturing element. The baffle includes a generally transparent baffle substrate portion having a front surface and a rear surface, a generally non-transparent first layer with a plurality of first openings on the front surface and a generally non-transparent second layer with a plurality of second openings on the rear surface. The top lens element is arranged on the front and/or the rear surface of the baffle substrate, which leads to a reduced number layers/substrates in the module and to a reduced number of reflections on material-air interfaces, for example. The baffle has an improved ability to suppress unwanted light and enables protection of the inner part of the device as well as manufacture on wafer scale. |
US08610817B2 |
Image-capturing apparatus and control method therefor
In an image-capturing apparatus capable of executing focus detection processing in which auto-focus detection of an imaging optical system is performed based on a contrast of a captured image, and expression detection processing in which a specific expression of a subject is detected from the captured image in parallel, if it is determined that a peak of focus state has not been found in the auto-focus detection, execution of the expression detection is not allowed, or use of a result of the expression detection performed by the expression detection unit is not allowed. Thus, excellent expression detection accuracy is achieved even if the auto-focus detection processing and the expression detection processing are performed in parallel. |
US08610816B2 |
Optical element drive mechanism and image pickup apparatus having the same
An image pickup apparatus including a lens barrel with a bending optical system, in which a reflection optical element is movable between a storage state and a photographing state. When a rotary cylinder that retains a lens group to which light beams from an object are incident is being driven by a drive source to advance and retreat between a storage state and a photographing state, the coupling between a cam mechanism for rotary cylinder operation and a driving force transmission gear train for optical element operation is automatically established and released, whereby the operation for moving the reflection optical element between the storage state and the photographing state can be achieved by a single drive source. |
US08610815B2 |
Imaging device having microlens array adhered to wafer-level lens
Methods and apparatuses having imaging structures that include a focusing lens structure, a pixel array, and a transparent material arranged between the focusing lens and the pixel array. A color filter array may be located between the transparent material and the pixels of the pixel array. |
US08610812B2 |
Digital photographing apparatus and control method thereof
A digital photographing apparatus and a control method thereof are disclosed. The digital photographing apparatus receives a voice, recognizes the received voice, and stores the recognized voice to correspond to a face. In this way, by recognizing the voice while displaying an image, an owner of the voice can be identified and thus a face of a person which is not included in an image being captured can be displayed on a screen. |
US08610810B2 |
Two-by-two pixel structure in an imaging system-on-chip
The claimed subject matter provides systems and/or methods that facilitate mitigating an impact resulting from mismatch between signal chains in a CMOS imaging System-on-Chip (iSoC) sensor. Two-by-two pixel structures can be a basic building block upon which a pixel array is constructed. Further, each two-by-two pixel structure can be associated with a read bus that carries a sampled signal to a top end and a bottom end of a chip. Moreover, multiplexers at either end of the chip can select a subset of the read buses from which to receive a subset of the sampled signals. Accordingly, pixels in a first color plane can be read, processed, etc. on the same side of the chip (e.g., utilizing a common signal chain), while pixels in at least one second color plane can be read, processed, etc. on the other side of the chip (e.g., employing a differing signal chain). |
US08610809B2 |
Solid-state imaging device and camera system that controls a unit of plural rows
A solid-state imaging device includes: a pixel unit in which plural pixels each having a photoelectric conversion element which converts light signals into electric signals and accumulates the electric signals according to exposure time are arranged in a matrix state; plural control lines for drive controlling the pixels; and a pixel drive unit controlling operation of the pixels to perform electronic shutter operation and reading of the pixel unit through the control lines,wherein the pixel drive unit includes a function of outputting read row selection signals and shutter row selection signals of row addresses of read rows from which signals are read and shutter rows from which charges accumulated in the photoelectric conversion elements are swept out and reset in accordance with address signals, and a function of selecting plural successive rows by designating the lowest address signal and the highest address signal. |
US08610803B2 |
Image processing apparatus for acquiring an image using a specific image capturing method and acquiring an anomalous pixel using a different image capturing method
An image processing apparatus includes an image acquisition unit configured to acquire an image captured according to a predetermined image capturing method, an anomalous pixel acquisition unit configured to acquire an anomalous pixel occurring according to an image capturing method different from the predetermined image capturing method, and a display control unit configured to cause the acquired anomalous pixel to be displayed together with the captured image. |
US08610802B2 |
Solid-state imaging device with noise extracing pixels in the effective pixel region and solid-state imaging system using the same
A solid-state imaging device having within a pixel region where pixels containing photoelectric conversion device are two-dimensionally arranged, a plurality of noise extracting pixels for outputting a noise signal not depending on incident light amount provided in an effective pixel region from which image signal associated with object image is outputted, disposed in a manner scattered into two dimensions so that, taking N×N (N being an integer of 2 or more) pixels within the effective pixel region as unit block, at least one is provided in each row and in each column within that unit block. |
US08610800B2 |
Image processing device and method for detecting and correcting pattern noise
An image processing device is comprised of: a frequency component resolution section for resolving an image obtained from an image sensor having a light-shielded pixel area and a non-light-shielded pixel area into two or more frequency components; a noise amount calculation section for calculating a noise amount for the frequency component based on the frequency component in the light-shielded pixel area; a noise suppression section for suppressing the noise component for the frequency component in the non-light-shielded pixel area according to the noise amount that has been calculated by the noise amount calculation section; and a frequency component synthesis section for synthesizing the frequency component that has been resolved by the frequency component resolution section to thereby form an image. |
US08610794B2 |
Method of producing an image with a light track
A method of producing an image is disclosed. At least one symbol is received. The at least one symbol is, optionally, displayed on a first image with at least one light spot. Subsequently, a position of an incident light projected on an image sensor of an image capturing device is varied during an exposure period according to the at least one symbol. Accordingly, a second image with a light track that traces the at least one symbol is captured. |
US08610792B2 |
Imaging apparatus and imaging method
An imaging apparatus includes an image pickup device configured to output an image signal, an analog image processing device having an A/D converter configured to convert the output image signal from the image pickup device into a digital image signal and transfer the digital image signal, a digital image processing device configured to load the transferred digital image signal and perform an image processing on the loaded digital image signal, a clock generator configured to supply a clock having a frequency to each of the image pickup device, the analog image processing device, and the digital image processing device to drive the image pickup device, the analog image processing device and the digital image processing device at a predetermined driving frequency, and a controller configured to perform a monitoring stop processing to stop the transfer of the digital image signal from the analog image processing device and the image processing of the digital image processing device in a predetermined state. |
US08610791B2 |
Image pickup apparatus performing automatic photographing processing, image pickup method and computer-readable recording medium recorded with program thereof
An image pickup apparatus includes an image pickup section to pick up a subject image; and a central processing section to perform processing of arbitrarily setting at least one automatic photographing condition among a plurality of kinds of automatic photographing conditions, judging whether the set automatic photographing condition is satisfied or not, and instructing the image pickup section to pick up a recording subject image when the set automatic photographing condition is judged to be satisfied. |
US08610789B1 |
Method and apparatus for obtaining high dynamic range images
The application provides techniques for obtaining a relatively high dynamic range image of a scene using a relatively low dynamic range image sensor exposed to incident light from the scene for capturing an image. The image sensor has a multiplicity of light-sensing elements in an array and each light sensing element has a particular one of a plurality of sensitivity levels to incident light in accordance with a predetermined sensitivity pattern for the array of light-sensing elements and has a response function. Each light sensing element is responsive to incident light from the scene for producing a captured image brightness value at a corresponding one of a multiplicity of pixel positions of a pixel position array. Each one of the multiplicity of pixel positions corresponds to a particular one of the plurality of sensitivity levels of the light sensing elements. |
US08610785B2 |
Movement detection apparatus and movement detection method
A movement detection apparatus that detects a shake added by an operator to execute a function of a device, the apparatus comprises an acceleration detection unit configured to detect accelerations caused by a shake in at least three-axis directions; a determination unit configured to determine an axis with a minimum value of acceleration and an axis with a maximum value of acceleration among the accelerations in at least three-axis directions detected by the acceleration detection unit; a decision unit configured to decide a direction of the shake added by the operator based on the axis with the minimum value and the axis with the maximum value determined by the determination unit; and a selection unit configured to select a predetermined function based on the result of the decision unit. |
US08610781B2 |
System and method for light compensation in a video panel display
A system for adjusting the light uniformity of a monitor. The system comprises a camera for capturing a test pattern image on a display of the monitor and a controller configured to select the test pattern image and to cause the monitor to display the selected test pattern image. The controller receives the captured image from the camera and compares pixel values from the captured image to known pixel values associated with the selected test pattern image. The selected test pattern image has an ideal uniform light distribution and the captured image has a non-uniform light distribution. In response to the comparison, the controller calculates a compensation light distribution that may be combined with the non-uniform light distribution to generate a resulting image on the display of the monitor having a resulting light distribution that approximates the ideal uniform light distribution. |
US08610779B2 |
Method and system for monitoring operation of an LED display screen
A method and a system for monitoring operation of an LED display screen are provided. The method comprises: A. transmitting a monitoring video image to the LED display screen, shooting a corresponding monitoring image by a video camera, and transmitting the monitoring image back to a computer apparatus; and B. analyzing and computing pixels in the monitoring image to determine a working status of modules in the LED display screen. Prior to the step A, the method further comprises a step of: transmitting a geometric video image to the LED display screen, shooting a geometric image by the video camera, transmitting the geometric image back to the computer apparatus, and acquiring and storing coordinate information by the computer apparatus. The system comprises a computer apparatus, a video controller, an LED display screen and at least one video camera. The system is characterized in that: the computer apparatus transmits a monitoring video image to the LED display screen; the video camera shoots a monitoring image; the computer apparatus receives and stores the monitoring image; and the computer apparatus analyzes and computes pixels in the monitoring image to determine a working status of modules in the LED display screen. The present invention features a low cost and strong adaptability. |
US08610778B2 |
Method and device for use in calibration of a projector image display towards a display screen, and a display screen for such use
A method and a device for use in calibrating a projector image display towards a display screen, wherein the display screen is equipped with a plurality of discrete light detection points on or in the front surface of the screen, or located immediately below the front surface, wherein each light detection point or groups thereof are associated with a light detector, wherein at least one image is projected towards the display screen, and wherein it is determined which image pixel or pixels of the projected image hit the respective detection point on the screen, and/or wherein brightness and/or colours in the projected image are correlated by comparing measurements at the detection points and relevant projector parameters are adjusted correspondingly. |
US08610777B2 |
Colour calibration card
A color calibration card (1) for digital photography with a maximum of 40 calibration fields, each exhibiting a color in a color space according to CIE 1976 (L*, a*, b*) D50 2°, wherein a first group with at least 3 calibration fields (4G1, 4G2, 4G3) exhibits green colors having an a value within the range of −30 to −60 and a b value within the range of +10 to +30, a second group (4B1, 4B2, 4B3) exhibits blue colors having an a value within the range of −20 to −20 and a b value within the range of −30 till −60, a third group (4R1, 4R2, 4R3) exhibits red colors having an a value within the range of +40 to +60 and a b value within the range of −5 to +30, and wherein the respective calibration fields in each group (4G1, 4G2, 4G3; 4B1, 4B2, 4B3; 4R1, 4R2, 4R3) exhibit colors for which the values in at least one of a or b differ by at least 5 units from the corresponding values for the other calibration fields in the group. |
US08610762B2 |
Multi-functional active matrix liquid crystal displays
A direct view display provides a light modulating panel and a backlight including first and second sets of spectral emitters. The first set of spectral emitters generate a first light bundle and the second set of spectral emitters generate a second light bundle. Several modes of operation may be provided including (1) an advanced 2D mode, (2) an enhanced color gamut mode employing simultaneous illumination of the first and second set of spectral emitters, (3) a privacy screen mode, (4) a channel multiplexed mode, and (5) a stereoscopic image mode. The latter three modes utilize the first and second set of spectral emitters to alternately illuminate a portion of the light modulating panel. Images and representations generated by the direct view display operating in the latter three modes are viewed using appropriate eyewear having filters with passband characteristics to transmit the respective light bundle. |
US08610753B2 |
Optical scanner and image forming apparatus including same
An optical scanner includes a light source, an optical part, a housing, and a retainer. The light source projects light against a target. The optical part is disposed on a light path between the light source and the target. The housing houses the light source and the optical part. The retainer fixed to the housing holds the optical part and includes a plurality of flanges disposed along an outer circumference of the retainer. One of the plurality of flanges of the retainer is adhered to the housing an adhesive agent. An image forming apparatus includes the optical scanner. |
US08610751B2 |
Thermal printer
A thermal printer has a platen roller detachably and rotatably held on a main body frame by a lock mechanism and has a support member that supports a thermal head for printing on a recording medium. The lock mechanism comprises slits formed in the main body frame and lock arms arranged relative to the slits for rotatably retaining the platen roller therebetween with bottom portions of the slits abutting the platen roller. The support member has a regulating surface that abuts the platen roller to position heating elements of the thermal head relative to the platen roller. The regulating surface is arranged so that during a mounting operation in which the platen roller is detachably mounted to the main body frame, the regulating surface is caused to abut the platen roller before the bottom portions of the respective slits of the lock mechanism are caused to abut the platen roller. |
US08610744B2 |
Methods and apparatus for natural media painting using proximity-based tablet stylus gestures
Systems and methods for providing a natural media painting application may receive user inputs through tablet stylus gestures. Various digital painting and image editing tasks may be invoked and/or controlled using such gesture-based inputs. The application may detect stylus gestures that mimic real-world actions of artists, and may perform appropriate painting and image editing actions in response to detecting and recognizing the stylus gestures. The system may provide an automatic zoom mode in which, as the stylus is moved into proximity of the tablet, the application zooms into a displayed image to focus on an area of interest. The system may also provide an automatic panning mode that allows the user to pan an image when the stylus is in proximity to, but not touching, the tablet. One or more thresholds for determining whether the stylus is in proximity with the tablet may be pre-defined or may be user configurable. |
US08610738B2 |
Image processing apparatus and method with dynamic range processing
An image processing apparatus and method for providing image information about an area of interest are provided. The apparatus and method may perform image processing, including setting at least one area of interest of an input image, analyzing a dynamic range (DR) of the at least one area of interest, and adaptively processing the DR based on a DR of a display device and the analyzed DR of the at least one area of interest, to form a processed image. |
US08610737B2 |
Graphic processing unit (GPU) with configurable filtering module and operation method thereof
A graphic processing unit (GPU) with a configurable filtering module (CFU) and an operation method thereof are presented. The graphic processing unit comprises a memory module and a configurable filtering module. The memory module stores at least one texture image. The configurable filtering module, connected to the memory module, comprises a plurality of filter equations, from which a filter equation is selected. A plurality of pixel points are sampled from the texture image. Each sampled pixel point is set with a weight value respectively. Each sampled pixel point with a weight value corresponding thereto is substituted into the selected filter equation to perform an operational process to acquire an operated value. Thereby, the user can decide the operation method of the GPU by selecting an appropriate filter equation and setting adjustable parameters in the filter equation. |
US08610733B2 |
Image display device, electronic device, display controller and display control method
The present invention suppresses a phenomenon in which an oblique line appears on a display screen when the scanning line direction of a moving image is changed in an image memory. To accomplish the above-mentioned object, an image display device includes: a storage portion configured to store image data for a first frame constituting the moving image and for a second frame subsequent to the first frame, and having first to third memory areas; a writing portion configured to write the image data for the first frame into the first and second memory areas and to write the image data for the second frame into the first and third memory areas; a reading portion configured to read the image data for the first frame from the first and second memory areas and to read the image data for the second frame from the first and third memory areas, the reading portion changing a scanning line direction for the image data for the first and second frames to be read to a second scanning line direction different from a first scanning line direction that is a scanning line direction for the image data prior to the writing; and a display portion configured to output the image data for the read first and second frames in time sequence in a visible manner. |
US08610732B2 |
System and method for video memory usage for general system application
A system and method for facilitating access to graphics memory wherein the graphics memory can be shared between a graphics processor and general system application. The method includes detecting an idle state of a graphics processing unit (GPU). The GPU uses graphics memory operable for storing graphics data. The method further includes determining an amount of available memory of the graphics memory of the GPU and signaling an operating system regarding the available memory. Memory data transfers are then received to store data into the available memory of the graphics memory wherein the data is related to general system application. Memory accesses to the available memory of the GPU are translated into a suitable format and executed so that the graphics memory is shared between the GPU and the operating system. |
US08610730B1 |
Systems and methods for transferring images and information from a mobile computing device to a computer monitor for display
Certain implementations of the disclosed technology may include systems, methods, and computer-readable media for transferring images and information from a mobile computing device to a computer monitor for display. In one example implementation, a method is provided that includes receiving, from a remote client, an initiation request, wherein the remote client is associated with a remote display. The method further includes sending a representation of a unique code to the remote client, and receiving, from a mobile device, an indication that the mobile device captured the representation of the unique code. The method further includes receiving, from the mobile device, a display image for presentation on the remote display, and sending the display image to the remote client for presentation on the remote display. |
US08610729B2 |
Floating point computer system with fog
A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data. |
US08610727B1 |
Dynamic processing core selection for pre- and post-processing of multimedia workloads
Apparatus having corresponding methods comprise a processing core performance monitoring module adapted to receive indications of performance levels of a plurality of processing cores, the plurality of processing cores comprising a central processing unit (CPU), a video accelerator, and a graphics accelerator; a video accelerator performance monitoring module adapted to receive an indication of a performance level of the video accelerator; a graphics accelerator performance monitoring module adapted to receive an indication of a performance level of the graphics accelerator; and a processor core management module adapted to dynamically allocate at least one of a pre-processing task and a post-processing task of a multimedia workload to any one of the video accelerator, the graphics accelerator, and the CPUprocessing cores based on the performance levels of the video accelerator, the graphics accelerator, and the CPU. |
US08610725B2 |
Framework for dynamic configuration of hardware resources
Among other things, dynamically selecting or configuring one or more hardware resources to render a particular display data includes obtaining a request for rendering display data. The request includes a specification describing a desired rendering process. Based on the specification and the display data, hardware is selected or configured. The display data is rendered using the selected or configured hardware. |
US08610721B2 |
Wave zones rendering technique
Rendering a deforming object in animation including: defining a deforming object surface angle; identifying a normal vector discontinuity point using the deforming object surface angle; defining front part and back part of the deforming object with reference to the normal vector discontinuity point; dividing the front part of the deforming object into zones based on the deforming object surface angle; dividing the back part of the deforming object into zones based on the deforming object surface angle; and rendering each zone. |
US08610718B2 |
Method of visualizing sets of correlated events on a display
A method of visualizing sets of correlated events of a stream of events on a display, each event having a time of occurrence in the stream and at least one attribute indicating its correlation with the other events of a set, including the steps of plotting a glyph for each event on the display at a radial distance and an angular position with respect to an origin; the radial distance and the size of a glyph being proportional to the occurrence time of its event; the angular position of the glyph of a succeeding event in a set being chosen equal to that of the preceding event in the set unless these two glyphs would over-lap in which case the angular position of the glyph of said subsequent event is shifted in a given direction by an amount just sufficient to avoid such overlap; and the angular position of the glyph of the first event in a set being chosen so that overlapping of all glyphs is minimized. |
US08610717B2 |
Efficient pre-computing of simplified vector data for rendering at multiple zoom levels
Aspects of the invention relate generally to accessing, storing, and processing vector data to represent various geographical features such as roads, rivers, lakes, countries, continents, and oceans on one or more maps. More specifically, the vector data may be pre-simplified for rendering at different zoom levels. The simplification process is based on removing vertices from vector data in order to reduce the number of points in a given polygon or line. As this process is very expensive in terms of time and processing power, the system and method allow for estimation of the proportion of vertices which that would be removed from the original geometry. Based on this estimation, one may decide whether or not the simplification is worth the effort to compute and store the simplified data. |
US08610709B2 |
Method and apparatus for watermarking of 3D mesh model
Provided are a watermarking method and a watermarking apparatus for a mesh mode, which are applicable to a system which requires high precision, such as a rapid prototyping system. A reference coordinate system is set using 1-ring values of vertices of a 3D mesh model. The vertices are sorted based on the set reference coordinate system, and bit-information of the watermark consisting of bit string is, respectively, embedded into each of polygonal faces of the 3D mesh model in the sorted order.The present invention is advantageous in that the shape of the model is not deformed even when watermarked, and therefore the present invention is useful in a rapid prototyping system which requires high precision for the purpose of authenticating data integrity. The present invention can be also used for the purpose of marking contents without the need for storing, and for the purpose of information hiding. |
US08610697B2 |
Semiconductor integrated circuit, self-luminous display panel module, electronic apparatus, and method for driving power supply line
Disclosed herein is a semiconductor integrated circuit including a power supply line drive circuit configured to drive power supply lines connected to pixels that are arranged in a matrix on a self-luminous display panel. |
US08610689B2 |
Conductor pattern structure of capacitive touch panel
Disclosed is a conductor pattern structure of a capacitive touch panel. First-axis conductor assemblies and second-axis conductor assemblies are formed on a surface of a substrate. Each first-axis conductor assembly includes a plurality of first-axis conductor cells that are interconnected by first-axis conduction lines. An insulator is formed on a surface of each adjacent first-axis conductor cell. Each second-axis conductor assembly includes a plurality of second-axis conductor cells that are interconnected by second-axis conduction lines. Each second-axis conduction line extends across the insulator disposed on the adjacent first-axis conductor cell. |
US08610687B2 |
Conductor pattern structure of capacitive touch panel
Disclosed is a conductor pattern structure of a capacitive touch panel. First-axis conductor assemblies and second-axis conductor assemblies are formed on a surface of a substrate. Each first-axis conductor assembly includes a plurality of first-axis conductor cells that are interconnected by first-axis conduction lines. An insulation layer is formed on a surface of each first-axis conduction line. Each second-axis conductor assembly includes a plurality of second-axis conductor cells that are interconnected by second-axis conduction lines. Each second-axis conduction line extends across the insulation layer of the associated first-axis conduction line. |
US08610686B1 |
Apparatus and method for recognizing a tap gesture on a touch sensing device
A method and apparatus detect a presence of a conductive relative to a capacitive sensing device, determine a velocity of the detected presence, and recognize a gesture based on the determined velocity. |
US08610685B2 |
Positioning method and driving apparatus of touch panel
A positioning method and a driving apparatus of a touch panel are provided. The touch panel includes a conductive layer with anisotropic conductivity, a plurality of first electrodes and a plurality of second electrodes. The first electrodes and the second electrodes are respectively disposed on a first side and a second side of the conductive layer. The first electrodes and the second electrodes are sensed to obtain a plurality of sensing values. A first relative extreme portion at least having a relative extreme is defined among the first electrodes. A second relative extreme portion at least having a relative extreme is defined among the second electrodes. A ratio of sensing values is calculated according to the first relative extreme portion and the second relative extreme portion. A position of a touch point on the touch panel in a first axial direction is calculated with the ratio of sensing values. |
US08610683B2 |
Touch screen panel
A touch screen panel according to an exemplary embodiment of the present invention includes: first and second substrates each being divided into a touch active region and a touch non-active region that is located outside the touch active region; second sensing electrodes at the touch active region on a first surface of the first substrate; first sensing electrodes divided into at least two groups respectively at the touch active regions on different surfaces of the first and second substrates, a group of the at least two groups being on a second surface of the first substrate or at least one surface of the second substrate; and outside wirings connected to the first and second sensing electrodes, the outside wirings and the sensing electrodes on a same one of the substrates being at a same plane. |
US08610679B2 |
Touch sensing display device
A touch sensing display device includes a first substrate; a second substrate parallel to the first substrate, a plurality of scanning lines and sensing lines being disposed on the second substrate, and the scanning lines being interlaced with the sensing lines; a plurality of touch switches disposed on the second substrate, each touch switch being connected between one scanning line and one sensing line in series; and a plurality of spacers disposed on the first substrate corresponding to the touch switches, respectively, each spacer having a conductive layer disposed on a bottom side facing to the corresponding touch switch, and having isolating surfaces on the other sides, wherein each touch switch has a turned-on state and a turned-off state, and the conductive layer of the spacer corresponding thereto causes said touch switch to be changed from the turned-off state to the turned-on state when a touch event is received. |
US08610678B2 |
Information processing apparatus and method for moving a displayed object between multiple displays
There is provided an information processing apparatus including first and second display panels capable of displaying a plurality of objects and being connected with each other via a connection unit serving as a non-display region in which the objects are not displayed, an input position detection unit for detecting a position of an operator, a direction detection unit for detecting a moving direction of the operator, a moved position calculation unit for calculating a moved position to which an object selected with the operator moves, and a display position correction unit for moving the selected object from the non-display region, on the basis of a display position of the selected object or a moving direction of the operator, in a case where at least a portion of the selected object having moved to the calculated moved position resides in the non-display region. |
US08610675B2 |
Interactive devices
An interactive assembly including at least one interactive surface element, at least a first region of the at least one interactive surface element having first user sensible functionality and at least a second region of the at least one interactive surface element having second functionality, different from the first user sensible functionality, input sensor functionality, including at least one input sensor located in propinquity to at least one of the at least one interactive surface element, operative to sense impingement of an electromagnetic radiation spot on at least one of the at least one first region and the at least one second region of the at least one interactive surface element and utilization functionality for employing outputs of the input sensor functionality in respect of impingement on either or both of the at least one first region and the at least one second region. |
US08610674B2 |
Programmable tactile touch screen displays and man-machine interfaces for improved vehicle instrumentation and telematics
Disclosed are new methods and apparatus particularly suited for applications in a vehicle, to provide a wide range of information, and the safe input of data to a computer controlling the vehicle subsystems or “Telematic” communication using for example GM's “ONSTAR” or cellular based data sources. Preferred embodiments utilize new programmable forms of tactile touch screens and displays employing tactile physical selection or adjustment means which utilize direct optical data input. A revolutionary form of dashboard or instrument panel results which is stylistically attractive, lower in cost, customizable by the user, programmable in both the tactile and visual sense, and with the potential of enhancing interior safety and vehicle operation. Non-automotive applications of the invention are also disclosed, for example means for general computer input using touch screens and home automation systems. |
US08610667B2 |
Non-contact selection device
A non-contract selecting device is disclosed. The non-contract selecting device include a light source, emitting light to an outside; a camera unit, generating and outputting a video signal corresponding to an external video; a video data generating unit, generating video data corresponding to the video signal; and an identity unit, detecting a location of a detected area formed by light, reflected by pointing-means and inputted, of the light emitted from the video data in units of each frame, recognizing a moving locus of the detected area by comparing at least two continuous frames and generating and outputting corresponding change information. With the present invention, the function-selecting can be more quickly and easily and increase making the most use of elements. |
US08610666B2 |
Wheel module for input device
A wheel module for an input device includes a circuit board, a wheel swinging member, a wheel and a stopping arm. A plurality of switch elements are installed on the circuit board. These switch elements are arranged between the circuit board and the wheel swinging member. The wheel is disposed on the wheel swinging member. When the contact part of the stopping arm is moved to a specified position, the wheel is non-rotatable. By titling the wheel in a specified direction, the wheel swinging member is swung to trigger the switch element corresponding to the specified direction. |
US08610663B2 |
Portable device and method for controlling the same
A method for controlling a portable device is provided. The method includes detecting bending of the portable device and determining whether to perform motion sensing correction due to the bending; acquiring a motion sensing correction factor for performing the motion sensing correction due to the bending; performing motion sensing correction of at least one motion sensor using the motion sensing correction factor; and controlling the portable device according to the corrected motion sensing. |
US08610662B2 |
Driving of electrowetting displays
The invention relates to a method of driving an electrowetting display which includes a plurality of electrowetting elements, the display comprising at least one first fluid and a second fluid immiscible with each other, each of the electrowetting elements comprising at least one surface area. In a first, relatively low voltage, driving state of an electrowetting element the second fluid tends to cover the at least one surface area, and in a second, relatively high voltage, driving state of an electrowetting element the first fluid tends to cover the at least one surface area. The method comprises: providing a voltage booster circuit to generate a voltage signal to be applied across one or more selected ones of the plurality of electrowetting elements; and during driving of the one or more selected elements in the second driving state, selectively switching the voltage booster circuit on and off such that the voltage booster circuit is operative only some of the time and the voltage signal includes a voltage ripple variation. The invention further relates to electrowetting display apparatus adapted to perform the method of the invention. |
US08610660B2 |
Light emitting diode backlight driving circuit
An LED backlight driving circuit including a boost circuit and a transformer current balance circuit is provided. The boost circuit provides a total current for n LED strings, and the transformer current balance circuit is coupled to the LED strings and includes n−1 transformers. A first LED current-balance-circuit (CBC) includes a switching-transistor connected to a secondary-winding of a first-transformer, and an nth LED CBC includes a switching-transistor connected to a primary-winding of an (n−1)th transformer. An ith (12) LED CBC includes a switching-transistor sequentially connected to a primary-winding of an (i−1)th transformer and a secondary-winding of an ith transformer. The passive-transformers are applied in the LED driving circuit to implement current balance/equalization, such that the LED backlight driving circuit is suitable for a system with any odd or even number (greater than 1) of the LED strings connected in parallel, so as to reduce the cost of the system. |
US08610655B2 |
Method for removing noise, switching circuit for performing the same and display device having the switching circuit
A method for removing noise of a gate signal that is outputted from a gate driving circuit including a plurality of stages, the method includes electrically connecting two terminals of two adjacent stages that have noise components opposite in phase to each other during a first period, and electrically disconnecting the two terminals of the two adjacent stages that have the noise components opposite in phase to each other during a second period. |
US08610653B2 |
Liquid crystal display panel and liquid crystal display device
A liquid crystal display panel and a liquid crystal display device in which a position of a singular point of pinwheel alignment is controlled, thereby suppressing rough-grained image and generation of image retention, and in which the response time is improved. A pair of substrates each include an electrode, at least one of the pair of substrates includes a vertical alignment film and a photopolymerized polymer, the electrode on one of the pair of substrates has such a shape as to provide pinwheel alignment of the liquid crystal molecules upon application of a voltage and is partly provided with openings for surrounding a singular point of the pinwheel alignment and keeping the singular point within the electrode. |
US08610651B2 |
Device for displaying images on an active matrix
The invention relates to an active-matrix display device which comprises: an array of light emitters, each emitter being supplied by power supply means; a current modulator having a trip-threshold voltage, said modulator being able to be addressed by applying a data setpoint to one of its terminals and a drain current being able to flow through said modulator in order to control said emitter; and trip-threshold voltage compensation means comprising a comparator for comparing the value of the drain current with the value of the data setpoint during a programming step. The power supply means for the emitters are capable of supplying the emitters during the programming step. |
US08610646B2 |
Organic electroluminescence display device
An organic electroluminescence display device is provided having a display section including a plurality of pixels arranged in a matrix; and a detection section for detecting a luminance characteristic of an OLED element in each of the pixels. The detection section includes a first path for allowing a detected characteristic value to pass therethrough and a second path for attenuating the detected characteristic value. A first switch is provided for the first path whereas a second switch is provided for the second path, the second switch being opened when the first switch is closed. The detected characteristic value having passed through any one of the first path and the second path is input to a same analog-to-digital converter to be converted into a digital quantity. |
US08610645B2 |
Display device
There is provided an active matrix EL display device that can display a clear multi gray-scale color display to reduce the shift in the potential caused by the potential drop due to the wiring resistance of a power source supply line, in order to decrease the unevenness in a display region. A plurality of drawing out ports of the power source supply line are arranged. Further, in the wiring resistance between the external input terminal and the pixel portion power source supply line, potential compensation is performed by supplying potential to the power source supply line by a feedback amplifier. Further, in addition to above structure, the power source supply line may be arranged in a matrix. |
US08610643B2 |
Display device and method of driving the same
A display device and a method of the driving the same include a display panel assembly, a driving unit which drives the display panel assembly, and a serial peripheral interface which includes a plurality of registers, the plurality of registers being divided into groups of at least two blocks, and which receives external driving signals through serial communications and thereby controls the driving unit. |
US08610640B2 |
Antenna system suitable for marine SSB radio
An antenna system suitable for marine SSB radio. The system includes a plurality of insulated conductors each having a first end and a second end; the first ends of the conductors are connected at a connection point. The insulated conductors are disposed within a tubing segment, which is sealed with a plug proximate to the connection point. A conductor connected to the connection point extends through the plug is configured for connection to a SSB radio tuner. In an embodiment, each of the conductors has a length greater than that of the tubing segment, and thus has a loop within the tubing segment. Each of the conductors advantageously has a different length, with the lengths of the conductors corresponding to quarter-wavelength antenna elements covering a frequency range of about 2 MHz to about 28 MHz. |
US08610638B2 |
FM transmission using a RFID/NFC coil antenna
An antenna radiating element is arranged as at least one coil and defines a first feed port and a second feed port at its opposed ends. There is a third feed port disposed along the antenna radiating element substantially at a radio frequency effective symmetry point between the first and the second radio feed ports. The first and second feed ports are for interfacing a first radio (e.g., RFID/NFC radio) to the antenna radiating element, and the third feed port is for interfacing a second radio (e.g., FM-TX) to the antenna radiating element. The antenna radiating element is configured to function simultaneously as a balanced coil antenna with respect to the first radio and as two parallel half-loop antennas with respect to the second radio. |
US08610632B2 |
Adaptive tunable antennas for wireless devices
Techniques for adjusting one or more antenna parameters to optimize the performance of a wireless device are disclosed. In an embodiment, a variable antenna electrical length module is provided with a control signal for selecting a preferred antenna electrical length. Further techniques for accommodating multiple antennas are disclosed. |
US08610631B2 |
Antenna rod for a rod antenna for multiple radio services
An antenna rod for a rod antenna arrangement on a vehicle body, which serves as the ground of the rod antenna arrangement, for electromechanical connection with the electromechanical base connector of a low plastic base part. This base connector is affixed to the vehicle body which part contains the further antenna circuit that is connected to the electromechanical base connector. The antenna rod contains a plastic rod to which an antenna coil is applied. At the lower end of the plastic rod and parallel to its rod axis, an extended electrically conductive element is guided as a coupling conductor, for electromagnetic coupling to the antenna coil, with an overlap of multiple but at least two windings of the antenna coil. The coupling conductor is galvanically separated from the antenna coil by means of a low-loss insulator, to create capacitive coupling to the antenna coil. The coupling conductor, the low-loss insulator, and the antenna rod are connected with one another in mechanically firm manner. The coupling conductor is equipped, at its lower end, with an electromechanical connecting element, for connecting to the electromechanical base connector. |
US08610622B2 |
Firearm threat detection, classification, and location using wideband radar
An aimed or aiming firearm can be detected before it is able to shoot. Wideband radar signals can be used to identify the barrel of a firearm when the radar antenna and barrel are aiming at or near each other. Signal processing correlates reflected signals to the characteristics of specific firearms of interest, and alerts the user when someone is pointing such a firearm at them. Modern wideband radar systems with fast signal processing speed can enable real-time detection of firearm threats in crowded and cluttered areas before they shoot, which has never before been possible. Related systems, apparatus, methods, and articles are also described. |
US08610617B1 |
Graphene based structures and methods for broadband electromagnetic radiation absorption at the microwave and terahertz frequencies
Structures and methods for cloaking an object to electromagnetic radiation at the microwave and terahertz frequencies include disposing a plurality of graphene sheets about the object. Intermediate layers of a transparent dielectric material can be disposed between graphene sheets to optimize the performance. In other embodiments, the graphene can be formulated into a paint formulation or a fabric and applied to the object. The structures and methods absorb at least a portion of the electromagnetic radiation at the microwave and terabyte frequencies. |
US08610616B2 |
Successive approximation register analog to digital converter circuit
Embodiments of the disclosure may generally relate to an analog to digital converter. An example analog to digital converter may include a unit capacitor array, a comparator and a control block. The unit capacitor array may include multiple capacitors coupled to one another via multiple switches under control of the control block. The comparator, having a first input and a second input, may be configured to receive a controlled voltage generated from the unit capacitor array and compare an analog voltage to the controlled voltage. The control block may be configured to selectively open or close the switches, receive a comparison result from the comparator, and generate a digital output based on the comparison result. The control block may be configured to control the switch timing of the unit capacitor array for reset, pre-charge, charge redistribution, and comparison phases, where a passive charge redistribution method may be utilized. |
US08610613B2 |
Semiconductor integrated circuit device
The semiconductor integrated circuit device includes a T-type switch circuit TS[k] that is between an input port A[k] and an input terminal Ain of an analog/digital conversion circuit and that includes first, second, and third PMOS transistors MP1, MP2, and MPc, and first, second, and third NMOS transistors MN1, MN2, and MNc; and a fourth PMOS transistor MPu for pre-charging the input terminal Ain to a power supply voltage VCCA. In detecting the presence or absence of a disconnection from the input port A[k] to a signal input terminal Vint[k], first, the input terminal Ain is pre-charged to the power supply voltage VCCA via the fourth PMOS transistor MPu and also the second NMOS transistor MN2 and the second PMOS transistor MP2 are turned on, and the first NMOS transistor MN1, the first PMOS transistor MP1, the third PMOS transistor MPc, and third the NMOS transistor MNc are turned off. |
US08610612B2 |
Tree structured supply and bias distribution layout
Systems and methods are disclosed for performing data conversion by matching current sources using a thin oxide device; and minimizing voltage stress on the thin oxide device during operation or power down. |
US08610610B2 |
System for calibrating a time constant of an integrated circuit, and integrated circuit provided with such a system
System and method for calibrating a time constant R0Ci of an integrated electronic current-feedback continuous-time delta sigma analog/digital converter (modulator) having a variable-impedance filter coupled to input of the modulator, an analog input signal Vin of fixed frequency applied to the variable-impedance filter, wherein the analog input signal Vin attenuation engendered by the variable-impedance filter is measured, and the value of a time constant R0Ci in the modulator and value of the impedance of the variable-impedance filter are modified until an attenuation corresponding to the desired attenuation for the integrated electronic circuit modulator is obtained. |
US08610607B2 |
Assigning codes to and repairing Huffman trees
A method for assigning codes to Huffman trees and repairing invalid Huffman trees is disclosed using a calculated delta and moving nodes within the Huffman tree by adjusting their encode register entries. |
US08610606B2 |
Compression algorithm incorporating dynamic selection of a predefined huffman dictionary
A system and method of selecting a predefined Huffman dictionary from a bank of dictionaries. The dictionary selection mechanism of the present invention effectively breaks the built-in tradeoff between compression ratio and compression rate for both hardware and software compression implementations. A mechanism is provided for automatically creating a predefined Huffman dictionary for a set of input files. The dictionary selection mechanism achieves high compression rate and ratio leveraging predefined Huffman dictionaries and provides a mechanism for dynamically speculating which predefined dictionary to select per input data block, thereby achieving close to a dynamic Huffman ratio at a static Huffman rate. In addition, a feedback loop is used to monitor the ongoing performance of the preset currently selected for use by the hardware accelerator. If the current preset is not optimal it is replaced with an optimal preset. |
US08610604B2 |
Compression algorithm incorporating a feedback loop for dynamic selection of a predefined Huffman dictionary
A system and method of selecting a predefined Huffman dictionary from a bank of dictionaries. The dictionary selection mechanism of the present invention effectively breaks the built-in tradeoff between compression ratio and compression rate for both hardware and software compression implementations. A mechanism is provided for automatically creating a predefined Huffman dictionary for a set of input files. The dictionary selection mechanism achieves high compression rate and ratio leveraging predefined Huffman dictionaries and provides a mechanism for dynamically speculating which predefined dictionary to select per input data block, thereby achieving close to a dynamic Huffman ratio at a static Huffman rate. In addition, a feedback loop is used to monitor the ongoing performance of the preset currently selected for use by the hardware accelerator. If the current preset is not optimal it is replaced with an optimal preset. |
US08610597B2 |
Computer-implemented system and method for hands-free tagging and reserving of parking spaces
A computer-implemented system and method for tagging a parking space for a motor vehicle through a gesture is provided. Motor vehicle parking spaces are managed through a server. Smart parking devices physically proximate to the parking spaces are interfaced. Vehicle occupancy sensors also physically proximate the parking spaces are interfaced. Parking availability indicators associated with the parking spaces are interfaced. Those parking spaces that are unoccupied based on their respective vehicle occupancy sensors and currently available over any other reservations stored in the server are identified to a driver of a motor vehicle. One of the unoccupied parking spaces is reserved upon a gesture provided by the driver. Occupancy of the reserved unoccupied parking space is sensed through the nearest vehicle occupancy sensor following parking of the motor vehicle. The identity of the motorist is verified against the reservation through the nearest smart parking device. |
US08610592B2 |
Proximity switch
The invention relates to a proximity switch for the detection of objects, comprising a sleeve-type housing, comprising a transducer unit disposed at a measuring end of said sleeve-type housing, the transducer unit comprising a transducer receptacle and a transducer element disposed therein for detecting a physical measurand, comprising a connecting piece disposed at a connecting end of said sleeve-type housing, comprising an electronic assembly disposed on a printed circuit board accommodated in said sleeve-type housing and having a control and evaluation unit adapted to control said transducer element, to evaluate signals measured by said transducer element and to emit switching signals to an environment, wherein variously colored light-emitting diodes are disposed on said printed circuit board at the measuring end and at the connecting end for indicating operational and/or switching states, wherein said transducer receptacle exhibits a transparent region disposed around a housing axis and/or a transparent region at an end face. The proximity switch is characterized in that said connecting piece has a peripheral transparent region, that said transparent regions at said measuring end and at said connecting end are optically homogeneous, that said transparent regions are each capable of being monochromatically illuminated by said light-emitting diodes and that said control and evaluation unit is adapted to control the respective variously colored light-emitting diodes for indicating different operational and/or switching states. |
US08610589B2 |
Noise suppression techniques in high precision long-term frequency/timing measurements
A frequency/timing measurement apparatus includes a reference source having a reference source output terminal. At least one target source has a target source output terminal. The at least one target source is communicatively coupled to the reference source. A frequency timing measurement block has a first input terminal electrically coupled to the reference source output terminal. A second input terminal is electrically coupled to the target source output terminal and at least one output terminal. The frequency timing measurement block is configured to perform a noise shaping technique to reduce measurement error attributable to a phase noise that is correlated between the reference source and the target source, and to provide a reduced correlated noise measurement at the at least one output terminal. A method to reduce correlated noise is also described. |
US08610588B2 |
Detection of CO2 leakage in a container
A refrigerated container having a refrigeration system using CO2 as the refrigerant, includes a sensing and warning system for sensing the CO2 concentration in the container and responsively displaying the sensed condition in a display module so that an operator will be aware of excess levels of concentration which might present a hazardous condition and therefore should not enter the container until the condition is alleviated. |
US08610578B2 |
Electronic substrate, semiconductor device, and electronic device
An electronic substrate including: a base substrate having an active face and a rear face; and a plurality of inductor elements formed on or above the active face, or formed on or above the rear face. |
US08610576B2 |
Routing communications to a person within a facility
A system and method for tracking a person at a facility to enable communications. A presence of the person is detected at a location at the facility. Communications intended for the person are associated with the location. The communications are routed to the person at that location. |
US08610573B2 |
Radio frequency module and methods of transmitting/receiving data
A wireless module is configurable by a user to operate in different modes as a transmitter, receiver, transceiver, and repeater. A method of transmitting and receiving data while substantially reducing or eliminating interference from competing frequency bands, including Wi-Fi systems, as well as a method of transmitting data with a high degree of certainty without requiring an acknowledgement receipt, negotiation, or hand-shaking from a down line transceiver, receiver and/or repeater are disclosed. |
US08610570B2 |
System to detect presence in a space
A system to detect a presence in a space is provided and includes a sensor to issue a signal at an instance when a door to the space closes, a detector to periodically issue packets that identify when a presence was last detected in the space, and a processing unit, coupled to the sensor and the detector, which is configured to receive the signal and the packets and which has executable instructions stored thereon that, when executed, cause the processing unit to identify when the door closes based on the signal and to judge the space to be unoccupied after a wait time if the packets indicate the presence was last detected prior to the closing. |
US08610568B2 |
Emergency response system and method
An emergency response system is provided. The emergency response system includes an administrator information database capable of storing an administrator information, an emergency device information database capable of storing an emergency device information, a control unit, and a communication unit. The control unit searches the administrator information database to find the administrator information corresponding to a report signal, thereby generating a notification signal according to the administrator information, and searches the emergency device information database to find the emergency device information corresponding to the report signal, thereby generating a reply signal including a nearby emergency device information according to the emergency device information. In response to receiving the report signal from the user terminal, the communication unit transmits the notification signal to an administrator terminal, and transmits the reply signal to the user terminal. The disclosure further provides an emergency response method. |
US08610567B2 |
System and method for airbag deployment detection
A system and method for airbag deployment sensing with a mobile device is provided. The system senses an effluent indicative of airbag deployment with a chemical sensor and determines if an airbag deployment condition exists based on the sensing of the chemical sensor. The system may then initiate an emergency communication if it is determined that the airbag deployment condition exists. |
US08610565B2 |
RFID tag with LED and RF identification managing method using the same
A RFID tag having a LED is provided. The RFID tag includes an antenna, a RF processor, a controller, a memory, at least one of LEDs, and a LED switching unit. The RF processor receives and transmits a wireless signal through the antenna, and modulates and demodulates transmitted and received signal and data. The controller analyzes a received data outputted from the RF signal processor and generally controls the RFID tag. The memory stores the received data in response to the controller. The LED switching unit turns on/off at least one of the LEDs in response to the controller. |
US08610563B2 |
Tag information processing apparatus
A tag information processing apparatus, including: a receiving section (101) for receiving read-out information of an RFID tag (100), the read-out information obtained through N reading operations (where N represents an integer equal to or greater than 2) carried out for an RFID tag-reading area; a detection frequency information obtaining section (102) for obtaining detection frequency information on the basis of the read-out information received by the receiving section (101), the detection frequency information indicating a detection frequency at which the read-out information of the RFID tag (100) is detected in the N reading operations; a movement determining section (103) for determining whether or not the RFID tag (100) has been moved out of the RFID tag-reading area, wherein, in a case where the detection frequency information obtained by the detection frequency information obtaining section (102) indicates that the detection frequency at which the read-out information of the RFID tag (100) is detected is low, the movement determining section (103) determines that the RFID tag (100) has been moved out of the RFID tag-reading area; and an output section (104) for outputting a result of the determination made by the movement determining section (103). |
US08610559B2 |
Environmental hazard warning system and method
An environmental hazard warning system is provided. The environmental hazard warning system includes a data unit, a comparison unit, and an alarm unit. The data unit is capable of storing a plurality protective suit tolerance data. The comparison unit receives a portable sensor parameter signal including a portable sensor parameter from a portable sensor, and compares the portable sensor parameter with the protective suit tolerance data corresponding to the portable sensor parameter. The alarm unit transmits an alarm signal corresponding to the comparison between the portable sensor parameter and the protective suit tolerance data. The disclosure further provides an environmental hazard warning method. |
US08610552B2 |
Tire pressure monitoring system initialization using moving antenna
A system and method of initializing a vehicle TPMS using a moving TPMS antenna that tracks vehicle movement over some distance. Data received from the moving TPMS antenna is transmitted to a central data storage device. Stored TPMS data is subsequently retrieved by a downstream device connected to a controller of a vehicle TPMS and TPMS information is written to the controller, which may be the vehicle ECU. |
US08610547B2 |
Simplified method and apparatus for programming a universal transmitter
A universal transmitter capable of transmitting a plurality of signals at a plurality of different modulations and frequencies which provides a simplified programming setup so that multiple signal configurations (including code format, modulation format and frequency) can be programed quickly and easily. The transmitter comprises a signal configuration input which an operator can use to select a desired signal configuration for transmission, a controller for interpreting the selected signal configuration, storing it to memory, retrieving it when the appropriate user input is depressed, and outputting it to a transmitter circuit capable of transmitting the selected signal configuration received from the controller at a predetermined modulation and frequency, and at least one user input for actuating the transmitter and identifying to the controller what signal configuration is to be transmitted by the transmitter. |
US08610543B2 |
Hybrid architecture for radio frequency identification and packet radio communication
A radio frequency identification (“RFID”) hybrid packet radio is provided having full duplex operability. The RFID packet radio includes an antenna and a radio that receives and transmits a packet radio signal and a RFID signal. A processor is provided in communication with the radio to perform signal detection and demodulation with respect to the RFID signal. A transmit path is provided to transport the packet radio signal and the RFID signal from the radio to the antenna. The RFID packet radio includes a first receive path for transporting a received packet radio signal from the antenna to the radio and a second receive path, different from the first receive path, to transport a received RFID signal from the antenna to the processor. The first receive path and the second receive path enable simultaneous transmission and reception of RFID signals. |
US08610541B2 |
Method and apparatus for monitoring a radio frequency identification network
A method and system for monitoring one or more wireless channels of an Radio Frequency Identification (RFID) network are disclosed. For example, the method reads one or more RFID reference tags periodically to obtain RFID reference tag reading results for each time interval. The method then processes the RFID reference tag reading results for monitoring the one or more wireless channels of the RFID network. |
US08610536B2 |
Beverage dispensing control
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for control of beverage dispensing. In one aspect, authorization data specifying that a beverage dispensing node is authorized to be activated are received. Activation data that request activation of the node are also received, where activation of the node causes a valve that controls flow of fluid to a beverage dispenser to be opened. A determination is made that the activation data are associated with a user identifier for an enabled user, where an enabled user is a user that has been enabled to activate the node. In response to receipt of the authorization data and the activation data a valve that controls flow of fluid to the beverage dispenser is opened. Data (e.g., de-authorization or de-activation data) specifying that an activated beverage dispensing apparatus be de-activated can also be received. In response to receipt of the data, the valve can be closed. |
US08610534B2 |
Component
A component includes a component body and a contact-connection element composed of sheet metal having a contact region, which has an outer contour line and at least one hole. The contact region is arranged on a side of the component body having a side edge and the outer contour line has straight regions running along straight regions of the side edge. The straight regions of the outer contour line are connected by rounded corners. |
US08610533B2 |
Power converter using soft composite magnetic structure
A power conversion device includes a magnetic core; and a plurality of windings surrounding portions of the magnetic core, including a first winding and a second winding magnetically coupled through the magnetic core. The magnetic core comprises a first part formed of a first material and a second part formed of a second material, the first material having a first stiffness and the second material having a second stiffness substantially less than the first stiffness. The first winding and the second winding are magnetically coupled through the first part of the magnetic core. |
US08610532B2 |
Corrosion-resistant coating system for a dry-type transformer core
A protective coating system for application to exposed surfaces of a transformer core prevents corrosion of the core. The protective coating is suitable for use in industrial and marine environments where many factors impact the life of the transformer core. The protective coating comprises at least three coating layers. The first coating layer is an inorganic zinc silicate primer. The second coating layer is a polysiloxane. The third coating layer is a room temperature or high temperature vulcanizing silicone rubber. A silicone rubber sealant may be further applied to outer edge surfaces of the core. |
US08610529B2 |
Compact planar VHF/UHF power impedance transformer
An RF impedance transformer having a parallel low-impedance access Eb and serial high-impedance access Eh and intended for connection onto a printed circuit. The transformer includes a multilayer circuit that includes a long side and at least three layers. A first outer layer is separated from a second outer layer of the same thickness by at least one inner layer having a thickness at least four times greater than the thickness of the outer layers, each outer layer comprising an electrical conductor on each surface for forming a microstrip line, the serial high-impedance access Eh and the parallel low-impedance access Eb being on the long side of the multilayer circuit and near to each other so as to limit the area for connection with the printed circuit. |
US08610525B2 |
Laminated inductor
A laminated inductor having an internal conductive wire forming region, as well as a top cover region and bottom cover region formed in a manner sandwiching the internal conductive wire forming region between top and bottom; wherein the internal conductive wire forming region has a magnetic part formed with soft magnetic alloy grains, as well as helical internal conductive wires embedded in the magnetic part and constituted by a conductor; and at least one of the top cover region and bottom cover region (or preferably both) is/are formed with soft magnetic alloy grains whose constituent elements are of the same types as those of, and whose average grain size is greater than that of, the soft magnetic alloy grains constituting the magnetic part in the internal conductive wire forming region. |
US08610523B2 |
Magnetic fix structure applying on a projection device
The invention is a magnetic fix structure that applies on a projection device. The magnetic fix structure includes a first magnetic connector set and a second magnetic connector set, and the projection device includes a projection module housing and a power module housing. The first magnetic connector set and the second magnetic connector set are disposed on the projection module housing and the power module housing respectively. Therefore, through the attraction between the first magnetic connector set and the second magnetic connector set, the power module housing can be fixed onto the projection module housing. |
US08610522B2 |
Electrical switch
An electrical switch is disclosed for switching an electric current, the switch being suitable for being inserted into a switch holding device. In at least one embodiment, the switch includes a locking device which, in the event of an overcurrent, moves a locking element of the locking device to a position which mechanically locks the switch in the switch holding device. |
US08610518B1 |
Elastic guided wave coupling resonator filter and associated manufacturing
An elastic guided acoustic wave coupling resonator filter includes a dielectric layer interposed between piezoelectric substrates, with interdigital transducers on each substrate generally positioned at an interface between the substrates and the dielectric layer. The interdigital transducers on one substrate are aligned with the transducers on the opposing substrate and include cascaded filter tracks. The cascaded orientation between the two filter tracks includes either a differential connection or a balanced connection. As a result, the interdigital transducers are electrically isolated yet acoustically coupled to each other. |
US08610515B2 |
True time delay circuits including archimedean spiral delay lines
A time delay circuit including at least one spiral delay line formed on a top surface of a first substrate. In one embodiment, the delay line is defined by two concentric spiral delay line sections. Vias extend through the substrate between the delay line sections to reduce cross-talk therebetween. In another embodiment, the delay circuit includes a second substrate spaced from the first substrate, where a spiral delay line is formed on a top surface of the second substrate. A planar metal layer is provided on a backside surface of the first substrate and a conductive element extends through an opening in the metal layer and is coupled to the spiral delay lines, where the planar member provides magnetic isolation between the delay lines. In yet another embodiment, a multi-bit switched circuit can be provided on one of the substrates and be electrically connected to the delay line. |
US08610510B2 |
Limiter circuit and voltage controlled oscillator including the same
A limiter circuit in a voltage controlled oscillator (VCO) includes a first control circuit, a second control circuit and a driving circuit having a pull-up transistor and a pull-down transistor. The first control circuit generates a first driving control signal for controlling the pull-up transistor based on an AC input signal and a first DC bias voltage. The second control circuit generates a second driving control signal for controlling the pull-down transistor based on the AC input signal and a second DC bias voltage. The driving circuit generates an output signal based on the first driving control signal and the second driving control signal. The output signal swings between a first voltage at the pull-up transistor and a second voltage at the pull-down transistor. |
US08610509B2 |
Flexible low current oscillator for multiphase operations
A method for generating an oscillator signal uses a multiphase oscillator having a plurality of input stages and a reference stage. Each input stage produces an input stage voltage that represents a phase for the oscillator. The input stage voltages produced by each of the input stages are compared to a reference voltage produced by the reference stage. An input stage having a maximum input stage voltage is selected and an output of the selected input stage having the maximum input stage voltage is changed. A current need of the oscillator is detected with a negative feedback loop coupled to the reference stage. An appropriate supply current is provided to each input stage with the negative feedback loop. |
US08610508B2 |
Injection-locked oscillator
A signal generator for generating an output signal with a frequency that is a multiple of a frequency of a reference signal, the signal generator including an oscillator configured to generate the output signal in dependence on the reference signal and a control signal and a control circuit configured to generate the control signal to comprise a series of pulses in which one or more of the pulses is offset in phase relative to the reference signal, the control circuit thereby being capable of controlling the frequency and/or phase of the output signal. |
US08610501B2 |
Class resonant-H electrosurgical generators
A generator for use with an electrosurgical device is provided. The generator has a gain stage electrically disposed between a first voltage rail and a second voltage rail, wherein the gain stage includes an input and an output. A voltage source operably coupled to the gain stage input and configured to provide an input signal thereto responsive to a drive control signal is also provided. The generator also has one or more sensors configured to sense an operational parameter of the amplifier and to provide a sensor signal corresponding thereto and a controller adapted to receive the sensor signal(s) and in response thereto provide a drive control signal to the voltage source. The generator has an amplifier output configured to supply an output voltage corresponding to the first voltage rail and the second voltage rail when the output of the gain stage falls between a voltage of the first voltage rail and a voltage of the second voltage rail and is configured to supply a peak voltage output when the voltage output is falls greater than the voltage of the first voltage rail or less than the voltage of the second voltage rail. |
US08610499B2 |
Radio frequency (RF) amplifier utilizing a predistortion circuit and related techniques
An apparatus and technique for operating an RF amplifier having a pre-distortion processor and a drain modulation circuit includes generating a compensating drain bias signal having a value which is a function of an RF input signal, a sampled RF output signal and a sampled drain bias signal. The compensating drain bias signal is applied to the RF amplifier. By sampling both the drain bias signal and the RF output signal and providing drain feedback and RF output feedback signals to a pre-distortion processor, RF amplifier distortions can be linearized enabling the RF amplifier to operate over a bandwidth which exceeds the bandwidth of the drain modulation circuit (i.e., the RF bandwidth can exceed the bandwidth of the drain modulator). |
US08610498B2 |
Methods and apparatus for variable solid state-to-tube rectification in an amplifier
Methods and apparatus provide for: a rectification circuit operating to convert a source of AC power into a final DC power source; a rectification filtering capacitance operating to at least partially smooth a voltage of the final DC power source, which exhibits a voltage sag and recovery characteristic in response to time-variant current drawn therefrom; a power amplification circuit drawing power from the final DC power source and producing an output signal, for driving a speaker, having audible characteristics influenced by the voltage sag and recovery characteristic of the final DC power source; and a control circuit operating to continuously vary, in response to user input, one or more parameters of the voltage sag and/or recovery characteristic of the final DC power source. |
US08610492B2 |
High voltage tolerant inverting charge pump
The present invention provides a high voltage tolerant regulated inverting charge pump circuit utilizing low-voltage semiconductor devices, capable of operation directly from a high voltage source. The circuit according to the present invention comprises a plurality of high voltage tolerant pre-driver circuits, connected to the high voltage source, for driving the charge pump low voltage switching devices appropriately for reliable operation. A flying capacitive element connected to the high voltage source through a plurality of low voltage semiconductor devices acting as a switch, peak current limiter, and cascode device. An output capacitive element connected to the flying capacitive element through a plurality of low voltage semi-conductor devices acting as a switch, peak current limiter, regulating element and cascode device. Further, the circuit of the present invention comprises a negative feedback controller connected to the output capacitor to regulate the output voltage over a wide range of load current. |
US08610489B2 |
Depletion-mode circuit
This document discloses, among other things, a switch circuit that includes a depletion-mode field-effect transistor (DMFET) having an ON-state and an OFF-state, wherein the DMFET is configured to couple a first node to a second node in the ON-state, and wherein the DMFET is configured to isolate the first node from the second node in the OFF-state, a negative charge pump that is coupled to a gate terminal of the DMFET, the charge pump configured to supply a negative charge pump voltage to the gate terminal of the DMFET, and a negative discriminator coupled to the charge pump, the discriminator configured to compare a first voltage at the first node and a second voltage at the second node and determine the negative charge pump voltage based on the comparison. |
US08610487B2 |
Electronic device with switching element driven by control voltage
In an electronic device with a switching element, a control circuit controls the voltage at the control terminal of the switching element and drives the switching element, by controlling an ON-drive switching element and an OFF-drive switching element based on an inputted drive signal to the control circuit. The control circuit is configured to turn OFF a switching element using a switching circuit other than the OFF-drive switching element after an elapse of a predetermined period of time from a timing at which the drive signal switches from an ON instruction thereof to an OFF instruction thereof, the ON instruction giving an instruction to turn ON the switching element, the OFF instruction giving an instruction to turn OFF the switching element. |
US08610485B2 |
Gate drive circuit
A gate drive circuit includes a turn-on circuit having an upper limiter for receiving a gate drive signal. The upper limiter has an output terminal. The turn-on circuit also has a transistor having a base connected to the output terminal of the upper limiter. In addition, the terminal has a terminal connected to a gate of a power switching device. The upper limiter limits a voltage input to the base of the transistor to not exceed a first predetermined value. |
US08610483B2 |
Voltage-limiting circuit
A voltage-limiting circuit, including a series branch circuit having a plurality of power switching devices, a plurality of energy temporary-storage circuits, and a centralized voltage-limiting circuit for limiting voltage for the series branch circuit. Each power switching device includes a control terminal, a high-end, and a low-end, and is connected in parallel with one energy temporary-storage circuit. The energy temporary-storage circuits include clamping diodes, energy storage capacitors, static voltage-sharing resistors, and energy return ends. In each energy temporary-storage circuit, the energy storage capacitors are connected in parallel with the static voltage-sharing resistors to form the energy return ends, and then connected in series with the clamping diodes. The centralized voltage-limiting circuit includes a voltage-limiting functional circuit and a plurality of energy concentration diodes for concentrating the energy temporarily stored by the corresponding energy temporary-storage circuits. |
US08610476B1 |
Apparatus and methods for lock detection for semi-digital and fully-digital clock data recovery
One embodiment relates to a lock detection circuit. The lock detection circuit includes at least a dither detection circuit and a lock filter. The dither detection circuit maintains a bi-directional count based on early and late signals from a sampler circuit and asserts a non-lock signal if the bi-directional count reaches either a positive non-lock assertion threshold or a negative non-lock assertion threshold. The lock filter increments a lock filter count for each sample and outputs a lock-initiated signal when the lock filter count reaches a pre-set maximum value. The maximum value of the lock filter count is greater than the non-lock assertion thresholds. Other embodiments and features are also disclosed. |
US08610472B2 |
Power-up signal generating circuit of semiconductor integrated circuit
A power-up signal generation circuit includes a discharge driving unit configured to discharge a voltage of a power-up detection node in response to a voltage of an external power supply voltage, a charge driving unit configured to charge the voltage of the power-up detection node in response to a voltage of an internal power supply voltage, a power reset discharging unit configured to discharge a voltage of the power-up detection node while the semiconductor integrated circuit is reset, and an output unit configured to output a power-up signal in response to a voltage change of the power-up detection node. |
US08610466B2 |
High-speed differential comparator circuitry with accurately adjustable threshold
A high-speed differential comparator circuit is provided with an accurately adjustable threshold voltage. Differential reference voltage signals are provided to control the threshold voltage of the comparator. The common mode voltage of the reference signals preferably tracks the common mode voltage of the differential high-speed serial data signal being processed by the comparator circuit. |
US08610455B2 |
Dynamic on-die termination selection
In an integrated circuit device having dynamically selected on-die termination, a set of data inputs are coupled respectively to a set of termination circuits, each termination circuit having multiple controllable termination impedance configurations. A termination control signal input is provided to receive an indication that the integrated circuit device is to apply one of the controllable termination impedance configurations at each of the data inputs, and a logic circuit applies one of a first and a second of the controllable termination impedance configurations at the data inputs based on the indication received at the termination control signal input and an internal state of the memory device, such that during a first internal state corresponding to the reception of write data on the data inputs, the first of the controllable termination impedance configurations is applied at each of the data inputs, and during a second internal state following the first internal state, the second of the controllable termination impedance configurations is applied at each of the data inputs. |
US08610447B2 |
Spring structure and test socket using thereof
Spring assemblies and a test socket using the spring assemblies. The spring assemblies are used in a test socket electrically connecting lead terminals of a semiconductor chip to test terminals of a test device by contacting the lead terminals and the test terminals, and include: first springs in which a first steel wire having elasticity and conductivity is coiled in a spiral in one direction; and second springs in which a second steel wire having elasticity and conductivity is coiled in a spiral in an opposite direction to the direction in which the first springs are coiled, which have outer diameters narrower than inner diameters of the first springs, and are inserted into the first springs. Accordingly, electric resistances and inductances of two spring assemblies coiled in a spiral are reduced to improve electricity transmission characteristic. A height of a test socket is easily adjusted using spring assemblies having desired lengths. Also, since only plating is performed on the springs to form the spring assemblies, the spring assemblies are formed at a very low cost and have a wide range of applications. |
US08610442B2 |
Systems and methods for detecting capacitor process variation
A method for detecting capacitor variation in a device comprises operating an oscillator in the device, the oscillator being an Inductive-Capacitive (LC) oscillator and including an inductor of known value and a capacitor under test, comparing an output of the oscillator to a reference output, and evaluating variation for a plurality of capacitors in the device based on the comparing. |
US08610433B2 |
Pulsed ASL using tagging pulse pattern encoding/decoding of flowing nuclei cohorts
Magnetic resonance imaging (MRI) produces an image representative of flowing nuclei within a subject. For each of plural MRI data acquisition sequences, a non-contrast pulsed ASL (arterial spin labeling) pre-sequence is applied to flowing nuclei in a tagging region during a tagging period (that occurs prior to MRI data acquisition from a selected downstream image region). The ASL pre-sequence includes plural different elapsed tagging times at which a radio frequency (RF) nuclear magnetic resonant (NMR) nutation tagging pulse occurs or does not occur in accordance with different predetermined patterns for corresponding different data acquisition sequences. Acquired MRI data is decoded in accordance with such predetermined patterns to detect MRI signals emanating from different cohorts of flowing nuclei that have been subjected to different combinations of nutation pulses. Acquired MRI data is used to reconstruct at least one image representing flowing nuclei within the selected image region. |
US08610432B2 |
Propeller/blade MRI with non-linear mapping to K-space
A magnetic resonance imaging apparatus and method acquires NMR signal data for a periodically rotated data acquisition region in k-space wherein the acquisition region is caused to have non-linear acquisition loci. As an example, the width of the data acquisition region at a point distant from the origin of k-space is made larger than at a point nearer the origin of k-space thereby more fully filling k-space with acquired NMR data even if the number of RF pulse shots is reduced and/or the number of data acquisition region positions is reduce. A magnetic resonance image is reconstructed based on the acquired NMR signal data in k-space. |
US08610426B2 |
Carburization sensing method
A carburization sensing method according to the present invention includes: a first procedure of attaching a magnetic material to a reference material which has equivalent electromagnetic properties to those of a test material and is not carburized, a second procedure of measuring magnetic strength of each magnetic material and to acquire an electromagnetic test output value for each magnetic material, a third procedure of calculating a correlation between the measured magnetic strength value and the electromagnetic test output value, a fourth procedure of measuring magnetic strengths on a plurality of carburized materials, a fifth procedure of calculating a correlation between a carburized depth and the measured magnetic strength value, a sixth procedure of determining a threshold value Th2 of the measured magnetic strength value corresponding to a threshold value Th1 of the carburized depth to be sensed, a seventh procedure of determining a threshold value Th3 of an electromagnetic test output value corresponding to the threshold value Th2 of the measured magnetic strength value, and an eighth procedure to sense whether carburization occurs or not in a test material based on the magnitude correlation between the electromagnetic test output value of the test material and the threshold value Th3 of the electromagnetic test output value. |
US08610424B2 |
Closing of an HF cut-off member
An electronic meter for electric power having a controlled reclosing of the cut-off member by a circuit breaker of a subscriber. The meter comprises, on at least one phase, a circuit generating HF to the wiring of a subscriber via the cut-off member in open position and the circuit breaker, and a circuit for controlling the closing of the cut-off member upon a detection of the HF current cancellation when opening the circuit breaker of a subscriber. The invention can be used for electronic meters not accessible to the subscriber. |
US08610420B2 |
Switched and smart switched tracking power supply
A switched tracking power supply that modifies its output based on input power source characteristics. A power source is input into the switching power supply. A plurality of gain networks and feedback paths from a reference voltage of the switching power supply are used to monitor the input power source and to modify the output voltage based on characteristics of the input power source. |
US08610419B2 |
High efficiency buck-boost power converter and method of controlling
A buck-boost power converter switches the switches thereof with a novel sequence and extends the switching periods of the switches to reduce the switching loss and conduction loss when the input voltage thereof approaches the output voltage thereof. The influence of the load current of the power converter on the duty thereof is taken into account to switch the power converter between modes at correct time points, so as to prevent the output voltage from being affected by the mode switching. |
US08610418B2 |
Method and apparatus for supplying power to a connection device
Embodiments of the present invention a method and an apparatus for stabilizing power supply to a connection device, such as an ONU. The power is supplied via wires using DC voltage and the wires having a first conductor and a second conductor. The currents in the first conductor and in the second conductor are measured and if a difference between the currents is detected as being above a first threshold value the supplied DC voltage will be lowered. Within period of time since it was detected that the difference between the currents were above the first threshold value it is decided if the difference between the currents is diminishing faster than a rate threshold value. In response, the controller is configured to instruct the converter to increase the supplied DC voltage. |
US08610417B1 |
System with device startup anticipated voltage supply for voltage output regulation
A system includes a converter and a regulator. The converter supplies power to a load circuit during an active mode to power first and second devices in the load circuit. The converter is OFF during an inactive mode. The regulator supplies power to the load circuit during the inactive mode to operate the first device in an active state and regulates a power supply voltage, supplied during the inactive mode, to a predetermined voltage. The power supplied during the inactive mode is less than an amount of power to operate the first and second devices in an active state. During the inactive mode, the regulator increases the power supply voltage to a voltage greater than the predetermined voltage to prevent the power supply voltage from decreasing to a voltage less than the predetermined voltage due to an increased amount of load as a result of turning ON the second device. |
US08610415B2 |
Lambda correction for current foldback
Method and apparatus to provide lambda correction of a current foldback circuit using a regulator including a current foldback circuit are disclosed herein. |
US08610414B2 |
Vehicle-mounted multi-phase converter and design method thereof
An object is to miniaturize booster coils used in a vehicle-mounted booster converter. In the design method for a vehicle-mounted multi-phase converter including multiple booster coils and a switching circuit for generating an induced electromotive force at each booster coil by switching of current flowing to each booster coil for applying an output voltage, based on an input voltage and the induced electromotive force generated at each booster coil, to a vehicle drive circuit, a coupling factor indicating the extent by which the induced electromotive force in one of multiple booster coils contributes to the voltage between terminals of another booster coil is determined on the basis of a relationship between the coupling factor and current ripple component of each booster coil. |
US08610413B2 |
III-nitride power converter circuit
An integrated circuit that includes a power stage and a driver stage, all stages using III-nitride power devices. |
US08610412B2 |
Controllers, systems and methods for implementing multi-phase control
A controller includes an input selector, multiple cores and a multiplexer. The multiplexer is operable for multiplexing control signals to multiple output channels to provide multiple output signals. Each output channel can output a respective output signal, and each output signal represents a cyclic rotation of the control signals. The input selector is operable for enabling the cores to operate in a standby state alternately to control a multiplexing sequence of the control signals. |
US08610409B2 |
Controller with punctuated switching control circuit
An example controller for use in a power supply includes a zero crossing detection (ZCD) circuit, a threshold detection circuit, and a punctuated switching control circuit. The ZCD circuit generates a ZCD signal that pulses each zero-crossing of an ac input voltage. The threshold detection circuit receives and compares an output of the power supply with a threshold reference. The punctuated switching control circuit generates a switching signal to control a switch to regulate the output of the power supply. The switching signal is generated to have intervals of switching and intervals of no switching, where each interval of switching begins responsive to the output of the power supply dropping below the threshold reference and each interval of no switching begins responsive to the output rising above the threshold reference. Each interval has a beginning that is synchronized with a pulse of the ZCD signal. |
US08610399B2 |
Resonance type non-contact power supply system for vehicle and electric vehicle
A resonance type non-contact power supply system is provided that includes power supplying equipment and an electric vehicle. The power supply equipment includes an alternating-current power source and a primary-side resonance coil for receiving power from the alternating-current power source. The electric vehicle includes power receiving equipment and a vehicle height control device mounted on the electric vehicle. The power receiving equipment includes a secondary-side resonance coil that receives power from the primary-side resonance coil, a rectifier that rectifies the power received by the secondary-side resonance coil, and an electrical storage device, to which the power rectified by the rectifier is supplied. A resonance system that includes the primary-side resonance coil and the secondary-side resonance coil is configured such that impedance thereof is adjusted by the use of the vehicle height control device when the electrical storage device is charged. |
US08610398B2 |
Wireless charging receiver for portable electronic device
A wireless charging receiver for a portable electronic device is provided. The wireless charging receiver includes a base plate, a wireless charge receiving module, a fastening part and an electric connector. The portable electronic device may be fixed on the base plate of the wireless charging receiver by means of the fastening part. Through the electric connector of the wireless charging receiver, the wireless charge receiving module is electrically connected with the portable electronic device. Consequently, electric power is transmitted to the portable electronic device through the wireless charging receiver to charge the portable electronic device. |
US08610397B2 |
Battery charger for portable devices and related methods
A battery charger may include a charger connector to be coupled to a corresponding device connector of a portable device including a rechargeable battery. The battery charger may also include a charging circuit connected to the charger connector, and a controller connected to the charger connector and the charging circuit. The controller may be for causing a portable device connected to the charger connector to identify its corresponding portable device type and its corresponding rechargeable battery type from among a plurality of different portable device types and different battery types, and for causing the charging circuit to charge the rechargeable battery based thereon. |
US08610389B2 |
Speed control apparatus for the switched reluctance motor
Disclosed here is a speed control apparatus for a switched reluctance motor (SRM) including: a current control unit generating command currents for each period; a driving unit generating a pulse width modulation (PWM) signal to allow a voltage to be applied to the SRM; a magnetic flux error calculating unit calculating a magnetic flux error; a rotor position estimating unit calculating an estimation position using the magnetic flux error to output the estimation position to the magnetic flux error calculating unit; and a mode change-over unit allowing a command position corresponding to a command speed to be input to the magnetic flux error calculating unit. |
US08610388B2 |
Control apparatus and control method for electric rotating machine
A controller outputting voltage instructions for drive control of an electric rotating machine adds, by using adders, position estimation voltage instructions for estimating the rotor position generated by a position estimation voltage generator, to drive voltage instructions, and outputs the resultant signals as voltage instructions. A position estimation device includes current extractors for extracting position estimation currents having the same frequency components as that of the position estimation voltage instructions, from electric rotating machine currents detected by a current detector, a position estimation current amplitude calculation section for calculating position estimation current amplitudes from the position estimation currents; and an estimation position calculation unit for calculating an estimated position of the electric rotating machine, based on the position estimation current amplitudes. The position estimation current amplitude calculation section calculates the position estimation current amplitudes, based on an autocorrelation obtained by squaring the position estimation currents. |
US08610381B2 |
Voltage determination device and clock control device
A voltage determination device includes a reference voltage generation circuit; a determination target voltage line; a first voltage line; a second voltage line; and a switching circuit disposed between the first voltage line and the second voltage line. The switching circuit is provided for performing a switching operation according to a level of the determination target voltage. The voltage determination device includes a determining circuit for determining the level of the determination target voltage, and a control unit is provided for controlling a level of an electric current flowing between the first voltage line and the second voltage line. The control unit controls a resistivity between the switching circuit and the second voltage line so that the level of the electric current is maintained at a specific level when the determining circuit determines the level of the determination target voltage. |
US08610380B2 |
Accelerator pack, specifically for linear acceleration modules
An accelerator pack, specifically for linear accelerator modules cascade-connected to a proton-emitting cyclotron, specially adapted for use in cancer therapies. Such a technique is named PT. The pack displays an accelerating cavity of improved efficiency in virtue of its shape, which provides for making a portion of accelerating cavity on both faces of the pack. Furthermore, the pack also contains a coupling cavity portion. In such a manner, the volume of the accelerating cavity is increased as compared to that of the packs of the known accelerator modules. |
US08610377B2 |
Methods, apparatus, and systems for prediction of lighting module performance
In embodiments of the present invention, a method and system is provided for designing improved intelligent, LED-based lighting systems. The LED based lighting systems may include fixtures with one or more of rotatable LED light bars, integrated sensors, onboard intelligence to receive signals from the LED light bars and control the LED light bars, and a mesh network connectivity to other fixtures. |
US08610375B2 |
Adaptive bleeder circuit
An adaptive bleeder circuit is applicable to a power converter, in which the power converter has a transformer primary side and a transformer secondary side, and the power converter enables input power to be selectively input or not input to the transformer primary side through a pulse-width-modulated signal. The adaptive bleeder circuit includes a switched bleeder circuit, and the bleeder circuit switch dynamically adjusts a turn on/off ratio (or referred to as duty ratio) of the switch element according to the TRIAC holding current and the converter input current of an alternating current (AC) TRIAC. When the input current is less than the holding current, the bleeder circuit increases conduction time ratio of the pulse-width-modulated signal, such that the input current recovers to the holding current to maintain normal conduction of the AC TRIAC. |
US08610373B2 |
Dimming of lighting system
A lighting system comprises a plurality of lighting units (1, 4) each configured to light a target area. A central dimming element having an adjustable conductance is provided. Each lighting unit comprises at least one light source (101, 201), a controllable light source driver (2, 5) coupled to the light source (101, 201), and a light sensor (3, 6) configured to measure a light flux in the target area of the lighting unit (1, 4). The light source driver supplies power to the light source in accordance with an input control voltage generated by a current source. The light sensor is coupled to the current source, and has a variable conductance corresponding to the light flux. The lighting units (1, 4) can be dimmed in combination by coupling each light sensor (3, 6) in parallel to the dimming element (7) through a respective diode (9, 10, 13). |
US08610372B2 |
Battery-conserving flashlight and method thereof
A battery-conserving flashlight and method thereof are provided. The flashlight includes a body having a first end and a second end, the first end including an illumination source and the second end including an opening for accessing an interior of the body; at least one battery disposed in the body via the opening in the second end, the at least one battery coupled to and configured for powering the illumination source; and a controller disposed in the body configured to determine if the body is in motion, wherein if the body is not in motion for a predetermined period of time, the controller decouples the at least one battery from the illumination source to conserve energy in the at least one battery. Optionally, the flashlight may include a visual or audible indicator to alert a user that the flashlight will shutdown. |
US08610370B2 |
Method for controlling light-emitting diodes
A method and a device for gradually controlling the illuminating light intensity of light-emitting diodes by modulating the width of current pulses of defined duty cycle, using a DC-to-DC voltage converter and a control circuit for switching the supply current of the light-emitting diodes. Prior to switching the power supply of the diodes the DC-to-DC converter is initiated (A), so as to generate voltage pulses of defined duty cycle; the steady state of each pulse is determined (B), so as to generate a voltage pulse (CP) calibrated to a voltage level substantially corresponding to the steady-state level; and then the light-emitting diodes are powered (D) by applying each calibrated pulse to the light-emitting diodes by means of the switchable control circuit. |
US08610367B2 |
Brightness control of a status indicator light
An apparatus and method for controlling the brightness and luminance of a light, such as an LED. The embodiment may vary the brightness and luminance of the LED in a variety of ways to achieve a variety of effects. The exemplary embodiment may vary the rate at which the LED's luminance changes, such that an observer perceives the change in the LED's brightness to be smooth and linear as a function of time, regardless of the ambient light level. Changes to the LED's luminance may be time-constrained and/or constrained by a maximum or minimum rate of change. |
US08610366B1 |
Lighting ballast and method for balancing multiple independent resonant tanks
A lighting ballast and associated methods balance current through resonant inductors that have inductance variation, and are further effective to balance lamp currents in the range from full brightness to full dimming. The ballast includes a lighting power source, a balancing transformer having a plurality of windings, a first resonant tank circuit having one or more transformer windings and a second resonant tank circuit having a like number of transformer windings. Each of the windings for the first resonant tank are reversed in direction in association with a corresponding winding for the second resonant tank, such that the only current passing through the windings is a current difference between the two windings. |
US08610364B2 |
Coordinated dimmer compatibility functions
A system and method includes a controller that is configured to coordinate (i) a low impedance path for a dimmer current, (ii), control of switch mode power conversion and (iii) an inactive state to, for example, to allow a dimmer to function normally from cycle to cycle of an alternating current (AC) supply voltage. In at least one embodiment, the dimmer functions normally when the dimmer conducts at a correct phase angle indicated by a dimmer input setting and avoids prematurely resetting while conducting. In at least one embodiment, by coordinating functions (i), (ii), and (iii), the controller controls a power converter system that is compatible with a triac-based dimmer. In at least one embodiment, the controller coordinates functions (i), (ii), and (iii) in response to a particular dimming level indicated by a phase cut, rectified input voltage supplied to the power converter system. |
US08610362B2 |
Lighting device
A lighting device using an electroluminescent material, in which color mixing and dimming can be performed by a simple method, is provided. A lighting device including a first light-emitting element and a second light-emitting element which emits light having a wavelength longer than that of light emitted from the first light-emitting element and starts to emit light at a lower voltage than the first light-emitting element, is provided. The first light-emitting element and the second light-emitting element are connected in parallel, whereby a mixed color of emission colors of the first light-emitting element and the second light-emitting element is controlled by a voltage applied to the first light-emitting element and the second light-emitting element. |
US08610361B2 |
LED tube and lighting fixture arrangement
A LED tube includes a substantially fluorescent-tube-shaped and fluorescent-tube-sized translucent or fluorescent tube having one or more LED components and a current control unit installed therein. Both ends of the LED tube are provided with a pair of contact pins for connecting the LED tube mechanically and electrically to the tube holders of the fluorescent tube lighting fixture. The tube has a safety unit arranged to prevent a voltage from transferring through the tube from its one end to the other until a voltage supplied from the corresponding tube holder of the lighting fixture to the pair of contact pins has been detected at each end of the tube separately. Electric power or switching control of electric power is cross-connected between the ends of the LED tube. |
US08610360B2 |
LED device and method for preventing soft-start flicker
A light-emitting diode (LED) device for preventing soft-start flicker includes an LED module, a voltage converter, a variable current load and a loop control unit. The loop control unit is coupled to the LED module, the voltage converter and the variable current load, and includes a soft-start unit and a dimming control unit. The soft-start unit is utilized for activating a soft-start mechanism of the voltage converter when power of the LED device is turned on. The dimming control unit is utilized for controlling the variable current load to progressively increase a load current of the LED module to a target value and to maintain the load current on the target value until the soft-start mechanism is completed, so as to perform dimming control on the LED module. |
US08610350B2 |
Electrode structures for discharge lamps
An electrode structure configured to operate in a discharge lamp and a method to make such an electrode structure are described. The electrode structure includes an electrode head portion comprising a plurality of raised features arranged in a configuration such that an average pitch of the plurality of raised features is at least 105%. The method includes providing an electrode configured to operate in the discharge lamp and forming raised features on an electrode head portion of the electrode at an average pitch of at least 105%. |
US08610349B2 |
Organic light emitting diode display
An organic light emitting diode (OLED) display is disclosed. In one embodiment, the OLED display includes: an organic light emitting display panel including i) a base substrate having a pixel area and a pad area and ii) a protection substrate connected to the base substrate to cover the pixel area, wherein the pad area is formed outside of the pixel area and adjacent to an edge of the base substrate. The OLED display also includes a printed circuit board formed on the protection substrate and a chip on film including i) a first terminal electrically connected to the pad area, ii) a second terminal electrically connected to the printed circuit board and iii) a bending portion bent from the first terminal toward the second terminal. The OLED display further includes a spacer formed on the first terminal, wherein the spacer is located inside of the bending portion. |
US08610348B2 |
Self-light emitting display unit and electronic device
A self-light emitting display unit capable of improving manufacturing yield is provided. Sizes of color pixel circuits corresponding to pixels for R, G, and B are respectively set unevenly within a pixel circuit according to a magnitude ratio of drive currents which allow color self-light emitting elements in the pixel to emit with a same light emission luminance. Thereby, the pattern densities of color pixel circuits respectively corresponding to the pixels for R, G, and B become even to each other, and the pattern defect rate as the whole pixel circuit is decreased. |
US08610346B2 |
Organic light-emitting device including an aluminum-based reflective layer
An organic light-emitting device including a substrate; a first electrode on the substrate; a second electrode; an organic layer between the first electrode and the second electrode; and a carbonaceous material-containing layer between the first electrode and the organic layer, wherein the first electrode includes an aluminum (Al)-based reflective layer and a transparent conductive layer sequentially stacked in this order on the substrate, the Al-based reflective layer including a first element and nickel (Ni) and the first element includes at least one of lanthanum (La), cerium (Ce), praseodymium (Pr), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). |
US08610345B2 |
Light-emitting device material and light-emitting device
A light emitting device material containing a pyrene compound of formula (1) and a light emitting device. In formula (1), R1 to R18 are the same or different and are selected from hydrogen, alkyl, cycloalkyl, heterocyclic, alkenyl, cycloalkenyl, alkynyl, alkoxy, alkylthio, arylether, arylthioether, aryl, heteroaryl, halogen, carbonyl, carboxyl, oxycarbonyl, carbamoyl, amino, phosphine oxide and silyl; adjacent substituents among R1 to R18 may be combined with each other to form a ring; n represents an integer of 1 to 3; X is —O—, —S— or —NR19—; R19 is selected from hydrogen, alkyl, cycloalkyl, heterocyclic, alkenyl, cycloalkenyl, alkynyl, aryl, heteroaryl or amino; R19 may be combined with R11 or R18 to form a ring; Y is a single bond, arylene or heteroarylene; and n substituents among R1 to R10 and any one of R11 to R19 are used for linkage with Y |
US08610344B2 |
Insulating pattern, method of forming the insulating pattern, light-emitting device, method of manufacturing the light-emitting device, and lighting device
A simple formation method of an insulating pattern having an eaves portion using one light-exposure mask is provided. As the formation method of an insulating pattern having an eaves portion, first, a first photosensitive organic layer is formed over a substrate, and then a first region is exposed to light with the use of a light-exposure mask, so that a leg portion is formed. After that, a second photosensitive organic layer is formed, the light-exposure mask is moved in the direction parallel to the substrate, and then a second region partly overlapping with the first region is exposed to light plural times, so that a stage portion is formed. The insulating pattern formed by this method may be applied to the light-emitting device or the lighting device. |
US08610342B2 |
Spark plug and its method of production
The invention describes a spark plug, which comprises an inner conductor, an insulator enclosing the inner conductor, a spark plug body enclosing the insulator and two electrodes forming a spark gap. The first electrode is a center electrode connected to the inner conductor in an electrically conductive manner and the second electrode is a ground electrode connected to the spark plug body in an electrically conductive manner. At least one of the electrodes has a precious metal region, adjoining the spark gap and consisting predominantly of platinum, iridium or an alloy of both and containing additionally at least one brittle metal. The precious metal region consists of a base material predominantly containing platinum and/or iridium, which comprises a coating with a brittle metal, which is more brittle than the base material. |
US08610337B2 |
Piezoelectric device and method for manufacturing same
A piezoelectric device employs solder on a roughened surface to improve bonding of electrical contacts with the device package. The device package includes a base, a crystal frame and a lid. The base includes connecting electrodes on a side of the base adjacent the crystal frame. The base has a through hole and a through hole electrode formed in the through hole in electrical contact with the connecting electrodes. The through hole is sealed with a sealing material and a first external electrode layer, which is electrically connected to the through hole electrode, is formed on an outside surface of the base opposite the piezoelectric plate. A second external electrode layer is formed to cover the first external electrode layer and the sealing material. |
US08610336B1 |
Microelectromechanical resonators having resistive heating elements therein configured to provide frequency tuning through convective heating of resonator bodies
A microelectromechanical resonator includes a resonator body, which is encapsulated within a sealed cavity extending between first and second substrates that are bonded together. The resonator body is anchored to the first substrate by at least a pair of tethers that suspend the resonator body opposite an underlying recess in the first substrate. A resistive heating element is provided, which is configured to indirectly heat the resonator body through convective heating of the cavity. This resistive heating element may be disposed on an inner surface of the second substrate that is exposed to the cavity. The resonator may also include first and second electrical interconnects, which extend through the second substrate and contact respective first and second portions of the resistive heating element. |
US08610334B2 |
Ultrasonic torsional mode and longitudinal-torsional mode transducer
The present invention relates to the design of piezoelectric transducer subassemblies and systems primarily intended for medical and dental applications. The invention also provides transducer subassemblies and systems with improved performance and a capability to operate more efficiently in torsional or a combined longitudinal-torsional mode of vibration. The invention enables the size and weight of torsional mode transducers to be reduced. Additionally, the electrical characteristics of these transducer systems are improved, thus enabling the transducer end effector to deliver more power to the operative site. |
US08610333B2 |
Acoustic wave devices
In one aspect of the invention, an acoustic wave device includes a substrate, and at least one acoustic wave resonator having a bottom electrode adjacent to the substrate, a top electrode, a piezoelectric layer sandwiched between the bottom and top electrodes, a passivation layer formed on the top electrode, and a mass load layer sandwiched between the substrate and the bottom electrode, or between the bottom electrode and the piezoelectric layer. |
US08610330B2 |
Rotor for a multipolar synchronous electric machine with salient poles
A rotor for a multipolar synchronous electric machine including a plurality of salient poles, each salient pole being surrounded by an induction coil; a ring integrating the plurality of salient poles; wherein each salient pole includes a polar body integral with the ring; two removable pole tips facing each other on either side of the polar body; front parts provided along the ends of the polar body, to radially maintain the induction coil in a transverse portion thereof; the polar body including two slots formed on either side of the polar body and having a shape adapted for receiving the pole tips; the front parts blocking the displacements of the pole tips in the slots. |
US08610329B2 |
Drive unit for a hair cutting machine
A drive unit for a hair cutting machine comprises a driving motor that includes a substantially U-shaped stator which has a first leg, a second leg, and at least one additional leg located between the first leg and the second leg, at least one field coil which can be disposed on the at least one additional leg, and an armature. Lateral air gap sections are formed between the first and second leg and the armature while central air gap sections are formed between the additional leg and the armature. The central air gap sections and the lateral air gap sections extend at an angle from a longitudinal axis. A first nose, which faces away from the additional leg, is arranged at the end of the first leg, while a notch, which faces the additional leg and corresponds to the first nose, is arranged on the second leg. |
US08610326B2 |
Stator designed to minimize leakage current and electric rotating machine using same
A stator which may be employed in an electric rotating machine. The stator includes a stator winding which includes in-slot portions disposed in slots of a stator core. The in-slot portions are arrayed in each of the slots in a form of multiple layers aligned in a radial direction of the stator core. The stator winding is made up of a first winding and a second winding which are connected together through a joint. The first winding is defined by a portion of the stator winding between the joint and an end of the stator winding which is to be connected to an external. The second winding includes the in-slot portion placed within at least one of the slots as an outermost layer that is one of the layers placed most outwardly in the radial direction of the stator core. This results in a great decrease in leakage current. |
US08610325B2 |
Generator with non-magnetic rotor
The generator contains an outer casing, a non-magnetic rotor, an inner casing, outer stators, and inner stators. The non-magnetic rotor has an internal storage space, and is axially mounted on an axle and housed inside the outer casing with the axle rotatably supported by two ends of the outer casing. The outer stators are configured on an inner circumferential surface of the outer casing. Correspondingly, a number of coils are configured on an outer circumferential surface of the non-magnetic rotor. The inner casing is housed inside the storage space with the inner stators configured on an outer circumferential surface of the inner casing. The inner casing is rotatably configured on the axle by a number of bearings. The outer and inner stators are of reversed magnetic polarities so that, when the axle spins, the inner stators remain still due to the magnetic attraction from the outer stators. |
US08610323B2 |
Bearingless machine
A rotating machine comprises a stationary subassembly, a rotating subassembly, and a first circumferential track. The stationary subassembly includes a plurality of stator elements disposed proximate an inner circumference of a portion of the stationary subassembly, and a casing having a first portal. The rotating subassembly includes a plurality of rotor elements disposed proximate an outer circumference of a portion of the rotating subassembly. The rotating subassembly is aligned coaxially within the stationary subassembly and is rotatable relative to the stationary subassembly without the aid of support bearings. The first circumferential track is defined by a first rotor track portion on the rotating subassembly and a first stator track portion on the stationary subassembly, and is in communication with a first portal on the casing. |
US08610322B2 |
Magnetic bearing and method for operation thereof
The invention relates to a magnetic bearing and to a method for operation thereof. The magnetic bearing contains a ferromagnetic, movably mounted bearing element (1) and at least two magnetic devices (3o, 3u) arranged on opposing sides of the bearing element (1) and equipped with windings (6), wherein during operation of the magnetic bearing, electric currents are conducted through the windings (6) and these currents are regulated such that in an equilibrium state between the bearing element (1) and the two magnetic devices (3o, 3u), bearing gaps (10o, 10u) of predetermined size (So, Su) form. According to the invention, the temperatures produced in the magnetic devices (3o, 3u) during operation are measured and the regulation of the currents takes place such that in the equilibrium state, regardless of the load situation, the same temperatures appear in the magnetic devices (3o, 3u) or in the windings (6) thereof (FIG. 1). |
US08610320B2 |
Linear generator having a fluid pressure cylinder structure
A linear generator has a fluid pressure cylinder structure for reciprocating a piston in a cylinder in the axial direction by applying alternately a fluid pressure in a left fluid pressure chamber in contact with the left end wall of the cylinder and a fluid pressure in a right fluid pressure chamber in contact with the right end wall of the cylinder to the piston. A permanent magnet band is formed between the left and right pressure receiving surfaces of the piston, and an electromotive coil band provided over the left and right fluid pressure chambers is formed on the cylindrical wall between the left and right end walls of the cylinder so that power generation in the electromotive coil band is induced by the reciprocating movement in the axial direction of the piston having the permanent magnet band. |
US08610306B2 |
Power plant control system and method for influencing high voltage characteristics
A control system for a power plant is provided, configured to influence actual HV characteristics of an HV power line at a point-of-interconnection to a grid. The control system includes an MV-compliant measurement system configured for connection with an MV power line of the power plant, and an evaluation unit. The evaluation unit is connected to the MV-compliant measurement system and is configured to determine calculated HV characteristics of the HV power line based on measurement values received from the MV-compliant measurement system at the MV power line and based on a model of a transformer. The transformer transforms from medium voltage on the MV power line to high voltage on the HV power line. The evaluation unit is configured to generate a control signal based on the calculated HV characteristics in order to control the power plant for influencing the actual HV characteristics of the HV power line. |
US08610304B2 |
Mechanisms for creating undulating motion, such as for propulsion, and for harnessing the energy of moving fluid
Mechanisms are described which receive and transfer forces via transducers having one or more persistent deformations in changeable locations. Actuator or propulsion embodiments are powered by elastic or variable length transducers that exert forces on the deformed members which in turn exert forces onto ambient fluid such as air or water. Generator embodiments receive forces from ambient moving fluid via deformed members which transfer those forces to elastic or variable length transducers which convert those forces into electrical energy. |
US08610303B2 |
System and method for downhole geothermal electrical power generation
There is provided herein a system and method for generating downhole electricity from wells or similar apertures that penetrate sufficiently deep into the subsurface to allow liquid water to be converted to steam. In the preferred embodiment, a well that reaches to a point in the subsurface where the ambient temperature at depth is significantly above the boiling point of water (i.e., greater than 212° F.) will be used, said steam providing the force necessary to turn the blades of a turbine which, in turn, provides rotational force a downhole generator, thereby resulting in the generation of electricity. |
US08610300B2 |
Energy generation device
A device generates energy by harnessing gravitational and buoyancy forces acting on a moving member. The device includes a plurality of buoyant members, a first passage with fluid configured to receive at least one of the buoyant members so the buoyant member is free to move within the first passage due to buoyancy forces, a second passage configured to receive the buoyant member from the first passage so the buoyant member is free to move within the second passage due to gravitational forces, a first transfer mechanism that transfers the buoyant member from the first passage to the second passage, a second transfer mechanism that transfers the buoyant member from the second passage to the first passage, and at least one generator responsive to buoyant member movement within the first and/or second passage to generate electrical energy. |
US08610299B2 |
Wind turbine control device and method for reducing fluctuation of grid frequency when grid disturbance occurs, and wind turbine generator system thereof
When a grid disturbance occurs, output power control is performed for each wind turbine so as to reduce fluctuation of a frequency of an output power of the wind turbine at an early stage of the grid disturbance. The output power control is performed for each wind turbine so as to reduce fluctuation of a grid frequency at an interconnection point, in a late stage of the grid disturbance. |
US08610295B1 |
Reclaiming energy from waste water in tall buildings
Electrical power is generated from falling liquids such as captured rain water, gray water and black water in tall buildings using two or more reservoirs. Fill valves for each of the reservoirs are controlled to fill the first reservoir in a raised position while emptying the second reservoir in a lowered position. When full, the first reservoir is dropped to the lowered position while imparting mechanical energy to an electrical generator and while raising the second reservoir. Next, the second reservoir is filled until full while the first reservoir is emptied, followed by dropping the second reservoir to the lowered position while imparting mechanical energy to the electrical generator and while raising the first reservoir. The cycle is repeated so that electrical generation from the falling of the liquid avoids the liquid contacting or passing through a turbine or impeller. |
US08610294B2 |
Laser processing method and semiconductor device obtained by using the processing method
A conventional laser processing method has a problem that the number of scanning lines is large, and it is difficult to shorten the time needed for the marking. In a laser processing method of the present invention, a first laser processing is performed in accordance with the outer border of, for example, an English letter “A,” and thereafter, second and subsequent laser processings are performed on an inner region inside the outer border. In this event, for the second and subsequent laser processings, the respective processing lines (scanning lines) are set up in a longitudinal direction of a processing region. Thus, the number of processing lines is greatly reduced. As a result, the time needed for the marking is greatly shortened, and the laser marking workability is improved. |
US08610293B2 |
Resin composition for encapsulating optical semiconductor element and optical semiconductor device
A resin composition containing a silica-based filler which differs in refractive index by ±0.03 from the curable base resin and has a thermal conductivity no lower than 0.5 W/m·K, and a light-emitting diode encapsulated with said resin composition. The resin composition is preferably prepared from a curable silicone resin which imparts a cured product having a refractive index of 1.45 to 1.55 and cristobalite powder dispersed therein. |
US08610291B2 |
Copper alloy bonding wire for semiconductor device
The present invention provides a semiconductor-device copper-alloy bonding wire which has an inexpensive material cost, ensures a superior ball joining shape, wire joining characteristic, and the like, and a good loop formation characteristic, and a superior mass productivity. The semiconductor-device copper-alloy bonding wire contains at least one of Mg and P in total of 10 to 700 mass ppm, and oxygen within a range from 6 to 30 mass ppm. |
US08610290B2 |
Fabricated adhesive microstructures for making an electrical connection
An integrated circuit chip has one or more electrically conductive nano-fibers formed on one or more contact pads of the integrated circuit chip. The one or more electrically conductive nano-fibers are configured to provide an adhesive force by intermolecular forces and establish an electrical connection with one or more contact pads disposed on the surface of a chip package. |
US08610287B2 |
Wiring substrate and method of manufacturing the same
A wiring substrate includes an insulating layer, a wiring layer buried in the insulating layer, and a connection pad connected to the wiring layer via a via conductor provided in the insulating layer and in which at least a part is buried in an outer surface side of the insulating layer, wherein the connection pad includes a first metal layer (a first copper layer) arranged on the outer surface side, an intermediate metal layer (a nickel layer) arranged on a surface of an inner layer side of the first metal layer, and a second metal layer (a second copper layer) arranged on a surface of an inner layer side of the intermediate metal layer, and a hardness of the intermediate metal layer is higher than a hardness of the first metal layer and the second metal layer. |
US08610281B1 |
Double-sided semiconductor structure using through-silicon vias
Methods and structures for a double-sided semiconductor structure using through-silicon vias (TSVs) are disclosed. The double-sided structure has functional circuits on both the front and back sides, interconnected by one or more TSVs. In some embodiments, multiple double-sided structures are combined to create 3D semiconductor structures with increased circuit density. |
US08610280B2 |
Platinum-containing constructions, and methods of forming platinum-containing constructions
Some embodiments include constructions which have platinum-containing structures. In some embodiments, the constructions may have a planarized surface extending across the platinum-containing structures and across metal oxide. In some embodiments, the constructions may have a planarized surface extending across the platinum-containing structures, across a first material retaining the platinum-containing structures, and across metal oxide liners along sidewalls of the platinum-containing structures and directly between the platinum-containing structures and the first material. Some embodiments include methods of forming platinum-containing structures. In some embodiments, first material is formed across electrically conductive structures, and metal oxide is formed across the first material. Openings are formed to extend through the metal oxide and the first material to the electrically conductive structures. Platinum-containing material is formed within the openings and over the metal oxide. Chemical-mechanical polishing is utilized to form a planarized surface extending across the platinum-containing material and the metal oxide. |
US08610279B2 |
Microfeature workpieces having conductive interconnect structures formed by chemically reactive processes, and associated systems and methods
Microfeature workpieces having conductive vias formed by chemically reactive processes, and associated systems and methods are disclosed. A method in accordance with one embodiment includes disposing a conductive lining on walls of a via in a microfeature workpiece, so that a space is located between opposing portions of the lining facing toward each other from opposing portions of the wall. The method can further include chemically reacting the lining with a reactive material to form a chemical compound from a constituent of the reactive material and a constituent of the lining. The method can still further include at least partially filling the space with the compound. In particular embodiments, the conductive lining includes copper, the reactive material includes sulfur hexafluoride, and the chemical compound that at least partially fills the space in the via includes copper sulfide. |
US08610277B2 |
Bridge type pad structure of a semiconductor device
A semiconductor device includes a lower structure, an insulation layer, metal contacts, a bridge and a metal pad. The lower structure has a metal wiring. An insulation layer is formed on the lower structure. The metal contacts penetrate the insulation layer to be connected to the metal wiring. The bridge is provided in the insulation layer, the bridge connecting the metal contacts to one another. The metal pad is provided on the insulation layer, the metal pad making contact with the metal contacts. |
US08610276B2 |
Metal cap for back end of line (BEOL) interconnects, design structure and method of manufacture
A structure is provided with a metal cap for back end of line (BEOL) interconnects that substantially eliminates electro-migration (EM) damage, a design structure and a method of manufacturing the IC. The structure includes a metal interconnect formed in a dielectric material and a metal cap selective to the metal interconnect. The metal cap includes RuX, where X is at Boron, Phosphorous or a combination of Boron and Phosphorous. |
US08610268B2 |
Semiconductor element, semiconductor element mounted board, and method of manufacturing semiconductor element
A semiconductor element includes connection terminals. The connection terminals are each shaped in such a manner that the transverse cross-sectional area in a portion near the leading end thereof decreases toward the leading end. Specifically, the shape of each of the connection terminals is columnar except for the portion near the leading end, and the side surface in the portion near the leading end of the connection terminal is shaped in a tapered form. Furthermore, a metal layer for improving a solder wettability may be formed at least on the side surface shaped in the tapered form, of the connection terminal. |
US08610263B2 |
Semiconductor device module
A P-side package unit and a N-side package unit are arranged on a main surface of a metal heatsink such that a main surface extends in a direction perpendicular to the main surface of the heatsink. Each of the P-side package unit and the N-side package unit is fixed by an end edge portion of a heatsink being clipped by a rail-shaped unit mounting part provided on the main surface of the heatsink. |
US08610262B1 |
Ball grid array package with improved thermal characteristics
An integrated circuit package includes a substrate having first and second surfaces and a plurality of conductive traces therebetween and a semiconductor die mounted on the first surface of the substrate. A plurality of wire bonds connect the semiconductor die to ones of the conductive traces of the substrate and an encapsulant encapsulates the wirebonds and the semiconductor die. A heat spreader has a cap, at least a portion of the cap extending inwardly toward and being spaced from the semiconductor die. The encapsulant fills the space between the portion of the cap and the semiconductor die. The heat spreader further has at least one sidewall extending from the cap, the at least one sidewall disposed on the substrate. A ball grid array is disposed on the second surface of the substrate, bumps of the ball grid array being in electrical connection with ones of the conductive traces. |
US08610260B2 |
Stub minimization for assemblies without wirebonds to package substrate
A microelectronic package can include a substrate and a microelectronic element having a face and one or more columns of contacts thereon which face and are joined to corresponding contacts on a surface of the substrate. An axial plane may intersect the face along a line in the first direction and centered relative to the columns of element contacts. Columns of package terminals can extend in the first direction. First terminals in a central region of the second surface can be configured to carry address information usable to determine an addressable memory location within the microelectronic element. The central region may have a width not more than three and one-half times a minimum pitch between the columns of package terminals. The axial plane can intersect the central region. |
US08610259B2 |
Multi-function and shielded 3D interconnects
A microelectronic unit includes a semiconductor element consisting essentially of semiconductor material and having a front surface, a rear surface, a plurality of active semiconductor devices adjacent the front surface, a plurality of conductive pads exposed at the front surface, and an opening extending through the semiconductor element. At least one of the conductive pads can at least partially overlie the opening and can be electrically connected with at least one of the active semiconductor devices. The microelectronic unit can also include a first conductive element exposed at the rear surface for connection with an external component, the first conductive element extending through the opening and electrically connected with the at least one conductive pad, and a second conductive element extending through the opening and insulated from the first conductive element. The at least one conductive pad can overlie a peripheral edge of the second conductive element. |
US08610258B2 |
Integrated circuit package with multiple dies and sampled control signals
A package includes a first die and a second die, at least one of said first and second dies being a memory. The dies are connected to each other through an interface. The interface is configured to transport both control signals and memory transactions. A sampling circuit samples the control signals before transport on the interface. The sampling circuit is controlled in dependence on at least one quality of service parameter associated with a respective control signal. |
US08610256B2 |
Device for detecting an attack against an integrated circuit
An integrated circuit including an intrusion attack detection device. The device includes a single-piece formed of a conductive material and surrounded with an insulating material and includes at least one stretched or compressed elongated conductive track, connected to a mobile element, at least one conductive portion distant from said piece and a circuit for detecting an electric connection between the piece and the conductive portion. A variation in the length of said track in an attack by removal of the insulating material, causes a displacement of the mobile element until it contacts the conductive portion. |
US08610254B2 |
Apparatus for integrated circuit packaging
Apparatuses are disclosed, such as those involving integrated circuit packaging. In one embodiment, a chip package includes: an encapsulation having a top surface and a bottom surface facing away from the top surface. The package further includes a leadframe including a plurality of leads. Each of the leads includes an exposed portion exposed through one of edges of the bottom surface of the encapsulation. The exposed portion has a length. At least one of exposed portions positioned along one of the edges of the bottom surface of the encapsulation has a length different from other exposed portions along the edge. The package can also include a dummy pad exposed through a corner of the bottom surface. The configuration can enhance solder joint reliability of the package when the package is attached to a printed circuit board. |
US08610252B2 |
Scribe line structure for wafer dicing
The scribe line structure for wafer dicing according to the present invention includes a plurality of metal structures arranged up-and-down on a substrate in a dielectric layer, and an upper one of the metal structures has a lower metal density than a lower one of the metal structures. In another aspect, the scribe line structure for wafer dicing includes a plurality of metal structures arranged up-and-down on a substrate in a dielectric layer, and each of the metal structures has a lower metal density on a dicing path for the wafer dicing than not on the dicing path. The scribe line structure can effectively avoid interlayer delamination or peeling issue caused by a dicing process, especially on a low-k/Cu wafer. |
US08610249B2 |
Non-planar capacitor and method of forming the non-planar capacitor
Disclosed herein are embodiments of non-planar capacitor. The non-planar capacitor can comprise a plurality of fins above a semiconductor substrate. Each fin can comprise at least an insulator section on the semiconductor substrate and a semiconductor section, which has essentially uniform conductivity, stacked above the insulator section. A gate structure can traverse the center portions of the fins. This gate structure can comprise a conformal dielectric layer and a conductor layer (e.g., a blanket or conformal conductor layer) on the dielectric layer. Such a non-planar capacitor can exhibit a first capacitance, which is optionally tunable, between the conductor layer and the fins and a second capacitance between the conductor layer and the semiconductor substrate. Also disclosed herein are method embodiments, which can be used to form such a non-planar capacitor and which are compatible with current state of the art multi-gate non-planar field effect transistor (MUGFET) processing. |
US08610241B1 |
Homo-junction diode structures using fin field effect transistor processing
Diodes and bipolar junction transistors (BJTs) are formed in IC devices that include fin field-effect transistors (FinFETs) by utilizing various process steps in the FinFET formation process. The diode or BJT includes an isolated fin area and fin array area having n-wells having different depths and a p-well in a portion of the fin array area that surrounds the n-well in the isolated fin area. The n-wells and p-well for the diodes and BJTs are implanted together with the FinFET n-wells and p-wells. |
US08610238B2 |
Crack stop trenches
Structures and methods of forming crack stop trenches are disclosed. The method includes forming active regions disposed in cell regions of a substrate, the cell regions separated by dicing channels, and forming back end of line (BEOL) layers over the substrate, the BEOL layers being formed over the cell regions and the dicing channels. Crack stop trenches are then formed encircling the cell regions by etching a portion of the BEOL layers surrounding the cell regions. The wafer is diced along the dicing channels. |
US08610233B2 |
Hybrid MOSFET structure having drain side schottky junction
A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate, forming a raised source region over the semiconductor substrate adjacent a source side of the gate structure, and forming silicide contacts on the raised source region, on the patterned gate structure, and on the semiconductor substrate adjacent a drain side of the gate structure. Thereby, a hybrid field effect transistor (FET) structure having a drain side Schottky contact and a raised source side ohmic contact is defined. |
US08610230B1 |
HfO2/SiO2-Si interface improvement for CMOS image sensor
A semiconductor device including a substrate and an anti-reflective coating disposed upon the substrate, the anti-reflective coating and the substrate forming an interface, a carbon concentration and a chlorine concentration less than an oxygen concentration at the interface. |
US08610226B2 |
Photosensor element, photosensor circuit, thin-film transistor substrate, and display panel
Disclosed is a photosensor element that is provided with a gate electrode (11da) disposed on an insulating substrate (10), a gate insulation film (12) disposed so as to cover the gate electrode (11da), a semiconductor layer (15db) disposed on the gate insulating film (12) so as to overlap the gate electrode (11da), and a source electrode (16da) and a drain electrode (16db) provided on the semiconductor layer (15db) so as to overlap the gate electrode (11da) and so as to face each other. The semiconductor layer (15db) is provided with an intrinsic semiconductor layer (13db) in which a channel region (C) is defined and an extrinsic semiconductor layer (14db) that is laminated on the intrinsic semiconductor layer (13db) such that the channel region (C) is exposed therefrom. The intrinsic semiconductor layer (13db) is an amorphous silicon layer containing nanocrystalline silicon particles. |
US08610225B2 |
Radiation-receiving semiconductor component and optoelectronic device
A radiation-receiving semiconductor component is specified. A semiconductor body is formed with silicon and has a radiation entrance surface and also an absorption zone. Electromagnetic radiation passes into the semiconductor body through the radiation entrance surface and is absorbed. The absorption zone has a thickness of at most 10 μm. A filter layer is formed with a dielectric material. The filter layer covers the radiation entrance surface of the semiconductor body. A potting body covers the semiconductor body at least at the radiation entrance surface thereof. The potting body contains a radiation-absorbing material. |
US08610221B2 |
Low mismatch semiconductor device and method for fabricating same
Disclosed is a low mismatch semiconductor device that comprises a lightly doped channel region having a first conductivity type and a first dopant concentration in a semiconductor body, and a high-k metal gate stack including a gate metal layer formed over a high-k gate dielectric without having a dielectric cap on the high-k dielectric. The high-k metal gate stack being formed over the lightly doped channel region. The lightly doped channel region may be a P- or N-conductivity region, for example, and may be part of a corresponding P- or N-semiconductor substrate, or a P- or N-well formed in a substrate of the respectively opposite conductivity type. The disclosed semiconductor device, which may be an NMOS or PMOS analog device, for example, can be fabricated as part of an integrated circuit including one or more CMOS logic devices. |
US08610219B2 |
Semiconductor device having a memory cell section, an adjacent circuit section, and silicide formed on an impurity diffused region
In a DRAM-incorporated semiconductor device (SOC) which has a DRAM section and a logic section being formed on one and the same substrate, with the object of providing, with low cost, a SOC having necessary and sufficient characteristics in the DRAM section, while attaining higher-speed performance of the whole elements, silicide is formed at least on all the surfaces of the source-drain regions (10) and the gate surfaces (6) of transistors in the DRAM section and the logic section, concurrently in one and the same step. |
US08610218B2 |
Semiconductor device having a stable resistor and methods of forming the same
In a semiconductor device and a method of making the same, the semiconductor device comprises a substrate including a first region and a second region. At least one first gate structure is on the substrate in the first region, the at least one first gate structure including a first gate insulating layer and a first gate electrode layer on the first gate insulating layer. At least one isolating structure is in the substrate in the second region, a top surface of the isolating structure being lower in height than a top surface of the substrate. At least one resistor pattern is on the at least one isolating structure. |
US08610216B2 |
Structure for protecting an integrated circuit against electrostatic discharges
A structure for protecting an integrated circuit against electrostatic discharges, including a device for removing overvoltages between first and second power supply rails; and a protection cell connected to a pad of the circuit including a diode having an electrode, connected to a region of a first conductivity type, connected to the second power supply rail and having an electrode, connected to a region of a second conductivity type, connected to the pad and, in parallel with the diode, a thyristor having an electrode, connected to a region of the first conductivity type, connected to the pad and having a gate, connected to a region of the second conductivity type, connected to the first rail, the first and second conductivity types being such that, in normal operation, when the circuit is powered, the diode is non-conductive. |
US08610215B2 |
Allotropic or morphologic change in silicon induced by electromagnetic radiation for resistance turning of integrated circuits
An electronic device includes a semiconductor substrate and a dielectric layer over the substrate. A resistive link located over the substrate includes a first resistive region and a second resistive region. The first resistive region has a first resistivity and a first morphology. The second resistive region has a second resistivity and a different second morphology. |
US08610213B2 |
Semiconductor device and semiconductor package
A semiconductor device capable of ensuring a withstand voltage of a transistor and reducing a forward voltage of a Schottky barrier diode in a package with the transistor and the Schottky barrier diode formed on chip, and a semiconductor package formed by a resin package covering the semiconductor device are provided. The semiconductor device 1 includes a semiconductor layer 22, a transistor area D formed on the semiconductor layer 22 and constituting the transistor 11, and a diode area C formed on the semiconductor layer 22 and constituting the Schottky barrier diode 10. The semiconductor layer 22 in the diode area C is thinner than the semiconductor layer 22 in the transistor area D. |
US08610209B2 |
Ultra-high voltage N-type-metal-oxide-semiconductor (UHV NMOS) device and methods of manufacturing the same
An ultra-high voltage n-type-metal-oxide-semiconductor (UHV NMOS) device with improved performance and methods of manufacturing the same are provided. The UHV NMOS includes a substrate of P-type material; a first high-voltage N-well (HVNW) region disposed in a portion of the substrate; a source and bulk p-well (PW) adjacent to one side of the first HVNW region, and the source and bulk PW comprising a source and a bulk; a gate extended from the source and bulk PW to a portion of the first HVNW region, and a drain disposed within another portion of the first HVNW region that is opposite to the gate; a P-Top layer disposed within the first HVNW region, the P-Top layer positioned between the drain and the source and bulk PW; and an n-type implant layer formed on the P-Top layer. |
US08610202B2 |
Semiconductor device having a surrounding gate
There is provided a semiconductor device which has a CMOS inverter circuit and which can accomplish high-integration by configuring an inverter circuit with a columnar structural body. A semiconductor device includes a columnar structural body which is arranged on a substrate and which comprises a p-type silicon, an n-type silicon, and an oxide arranged between the p-type silicon and the n-type silicon and running in the vertical direction to the substrate, n-type high-concentration silicon layers arranged on and below the p-type silicon, p-type high-concentration silicon layers arrange on and below the n-type silicon, an insulator which surrounds the p-type silicon, the n-type silicon, and the oxide, and which serves as a gate insulator, and a conductive body which surrounds the insulator and which serves as a gate electrode. |
US08610199B2 |
Fabricating method of mirror bit memory device having split ONO film with top oxide film formed by oxidation process
A device and method employing a polyoxide-based charge trapping component. A charge trapping component is patterned by etching a layered stack that includes a tunneling layer positioned on a substrate, a charge trapping layer positioned on the tunneling layer, and an amorphous silicon layer positioned on the charge trapping layer. An oxidation process grows a gate oxide layer from the substrate and converts the amorphous silicon layer into a polyoxide layer. |
US08610191B2 |
Semiconductor devices and dynamic random access memory devices including buried gate pattern with high-k capping layer
Semiconductor devices and dynamic random access memory devices including a buried gate electrode are provided, the semiconductor devices include a substrate with a gate trench, a buried gate electrode partially filling the inside of the gate trench, a capping layer pattern in the gate trench and over the buried gate electrode, source/drain regions below an upper surface of the substrate and adjacent to both sides of the buried gate electrode, and a gate insulation layer interposed between the trench and the buried gate electrode. The capping layer pattern includes a high-k material layer that directly contacts an upper surface of the buried gate electrode. |
US08610189B2 |
Semiconductor device enabling further microfabrication
A semiconductor device includes a plurality of MOS transistors and wiring connected to a source electrode or a drain electrode of the plurality of MOS transistors and, the wiring being provided in the same layer as the source electrode and the drain electrode in a substrate, or in a position deeper than a surface of the substrate. |
US08610186B2 |
Solid-state imaging device which can expand dynamic range
According to one embodiment, a solid-state imaging device includes an area and color filters. The area includes pixels. Each of the pixels includes a first photodiode, a first read transistor, a second photodiode, a second read transistor, a floating diffusion, a reset transistor, and an amplifying transistor. The first photodiode performs photoelectric conversion. The first read transistor reads a signal charge. The second photodiode has a photosensitivity lower than the first photodiode. The second read transistor reads a signal charge. The floating diffusion stores the signal charges. The reset transistor resets a potential of the floating diffusion. The amplifying transistor amplifies the potential of the floating diffusion. The color filters include a first and a second filters. The relationship QSAT1 > QSAT2 is satisfied. When a saturation level of the first filter is denoted by QSAT1 and a saturation level of the second filter is denoted by QSAT2. |
US08610185B2 |
Non-uniform gate dielectric charge for pixel sensor cells and methods of manufacturing
A non-uniform gate dielectric charge for pixel sensor cells, e.g., CMOS optical imagers, and methods of manufacturing are provided. The method includes forming a gate dielectric on a substrate. The substrate includes a source/drain region and a photo cell collector region. The method further includes forming a non-uniform fixed charge distribution in the gate dielectric. The method further includes forming a gate structure on the gate dielectric. |
US08610183B2 |
Field controlled diode with positively biased gate
An integrated circuit containing a field controlled diode which includes a p-type channel region between an upper gate and a lower n-type depletion gate, a p-type anode in a p-type anode well abutting the channel region, and an n-type cathode in a p-type anode well abutting the channel region opposite from the anode well. An n-type lower gate link connects the lower gate to the surface of the substrate. A surface control element is located at the surface of the channel region between the cathode and the upper gate. A process of forming the integrated circuit containing the field controlled diode is described. |
US08610181B2 |
V-groove source/drain MOSFET and process for fabricating same
A structure includes a substrate containing at least first and second adjacent gate structures on a silicon surface of the substrate and a silicided source/drain region formed in a V-shaped groove between the first and second adjacent gate structures. The silicided source/drain region formed in the V-shaped groove extend substantially from an edge of the first gate structure to an opposing edge of the second gate structure. |
US08610179B2 |
Amorphous-silicon thin film transistor and shift register having the same
An amorphous-silicon thin film transistor and a shift resister shift resister having the amorphous-silicon TFT include a first conductive region, a second conductive region and a third conductive region. The first conductive region is formed on a first plane spaced apart from a substrate by a first distance. The second conductive region is formed on a second plane spaced apart from the substrate by a second distance. The second conductive region includes a body conductive region and two hand conductive regions elongated from both ends of the body conductive region to form an U-shape. The third conductive region is formed on the second plane. The third conductive region includes an elongated portion. The elongated portion is disposed between the two hand conductive regions of the second conductive region. The amorphous-silicon TFT and the shift resister having the amorphous TFT reduce a parasitic capacitance between the gate electrode and drain electrode. |
US08610177B2 |
CMOS imaging device having U-shaped device isolation regions
A CMOS imaging device formed of plural CMOS photosensors arranged in a row and column formation, wherein a first CMOS photosensor and a second CMOS photosensor adjacent with each other in a column direction are formed in a single, continuous device region defined on a semiconductor substrate by a device isolation region. |
US08610176B2 |
Standard cell architecture using double poly patterning for multi VT devices
An apparatus fabricated using a standard cell architecture including devices having different voltage thresholds may include a first set of polylines associated with a first channel length, where each polyline within the first set of polylines is separated by a substantially constant pitch. The apparatus may further include a second set of polylines associated with a second channel length and aligned with the first set of polylines, where each polyline within the second set of polylines is laterally separated by the substantially constant pitch. The apparatus may further include a first active region below the first set of polylines, and a second active region below the second set of polylines, where the first active region and the second active region are separated by a distance of less than 170 nm. |
US08610172B2 |
FETs with hybrid channel materials
Techniques for employing different channel materials within the same CMOS circuit are provided. In one aspect, a method of fabricating a CMOS circuit includes the following steps. A wafer is provided having a first semiconductor layer on an insulator. STI is used to divide the first semiconductor layer into a first active region and a second active region. The first semiconductor layer is recessed in the first active region. A second semiconductor layer is epitaxially grown on the first semiconductor layer, wherein the second semiconductor layer comprises a material having at least one group III element and at least one group V element. An n-FET is formed in the first active region using the second semiconductor layer as a channel material for the n-FET. A p-FET is formed in the second active region using the first semiconductor layer as a channel material for the p-FET. |
US08610168B2 |
Semiconductor device and method of manufacturing the same
In a semiconductor device in which an IGBT, a control circuit for the IGBT and so on are formed on an SOI substrate divided by trenches, the invention is directed to providing the IGBT with a higher breakdown voltage, an enhanced turn-off characteristic and so on. An N type epitaxial layer is formed on a dummy semiconductor substrate, a trench is formed in the N type epitaxial layer, an N type buffer layer and then a P type embedded collector layer are formed on the sidewall of the trench and the front surface of the N type epitaxial layer, and the bottom of the trench and the P+ type embedded collector layer are covered by an embedded insulation film. The embedded insulation film is covered by a polysilicon film, and a P type semiconductor substrate is attached to the polysilicon film with an insulation film being interposed therebetween. Then the dummy semiconductor substrate is removed, thereby forming an SOI substrate having the embedded insulation film, the P+ type embedded collector layer, the N type buffer layer, the N type drift layer and so on that are exposed being almost flush with each other on the bottom of the trench. An IGBT and so on are formed on this SOI substrate. |
US08610162B2 |
Semiconductor light emitting device
A semiconductor light emitting device includes: first and second conductive type semiconductor layers; an active layer disposed between the first and second conductive type semiconductor layers; and first and second electrodes disposed on one surface of each of the first and second conductive type semiconductor layers, respectively, wherein at least one of the first and second electrodes includes a pad part and a finger part formed to extend from the pad part, and the end of the finger part has an annular shape. Because a phenomenon in which current is concentrated in a partial area of the finger part is minimized, tolerance to electrostatic discharge (ESD) can be strengthened and light extraction efficiency can be improved. |
US08610161B2 |
Light emitting diode optical emitter with transparent electrical connectors
An optical emitter includes a Light-Emitting Diode (LED) on a package wafer, transparent insulators, and one or more transparent electrical connectors between the LED die and one or more contact pads on the packaging wafer. The transparent insulators are deposited on the package wafer with LED dies attached using a lithography or a screen printing method. The transparent electrical connectors are deposited using physical vapor deposition, chemical vapor deposition, spin coating, spray coating, or screen printing and may be patterned using a lithography process and etching. |
US08610152B2 |
Semiconductor device and method of manufacturing semiconductor device
A semiconductor device in which the damage such as cracks, chinks, or dents caused by external stress is reduced is provided. In addition, the yield of a semiconductor device having a small thickness is increased. The semiconductor device includes a light-transmitting substrate having a stepped side surface, the width of which in a portion above the step and closer to one surface is smaller than that in a portion below the step, a semiconductor element layer provided over the other surface of the light-transmitting substrate, and a stack of a first light-transmitting resin layer and a second light-transmitting resin layer, which covers the one surface and part of the side surface of the light-transmitting substrate. One of the first light-transmitting resin layer and the second light-transmitting resin layer has a chromatic color. |
US08610150B2 |
Light-emitting diode lamp with an improved leadframe
A leadframe includes two spaced apart conductive legs, each of which includes a base section, and a first extension section extending from a bottom end of the base section in a direction away from the other one of the conductive legs. At least one of the conductive legs further includes a second extension section that extends from a top end of the base section thereof in the same direction as the first extension section for fixing the light-emitting diode chip. The heat generated by the light-emitting diode chip can be dissipated through a shortest heat-dissipating route, thereby increasing the heat-dissipating rate. |
US08610147B2 |
Light emitting device and display comprising a plurality of light emitting components on mount
A light emitting device containing a semiconductor light emitting component and a phosphor, the phosphor is capable of absorbing a part of light emitted by the light emitting component and emitting light of a wavelength different from that of the absorbed light, is provided. A straight line connecting a point of chromaticity corresponding to a spectrum generated by the light emitting component and a point of chromaticity corresponding to a spectrum generated by the phosphor is substantially along a black body radiation locus in a chromaticity diagram. |
US08610144B2 |
Semiconductor light emitting device
A semiconductor light emitting device that includes a first conductive type semiconductor layer, a first electrode, a insulating layer, and an electrode layer. The first electrode has at least one branch on the first conductive type semiconductor layer. The insulating layer is disposed on the first electrode. The electrode layer is disposed on the insulating layer. |
US08610141B2 |
Three-dimensional LED substrate and LED lighting device
The invention includes one or more LED elements, a silicon substrate on which the LED elements are mounted via micro bumps and internally formed wiring is connected to the micro bumps, a heat insulation organic substrate which is stuck to the opposite side of the LED elements-mounting side of the silicon substrate and has through-holes in which the wiring goes through, a chip-mounting substrate which is stuck to the opposite side of the silicon substrate side of the heat insulation organic substrate and internally formed wiring is connected to wiring in the through-holes of the heat insulation organic substrate, and an LED control circuit chip which is connected to the wiring of the chip-mounting substrate via micro bumps, and mounted via the micro bumps on the opposite side of the heat insulation organic substrate side of the chip-mounting substrate. |
US08610139B2 |
Solid state light source module and array thereof
A solid state light source array including a transparent substrate and N rows of solid state light emitting element series is provided. Each row of the solid state light emitting element series includes M solid state light emitting elements connected in series, wherein N, M are integers and N≧1, M≧2. Each of the solid state emitting elements includes a first type electrode pad and a second type electrode pad. The first and the Mth solid state emitting elements of each row of the solid state light emitting element series are electrically connected to a first conductive line and a second conductive line located on the edges of the first surface via the first type electrode pad and the second type electrode pad, respectively. The first conductive line and the second conductive line are physically disconnected. |
US08610137B2 |
Organic light emitting display module and producing method thereof
An organic light emitting diode (OLED) display module including a first carrier, a second carrier and an OLED display panel is provided. The second carrier disposed on the first carrier is integrally formed with the first carrier. The OLED display panel is disposed on the second carrier. A continuous joint surface is formed between the first and the second carriers. A producing method of the OLED display module is also provided. |
US08610135B2 |
Substrate for mounting light-emitting elements, light-emitting device, and method for manufacturing same
A frame body surrounding a perimeter of each light-emitting element is provided one surface of a substrate. Glass films having apertures are formed on the substrate by glass printing to form the frame body. |
US08610134B2 |
LED package with flexible polyimide circuit and method of manufacturing LED package
A light emitting diode (LED) package may include a base, at least one light emitting die on the base, and a flextape on the base. The flextape includes at least one metal trace connected to the light emitting die. In a method of manufacturing the LED package, the base may be formed so as to include a basin and at least one light emitting die may be placed within the basin. The flextape may be provided to include at least one metal trace that is electrically connected to the light emitting die. |
US08610133B2 |
Photodetection device
Two light receiving elements are formed on a support substrate. A first light receiving element is formed of a p-type layer, an n-type layer, a light absorption semiconductor layer, an anode electrode, a cathode electrode, a protection film, etc. A second light receiving element is formed of a p-type layer, an n-type layer, a transmissive film, an anode electrode, a cathode electrode, a protection film, etc. The light absorption semiconductor layer absorbs light in a wavelength range λ and disposed closer to the light receiving surface than is the pn junction region. The transmissive film has no light absorption range and disposed closer to the light receiving surface than is the pn junction region. The amount of light in the wavelength range λ is measured through computation using a detection signal from the first light receiving element and a detection signal from the second light receiving element. |
US08610127B2 |
Thin film transistor array substrate and manufacturing method thereof
A thin film transistor array substrate is disclosed. The thin film transistor array substrate includes: gate lines and data lines formed to cross each other in the center of a gate insulation film on a substrate and to define pixel regions; a thin film transistor formed at each intersection of the gate and data lines; a passivation film formed on the thin film transistors; a pixel electrode formed on each of the pixel regions and connected to the thin film transistor through the passivation film; a gate pad connected to each of the gate lines through a gate linker; and a data pad connected to each of the data lines through a data linker. The data pad is formed of a gate pattern, and the data line is formed of a data pattern. The data linker is configured to connect the data pad formed of the gate pattern with the data line formed of the data pattern using a connection wiring. Also, the data linker includes the gate pattern connected to the data pad, the data pattern formed opposite to the gate pattern in the center of the gate insulation film, and the connection wiring configured to connect the gate pattern with the data pattern through a first contact hole which exposes the data pattern and the gate pattern by penetrating through the passivation film and the gate insulation film. |
US08610126B2 |
Flat panel display device with simplified efficient structure and method of manufacturing the same
Provided are a flat panel display device and a method of manufacturing the same. The flat panel display device includes a first thin-film transistor including a first active layer, a first insulation layer disposed on the first active layer, and a first gate electrode disposed on the first insulation layer; a second thin-film transistor including a second active layer, the first insulation layer disposed on the second active layer, a second insulation layer disposed on the first insulation layer, and a second gate electrode disposed on the second insulation layer, and electrically connected to the first thin-film transistor; and a capacitor electrically connected to the first thin-film transistor and the second thin-film transistor. In the structure as described above, since different numbers of insulation layers are interposed between active layers and gate electrode in each of the first thin-film transistor and the second thin-film transistor, threshold voltages of the first thin-film transistor and the second thin-film transistor are significantly different from each other, and thus it becomes easy to control the threshold voltages of the first thin-film transistor and the second thin-film transistor. |
US08610124B2 |
Display device and method of manufacturing the same
A display device capable of implementing the light shielding effect and process simplification, and a method of manufacturing the display device. The display device includes a transistor formed in a first region on a substrate, a pixel electrode formed in a second region on the substrate, a buffer layer formed beneath the transistor in the first region, and a light shielding layer formed between the buffer layer and the substrate in the first region. In the display device, the light shielding layer may include a semiconductor material. |
US08610123B2 |
Organic light emitting diode display and manufacturing method thereof
An organic light emitting diode (OLED) display includes: a substrate; a semiconductor layer on the substrate; a gate insulating layer covering the semiconductor layer; a gate electrode formed in the gate insulating layer and overlapping the semiconductor layer; a pixel electrode formed in a pixel area over the gate insulating layer; an interlayer insulating layer covering the gate electrode and the gate insulating layer, and exposing the pixel electrode through a pixel opening; a source electrode and a drain electrode formed in the interlayer insulating layer and connected to the semiconductor layer; and a barrier rib covering the interlayer insulating layer, the source electrode, and the drain electrode, and the drain electrode contacts a side wall of the pixel opening and is connected to the pixel electrode. Such an OLED display may have an improved aperture ratio. |
US08610104B2 |
Nanotube array injection lasers
Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits. |
US08610101B2 |
Nonvolatile variable resistance element having a variable resistive layer disposed between first and second electrodes
According to one embodiment, there are provided a first electrode, a second electrode containing a 1B group element having an Al element added thereto, and a variable resistive layer disposed between the first electrode and the second electrode and having a silicon element. |
US08610099B2 |
Planar resistive memory integration
In an example, a single damascene structure is formed by, for example, providing a dielectric layer, forming a void in the dielectric layer, and forming a portion of a first two-terminal resistive memory cell and a portion of a second two-terminal resistive memory cell within the void. The portions of the two-terminal resistive memory cells may be vertically stacked within the void. |
US08610093B2 |
Direct write lithography system
The invention pertains to a direct write lithography system comprising: A converter comprising an array of light controllable electron sources, each field emitter being arranged for converting light into an electron beam, the field emitters having an element distance between each two adjacent field emitters, each field emitter having an activation area; A plurality of individually controllable light sources, each light source arranged for activating one field emitter; Controller means for controlling each light source individually; Focusing means for focusing each electron beam from the field emitters with a diameter smaller than the diameter of a light source on an object plane. |
US08610089B2 |
Thermal conditioning system for thermal conditioning a part of a lithographic apparatus and a thermal conditioning method
A conditioning system for conditioning a part of a lithographic apparatus, includes an evaporator positioned in thermal contact with the part for extracting heat from the part by evaporation of a fluid inside the evaporator; a condenser for removing heat from the fluid inside the condenser; fluid lines arranged between the evaporator and the condenser to form a fluid circuit; a pump arranged in the circuit to circulate the fluid in the circuit; an accumulator to hold fluid, wherein the accumulator is in fluid communication with the circuit and comprises a heat exchanger to transfer heat from or to fluid inside the accumulator; a temperature sensor to provide a signal representative of the fluid temperature; and a controller to maintain a substantially constant temperature of the fluid inside the circuit by regulating the amount of heat transferred by the heat exchanger based on the signal. |
US08610086B2 |
Increased resolution microscopy
Method for spatially high-resolution luminescence microscopy in which label molecules in a sample are activated to emit luminescence radiation comprising activating only a subset of the label molecules in the sample, wherein activated label molecules have a distance to the closest activated molecules that is greater or equal to a length which results from a predetermined optical resolution, detecting the luminescence radiation, generating a frame from the luminescence radiation, identifying the geometric locations of the label molecules with a spatial resolution increased above the predetermined optical resolution, repeating the steps and forming a combined image, and controlling the acquisition of the several frames by evaluating at least one of the frames or a group of the frames and modifying at least one variable for subsequent repetitions of the steps of generating frames for combining into an image. |
US08610085B2 |
High-speed cellular cross sectional imaging
A cross sectional imaging system performs high-resolution, high-speed partial imaging of cells. Such a system may provide much of the information available from full imaging cytometry, but can be performed much more quickly, in part because the data analysis is greatly reduced in comparison with full image cytometry. The system includes a light source and a lens that focuses light from the light source onto a small spot in a scanning location. A transport mechanism causes relative motion between a cell in the scanning location and the spot. A sensor generates a signal indicating the intensity of light emanating from the cell as a result of illumination by the light source. The system repeatedly takes readings of the light intensity signal and characterizes the light intensity along a substantially linear path across the cell. |
US08610083B2 |
Systems and methods providing electron beam writing to a medium
A method for electron-beam writing to a medium includes positioning the medium within an e-beam writing machine so that the medium is supported by a stage and is exposed to an e-beam source. The method also includes writing a pattern to the medium using a plurality of independently-controllable beams of the e-beam source, in which the pattern comprises a plurality of parallel strips. Each of the parallel strips is written using multiple ones of the independently-controllable beams. |
US08610080B2 |
Method for determining the spectral and spatial distribution of braking photons, and related device
A method for determining the spectral and spatial distribution of a braking photon flow along at least one direction in space (x, y, z), characterized in that the method comprises measuring the neutrons resulting from the impact of the braking photons (ph) on at least one conversion target which is moved in the direction (x, y, z) in space. The invention can be used for X-rays, medical imaging, tomography, etc. |
US08610077B2 |
Fluence monitoring devices with scintillating fibers for X-ray radiotherapy treatment and methods for calibration and validation of same
According to one aspect, a fluence monitoring detector for use with a multileaf collimator on a radiotherapy machine having an x-ray radiation source. The fluence monitoring detector includes a plurality of scintillating optical fibers, each scintillating optical fiber configured to generate a light output at each end thereof in response to incident radiation pattern thereon from the radiation source and multileaf collimator, a plurality of collection optical fibers coupled to the opposing ends of the scintillating optical fibers and operable to collect the light output coming from both ends of each scintillating optical fiber, and a photo-detector coupled to the collection optical fibers and operable to converts optical energy transmitted by the collection optical fibers to electric signals for determining actual radiation pattern information. |
US08610076B2 |
System and method for molecular breast imaging
A system and method for a molecular breast imaging (MBI) are provided. One MBI system includes at least one cadmium zinc telluride (CZT) detector having a plurality of pixels and a registered parallel hole collimator coupled to a face of the CZT detector. The registered parallel hole collimator includes a plurality of collimator holes, wherein the plurality of collimator holes are aligned with the plurality of pixels, and the spatial dimensions of the plurality of holes are configured based on characteristics of the CZT detector and the registered parallel hole collimator. |
US08610067B2 |
Radiation source
A radiation source for emitting infrared electromagnetic radiation and having at least one source element. The radiation source is characterized by features including that: the source element is embodied in the form of a silicon carbide fiber; the source element is coated at least sectionally with a metal coating, via which the source element can be heated; and the metal coating heats the source element at least at times in such a manner that the source element emits infrared radiation at least at times. A method for the manufacture of a radiation source is likewise relevant. |
US08610066B2 |
Device for radiation absorption measurements and method for calibration thereof
A device for radiation absorption measurements may include a radiation source emitting electromagnetic radiation having a wavelength in the interval 0.2 μm-20 μm, a detector detecting the electromagnetic radiation, when in a measurement mode at least a portion of the radiation has passed through a medium and been reflected by a surface at a distance from the radiation source, before reaching the detector. The device may further include a fluid calibration cell, which is adapted to be arranged in the path of the electromagnetic radiation between the radiation source and the detector. A method for calibrating a device for radiation absorption measurements may involve emitting electromagnetic radiation having a wavelength in the interval 0.2 to 20 μm, directing at least a portion of the electromagnetic radiation through a fluid calibration cell, and detecting the electromagnetic radiation. |