专利类型 | 发明授权 | 法律事件 | 公开; 实质审查; 授权; |
专利有效性 | 有效专利 | 当前状态 | 授权 |
申请号 | CN202111416979.7 | 申请日 | 2021-11-25 |
公开(公告)号 | CN114177339B | 公开(公告)日 | 2023-03-17 |
申请人 | 浙江理工大学; | 申请人类型 | 学校 |
发明人 | 吴金丹; 李萌萌; 杨扬; 毛峥伟; | 第一发明人 | 吴金丹 |
权利人 | 浙江理工大学 | 权利人类型 | 学校 |
当前权利人 | 浙江理工大学 | 当前权利人类型 | 学校 |
省份 | 当前专利权人所在省份:浙江省 | 城市 | 当前专利权人所在城市:浙江省杭州市 |
具体地址 | 当前专利权人所在详细地址:浙江省杭州市钱塘新区下沙高教西区2号大街928号浙江理工大学 | 邮编 | 当前专利权人邮编:310018 |
主IPC国际分类 | A61L15/38 | 所有IPC国际分类 | A61L15/38 ; A61L15/44 ; A61L15/28 ; A61L15/26 ; A61L15/42 ; D04H1/728 ; B05D1/04 |
专利引用数量 | 2 | 专利被引用数量 | 0 |
专利权利要求数量 | 9 | 专利文献类型 | B |
专利代理机构 | 浙江永航联科专利代理有限公司 | 专利代理人 | 蔡鼎; |
摘要 | 本 发明 涉及医用材料领域,本发明公开了一种纳米酶和糖胺聚糖复合 纳米 纤维 敷料 的制备方法,包括:(1)将 聚合物 溶于 溶剂 A中并 静电纺丝 制得纳米纤维膜;(2)将纳米酶分散于溶剂B中并通过静电 喷涂 将纳米酶负载于纳米纤维膜表面;(3)用 盐酸 多巴胺对糖胺聚糖修饰获得含多巴胺的糖胺聚糖活性物;(4)将活性物通过振荡处理沉积于复合纳米纤维膜中,得到复合纳米纤维敷料。本发明结合静电纺丝和静电喷涂技术,将纳米酶经均匀喷涂并负载到敷料基底的表面得到纳米纤维膜,之后再将活性物负载到纳米纤维膜上,得到复合纳米纤维敷料。该材料表面同时负载纳米酶和糖胺聚糖,可稳定、长效、协同发挥抗炎功效。 | ||
权利要求 | 1.一种纳米酶和糖胺聚糖复合纳米纤维敷料的制备方法,其特征在于包括以下步骤: |
||
说明书全文 | 一种纳米酶和糖胺聚糖复合纳米纤维敷料的制备方法技术领域[0001] 本发明涉及医用材料领域,尤其涉及一种纳米酶和糖胺聚糖复合纳米纤维敷料的制备方法。 背景技术[0002] 当前全球人口老龄化问题日益突出,带来了溃疡、褥疮等一系列慢性创面的棘手问题。现阶段,慢性创面的主要问题是愈合过程缓慢,经常停留在炎症阶段,由于细胞内外微环境的复杂性,对持续炎症创面的机理尚不清楚。目前具有消炎作用的药物主要以直接口服或注射的方式进入机体内部,但这些方式使药物无法靶向到炎症部位,且在体内循环易对机体造成副作用。将具有消炎功能的材料稳定地负载到敷料表面,可在炎症部位发挥作用,高效调节局部微环境,有望促进慢性创面愈合和组织修复。 [0003] 有研究表明过量产生的活性氧(ROS)与促炎趋化因子的负反馈循环是创面持续炎症的主要原因之一。基于此,将纳米酶和糖胺多糖同时固定到纳米纤维敷料中,可以实现两种消炎机制的协同治疗。纳米酶是一类具有类生物酶催化功能的纳米材料,其中普鲁士蓝纳米粒子具有催化清除多种活性氧的功能。糖胺聚糖如肝素钠等的高含量硫酰结构已被证明对促炎因子有特异性静电结合作用。 [0004] 目前,纤维表面稳定负载纳米酶的方式主要有高温原位生长、共混纺丝等,但前者对材料的熔点要求苛刻,不适用于制备温度高于纤维熔点的纳米酶材料;后者制备得到的复合纤维将纳米酶包埋在纤维内部,不利于其与炎症微环境充分接触,发挥消除ROS的功能。因此,如何将纳米酶稳定地负载在纤维表面,且与糖胺多糖发挥协同消炎作用,是亟需解决的重要难题。 发明内容[0005] 为了解决上述技术问题,本发明提供了一种纳米酶和糖胺聚糖复合纳米纤维敷料的制备方法。本发明结合静电纺丝和静电喷涂技术,将纳米酶经均匀喷涂并负载到敷料基底的表面得到纳米纤维膜,之后再将基于糖胺聚糖改性得到的活性物负载到上述纳米纤维膜上,得到复合纳米纤维敷料。该材料表面同时负载纳米酶和糖胺聚糖,可稳定、长效、协同发挥抗炎功效。 [0006] 本发明的具体技术方案为:一种纳米酶和糖胺聚糖复合纳米纤维敷料的制备方法,包括以下步骤: [0008] (2)复合纳米纤维膜的制备:将纳米酶均匀分散于可溶胀或微溶所述聚合物的溶剂B中,通过静电喷涂将纳米酶稳定负载于步骤(1)所得纳米纤维膜表面。 [0010] (4)复合纳米纤维敷料的制备:将步骤(2)所得复合纳米纤维膜置于步骤(3)所得活性物的碱性缓冲液中进行振荡处理,清洗、干燥后得到复合纳米纤维敷料。 [0011] 首先,本发明将纳米酶和修饰后的糖胺聚糖活性物分别通过静电喷涂和改性沉积的方法与纳米纤维膜进行复合从而制得复合纳米纤维敷料。本发明可通过改变糖胺聚糖活性物的负载量来调节该敷料对活性氧与炎症因子的清除效果,进而调控创面微环境,平衡消炎条件。 [0012] 其次,为了解决现有敷料通过材料释放接触炎症造成沉积毒性,包埋治疗造成材料利用率低,且现有原位生长负载纳米酶的方法条件苛刻等技术问题,本发明使用静电喷涂将纳米酶负载在纳米纤维膜表面,且使用的溶剂B对纤维有溶胀或微溶解作用,能促进纳米酶并均匀分散并内嵌在纳米纤维膜表面。糖胺聚糖则通过多巴胺修饰改性再沉积到纳米纤维膜上,且巧妙的是该方式同时还能利用多巴胺自聚形成高分子网状结构,进一步提高纳米酶的稳定性。 [0013] 作为优选,步骤(1)中:所述聚合物为聚己内酯、聚乳酸和聚乳酸‑羟基乙酸共聚物的一种或多种。 [0014] 上述几类聚合物是较为常用的纤维聚合物,它们属于低熔点聚合物,例如聚己内酯的熔点在60℃左右。对于这些低熔点聚合物,由于熔点较低,而部分纳米酶的制备温度较高(例如普鲁士蓝的制备温度是80℃左右),因此无法采用原位生长法等现有技术将纳米纤维膜浸渍于纳米酶的生长液中进行表面负载(聚合物会熔化)。而本发明方法则不受此限制,适用面更广。 [0015] 作为优选,步骤(1)中:所述溶剂A为三氟乙醇。 [0016] 作为优选,步骤(1)中:所述聚合物纺丝液的质量分数为10~15%;所述静电纺丝的参数为:纺丝速度0.35~0.45mm/s,针头20~22G,距离15~18cm,电压12~15kv,温度25~35℃,湿度30~50%。 [0017] 纺丝液的浓度、纺丝速度和电压是决定制得的纳米纤维呈丝状或纺锤状的重要因素。纺锤状会影响纳米酶负载的分布均匀性。 [0018] 作为优选,步骤(2)中:所述溶B剂为乙醇和/或二甲基亚砜。 [0019] 作为优选,步骤(2)中:所述纳米酶为普鲁士蓝纳米粒子和/或五氧化二钒纳米粒子。 [0020] 作为优选,步骤(2)中:所述静电喷涂的参数为:纳米酶的浓度为4~6mg/mL,电喷速率为0.0006‑0.0015mm/s,针头24‑27G,距离5~8cm,电压19~22kv,温度为28~33℃,湿度为38~45%。 [0021] 静电喷涂过程中,溶剂B既需对纳米酶长期稳定的分散效果,还需要对纤维有溶胀或微溶解作用,以促进纳米酶的内嵌,提高负载稳定性;其次电喷条件中电喷速率,温度和湿度是纳米粒子分散均匀的关键,电喷速率过快会使溶剂呈液滴状喷出,若湿度太高会极易与空气中的水分混合,结果都会使复合纤维膜上的纳米酶呈小块状聚集,分布不均匀。温度太高会造成溶剂过快挥发,溶剂还未对纤维进行溶胀或微溶解作用已经挥发干,无法使纳米酶嵌在纤维上。 [0023] 作为优选,步骤(3)中:所述糖胺聚糖与盐酸多巴胺的质量比为3∶1~5∶1;所述酸性缓冲液为pH为5.0~5.5的酸性二吗啉乙磺酸缓冲液;酰胺反应时间为20~30h,酸性透析液的pH为5~5.5,透析时间为48~72h。 [0024] 作为优选,步骤(3)中:所述糖胺聚糖在于盐酸多巴胺反应前预先经过羧基活化剂的活化处理;所述羧基活化剂为摩尔比为1.5‑2.5∶1的1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐和N‑羟基琥珀酰亚胺,活化处理条件为:在pH=5‑6的二吗啉乙磺酸缓冲液中、惰性气体氛围下20‑30℃下活化处理。 [0025] 活化处理的原理为: [0026] [0027] 作为优选,步骤(4)中:所述活性物与复合纳米纤维膜的质量比为1∶5~1∶10;所述碱性缓冲液为pH为8.0~8.5的三羟甲基氨基甲烷缓冲液;振荡温度30~40℃,振荡时间为36~60h。 [0028] 作为优选,步骤(4)中:所得复合纳米纤维敷料中纳米酶的含量为0.12~0.2mg/2 2 cm;所得复合纳米纤维敷料中糖胺聚糖的含量为0.4~0.7mg/cm。 [0029] 纳米酶与糖胺聚糖的量较为关键。若纳米酶含量过高,由于表层纤维数量是一定的,用于接收纳米酶的位点是有限的,浓度太高会形纳米酶间的层层堆叠,非直接负载在纤维上的粒子因无作用力而掉落。若糖胺聚糖含量过高,聚合多巴胺的网状结构会对纳米酶造成包埋影响其催化效果。若浓度太低会影响消炎效果。 [0030] 与现有技术相比,本发明具有以下技术效果:本发明结合静电纺丝和静电喷涂技术,将纳米酶经静电喷涂稳定负载在敷料基底表面得到复合纳米纤维膜,再将修饰后的糖胺聚糖活性物均匀改性在复合纳米纤维膜表面,制备得到复合纳米纤维敷料。本发明所制得的复合纳米纤维敷料可通过表面接触打破过量活性氧与促炎趋化因子的负反馈循环,有望提升消炎效果。 具体实施方式[0031] 下面结合实施例对本发明作进一步的描述。 [0032] 实施例1 [0033] 1)配制质量比为15%的聚己内酯于三氟乙醇溶液中在60℃搅拌4h溶解,静电纺丝制备成纳米纤维膜。静电纺丝参数为:纺丝速度0.42mm/s,针头22G,距离15cm,电压15kv,温度28℃,湿度48%。 [0034] 2)配制浓度为4mg/mL的普鲁士蓝粒子通过超声分散在无水乙醇溶液中,通过静电喷涂将普鲁士蓝粒子稳定负载于所得纳米纤维膜表面。静电喷涂参数为:电喷速率为0.0015mm/s,针头25G,距离6.5cm,电压21kv。温度为32℃,湿度为40%。 [0035] 3)在氮气保护下,将肝素钠与羧基活化剂1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐(EDC)和N‑羟基琥珀酰亚胺(NHS)(EDC和NHS的摩尔比为2∶1)在pH为5.3的酸性二吗啉乙磺酸缓冲液中反应30min以提高偶联效率,加入肝素钠质量1/4的盐酸多巴胺反应24h,前述反应均在氮气中进行,温度为25℃。产物经离心洗涤后在pH为5的酸性透析液中透析48h。取多巴胺‑肝素钠接枝物0.08g,加入2)中制得的复合纳米纤维膜,在pH为8.2的三羟甲基氨基甲烷缓冲液中40℃条件下振荡48h。洗涤晾干得到复合纳米纤维敷料。 [0036] 实施例2 [0037] 1)配制质量比为12%的聚己内酯于三氟乙醇溶液中在40℃搅拌6h溶解,静电纺丝制备成纳米纤维膜。静电纺丝参数为:纺丝速度0.38mm/s,针头22G,距离16cm,电压12.5kv,温度30℃,湿度38%。 [0038] 2)配制浓度为6mg/mL的普鲁士蓝粒子通过超声分散在二甲基亚砜溶液中,通过静电喷涂将普鲁士蓝粒子稳定负载于所得纳米纤维膜表面。静电喷涂参数为:电喷速率为0.0010mm/s,针头27G,距离5cm,电压22kv。温度为30℃,湿度为45%。 [0039] 3)将肝素钠与羧基活化剂1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐和N‑羟基琥珀酰亚胺(NHS)(EDC和NHS的摩尔比为2∶1)在pH为5.0的酸性二吗啉乙磺酸缓冲液中反应40min以提高偶联效率,加入肝素钠质量1/3的盐酸多巴胺反应30h,前述反应均在氮气中进行,温度为27℃。产物经离心洗涤后在pH为5.3的透析液中透析60h。取多巴胺‑肝素钠接枝物0.06g,加入2)中制得的复合纤维膜,在pH为8.5的三羟甲基氨基甲烷缓冲液中37℃条件下振荡60h。洗涤晾干得到复合纳米纤维敷料。 [0040] 实施例3 [0041] 1)配制质量比为14%的聚己内酯于三氟乙醇溶液中在50℃搅拌5h溶解,静电纺丝制备成纳米纤维膜。静电纺丝参数为:纺丝速度0.40mm/s,针头21G,距离18cm,电压13.8kv,温度32℃,湿度40%。 [0042] 2)配制浓度为5mg/mL的普鲁士蓝粒子通过超声分散在体积比为1∶1的无水乙醇和二甲基亚砜混合溶液中,通过静电喷涂将普鲁士蓝粒子稳定负载于所得纳米纤维膜表面。静电喷涂参数为:电喷速率为0.0006mm/s,针头27G,距离7cm,电压20kv。温度为28℃,湿度为42%。 [0043] 3)将肝素钠与羧基活化剂1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐和N‑羟基琥珀酰亚胺(NHS)(EDC和NHS的摩尔比为2∶1)在pH为5.5的酸性二吗啉乙磺酸缓冲液中反应25min以提高偶联效率,加入肝素钠质量1/5的盐酸多巴胺反应20h,前述反应均在氮气中进行,温度为23℃。产物经离心洗涤后在pH为5.5的透析液中透析72h。取多巴胺‑肝素钠接枝物0.10g,加入2)中制得的复合纤维膜,在pH为8.0的三羟甲基氨基甲烷缓冲液中30℃条件下振荡36h。洗涤晾干得到复合纳米纤维敷料。对比例1(未负载普鲁士蓝纳米粒子)[0044] 1)配制质量比为15%的聚己内酯于三氟乙醇溶液中在60℃搅拌4h溶解,静电纺丝制备成纳米纤维膜。静电纺丝参数为:纺丝速度0.42mm/s,针头22G,距离15cm,电压15kv,温度28℃,湿度48%。 [0045] 2)将肝素钠与羧基活化剂1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐和N‑羟基琥珀酰亚胺(NHS)(ED℃和NHS的摩尔比为2∶1)在pH为5.3的酸性二吗啉乙磺酸缓冲液中反应30min以提高偶联效率,加入肝素钠质量1/4的盐酸多巴胺反应24h,前述反应均在氮气中进行,温度为25℃。产物经离心洗涤后在pH为5的透析液中透析48h。取多巴胺‑肝素钠接枝物0.08g,加入2)中制得的纳米纤维膜,在pH为8.2的三羟甲基氨基甲烷缓冲液中40℃条件下振荡48h。洗涤晾干得到复合纳米纤维敷料。 [0046] 对比例2(普鲁士蓝分散在聚合物溶剂中) [0047] 1)配制质量比为15%的聚己内酯于三氟乙醇溶液中在60℃搅拌4h溶解,静电纺丝制备成纳米纤维膜。静电纺丝参数为:纺丝速度0.42mm/s,针头22G,距离15cm,电压15kv,温度28℃,湿度48%。 [0048] 2)配制浓度为4mg/mL的普鲁士蓝粒子通过超声分散在三氟乙醇溶液中,通过静电喷涂将普鲁士蓝粒子负载于所得纳米纤维膜表面。静电喷涂参数为:电喷速率为0.0015mm/s,针头25G,距离6.5cm,电压21kv。温度为32℃,湿度为40%。 [0049] 3)将肝素钠与羧基活化剂1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐和N‑羟基琥珀酰亚胺(NHS)(EDC和NHS的摩尔比为2∶1)在pH为5.3的酸性二吗啉乙磺酸缓冲液中反应30min以提高偶联效率,加入肝素钠质量1/4的盐酸多巴胺反应24h,前述反应均在氮气中进行,温度为25℃。产物经离心洗涤后在pH为5的透析液中透析48h。取多巴胺‑肝素钠接枝物 0.08g,加入2)中制得的复合纤维膜,在pH为8.2的三羟甲基氨基甲烷缓冲液中40℃条件下振荡48h。洗涤晾干得到复合纳米纤维敷料。对比例3(电喷普鲁士蓝温度,湿度过高)[0050] 1)配制质量比为15%的聚己内酯于三氟乙醇溶液中在60℃搅拌4h溶解,静电纺丝制备成纳米纤维膜。静电纺丝参数为:纺丝速度0.42mm/s,针头22G,距离15cm,电压15kv,温度28℃,湿度48%。 [0051] 2)配制浓度为4mg/mL的普鲁士蓝粒子通过超声分散在无水乙醇溶液中,通过静电喷涂将普鲁士蓝粒子负载于所得纳米纤维膜表面。静电喷涂参数为:电喷速率为0.0015mm/s,针头25G,距离6.5cm,电压21kv。温度为40℃,湿度为60%。 [0052] 3)将肝素钠与羧基活化剂1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐和N‑羟基琥珀酰亚胺(NHS)(EDC和NHS的摩尔比为2∶1)在pH为5.3的酸性二吗啉乙磺酸缓冲液中反应30min以提高偶联效率,加入肝素钠质量1/4的盐酸多巴胺反应24h,前述反应均在氮气中进行,温度为25℃。产物经离心洗涤后在pH为5的的透析液中透析48h。取多巴胺‑肝素钠接枝物0.08g,加入2)中制得的复合纤维膜,在pH为8.2的三羟甲基氨基甲烷缓冲液中40℃条件下振荡48h。洗涤晾干得到复合纳米纤维敷料。对比例4(负载普鲁士蓝含量过高)[0053] 1)配制质量比为15%的聚己内酯于三氟乙醇溶液中在60℃搅拌4h溶解,静电纺丝制备成纳米纤维膜。静电纺丝参数为:纺丝速度0.42mm/s,针头22G,距离15cm,电压15kv,温度28℃,湿度48%。 [0054] 2)配制浓度为10mg/mL的普鲁士蓝粒子通过超声分散在无水乙醇溶液中,通过静电喷涂将普鲁士蓝粒子负载于所得纳米纤维膜表面。静电喷涂参数为:电喷速率为0.0015mm/s,针头25G,距离6.5cm,电压21kv。温度为32℃,湿度为40%。 [0055] 3)将肝素钠与羧基活化剂1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐和N‑羟基琥珀酰亚胺(NHS)(EDC和NHS的摩尔比为2∶1)在pH为5.3的酸性二吗啉乙磺酸缓冲液中反应30min以提高偶联效率,加入肝素钠质量1/4的盐酸多巴胺反应24h,前述反应均在氮气中进行,温度为25℃。产物经离心洗涤后在pH为5的透析液中透析48h。取多巴胺‑肝素钠接枝物 0.08g,加入2)中制得的复合纤维膜,在pH为8.2的三羟甲基氨基甲烷缓冲液中40℃条件下振荡48h。洗涤晾干得到复合纳米纤维敷料。 [0056] 对比例5(未负载肝素钠) [0057] 1)配制质量比为15%的聚己内酯于三氟乙醇溶液中在60℃搅拌4h溶解,静电纺丝制备成纳米纤维膜。静电纺丝参数为:纺丝速度0.42mm/s,针头22G,距离15cm,电压15kv,温度28℃,湿度48%。 [0058] 2)配制浓度为4mg/mL的普鲁士蓝粒子通过超声分散在无水乙醇溶液中,通过静电喷涂将普鲁士蓝粒子负载于所得纳米纤维膜表面。静电喷涂参数为:电喷速率为0.0015mm/s,针头25G,距离6.5cm,电压21kv。温度为32℃,湿度为40%。 [0059] 对比例6(负载肝素钠含量过高) [0060] 1)配制质量比为15%的聚己内酯于三氟乙醇溶液中在60℃搅拌4h溶解,静电纺丝制备成纳米纤维膜。静电纺丝参数为:纺丝速度0.42mm/s,针头22G,距离15cm,电压15kv,温度28℃,湿度48%。 [0061] 2)配制浓度为4mg/mL的普鲁士蓝粒子通过超声分散在无水乙醇溶液中,通过静电喷涂将普鲁士蓝粒子负载于所得纳米纤维膜表面。静电喷涂参数为:电喷速率为0.0015mm/s,针头25G,距离6.5cm,电压21kv。温度为32℃,湿度为40%。 [0062] 3)将肝素钠与羧基活化剂1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐和N‑羟基琥珀酰亚胺(NHS)(EDC和NHS的摩尔比为2∶1)在pH为5.3的酸性二吗啉乙磺酸缓冲液中反应30min以提高偶联效率,加入肝素钠质量1/4的盐酸多巴胺反应24h,前述反应均在氮气中进行,温度为25℃。产物经离心洗涤后在pH为5的透析液中透析48h。取多巴胺‑肝素钠接枝物 0.20g,加入2)中制得的复合纤维膜,在pH为8.2的三羟甲基氨基甲烷缓冲液中40℃条件下振荡48h。洗涤晾干得到复合纳米纤维敷料。 [0063] 对比例7(制备聚己内酯纤维膜) [0064] 1)配制质量比为15%的聚己内酯于三氟乙醇溶液中在60℃搅拌4h溶解,静电纺丝制备成纳米纤维膜敷料。静电纺丝参数为:纺丝速度0.42mm/s,针头22G,距离15cm,电压15kv,温度28℃,湿度48%。 [0065] 性能测试 [0066] 复合纳米纤维敷料的形态和粒子分布情况通过扫面电镜和宏观肉眼观察,清除的活性氧种类包括类过氧化物酶通过紫外‑可见光测定,类过氧化氢酶通过溶氧仪测定,羟基自由基清除通过电子自旋共振测定,炎症因子清除效果通过酶联免疫吸附测定试剂盒测试,粒子稳定性通过电感耦合等离子光谱发生仪测定,创面愈合速率通过观察小鼠创面愈合天数测定。结果如下: [0067] [0068] [0069] 注:CAT活性测试的是氧气生成量,单位是ppm [0070] POD活性测试的是紫外吸光度的变化,吸光度越高越好 [0071] ·OH清除表示的是·OH的峰强,峰越低即清除效果越好 [0072] 炎症因子的总量为5μg,表中数据为材料所吸附的炎症因子量 [0073] 创面愈合率为14天治疗后创面的愈合情况 [0074] 由以上结果可知,各实施例中通过电喷将普鲁士蓝纳米粒子负载在纳米纤维膜表面,再经多巴胺自聚特性将肝素钠负载在纳米纤维膜表面的复合纳米纤维敷料对活性氧和炎症因子的清除效果较优,对慢性创面愈合有促进作用。若表面不负载普鲁士蓝纳米粒子(对比例1)、选用对聚合物有高溶解性的溶剂进行电喷(对比例2),电喷过程中温度,湿度过高(对比例3)或者涂覆肝素钠浓度过高(对比例6),普鲁士蓝纳米粒子被更表层材料包埋和分布不均匀等原因导致复合纤维膜敷料的活性氧清除能力变差甚至没有;不负载肝素钠(对比例5)复合纤维膜敷料清除炎症因子的能力降低;由于纳米纤维膜中位点是固定的,对于负载过多普鲁士蓝纳米粒子的纤维膜敷料(对比例4)而言,粒子稳定性降低。若不负载普鲁士蓝纳米粒子与肝素钠(对比例7),聚己内酯纤维膜便没有清除活性氧与吸附炎症因子的功能,导致其创面愈合能力为最差。 [0076] 本发明中所用原料、设备,若无特别说明,均为本领域的常用原料、设备;本发明中所用方法,若无特别说明,均为本领域的常规方法。 |