用于酸催化转化和加氢处理为的方法

专利类型 发明授权 法律事件 公开; 实质审查; 授权; 未缴年费;
专利有效性 失效专利 当前状态 权利终止
申请号 CN201580016133.0 申请日 2015-03-26
公开(公告)号 CN106103661B 公开(公告)日 2020-08-25
申请人 奈斯特化学公司; 申请人类型 企业
发明人 尤卡·佩卡·米吕奥亚; 拉米·皮洛拉; 第一发明人 尤卡·佩卡·米吕奥亚
权利人 奈斯特化学公司 权利人类型 企业
当前权利人 奈斯特化学公司 当前权利人类型 企业
省份 当前专利权人所在省份: 城市 当前专利权人所在城市:
具体地址 当前专利权人所在详细地址:芬兰埃斯波 邮编 当前专利权人邮编:
主IPC国际分类 C10G50/00 所有IPC国际分类 C10G50/00C10L1/06C10G3/00C07C59/347
专利引用数量 1 专利被引用数量 0
专利权利要求数量 13 专利文献类型 B
专利代理机构 北京品源专利代理有限公司 专利代理人 巩克栋; 杨生平;
摘要 本 发明 涉及 酮 酸 的催化转化,包括用于增加酮酸分子量的方法,所述方法包括在反应器中提供含至少一种酮酸的原料的步骤。然后将原料在氢存在下和在既具有氢化活性又具有C‑C偶合活性的催化剂体系存在下经受一次或多次C‑C偶合反应。
权利要求

1.一种用于增加酸分子量的方法,所述方法包含下面的步骤:
a)在反应器中提供含至少一种酮酸的原料,和
b)使所述原料经受一个或多个C-C偶合反应,
其特征在于,所述C-C偶合反应在氢存在下和在同时具有氢化活性和C-C偶合活性的催
化剂体系的存在下,在200-500℃的温度下和5-150bar的压下进行,其中所述催化剂体系包含70-90重量%的金属化物催化剂和10-30重量%的贵金属催化剂和过渡金属催化剂;
条件是所述催化剂体系加起来不超过100%,并且其中催化剂体系包含具有C-C偶合反应活性的金属氧化物催化剂,并且其中所述金属氧化物催化剂的金属选自一种或多种如下金属的氧化物组成的组:Na、Mg、K、Ca、Sc、Cr、Mn、Fe、Co、Ni、Cu、Zn、Sr、Ti、Y、Zr、Mo、Rh、Cd、Sn、La、Pb、Bi、Ti、V和其他稀土金属,并且其中所述催化剂体系包括具有氢化活性的贵金属催化剂和/或过渡金属催化剂,并且其中所述贵金属催化剂和/或过渡金属催化剂选自如下组成的组:Fe、Pd、Pt、Ni、Mo、Co、Ru、Rh、W或其组合。
2.根据权利要求1所述的方法,其中所述原料以液相被引入到反应器中。
3.根据权利要求1或2所述的方法,其中所述C-C-偶合反应在单一反应器中进行。
4.根据权利要求1所述的方法,其中所述催化剂体系是具有氢化活性的一种或多种催
化剂与具有C-C-偶合活性的一种或多种催化剂的混合物。
5.根据权利要求1所述的方法,其中经受所述一个或多个C-C偶合反应的所述原料具有
15重量%或以下的含量。
6.根据权利要求1所述的方法,其中所述催化剂体系包括K2O/TiO2和NiMo/Al2O3。
7.根据权利要求1所述的方法,其中所述C-C偶合反应在240-400℃的温度下进行。
8.根据权利要求1所述的方法,其中所述C-C偶合反应在250-350℃的温度下进行。
9.根据权利要求1所述的方法,其中所述C-C偶合反应在10-60bar的压力下进行。
10.根据权利要求1所述的方法,其中所述C-C偶合反应在15-45bar的压力下进行。
11.根据权利要求1所述的方法,其中所述原料包含乙酰丙酸。
12.根据权利要求1所述的方法,其中所述原料的至少60重量%包含酮酸。
13.根据权利要求1所述的方法,其中所述C-C偶合反应在100-600Nl/l的氢/比例下
进行。

说明书全文

用于酸催化转化和加氢处理为的方法

技术领域

[0001] 本发明涉及酮酸的催化转化,包括用于增加酮酸分子量的方法、适合于这样的方法的反应容器、通过这样的方法可得到的C-C偶合反应产物和这样的产物用于生产液体烃和/或柴油燃料组分的用途。

背景技术

[0002] 由生物质生产用作燃料或重油组分和化学品的烃受到越来越多的关注,因为它们是由可持续的有机化合物源生产的。
[0003] 酮酸乙酰丙酸(LA,4-代戊酸)是许多可源自生物质的平台分子(platform molecules)中的一种。其可由木质纤维素材料的戊糖和己糖二者以相对低的成本生产(参见图1)。使用乙酰丙酸作为平台分子的一些优点和缺点涉及由于它的酮基和酸官能团二者其被认为是活性分子的事实。
[0004] 乙酰丙酸的酯已被建议作为燃料组分以及柴油机燃料中的冷流添加剂,且特别地甲基和乙基酯已被用作柴油机燃料中的添加剂。γ-戊内酯(GVL),其可通过乙酰丙酸的还原得到,已被用作汽油中的燃料添加剂。GVL进一步还原为2-甲基四氢呋喃(MTHF)提供了可与高达60%汽油混合的产品。由乙酰丙酸生产的戊酸烷基酯也已被建议作为生物燃料
[0005] 通过多个催化路线,包括产生烯烃分布的方法,所述分布以C12为中心,涉及在第一反应器系统中将性GVL转化为丁烯然后在第二反应器中经过酸性催化剂(例如70)进行低聚反应,乙酰丙酸也已被用于液体烃燃料的生产。
[0006] Serrano Ruiz等人(Appl.Catal.,B,2010,100,184)通过在一个反应器中经过Ru/C催化剂将乙酰丙酸还原为GVL,然后在另一个反应器中在325-425℃,14bar,WHSV=0.8-
0.5h-1下在Pd/Nb2O5+二氧化铈-氧化锆双床配置中在水和0.02M H2SO4中使40wt%GVL反应制备了C9-酮(5-壬酮)。使用多个反应器可能是有利的,因为其相比较于使用单个反应器可提供对工艺的更多控制。然而,多个反应器会增加工艺步骤的数目,这是不希望有的。
[0007] US 2006/0135793 A1(属于Blessing和Petrus)公开了乙酰丙酸在氢的存在下使用包含氢化金属的强酸多相催化剂在60-170℃的温度范围内和1-200bar压下(绝对压
力)二聚为C10单元。该实例表明作为主要产物的乙酰丙酸二聚物(26%)和未反应的乙酰丙酸(70%)。相比较于多个反应器,使用单个反应器可能有利的方面在于它们降低了过程步骤的数目。与升级的直接路线例如通过使用单个反应器相关的一些缺点为这些反应产生具有多于一个官能团的高度活性的中间体,其可进一步与其他(不需要的)分子反应。通过例如在单个反应器中升级的直接路线降低不需要的分子通常引起所需产物组合物的更低收
率。因此,相比较于升级的直接路线,使用多个反应器或在单个反应器中的多个催化剂床的升级进料的间接路线在一些情况下可以是优选的。
[0008] 因此,存在对用于将乙酰丙酸和其他酮酸升级为较高分子量化合物的额外工艺的需要,所述较高分子量化合物适合用作例如燃料或重油组分或化学品或作为在燃料或重油组分或化学品的生产中的组分。特别地,存在对通过特别是(i.a.)提高所需组分或化学品的收率和/或提高催化剂的寿命来降低过程成本的这样的额外工艺的需要。

发明内容

[0009] 本发明是考虑到上述现有技术做出的,且本发明的一个目的是提供能够将酮酸例如乙酰丙酸升级为较高分子量化合物的方法。
[0010] 本发明的另一个目的是以良好收率和低的过程成本提供酮酸至较高分子量化合物的升级。
[0011] 为了解决这个问题,本发明提供了用于增加酮酸的分子量的方法,该方法包括在反应器中提供包含至少一种酮酸的原料;和使原料经受一个或多个的C-C偶合反应的步骤;特征在于,该C-C偶合反应在氢存在下进行;并在同时具有氢化活性和C-C偶合活性的双功能催化剂体系的存在下进行。
[0012] 即,在本发明的第一方面,本发明的发明人发现,该双功能催化剂既抑制了反应中间体的潜在焦化反应且同时催化多种类型的CC-偶合反应,使得以良好收率和在一个反应器中生产更高分子量的化合物。
[0013] 在一些实施方案中,C-C偶合反应主要在液相中进行。
[0014] 在一些实施方案中,C-C偶合反应在单个反应器中进行。
[0015] 在一些实施方案中,原料以液相被引入到反应器中。
[0016] 在一些实施方案中,催化剂体系是具有氢化活性的一种或多种催化剂和具有C-C-偶合活性的一种或多种催化剂的混合物。
[0017] 在本发明的一些实施方案中,经受所述一个或多个C-C偶合反应的原料具有15重量%或以下的水含量。
[0018] 在本发明的一些实施方案中,催化剂体系包含具有C-C偶合反应活性的金属氧化物催化剂,并且在一些实施方案中,金属氧化物催化剂的金属选自一种或多种如下金属的氧化物组成的组:Na、Mg、K、Ca、Sc、Cr、Mn、Fe、Co、Ni、Cu、Zn、Sr、Ti、Y、Zr、Mo、Rh、Cd、Sn、La、Pb、Bi、Ti、V和其他稀土金属
[0019] 在本发明的一些实施方案中,催化剂体系包含具有氢化活性的贵金属催化剂和/或过渡金属催化剂,并且在一些实施方案中,贵金属催化剂和/或过渡金属催化剂选自如下组成的组:Fe、Pd、Pt、Ni、Mo、Co、Ru、Rh、W或其组合。
[0020] 在本发明的一些实施方案中,催化剂体系包含K2O/TiO2和NiMo/Al2O3。
[0021] 在本发明的一些实施方案中,催化剂体系含有50-95重量%,优选70-90重量%的金属氧化物催化剂。
[0022] 在本发明的一些实施方案中,催化剂体系含有5-50重量%,优选10-30重量%的贵金属催化剂和/或过渡金属催化剂。
[0023] 在本发明的一些实施方案中,催化剂体系包含70-90重量%的金属氧化物催化剂和10-30重量%的贵金属催化剂和/或过渡金属催化剂;条件是该催化剂体系加起来不超过
100%。
[0024] 在本发明的一些实施方案中,C-C-偶合反应在200-500℃,优选240-400℃,更优选250-350℃的温度下进行。
[0025] 在本发明的一些实施方案中,C-C-偶合反应在5-100bar,优选10-60bar,更优选15-45bar的压力下进行。
[0026] 在本发明的一些实施方案中,原料的至少60%包含酮酸,并且在本发明的一些实施方案中,原料包含乙酰丙酸。
[0027] 在本发明的另一方面,提供了通过根据本发明的方法可得到的C-C偶合反应产物。
[0028] 在本发明的另一方面,提供了具有超过10L容积的用于C-C偶合反应的反应器,其包括既具有氢化活性和又具有C-C偶合反应活性的催化剂体系、包含酮酸的原料。附图说明
[0029] 图1示出了说明木质纤维素材料至乙酰丙酸转化的方案。
[0030] 图2示出了说明乙酰丙酸的一些反应产物,包括潜在的焦炭前体和潜在的C-C偶合前体的方案。该图不旨在覆盖乙酰丙酸的所有反应产物,也不旨在显示所有类型的焦炭前体。图2示出一种用于通过氢化反应减少当归内酯焦炭前体的可能机理,并且还示出了4-羟基戊酸的分子间酯,GVL,可以与4-羟基戊酸本身平衡。
[0031] 图3示出了进一步升级来自C-C-偶合反应的产物的可能工艺方案的概观。
[0032] 图4示出了制备和升级来自C-C-偶合反应的产物的可能工艺方案的概观。具体实施方案
[0033] 在描述本发明的实施方案中,为清楚起见将采用特定术语。然而,本发明不旨在限于如此选择的特定术语,并且应当理解,每个特定术语包括所有技术等同物,它们以类似方式操作以实现类似目的。
[0034] 通过C-C-偶合反应增加酮酸分子量的挑战之一是产物中间体的高活性,这导致起始组分太高程度的低聚作用。
[0035] 本发明人已经发现,乙酰丙酸在气相中在典型酮基化催化剂的存在下的低聚导致高度的焦炭形成,并最终堵塞反应器。建议这是由于聚合反应包括乙酰丙酸至更活性的前体例如当归内酯的反应而发生的,所述前体已知在典型的酮基化反应条件下高度倾向于聚合。
[0036] 试图通过加入蒸汽到反应器中减少不希望的聚合反应,并控制酮基化反应和焦化。然而,发现加入水以抑制焦化反应也降低了酮基化催化剂的性能,造成缩合产物的低收率。
[0037] 本发明是基于以下发现:酮酸的分子量可以通过使酮酸在双功能催化剂体系存在下经受C-C-偶合反应而选择性地增加,所述催化剂体系抑制了反应中间体的焦化倾向,同时催化多种类型的C-C偶合反应,导致在反应物之间形成新的-碳键。
[0038] 因此,本发明的一个方面是用于增加酮酸的分子量的方法,该方法包括在反应器中提供包含至少一种酮酸的原料;和使原料经受一个或多个C-C偶合反应的步骤的步骤;特征在于,该C-C偶合反应在氢存在下进行;并在同时具有氢化活性和C-C偶合活性的催化剂体系的存在下进行。
[0039] 本发明还涉及用于增加酮酸和/或酮酸衍生物分子量的方法。
[0040] 酮酸是具有酮官能(>C=O)和羧酸(COOH)或羧酸酯(COO–)官能二者的有机分子。在本说明书中,特殊形式的酮酸包括其中酮官能为(CH=O)的实施方案,在一些实施方案中酮官能团可以不是醛。
[0041] 在一些实施方案中,所述酮酸为α-酮酸(如丙酮酸、草酰乙酸和α-酮戊二酸)、β-酮酸(如乙酰乙酸)、γ-酮酸(如乙酰丙酸)或δ-酮酸。所述酮酸可具有多于一个的酮官能团和多于一个的羧酸官能。在一些实施方案中,所述酮酸仅具有一个酮官能团和一个羧酸官能团。
[0042]
[0043] 图示1示出了根据本发明的示例性酮酸,例如其中n和m为整数,各自彼此独立地选自由0、1、2、3、4、5、6、7、8、9、10组成的组,例如在优选的实施方案中酮酸为乙酰丙酸(m=2,n=0)。
[0044] 在一些实施方案中,酮酸衍生物可以选自以下组成的列表:γ-戊内酯、当归内酯和羟基戊酸。
[0045] 所述原料可包括作为主要组分的一种或多种酮酸,例如在一些实施方案中原料的至少30%,如至少60%、至少70%、至少80%、至少90%、至少95%或100%包括酮酸或酮酸的衍生物。所述原料可通过加工木质纤维素材料获得,且在本发明的方法中可直接使用这样加工的材料,或在用作原料之前将其纯化到不同的程度。在一些实施方案中,原料包括乙酰丙酸,并且在一些实施方案中,乙酰丙酸可与一种或多种其他酮酸组合。在其他实施方案中,原料包括乙酰丙酸与γ-戊内酯组合的混合物,例如至少10%的乙酰丙酸和至少10%的γ-戊内酯。
[0046] 除酮酸和酮酸衍生物外,所述原料还可包含醛类,例如糠醛或羟甲基糠醛。
[0047] 在本发明的一些实施方案中,原料包括乙酰丙酸。
[0048] 所述原料可以含有水,并且在一些实施方案中,原料具有15重量%或以下的水含量。在一些实施方案中,水含量尽可能低,例如10重量%或更低的水含量,例如5重量%或更低,或1重量%或更低的水含量,例如没有水存在。在一些实施方案中,在C-C-偶合反应期间不加入外部水,虽然在一些缩合反应中会产生内部水。
[0049] 在一些实施方案中,外部水以0.1重量%至10重量%的量加入到原料中和/或反应过程中,例如蒸汽。
[0050] 在一些实施方案中,将原料引入至单个反应器中,或引入至单个反应器床中。所述反应器应能够被加压和容纳原料和催化剂体系。所述反应器应具有用于供应氢气和添加/取出原料的装置,例如一个或多个入口和/或出口。也应该存在用于控制压力和温度的装置。
[0051] 该催化剂体系可作为两种或更多种催化剂的混合物在反应器中的相同床中提供。
[0052] 在一些实施方案中,以液相,与例如气相相反将所述原料引入反应器中。以液相将原料引入反应器中的一个优点是其不需要加热产物以制备气态流。在一些实施方案中,C-C偶合反应主要在液相进行,而不是气相,这意味着该反应是至少主要发生在液相中的催化剂上。在一些实施方案中,C-C偶合反应完全在液相中进行。
[0053] 在一些实施方案中,原料中酮酸的分子量增加至少100%或更多。在一些实施方案中,分子量增加为200-1500g/mol,例如200-500g/mol。在其中酮酸是C4-C7酮酸的一些实施方案中,分子量增大到具有C13-C50碳链,如C13-C30碳链的相应分子。例如在一些实施方案中,超过50重量%的反应产物可确定为属于含三聚、四聚、五聚和六聚产物的组。三聚、四聚、五聚和六聚产物指与一种或多种酮酸和其衍生物的三、四、五和六个分子偶合在一起相关的反应产物。在原料除酮酸还包含酮酸衍生物的情况下,所述三聚、四聚、五聚和六聚产物可额外地包含含一种或多种酮酸和/或其衍生物的混合的C-C偶合产物。三聚、四聚、五聚和六聚产物从至少一种酮酸衍生,例如至少两种酮酸、至少三种酮酸、至少四种酮酸、至少五种酮酸、至少六种酮酸。
[0054] 在本发明中,通过一个或多个C-C-偶合反应增加酮酸的分子量。许多C-C-偶合反应是本领域中已知的,且技术人员基于所提供的反应条件将能够鉴定这样的C-C-偶合反应。特别地,所述C-C-偶合反应可为酮基化反应或通过烯醇或烯醇化物中间体进行的反应。
在一些实施方案中,所述C-C-偶合反应选自含羟醛型反应和缩合反应、酮基化作用、其中C-C-偶合涉及烯烃的反应和其他低聚反应的组。所述C-C-偶合反应可使用两个相同的分子进行或可为两个不同分子之间的交叉反应。
[0055] 所述C-C偶合反应在催化剂体系存在下进行。发现:将本发明的原料在双功能催化剂存在下经受C-C-偶合反应,将会抑制反应中间体的焦化倾向,并同时催化多种类型的C-C偶合反应,导致在反应物之间形成新的碳-碳键。该催化剂体系应同时具有氢化活性和C-C偶合活性。
[0056] 本发明人发现,涉及在酮酸例如乙酰丙酸的C-C-偶合反应过程中焦炭的形成和缩合产物低收率的问题,可以通过使用包含具有氢化活性的第一部分和具有C-C偶合活性的第二部分的双功能催化剂体系来解决。不希望束缚于任何理论,认为,具有氢化活性的第一部分抑制中间体的聚合反应,第二部分催化负责提高酮酸分子量的C-C偶合反应。
[0057] 在一些实施方案中,根据本发明的催化剂体系包含至少两种不同的催化剂,其中一种主要具有氢化活性,而另一种主要C-C偶合活性,并且在其他实施方案中,催化剂体系包含既具有氢化活性又具有C-C偶合活性的单一催化剂。在一些实施方案中,催化剂体系是具有氢化活性的一种或多种催化剂和具有C-C偶合活性的一种或多种催化剂的混合物,其例如可以通过将具有氢化活性的一种或多种催化剂和具有C-C偶合活性的一种或多种催化剂混合在一起制备,参见例如实施例的材料部分。此外,该催化剂可以进行负载,诸如,例如在氧化二氧化活性炭载体上。此外,一种或多种催化剂可以被硫化。催化剂可以在一个共同的载体上来制备,或者可以在单独的载体上制备。
[0058] 尽管酸和都可以催化许多C-C偶合反应,包括羟醛反应/缩合反应,在本发明的上下文中,这样的催化剂可存在于原料中,但并不意在包括在术语催化剂体系中。在本发明的一些实施方案中,催化剂体系处于固相中。
[0059] 在本发明的一些实施方案中,催化剂体系包含具有氢化活性的贵金属催化剂和/或过渡金属催化剂,并且在一些实施方案中,贵金属催化剂和/或过渡金属催化剂选自如下组成的组:Fe、Pd、Pt、Ni、Mo、Co、Ru、Rh、W或其组合。
[0060] 在本发明的一些实施方案中,催化剂体系含有5-50重量%,优选10-30重量%的贵金属催化剂和/或过渡金属催化剂。
[0061] 在本发明的一些实施方案中,催化剂体系包含具有C-C偶合活性的金属氧化物催化剂,并且在一些实施方案中,金属氧化物催化剂的金属选自一种或多种如下金属的氧化物组成的组:Na、Mg、K、Ca、Sc、Cr、Mn、Fe、Co、Ni、Cu、Zn、Sr、Ti、Y、Zr、Mo、Rh、Cd、Sn、La、Pb、Bi、Ti、V和其他稀土金属。
[0062] 在一些实施方案中,金属氧化物催化剂的金属是K和/或Ti。
[0063] 在本发明的一些实施方案中,催化剂体系含有50-95重量%,优选70-90重量%的金属氧化物催化剂。
[0064] 在本发明的一些实施方案中,催化剂体系包含70-90重量%的金属氧化物催化剂和10-30重量%的贵金属催化剂和/或过渡金属催化剂;条件是该催化剂体系加起来不超过
100%。
[0065] 在本发明的一些实施方案中,催化剂体系包含K2O/TiO2和NiMo/Al2O3,例如70-90重量%的K2O/TiO2(例如80重量%)和10-30重量%的NiMo/Al2O3(例如20重量%)。
[0066] 所述C-C偶合反应可以在氢存在下进行。氢可以与一种或多种其他气体,优选惰性气体如氦或另一种惰性气体,或者对本发明的反应条件表现为惰性行为的气体混合。表现惰性行为被认为是该气体不应该在很大程度上参与作为反应成员,并且优选地惰性气体应当尽可能少参与,例如根本不参与。
[0067] 本发明人发现C-C偶合反应可以通过调整多个参数,包括在催化剂体系中选择催化剂的合适比例来控制,并通过认真选择反应条件例如:温度、氢/烃比例(H:HC)、压力、重时空速(WHSV)和时间,来控制。
[0068] 在本发明的一些实施方案中,C-C-偶合反应在200-500℃,优选240-400℃,更优选250-350℃的温度下进行。
[0069] 在一些实施方案中,在C-C偶合反应中氢/烃比例(H:HC)为100-600Nl/l,诸如例如为100-400Nl/l,200-450Nl/l,或200-400Nl/l。
[0070] 在一些实施方案中,在C-C偶合反应中重时空速(WHSV)为0.5-1.5h-1,例如0.8-1.2h-1。
[0071] 在本发明的一些实施方案中,C-C-偶合反应在5-100bar,优选10-60bar,更优选15-45bar的压力下进行。
[0072] 在本发明的另一方面,提供了通过根据本发明的方法可得到的C-C偶合反应产物。该产物可用作燃料或重油组分或化学品或在燃料或重油组分或化学品的生产中作为中间
体组分。
[0073] 在本发明的另一方面,提供了具有至少10L容积的用于C-C偶合反应的可加压容器,其包括催化剂体系,及包括酮酸和氢的原料,所述催化剂体系在一个或多个床中具有为既具有氢化活性和又具有C-C偶合反应活性的混合物的催化剂体系。
[0074] 如果需要的话,根据本发明的方法可得到的C-C偶合反应产物可进一步经受加氢脱氧(HDO)步骤以移除氧,在一些实施方案中这产生完全脱氧的材料。所产生的烃可用作燃料或重油组分或化学品或作为在燃料或重油组分或化学品生产中的起始组分。所述加氢脱氧的产物在氢存在下也可进一步被异构化为异链烷烃。
[0075] 本发明的一个优势是由可再生材料制备的酮酸可被升级至更高分子量的化合物,其可被用作燃料或重油组分或化学品或作为在燃料或重油组分或化学品生产中的起始组分。
[0076] C-C-偶合反应产物可被分馏以移除潜在的未反应的酮酸单体和其他轻组分例如来自反应产物的在C-C-偶合反应中形成的水和CO2,如在图3中所示。可通过任何常规的方法例如蒸馏来进行所述分馏。所述未反应的酮酸单体可任选地被再循环并与第一反应器的进料结合。
[0077] 因此,本发明的另一个方面涉及一种用于生产烃的方法,该方法包括使获得的C-C偶合反应产物在加氢脱氧(HDO)催化剂存在下经受加氢脱氧步骤。在一些实施方案中,HDO催化剂包含在载体上的氢化金属,诸如例如选自由Pd、Pt、Ni、Co或它们任何组合组成的组的HDO催化剂。所述加氢脱氧步骤可例如在100-500℃的温度和10-150bar的压力下进行。
[0078] 在本发明的另一个方面,提供了一种油产物组合物,其包括乙酰丙酸的C-C偶合产物的混合物,具有170-300℃的沸点范围(由ASTMD2887测定,10%和90%的馏分);碳和氢含量(由ASTMD5291测定)分别为超过80重量%和超过10%;其中芳族含量(如由ASTMD6379测定)为10-20体积%;其中硫含量(如由ASTMD7039测定)低于7ppmw,优选低于3ppmw。
[0079] 在一些实施方案中,煤油产物组合物还具有由一种或多种由以下组成的列表中选择的一个或多个特性:浊点(如由ASTMD7689测定)低于-90℃;热值(如由ASTMD3338测定)超过40MJ/kg;密度(如由ENISO12185测定)在15℃时为830-850kg/m3和在50℃时为805-835kg/m3;和粘度在-20℃时为9-11mm2/s。
[0080] 可使用任何常规的方法例如蒸馏将水和轻气体从HDO产物中分离。在移除水和轻气体后,HDO产物可被分馏成一种或多种适合作为汽油、航空燃料、柴油或重油组分的馏分。
可通过任何常规的方法例如蒸馏来进行所述分馏。任选地,部分HDO步骤的产物可被再循环和与HDO反应器的进料结合。
[0081] 加氢脱氧步骤的产物也可在异构化催化剂和氢存在下经受异构化步骤。加氢脱氧步骤和异构化步骤二者可在同一反应器中进行。在一些实施方案中,所述异构化催化剂可为贵金属双功能催化剂,例如Pt-SAPO或Pt-ZSM-催化剂。所述异构化步骤可例如在200-400℃的温度和20-150bar的压力下进行。
[0082] 优选仅部分HDO产物经受异构化步骤,特别地所述经受异构化的部分HDO产物可为在300℃或以上的温度下沸腾的重油馏分。
[0083] 由加氢脱氧和/或异构化步骤可得到的烃产物可用作燃料或重油组分或化学品或用作在燃料或重油组分或化学品的生产中的中间体组分。
[0084] 通常使HDO产物经受异构化的选择高度依赖于最终产品所需的性能。如果最终产品是航空燃料,那么芳族化合物是所希望的,因为喷气燃料标准需要一定量的芳族化合物存在于航空燃料中。由于已知异构化会分解芳族和环化化合物,如果目的是生产航空燃料的话,那么HDO产物将不一定经受异构化步骤。另一方面,有利的是尽量减少柴油燃料中芳族化合物的量,因为芳族化合物降低柴油的十六烷值
[0085] 当描述本发明的实施方案时,所有可能的实施方案的组合和排列没有被明确描述。尽管如此,某些措施被记载在相互不同的从属权利要求或在不同实施方案中描述的简单事实并不表示这些措施的组合不能被有利地使用。本发明设想了所述实施方案的所有可能的组合和排列。
[0086] 在每一种情况下,本文使用的术语“包含(comprising)”、“包含(comprise)”和包含(comprise)被本发明人意图是任选地被术语“由......组成”的术语可代替的。
[0087] 实施例
[0088] 这些实施例表明,可以通过在氢和包含金属氧化物催化剂和加氢处理催化剂的双功能催化剂体系的存在下进行的C-C偶合反应,以增加乙酰丙酸的分子量。这些实施例还表明,乙酰丙酸的C-C-偶合反应产物可以通过使乙酰丙酸的C-C-偶合反应产物在典型的HDO催化剂和氢存在下经受加氢脱氧反应而被进一步加工为具有典型的燃料或重油组分例如石脑油、煤油和柴油的沸点范围的烃和重油组分。
[0089] 这些实施例还表明,在实验中生产的具有典型的燃料或重油组分例如石脑油、煤油和柴油的沸点范围的烃产物具有优异的冷性能而无需进一步异构化处理。
[0090] 材料
[0091] 制备80/20重量%的K2O/TiO2–NiMo/Al2O3催化剂体系
[0092] 作为氢化催化剂,使用具有表1所示组成的预硫化的NiMo/Al2O3催化剂(从Albemarle获得)。
[0093] 作为C-C偶合催化剂,使用具有表1所示组成的K2O/TiO2催化剂(从BASF获得)。
[0094] K2O/TiO2–NiMo/Al2O3催化剂体系的制备是通过将两种催化剂压碎、将它们筛分成0.15-0.35mm的粒度和然后将两者完全混合在一起以制备催化剂体系。
[0095] 表1.K2O/TiO2和NiMo/Al2O3催化剂的组成
[0096]
[0097] 实施例1
[0098] 通过C-C偶合反应增加乙酰丙酸的分子量
[0099] 将纯度为>99.9%的乙酰丙酸在如上所制备的80/20重量%K2O/TiO2–NiMo/Al2O3催化剂体系存在下引入至滴流床反应器中进行C-C偶合反应。
[0100] C-C偶合反应在约250-约350℃的温度范围和约20bar-40bar的压力下进行,使用约200-400NL/l的氢/烃(H2/HC)比例和约1.0h-1的重时空速(WHSV)。根据进料到容器中乙酰丙酸的量计算WHSV和氢/烃比。
[0101] 经历5周时间使用同样的催化剂进行整个催化反应。每个实验(实验1-12)进行2-5天时间。
[0102] 工艺条件和收率示于表2中。油产物分布示于表3中。通过凝胶渗透色谱使用折射指数作为检测器和四氢呋喃作为洗脱剂获得油产物分布。当乙酰丙酸被洗脱时出现了峰。乙酰丙酸后的洗脱时间归因于单体,即非C-C偶合的产物,这可能是与乙酰丙酸相比较小分子量的化合物。对于早于乙酰乙酸洗脱的产物,可以看出两个峰值,其中一个可以归因于基于GC-MS的乙酰丙酸二聚物;和一个较宽的峰,这可以归因于从乙酰丙酸的三个或更多个分子衍生的低聚物。表3中单体、乙酰丙酸、二聚物和低聚物栏是基于GPC色谱中峰下的面积。
[0103] 表2.工艺条件和工艺收率。
[0104]
[0105] 表3.油产物分布
[0106]
[0107] 从实验1-12得到的产物在蒸馏装置中进行分馏。每个样品以200℃的分馏点进行分馏。在馏出液得到的水用分液漏斗分离。来自分馏的收率示于表4中。
[0108] 表4.来自实验1-12的油产物馏分。
[0109]
[0110]
[0111] 实施例2
[0112] C-C偶合反应产物馏分的加氢脱氧
[0113] 该实施例使用在表4中的较高沸点馏分(>200℃),它们经受加氢脱氧步骤以除去杂原子和以稳定油产物。
[0114] 来自实施例1的实验5的分馏的油产物(>200℃)代表具有中等转化率的HDO油产物进料(在300℃温度下进行C-C偶合反应)。
[0115] 来自实施例1的实验1和2的分馏的油产物(>200℃)合并代表具有低转化率的HDO油产物进料(在250-275℃温度下进行C-C偶合反应)。
[0116] 来自实施例1的实验7、8和9的分馏的油产物(>200℃)合并代表具有中高转化率的HDO油产物进料(在325℃温度下进行C-C偶合反应)。
[0117] 来自实施例1的实验6、10和11的分馏的油产物(>200℃)合并代表具有高转化率的HDO油产物进料(在350℃温度下进行C-C偶合反应)。
[0118] 如上所述的这四种油产物馏分经受加氢脱氧反应(HDO)以除去杂原子和以稳定油产物。在氧化铝载体上的硫化的NiMo催化剂存在下,在310℃温度和50bar压力下使用
3000Nl/l的氢/烃(H2/HC)比和0.3h-1的重时空速(WHSV)进行加氢脱氧反应。根据进料到容器中的测试油的量计算WHSV和氢/烃比。工艺条件和工艺收率示于表5中,HDO油产物分布示于表6中。HDO油产物沸点分布通过GC-蒸馏(ASTMD 2887)来获得。
[0119] 表5.HDO工艺条件和工艺收率。
[0120]
[0121]
[0122] 表6.HDO油产物沸点分布
[0123] 沸点:<180℃ 沸点:180至-360℃ 沸点:>360℃ 实验22% 53% 25% 实验13
27% 48% 25% 实验14
13% 51% 36% 实验15
13% 44% 44% 实验16
[0124] 实施例3
[0125] 加氢脱氧的C-C偶合反应产物的物理性质
[0126] 实施例2中实验13的HDO油产物在减压下蒸馏成为燃料和重油馏分,测量一些性质。蒸馏馏分的性质示于表7中。表7中煤油产物的性质使得其适合用作喷射燃料。
[0127] 表7.实验13的蒸馏的HDO产物馏分的性质。
[0128]
[0129]
QQ群二维码
意见反馈