类化合物、制备方法及其防治猕猴桃溃疡病的应用

申请号 CN202110430965.4 申请日 2021-04-21 公开(公告)号 CN113185493B 公开(公告)日 2023-06-20
申请人 西北农林科技大学; 发明人 高锦明; 林利彬; 韩文博;
摘要 本 发明 公开了 水 杨 醛 类化合物、制备方法及其防治猕猴桃溃疡病的应用,具体涉及2个水杨醛类化合物、制备方法及其用于防治猕猴桃溃疡病的应用,公开了上述化合物的化学结构式以及相应的核磁数据。上述化合物是从一株谢瓦氏曲霉Aspergillus chevalieri的固体大米 发酵 物中分离得到,该菌分离自癞屑衣属地衣,编号为:SQ‑8。该两种化合物分别对猕猴桃溃疡病病原菌有较强的抑制活性和特异性,最小抑菌浓度分别为6.25μM。
权利要求

1.类化合物,其特征在于,所述化合物为asperglaucin A或asperglaucinB,化学式依次为:
,asperglaucin A;
,asperglaucinB。
2.权利要求1所述的水杨醛类化合物的制备方法,其特征在于,所述的asperglaucin A和asperglaucinB于谢瓦氏曲霉Aspergilluschevalieri的固体发酵物中分离得到。
3.如权利要求2所述的水杨醛类化合物的制备方法,其特征在于,所述的谢瓦氏曲霉Aspergilluschevalieri的固体发酵物是由谢瓦氏曲霉Aspergilluschevalieri菌饼于大米固体培养基上培养得到,培养温度为28℃,静止培养,培养时间为30天。
4.如权利要求2或3所述的水杨醛类化合物的制备方法,其特征在于,将谢瓦氏曲霉Aspergilluschevalieri的固体发酵物用等体积的甲醇提取后,再用等体积的乙酸乙酯萃取得到乙酸乙酯相浸膏;
乙酸乙酯相浸膏经胶柱层析用石油醚‑乙酸乙酯梯度洗脱处理(体积浓度,100%石油醚→100%乙酸乙酯)得到馏分A、馏分B、馏分C、馏分D、馏分E和馏分F,馏分B经RP‑18层析柱梯度洗脱,梯度洗脱条件为甲醇:水(体积浓度,10%→100%);得到馏分B1、馏分B2、馏分B3、馏分B4和馏分B5;
馏分B2依次通过凝胶柱LH‑20(v/v,溶剂为氯仿:甲醇=1:1)和半制备型HPLC(体积浓度,85%,甲醇‑水,2 ml/min)进一步纯化,得到化合物asperglaucin A;
馏分B3依次通过凝胶柱LH‑20(v/v,溶剂为氯仿:甲醇=1:1)和硅胶柱层析洗脱(乙酸乙酯:石油醚=20:1)后,进一步用半制备型HPLC(体积浓度,90%,甲醇‑水,2 ml/min)纯化,得到化合物asperglaucin B。
5.权利要求1所述的水杨醛类化合物用于制备防治猕猴桃溃疡病药物的应用。
6.根据权利要求5所述的应用,其特征在于,所述的猕猴桃溃疡病的致病菌为丁香假单胞菌猕猴桃致病变种(Pseudomonas syringaepv . Actinidiae);
所述的水杨醛类化合物对猕猴桃溃疡病病原菌的最小抑菌浓度为6.25 μM。
7.一种猕猴桃溃疡病防治方法,其特征在于,施用含有权利要求1所述的水杨醛类化合物的药物。
8.一种药物,其特征在于,所述的药物含有权利要求1所述的水杨醛类化合物。

说明书全文

类化合物、制备方法及其防治猕猴桃溃疡病的应用

技术领域

[0001] 本发明属于生物农药领域,涉及水杨醛类化合物、制备方法及其防治猕猴桃溃疡病的应用。

背景技术

[0002] 猕猴桃细菌性溃疡病是由一种名为丁香假单胞菌猕猴桃致病变种Pseudomonas syringaepv.actinidiae(Psa)的细菌引起的。自1984年在日本发现该病以来,科研人员已陆续在世界不同的猕猴桃果园收集到该病菌,这些来自不同地区的病菌在分布范围、致病能、抗药性和基因组构成等方面具有不同的特点。在1984年日本发现Psa的同一年,国内湖南省也出现了猕猴桃溃疡病爆发的果园,并导致了严重损失[1,2]。
[0003] 猕猴桃溃疡病主要危害树干、枝条、花及叶片,引起枝干溃疡或枝叶萎蔫死亡,叶片产生暗褐色具黄晕不规则病斑。植株被感染后多从茎蔓幼芽、皮孔、落叶痕、枝,分叉处开始发病,病斑初呈水渍状,后扩大,颜色加深,皮层与木质部分离,用手挤压呈松软状。后期病部皮层纵向线状龟裂,流出白色勃液,不久变为红褐色。猕猴桃溃疡病发生后,不仅降低猕猴桃的产量,而且导致果皮越来越厚,果味越来越酸,果色越来越差,果形不一致,果品品质下降及果实变小,树势变差,使产量和质量受到严重影响[3]。
[0004] 猕猴桃细菌性溃疡病是毁灭性细菌性病害,其发生具有范围广、传播快、致病力强、防治困难等特点。目前对猕猴桃溃疡病的防治主要集中在选择抗性品种、栽培管理防护和药剂防治3个方向。药剂防治主要是采用以链霉素制剂为主进行防治,防治效果不甚理想。然而大量使用铜制剂和抗生素已经引起了溃疡病菌的抗药性问题,同时带来的食品安全问题已经严重影响着溃疡病的防治效果。因而寻找开发新型高效的农药将对猕猴桃产业的发展至关重要[1]。
[0005] [1]王涛,张计育,王刚,等.猕猴桃细菌性溃疡病研究进展[J].中国农学通报,2020,36(3):123‑128.
[0006] [2]Pereira C,Costa P,Pinheiro L,et al.Kiwifruit bacterial canker:an integrative view focused on biocontrolstrategies.Planta.2021,253:49.[0007] [3]Kim MJ,Chae DH,Cho G,et al.Characterization of antibacterial strains against kiwifruit bacterial canker pathogen.Plant Pathol.2019,35(5):473‑485.

发明内容

[0008] 本发明从一株谢瓦氏曲霉Aspergilluschevalieri的固体发酵物中分离得到两种化合物,统称为水杨醛类化合物,该两种化合物分别对猕猴桃细菌性溃疡病病原菌有较强的抑制活性,最小抑菌浓度分别为6.25μM。
[0009] 本发明的化合物结构式为:
[0010] asperglaucin A;
[0011] asperglaucinB。
[0012] 分别命名为asperglaucin A;和asperglaucinB。
[0013] 本发明的水杨醛类化合物asperglaucin A理化性质为:
[0014] C19H26O4S,淡黄色粉末。
[0015] [α]D20=+4.0(c=0.085,MeOH);
[0016] UV(CH3CN):λmax(logε):234(3.57),361(3.14)nm;
[0017] IR(KBr):νmax=3420,2952,2839,1645,1460,1407,1056,1019,682cm‑1;
[0018] HR‑ESI‑MS:m/z351.1625[M+H]+(计算值:C19H27O4S,351.1625),m/z 373.1440[M++Na](计算值:C19H26O4SNa,373.1444);
[0019] 1H‑NMR谱和13C‑NMR谱数据见表1;核磁和质谱见图7‑9,红外谱图见附图10。本发明的水杨醛类化合物asperglaucin B理化性质为:
[0020] C19H26O3,黄色粉末。
[0021] UV(CH3CN):λmax(logε):210(4.18),243(4.05),272(3.79),386(3.54)nm;
[0022] IR(KBr):νmax=3415,2950,2869,2837,2076,1648,1461,1410,1111,1056,1020,‑1681cm ;
[0023] HR‑ESI‑MS:m/z303.1959[M+H]+(计算值:forC19H27O3,303.1955),m/z 325.1775[M++Na](计算值:C19H26O3Na,325.1774);
[0024] 1H‑NMR谱和13C‑NMR谱数据见表1,核磁和质谱见图11‑13,红外谱图见附图14。
[0025] 所述的asperglaucin A和asperglaucinB于谢瓦氏曲霉Aspergilluschevalieri的固体发酵物中分离得到。
[0026] 所述的谢瓦氏曲霉Aspergilluschevalieri的固体发酵物是由谢瓦氏曲霉Aspergilluschevalieri菌饼于大米固体培养基上培养得到,培养温度为28℃,静止培养,培养时间为30天。
[0027] 可选的,将谢瓦氏曲霉Aspergilluschevalieri的固体发酵物用等体积的甲醇提取后,再用等体积的乙酸乙酯萃取得到乙酸乙酯相浸膏;
[0028] 乙酸乙酯相浸膏经胶柱层析用石油醚‑乙酸乙酯梯度洗脱处理(体积浓度,100%石油醚→100%乙酸乙酯)得到馏分A、馏分B、馏分C、馏分D、馏分E和馏分F,馏分B经RP‑18层析柱梯度洗脱,梯度洗脱条件为甲醇:水(体积浓度,10%→100%);得到馏分B1、馏分B2、馏分B3、馏分B4和馏分B5;
[0029] 馏分B2依次通过凝胶柱LH‑20(v/v,溶剂为氯仿:甲醇=1:1)和半制备型HPLC(体积浓度,85%,甲醇‑水,2ml/min)进一步纯化,得到化合物asperglaucin A;
[0030] 馏分B3依次通过凝胶柱LH‑20(v/v,溶剂为氯仿:甲醇=1:1)和硅胶柱层析洗脱(乙酸乙酯:石油醚=20:1)后,进一步用半制备型HPLC(体积浓度,90%,甲醇‑水,2ml/min)纯化,得到化合物asperglaucin B。
[0031] 本发明所述的水杨醛类化合物用于制备防治猕猴桃溃疡病药物的应用。
[0032] 本发明中,猕猴桃溃疡病的致病菌为丁香假单胞菌猕猴桃致病变种(Pseudomonas syringaepv.Actinidiae);所述的水杨醛类化合物对猕猴桃溃疡病病原菌的最小抑菌浓度为6.25μM。
[0033] 一种猕猴桃溃疡病防治方法,施用含有本发明所述的水杨醛类化合物的药物。
[0034] 一种药物,所述的药物含有本发明所述的水杨醛类化合物。
[0035] 本发明的水杨醛类化合物作为抑菌剂,在农药领域方面具有开发应用潜力。

附图说明

[0036] 附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
[0037] 图1为化合物asperglaucin A对Psa生长曲线的影响;
[0038] 图2为化合物asperglaucinB对Psa生长曲线的影响;
[0039] 图3为化合物asperglaucinA和B对Psa细胞膜通透性的影响;
[0040] 图4为Psa的扫描电镜图(SEM):空白对照;
[0041] 图5为Psa的扫描电镜图(SEM):化合物asperglaucinA处理组;
[0042] 图6为Psa的扫描电镜图(SEM):化合物asperglaucinB处理组;
[0043] 图7为化合物asperglaucinA的氢谱;
[0044] 图8为化合物asperglaucinA的谱;
[0045] 图9为化合物asperglaucinA的高分辨质谱图;
[0046] 图10为化合物asperglaucinA的红外谱图;
[0047] 图11为化合物asperglaucinB的氢谱
[0048] 图12为化合物asperglaucinB的碳谱
[0049] 图13为化合物asperglaucinB的高分辨质谱图;
[0050] 图14为化合物asperglaucinB的红外谱图。

具体实施方式

[0051] 以下将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,以下所描述的实施例仅是本发明的一部分实施例,并非全部实施例,也并未对本发明做任何形式上的限制,凡是利用本实施例的技术方案,包括对本实施例做了简单的变化,均属于本发明保护的范围。
[0052] 本发明的两个化合物asperglaucin  A和asperglaucin  B从谢瓦氏曲霉Aspergilluschevalieri的固体发酵物中分离得到。谢瓦氏曲霉Aspergilluschevalieri分离自癞屑衣属地衣,本发明中使用的菌株保藏于西北农林科技大学化学与药学院陕西省天然产物化学生物学重点实验室。谢瓦氏曲霉Aspergilluschevalieri早在1965年Wilkinson S.和Spilsbury J.F.对该菌的代谢产物进行了相关的报道[4],为现有技术中的菌种,原则上,公开商业途径获得的谢瓦氏曲霉Aspergilluschevalieri均能分离得到本发明的化合物,本发明通过发酵条件及分离条件的筛选,首次分离得到化合物asperglaucin A和asperglaucin B。
[0053] 本发明中的谢瓦氏曲霉Aspergilluschevalieri的保藏及活化培养条件为:保藏菌种采用PDA斜面培养基。活化菌种,将菌种接种于PDA平皿中,于28℃活化培养7天,至平皿上长满菌丝体。PDA平板培养基:每升培养基含200g土豆,20g葡萄糖,16g琼脂粉。
[0054] 猕猴桃溃疡病是一种毁灭性细菌病害,主要危害猕猴桃的主干、枝蔓、新梢和叶片,一般造成枝蔓溃疡,发病严重时,植株整株枯死,不同植株间感染速度快,疫情发展快,严重情况下很容易绝收。
[0055] 水杨醛类化合物用于制备防治猕猴桃溃疡病药物的应用。猕猴桃溃疡病的致病菌为丁香假单胞菌猕猴桃致病变种(Pseudomonas syringaepv.Actinidiae)。水杨醛类化合物asperglaucin A和asperglaucinB对猕猴桃细菌性溃疡病病原菌的最小抑菌浓度分别为6.25μM。水杨醛类化合物asperglaucin A和asperglaucinB增加猕猴桃细菌性溃疡病病原菌的细胞膜通透性,致使细胞膜破裂。本发明的水杨醛类化合物作为抑菌剂,在农药领域方面具有开发应用潜力。
[0056] [4]Wilkinson,S.,Spilsbury,J.F.Gliotoxin from Aspergillus chevalieri(Mangin)thorn et Church.Nature.1965,4984,619.
[0057] 一、本发明的化合物的提取方法、鉴定及其抗猕猴桃溃疡病的测定及应用:
[0058] 1、实验材料
[0059] 培养基:
[0060] 大米固体培养基:大米40g,去离子水60ml,pH自然;121℃高压下灭菌30min。
[0061] 土豆培养基(PD):土豆200g,葡萄糖20g,加水定容至1L,pH值自然,121℃高压下灭菌30min。
[0062] Luria‑Bertani液体培养基(LB):胰蛋白胨10g,酵母提取物5g,氯化钠10g,琼脂15‑20g,均匀溶解于900mL去离子水,用5M的氢化钠溶液和5M的盐酸溶液调节pH值至7.0,用去离子水定容至1L,于121℃高压灭菌30min。
[0063] M9乳糖诱导培养基:1.28g Na2HPO4、0.3g KH2PO4、0.05gNaCl、0.1g NH4Cl、0.05g MgSO4、0.001g CaCl2、0.5g乳糖、100mL双蒸水。
[0064] β‑半乳糖苷酶反应缓冲液:0.8g NaCl、0.02g KCl、0.29g Na2HPO4、0.024g KH2PO4、0.025g MgSO4、0.39gβ‑巯基乙醇、100mL双蒸水。
[0065] 试剂与仪器:
[0066] 常用有机溶剂:三氯甲烷,甲醇,乙酸乙酯,石油醚、丙等均为工业试剂,重蒸后使用。有机溶剂:色谱甲醇,色谱乙腈等视实际使用情况使用分析纯或色谱纯试剂。以下除特殊说明外,试剂用量均为体积比。
[0067] 常用仪器:旋光仪Rudolph AutopolⅢ型;高效液相色谱仪:Waters 1525;紫外光谱仪:Thermo Evolution‑300型;核磁共振:BrukerAvanceⅢ500(TMS内标);低分辨质谱仪:Thermo Fisher LTQ Fleet型。旋转蒸发仪:BüchiRotavapor R‑101、R‑3HB型;低温冷却液循环:DLSB‑10/20型(郑州长城科工贸有限公司);循环水式多用真空泵:SHB‑Ⅲ型(郑州长城科工贸有限公司);超净工作台:SW‑OJ‑2F型(苏净集团苏州安泰空气技术有限公司);
立式蒸汽灭菌器(上海博讯实业有限公司医疗设备厂);场发射扫描电子显微镜:Nova Nano SEM‑450型(美国FEI公司);全自动临界点干燥仪:EM CPD300型(德国Leica公司);离子溅射仪:EM ACE600型(德国Leica公司);温控回旋台式振荡器:ZWY‑240型(上海智城分析仪器制造有限公司)。柱层析硅胶(100‑200目、200‑300目及300‑400目)及薄层层析硅胶(硅胶H)均为青岛海洋化工厂生产;液相色谱柱:Hypersil BDS 5μm C18(250×4.6and 250×10;
Thermo);羟丙基葡聚糖凝胶Sephadex LH‑20和RP‑C18反向硅胶均为Merck公司生产。
[0068] 1.1谢瓦氏曲霉Aspergilluschevalieri的发酵培养:
[0069] 发酵培养条件包括:取活化好的谢瓦氏曲霉Aspergilluschevalieri菌饼(7mm2)接种于200mLPD液体培养基中,将培养好的种子液0.5mL放置在500mL锥形瓶中大米固体培养基中进行培养;培养条件为28℃,静止条件下培养28天;共发酵200瓶。
[0070] 谢瓦氏曲霉Aspergilluschevalieri菌饼的活化方法:将谢瓦氏曲霉Aspergilluschevalieri菌种接种于PDA平皿(PDA平板培养基)中,于28℃活化培养7天,至平皿上长满菌丝体。PDA平板培养基:每升培养基含200g土豆,20g葡萄糖,16g琼脂粉。
[0071] 1.2.具体的水杨醛类化合物的提取分离方法包括:(以下所用的溶剂浓度均指的是体积浓度)
[0072] 在1.1中发酵结束后,将锥形瓶中的固体发酵物用等体积的甲醇(100%)超声提取30min,提取3次。抽滤,合并提取液,减压浓缩至大约8L,用等体积乙酸乙酯萃取5次,合并乙酸乙酯相,减压浓缩,得到乙酸乙酯相浸膏。乙酸乙酯相浸膏经硅胶柱层析用石油醚‑乙酸乙酯梯度洗脱处理(100%石油醚→100%乙酸乙酯)依次得到馏分A、馏分B、馏分C、馏分D、馏分E和馏分F,得到馏分B经RP‑18层析柱梯度洗脱,梯度洗脱条件为甲醇:水(10%→
100%);依次得到馏分B1、馏分B2、馏分B3、馏分B4和馏分B5;馏分B2依次通过凝胶柱LH‑20(v/v,溶剂为氯仿:甲醇=1:1)和半制备型HPLC(85%,甲醇‑水,2ml/min)进一步纯化,得到化合物asperglaucin A(tR=28.0min,8.0mg)。馏分B3依次通过凝胶柱LH‑20(v/v,溶剂为氯仿:甲醇=1:1)后,硅胶柱层析洗脱(v/v,乙酸乙酯:石油醚=20:1)后,进一步用半制备型HPLC(90%,甲醇‑水,2ml/min)纯化,得到化合物asperglaucin B(tR=30.0min,6.0mg)。
[0073] 1.3.水杨醛类化合物asperglaucin A和B的理化性质分别为:
[0074] 本发明的水杨醛类化合物asperglaucinA理化性质为:
[0075] C19H26O4S,淡黄色粉末。
[0076] [α]D20=+4.0(c=0.085,MeOH);
[0077] UV(CH3CN):λmax(logε):234(3.57),361(3.14)nm;
[0078] IR(KBr):νmax=3420,2952,2839,1645,1460,1407,1056,1019,682cm‑1;
[0079] HR‑ESI‑MS:m/z351.1625[M+H]+(计算值:C19H27O4S,351.1625),m/z373.1440[M++Na](计算值:C19H26O4SNa,373.1444);
[0080] 1H‑NMR谱和13C‑NMR谱数据见表1;核磁和质谱见图7‑9,红外谱图见附图10。
[0081] 表1水杨醛类化合物asperglaucinA‑B1H,13C NMR数据
[0082]
[0083] 本发明的水杨醛类化合物asperglaucinB理化性质为:
[0084] C19H26O3,黄色粉末。
[0085] UV(CH3CN):λmax(logε):210(4.18),243(4.05),272(3.79),386(3.54)nm;
[0086] IR(KBr):νmax=3415,2950,2869,2837,2076,1648,1461,1410,1111,1056,1020,‑1681cm ;
[0087] HR‑ESI‑MS:m/z303.1959[M+H]+(计算值:forC19H27O3,303.1955),m/z325.1775[M++Na](计算值:C19H26O3Na,325.1774);
[0088] 1H‑NMR谱和13C‑NMR谱数据见表1,核磁和质谱见图11‑13,红外谱图见附图14。
[0089] 1.4对多种病菌的体外抗菌活性测试
[0090] 病菌种类包括:
[0091] 猕猴 桃溃疡为 丁香假单 胞菌猕猴 桃致病变 种Pse udom ona s syringaepv.actinidiae(Psa);大肠杆菌(Escherichia coli);魔芋软腐病菌(Erwinia carotovorasubsp.carotovora);烟草青枯病菌(Ralstonia solanacearum);金黄色葡萄球菌(Staphylococcus aureus);枯草芽孢杆菌(Bacillus subtilis);白菜软腐病菌(Pectobacteriumcarotovorum subsp.carotovorum)。
[0092] 最低抑菌浓度(MIC)是指抑制细菌生长所需化合物的最低浓度。采用二倍稀释法测定了两个化合物对供试细菌的抑制作用[5]。先将细菌接种于LB培养液培养至对数期,将6
培养好的菌液用LB培养液稀释到2×10CFU/mL并接种到96孔板中。将供试化合物分别溶于DMSO中,用LB培养液连续二倍稀释获得一系列化合物浓度200‑6.25μM。化合物溶液和孔中菌液等体积混匀(DMSO终溶液浓度不得高于0.5%),每个处理重复三次,在37℃培养箱中培养14‑16h。有菌生长的孔会有沉淀,呈混浊状,无菌生长的孔浓度则为该化合物的MIC。同时用酶标仪测试600nm下吸光度变化,检验MIC值的准确性。0.5%溶剂DMSO作为阴性对照,苄西林钠和磷霉素钠作为阳性对照,同时设置空白对照组和无菌水检查组。所有操作均在超净工作台中完成,使用的工具、培养基等都经过高温灭菌。统计结果时,若阴性对照组的数据与空白对照组偏差过大,则需要降低实验中添加的溶剂体积,重新测试;发现同一组平行内部分孔有杂菌污染的样本不能计数或无菌水检查组染菌浑浊,也需要重新测试。
[0093] [5]Shi Y G,Zhu Y J,Shao S Y,et  al.Alkyl ferulateesters as multifunctional food additives:antibacterial activity and mode of action against Escherichia coli in vitro.J.Agric.Food Chem.2018,66,12088‑12101.[0094] 表2
[0095]
[0096]
[0097] 对化合物asperglaucin A和B进行了体外的抗细菌活性测试,结果如表2所示。从活性结果可以看出,在100μM浓度下,化合物asperglaucin A和B对大肠杆菌、魔芋软腐病菌、金黄色葡萄球菌、枯草芽孢杆菌和白菜软腐病菌的生长并没有起到抑制作用。化合物asperglaucin A和B对烟草青枯病菌有微弱的抑制活性,其MIC值分别为100和50μM;而对丁香假单胞菌猕猴桃致病变种Psa表现出较强的抗菌效果,其MIC值为6.25μM。相对于阳性对照化合物而言,化合物asperglaucin A和B对Psa的抑制效果强于磷霉素钠,弱于氨苄西林钠。因此,化合物asperglaucin A和B可以作为有潜力的抗丁香假单胞菌猕猴桃致病变种(Psa)先导进行开发。
[0098] 1.5对丁香假单胞菌猕猴桃致病变种Pseudomonas syringaepv.actinidiae(Psa)生长曲线的影响
[0099] 用提前灭过菌的新鲜LB液体培养基分别将培养至对数期的Psa在波长600nm下调节至适当的OD值,随后加入化合物asperglaucin A和B并混合均匀(终浓度为0.5×MIC、0.75×MIC、1×MIC),于37℃、150rpm摇床培养,每隔一定时间,用酶标仪测定OD600值,连续测16h。同时,加入等体积的0.5%DMSO无菌水溶液做空白对照(0×MIC)。以时间为横坐标,OD600值为纵坐标,绘制生长曲线[5]。
[0100] 如附图1‑2所示,当Psa在正常培养条件下(0×MIC)生长时,生长和繁殖期分为滞后期(0~4h,生长较少),对数生长期(8~12h,大量生长),稳定期(12h以后,生长稳定,繁殖率逐渐降低)。添加了不同浓度的化合物asperglaucin A和B对Psa进行处理时,发现asperglaucin A和B确实能够引起Psa的对数期延迟,并且这种生长延迟效果随着加入化合物的浓度的增加而增强,说明asperglaucin A和B对Psa的抑制效果是呈浓度依赖性的。另外,1×MIC处理组对Psa的生长几乎完全停滞,并未出现对数期,说明化合物asperglaucin A和B对Psa的整个生长周期都非常有效。
[0101] 1.6对丁香假单胞菌猕猴桃致病变种Pseudomonas syringaepv.actinidiae(Psa)细胞膜通透性的影响
[0102] 离心收集培养至对数期的Psa菌体(3000rpm,4min),用0.1M的无菌PBS(pH7.2)洗涤3次,转移至M9培养基并在37℃下8h,离心(3000rpm,4min)后收集菌体并用PBS洗涤2次。随后用β‑半乳糖苷酶反应缓冲液将菌体重悬至OD600值为0.2,加入ONPG(终浓度为0.1mg/L)和化合物asperglaucin A和B(终浓度为1×MIC)。混合均匀后于37℃下培养,每隔一段时间(10、40、70、110、140和170min)在405nm下检测吸光值ODt,设空白对照(加入等体积0.5%DMSO无菌水溶液)测得OD0[6]。细胞膜通透性增加导致的吸光值变化公式为:
[0103] OD△=ODt‑OD0
[0104] [6]Miao J Y,Zhou J L,Liu G,et al.Membrane disruption and DNA binding of Staphylococcus aureus cell induced by a novel antimicrobial peptide produced by Lactobacillus paracasei subsp.tolerans FX‑6.Food Control2016,59 609‑613.
[0105] 经M9培养基诱导的Psa会产生β‑半乳糖苷酶,邻硝基苯β‑D‑半乳吡喃糖苷(ONPG)可被此酶降解成半乳糖和黄色的邻硝基苯酚,通常情况下,β‑D‑半乳糖苷酶不向膜外释放。如果细胞膜通透性增加,ONPG会渗入到胞内或β‑D‑半乳糖苷酶释放到胞外。随着ONPG降解ONP的产生,体系OD405值会增加。
[0106] 通过检测405nm波长下吸光度值的变化,可反映出化合物asperglaucin A和B处理对M9培养基诱导后的Psa细胞膜通透性的影响。不同时间测得的OD405变化值OD△,如附图3所示,在加入化合物asperglaucin A和B后10min即可检测到OD405,在70min内检测过程中OD△值一直呈升高趋势,70min后不再变化,对照组未检测到OD405值的变化,说明Psa细胞膜通透性在前70min逐渐增加,有大量ONPG与β‑D‑半乳糖苷酶反应,因此认为asperglaucin A和B可使细胞膜通透性增大。
[0107] 1.7对丁香假单胞菌猕猴桃致病变种Pseudomonas syringaepv.actinidiae(Psa)细胞表面的影响
[0108] 离心收集培养至对数期的Psa菌体(3000rpm,4min),用0.1M的无菌PBS(pH7.2)洗8
涤3次,用新鲜无菌的LB培养液将菌体重悬至1×10CFU/m L,加入化合物asperglaucin A和B使其终浓度为0.5×MIC,以加入等体积0.5%DMSO无菌水溶液为空白对照组,混合均匀后于37℃、150rpm摇床震荡培养1h。培养结束后离心去上清(3000rpm,10min),PBS洗涤3次后收集沉淀,菌体沉淀加入2.5%的戊二醛,在37℃下固定20min。用梯度乙醇(10%、30%、
50%、70%、90%和100%)进行脱水处理,每次5min。以100%丙酮置换2次,每次15min。然后用临界点干燥仪进行干燥,用离子溅射仪进行溅射膜喷金操作,最后用扫描电子显微镜进行样品观察[5]。
[0109] 用扫描电子显微镜对经化合物asperglaucin A和B(0.5×MIC)处理的Psa菌体外部结构特征进行观察和分析。结果如附图4‑6所示,Psa在处理前表面较为规则、光滑且折光度良好,经化合物asperglaucin A和B处理后的菌体表面皱缩、有不规则的突起,细胞膜明显破裂且有细胞质泄露。这些现象表明asperglaucin A和B可能通过作用于细菌细胞膜,致使其细胞膜破裂,改变其通透性致使内容物流出。
[0110] 综上所述,对猕猴桃溃疡病的防治,asperglaucin A和B可以作为有潜力的先导化合物进行开发。
[0111] 以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
[0112] 另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
[0113] 此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
QQ群二维码
意见反馈