包含均匀分布的磷的双功能催化剂

申请号 CN201680069290.2 申请日 2016-11-30 公开(公告)号 CN108290802A 公开(公告)日 2018-07-17
申请人 托普索公司; 发明人 F·约恩森; U·V·门采尔;
摘要 用于转化含 氧 化合物的双功能催化剂,所述双功能催化剂包含沸石、氧化 铝 粘结剂、Zn和P,其中P均匀分布在催化剂上。
权利要求

1.一种双功能催化剂,其包含沸石、粘结剂、Zn和P,其中P遍及整个催化剂存在,优选其中催化剂中心处的P浓度高于0.1wt%,并且催化剂中心处的Zn浓度高于3wt%。
2.根据权利要求1所述的双功能催化剂,其中所述催化剂是用于转化含氧化合物的双功能催化剂。
3.根据前述权利要求中任一项所述的双功能催化剂,其中催化剂边缘处的P浓度在
0.1wt%-10wt%之间。
4.根据前述权利要求中任一项所述的双功能催化剂,其中催化剂中心处的P浓度与催化剂边缘处的P浓度(wt%P催化剂中心:wt%P催化剂边缘)的比例为1:20,如1:10,如1:5,如1:1。
5.根据前述权利要求中任一项所述的双功能催化剂,其中Zn至少部分地以ZnAl2O4存在。
6.根据前述权利要求中任一项所述的双功能催化剂,其中所述催化剂是挤出或粒化催化剂。
7.根据前述权利要求中任一项所述的双功能催化剂,其中所述沸石是ZSM-5或ZSM-11。
8.根据前述权利要求中任一项所述的双功能催化剂,其包含30-80wt%沸石、1-40wt%ZnAl2O4、0-40%AlPO4、0-40wt%Al2O3、0-10wt%ZnO。
9.根据前述权利要求中任一项所述的双功能催化剂,其中Zn存在于沸石和氧化铝粘结剂两者中。
10.根据前述权利要求中任一项所述的双功能催化剂,其中P/Zn的摩尔比为0.02-5,如
0.05-4,如0.1-2。
11.根据前述权利要求中任一项所述的双功能催化剂,其中在催化剂边缘和催化剂中心处P/Zn的摩尔比是至少基本上相同的。
12.根据前述权利要求中任一项所述的双功能催化剂,其中所述氧化铝粘结剂还包含二氧化
13.根据前述权利要求中任一项所述的双功能催化剂,其中通过X射线衍射,所述催化剂在粘结剂中不含游离ZnO。
14.根据前述权利要求中任一项所述的双功能催化剂,其中在所述催化剂中Zn浓度为
3-25wt%。
15.根据前述权利要求中任一项所述的双功能催化剂,其中Zn主要以ZnAl2O4存在于所述粘结剂中。
16.根据前述权利要求中任一项所述的双功能催化剂,其中在粘结剂相中以ZnAl2O4存在的Zn的摩尔量占所述粘结剂相中Zn总量的至少50%、至少60%、至少70%、至少80%、至少90%。
17.根据前述权利要求中任一项所述的双功能催化剂,其中在所述粘结剂相中以ZnAl2O4存在的Zn的摩尔量占所述粘结剂相中Zn总量的至少96%、至少98%、至少99%、至少
99.3%、至少99.5%、至少99.8%或100%。
18.根据前述权利要求中任一项所述的双功能催化剂,其中在所述粘结剂相中以ZnO存在的Zn的摩尔量对应于相对于所述粘结剂相中存在的Zn的总量至多10%的ZnO,如小于5%的ZnO或小于2%的ZnO,优选小于1%的ZnO,如0.5%的ZnO或小于0.1%的ZnO。
19.根据前述权利要求中任一项所述的双功能催化剂,其中所述沸石中的Zn在离子交换位置以ZnO、Zn(OH)+和/或Zn++存在。
20.根据前述权利要求中任一项所述的双功能催化剂,其中所述催化剂中的总Zn含量为8-15wt%或9-13wt%,如大于7wt%的Zn,大于10wt%的Zn,或12或更大wt%的Zn。
21.根据前述权利要求中任一项所述的双功能催化剂,其中在所述催化剂中所述粘结剂中的锌部分地或完全地被尖晶石化。
22.根据前述权利要求中任一项所述的双功能催化剂,其中部分尖晶石化和完全尖晶石化形式的Zn含量基本上相同。
23.根据前述权利要求中任一项所述的双功能催化剂,其中完全尖晶石化形式通过在
300-550℃下在包含蒸汽的气氛中加热部分尖晶石化形式而获得。
24.一种用于生产包含氧化铝粘结剂、沸石、P和Zn的双功能催化剂的方法,所述方法包括以下步骤:
-用含P和/或Zn的含溶液浸渍氧化铝/沸石催化剂;
-通过将浸渍的氧化铝/沸石催化剂加热至300-650℃保持0.25-7h,至少部分地使Zn浸渍的氧化铝/沸石催化剂尖晶石化。
25.用于制备包含氧化铝粘结剂、沸石、P和Zn的双功能催化剂的方法,所述方法包括以下步骤:
-通过混合将P和/或Zn化合物或P和/或Zn化合物的溶液施加到沸石或氧化铝/沸石上;
-通过挤出或造粒使所述混合物成型;
-通过将浸渍的氧化铝/沸石催化剂加热至300-650℃保持0.25-7h,至少部分地使浸渍的氧化铝/沸石催化剂中的Zn尖晶石化。
26.根据权利要求24或25所述的方法,其中通过混合和/或浸渍以至少两个单独的步骤施加所述P和/或Zn化合物。
27.根据权利要求24至26中任一项所述的方法,其中,首先施加P。
28.根据权利要求24-27中任一项所述的方法,其中所述沸石是ZSM,优选是H-ZSM-5。
29.根据权利要求24所述的方法,其中Zn含水溶液是硝酸锌溶液或乙酸锌溶液和/或其中通过使用磷酸二氢铵施加P。
30.根据权利要求24-29中任一项所述的方法,其中Zn浸渍和煅烧和/或尖晶石化导致总Zn含量为3-25wt%、8-15wt%或9-13wt%,如大于7wt%的Zn,大于10wt%的Zn,或12或更大wt%的Zn。
31.根据权利要求24-30中任一项所述的方法,其中所述粘结剂相中的Zn浓度高于所述沸石相中的Zn浓度。
32.根据前述权利要求24-31中任一项所述的方法,其中通过在300-550℃下在包含蒸汽的气氛中加热部分尖晶石化形式来进一步或完全地使所述催化剂尖晶石化。
33.根据前述权利要求中任一项所述的双功能催化剂,用于甲醇转化方法,所述方法包括:
-转化步骤,其中包含含氧化合物如甲醇和/或DME的进料流在所述双功能催化剂的存在下转化成富芳的烃流,
-分离步骤,其中将所述富芳烃的烃流分离成至少富芳烃的产物流、包含水的料流和再循环料流。
34.根据权利要求1-33中任一项所述的催化剂和方法,其中如在420℃、20巴、10mol%甲醇和1.6的WHSV下测定的,所述催化剂对芳烃的选择性为30-80%。
35.根据权利要求1-34中任一项所述的催化剂和方法,其中如在420℃、20巴、10mol%甲醇和1.6的WHSV下测定的,所述催化剂对COx的选择性为0-10%。
36.一种在包含Zn和P的至少部分尖晶石化的双功能催化剂的存在下将包含甲醇和/或DME的进料流转化为富芳烃的烃流的方法,其中将所述富芳烃的烃流分离成至少富芳烃的产物流、工艺冷凝物流和废气流,并且其中所述废气流的至少一部分被再循环至转化反应器。
37.根据权利要求36所述的方法,其中从所述废气再循环至少部分地去除H2。
38.根据权利要求36或37所述的方法,还包括原位进一步或完全地使所述至少部分尖晶石化的双功能催化剂尖晶石化的初始步骤,优选通过在300-550℃下在包含蒸汽如1-
100%蒸汽的气氛中蒸汽处理。
39.根据前述权利要求36-38中任一项所述的方法,其中所述双功能催化剂是根据权利要求1-23或33-35中任一项所述的催化剂或通过根据权利要求24-32或34-35中任一项所述的方法制备的催化剂。

说明书全文

包含均匀分布的磷的双功能催化剂

[0001] 在沸石催化剂上使甲醇转化成已有几十年了,并且该方法的几种变体已被商业化,包括MTG(甲醇制汽油)、MTO(甲醇制烯烃)和MTP(甲醇制丙烯)。为了生产物理上稳健的催化剂,使用粘结剂材料是必要的。这种粘结剂通常是一种化物,如氧化二氧化、氧化镁等。
[0002] 催化剂可以被优化以强调各种功能,如产品收率或选择性。但是,当一个功能被优化时,所得到的催化剂常就其他参数显示为不太有利的。一个实例可以是优化以实现更高的产品收率但是其显示出降低的选择性的催化剂。因此,开发新型催化剂的一项特殊任务是改善催化剂的关键参数,而对其他重要特征无不良作用。
[0003] 本发明的第一方面提供了一种能够改善芳烃收率的催化剂。
[0004] 本发明的第二方面提供了一种能够减少MeOH裂解成不希望的产物如CO和CO2的催化剂。
[0005] 本发明的第三方面提供了一种在再生后基本上重新获得活性的催化剂。
[0006] 这些优点和其他优点通过优选用于转化含氧化合物和使烃脱氢的双功能催化剂来实现,所述催化剂包含沸石、氧化铝粘结剂、锌(Zn)和磷(P),其中P遍及整个催化剂存在。
[0007] 申请人已经表明,具有催化剂是有利的,其中催化剂中心处的P wt%为高于0.1wt%,如0.1–3wt%,并且催化剂中心处的Zn浓度为高于3wt%。即已经表明,在催化剂中心具有足以正面影响芳烃收率的P浓度的催化剂比在催化剂中心具有低或非常低的P浓度的催化剂更理想。
[0008] 申请人已经观察到,如果P均匀分布在催化剂上,可能是有利的。例如,如果催化剂中心处的P浓度与催化剂边缘的比例(wt%P催化剂中心:wt%P催化剂边缘)为1:20,如1:10,如1:5如1:1,其可能是理想的。
[0009] 催化剂边缘可以被描述为约300μm的外侧部分,并且催化剂中心可以被描述为具有约300μm直径的中心部分。
[0010] 在一些优选的实施方案中,催化剂边缘处的P浓度为0.1-15wt%,如0.3-10wt%,如0.5-5wt.%,如0.8-3wt%。
[0011] 沸石中P的存在导致改善的耐蒸汽性,导致催化剂的最终寿命更长。此外,申请人已经发现在Zn/ZSM-5催化剂体系中P的存在导致显著更低的甲醇裂解活性。这是令人惊讶的且非常重要的作用,因为甲醇裂解为氧化物是MTA中非常不希望的副反应。
[0012] 根据生产方法,催化剂中的P可以以多种浓度存在于本发明催化剂的粘结剂和沸石中。例如,在一些实施方式中,P浓度在粘结剂相中可以高于在沸石相中,这例如可以是通过浸渍施加P时的情况。
[0013] 在几个有利的实施方案中,P可以以氧化物或氢氧化物物质(例如以磷酸磷酸盐如H2PO4-、HPO42-或PO43-,或者以磷氧化物,例如P2O5)存在。P也可以以磷酸铝和/或磷酸锌的形式存在。
[0014] 为了提高芳烃的收率,提供含有酸性沸石位点以及脱氢位点(例如金属或氧化物)的双功能催化剂。这意味着包含一种或多种含氧化合物(例如甲醇)的料流可以在催化剂的存在下转化成富芳烃的烃,同时也使烃(如环烷烃、链烷烃和/或异链烷烃)脱氢成烯烃和/或芳烃。
[0015] 在优选的实施方案中,催化剂被优化用于将含氧化合物(如甲醇和/或二甲醚(DME))转化成芳烃(在本文中缩写为MTA)。
[0016] 优选地,Zn至少部分地作为ZnAl2O4存在。
[0017] 催化剂可以含有不同量的Zn和P。以wt%P/wt%Zn表示的总催化剂中P和Zn的含量可以例如是1/10、2/10、4/10、1/5、2/5、1/3、3/3或5/3。此外,催化剂中P/Zn的摩尔比可以在0.01-5、0.02-2或0.05-1的范围内。催化剂中Zn和P的量在对芳烃的选择性以及甲醇裂解成碳氧化物的活性方面影响催化剂的活性。如本文所述,在催化剂的几个优选实施方案中,游离ZnO在粘结剂相中的浓度是非常低的。含有Zn以及Al2O3和P的催化剂是特别理想的,因为尖晶石化和P的存在的组合作用,导致非常低的甲醇裂解活性。
[0018] 粘结剂可以是纯氧化铝粘结剂或基于氧化铝的粘结剂,该基于氧化铝的粘结剂还包含氧化铝和氢氧化铝的混合物和/或例如二氧化硅/氧化铝。
[0019] 沸石可以例如是在MTA和MTG方法中使用的通常已知的沸石之一。例如,H-ZSM-5可以是优选的用于本发明催化剂的沸石,因为其独特的孔隙结构导致有利的尺寸选择性以及其相对低的结焦速率。在MTA方法的情况下,H-ZSM-5可以是特别优选的。
[0020] 用于MTA的具有低Zn含量(如1%Zn)的Zn/ZSM-5催化剂的实例是已知的,并且已在争论:避免较高的Zn%以避免甲醇裂解成碳氧化物。然而,申请人已经表明,与已知的催化剂相比,催化剂中的高Zn含量可以导致在MTA方法中芳烃收率改善。因此,在几个有利的实施方案中,催化剂中的总Zn含量为3–25wt%、5–20wt%、7–15wt%或8–13wt%,如高于7wt%Zn、高于10wt%Zn或12wt%或更高的Zn。
[0021] 根据生产方法,催化剂中的Zn和P可以以多种浓度存在于本发明催化剂的粘结剂和沸石中。例如,在一些实施方案中,Zn浓度在粘结剂相中高于在沸石相中,这例如可以是其中通过浸渍施加Zn的情况。
[0022] 其中Zn和/或P存在于沸石和氧化铝粘结剂二者中的催化剂允许通过“简单的”手段如通过浸渍进行工业生产。例如,如本文所述的双功能催化剂可以通过Zn和/或P浸渍包含氧化铝粘结剂和沸石如ZSM-5的“催化剂”来实现。优选的碱催化剂包含30-50%的粘结剂和50-70%的沸石。
[0023] 可以通过使沸石或沸石和氧化铝粘结剂与含Zn和/或P的溶液接触进行浸渍。该溶液可以优选为含的,但也可以优选除水以外的其他溶剂。优选的浸渍溶液的一个实例是溶解于磷酸水溶液中的硝酸锌。也可以通过使沸石或沸石和氧化铝粘结剂与一种或多种固体Zn和/或P化合物接触,例如通过混合和/或研磨或其他处理以确保组分的紧密混合来施加Zn和/或P。
[0024] Zn源可以是任何含Zn的有机和/或无机化合物。优选的化合物包括硝酸锌、乙酸锌、氧化锌、氢氧化锌、碳酸锌或其混合物。优选的P源的实例包括磷酸、磷氧化物/氢氧化物物质以及正磷酸三铵、磷酸氢二铵、磷酸二氢铵或其混合物。混合的Zn-P化合物,例如正磷酸锌或焦磷酸锌也可以是优选的。
[0025] 通过用含有Zn以及P的溶液浸渍碱催化剂,然后煅烧,可以以非常简单的方式同时将Zn和P施加到催化剂上。也可以通过将P浸渍到含有Zn的催化剂上,或通过将Zn浸渍到含有P的催化剂上来制备催化剂。
[0026] 为了提供功能催化剂,通常在添加含Zn和P的物质(通过浸渍液体或通过混合/研磨固体)后进行煅烧或类似的处理。
[0027] 然而,在用Zn和P浸渍基于氧化铝/沸石的催化剂以便在沸石中获得所需量的Zn和P时,还可以将大量的Zn和P物质沉积在粘结剂相中,例如作为磷氧化物/氢氧化物(磷酸盐)、ZnO和/或ZnAl2O4。根据对浸渍的催化剂的处理,可以在粘结剂中实现各种比例的ZnO/ZnAl2O4。此外,P可以与粘结剂相以及沸石相中的Zn和氧化铝结合。
[0028] 申请人已经表明,在理想的催化剂实施方案中,氧化铝粘结剂中的Zn主要以ZnAl2O4存在。将粘结剂相中的氧化锌ZnO的相对量定义为以ZnO存在的Zn相对于粘结剂相中所含Zn的总量的摩尔百分比,可能期望具有以下催化剂,其中存在于粘结剂相的ZnO的量小于50%,或优选小于10%,如小于5%或小于2%,优选小于1%,如0.5%或小于0.1%的ZnO。
[0029] 即优选的是,根据反应方程式ZnO+Al2O3→ZnAl2O4,粘结剂中的Zn可以是完全尖晶石化的,这意味着粘结剂中的全部或基本上全部的Zn以ZnAl2O4存在。
[0030] Zn也可以以磷酸锌存在于粘结剂和/或沸石相中。在具有高ZnAl2O4/ZnO比的尖晶石化催化剂中,少量的ZnO可以通过与磷物质反应形成磷酸锌而消除。磷酸锌可以是无定形的,并因此在XRD分析中是不可检测的。
[0031] 优选地,氧化铝粘结剂中的大部分Zn以ZnAl2O4存在。将粘结剂相中ZnAl2O4的相对量定义以ZnAl2O4存在的Zn相对于粘结剂相中所含Zn的总量的摩尔百分比,在一些实施方案中,粘结剂中的50-100%的Zn以ZnAl2O4存在,例如超过60%、超过70%或超过80%。在一些有利的实施方案中,粘结剂中的85-100%的Zn以ZnAl2O4存在,如超过90%或超过95%。
[0032] 如申请人所示,可以以高的尖晶石化程度来避免MeOH的裂解,尤其是在催化剂中Zn含量高的情况下,可以优选粘结剂中超过97%的Zn以ZnAl2O4存在,如粘结剂中超过98%、超过99%、超过99.5%或超过99.8%的Zn以ZnAl2O4存在。最佳的和实际可实现的ZnAl2O4含量范围可以是粘结剂中95-100%以ZnAl2O4存在,如粘结剂中97%-99.9%的Zn以ZnAl2O4存在。
[0033] 在优选的实施方案中,催化剂已经完全尖晶石化,意味着粘结剂中的全部或基本上全部的Zn以ZnAl2O4存在。
[0034] 粘结剂中的ZnO在裂解甲醇中是有活性的,这是MTA中不期望的反应。根据催化剂的生产和后处理手段,氧化铝粘结剂中的Zn或多或少可以以ZnAl2O4存在。通常应用于生产金属/沸石体系的Zn浸渍催化剂的蒸汽处理或煅烧可以导致Zn的部分尖晶石化(ZnO+Al2O3->ZnAl2O4)。然而,已经表明,采用高Zn含量,即使相对高的尖晶石化程度也可以导致大量的MeOH裂解,但是在氧化铝粘结剂中Zn的高尖晶石化程度或优选完全尖晶石化的情况下(即其中粘结剂中的全部或基本上全部的Zn以ZnAl2O4存在),实现了非常理想的催化剂。
[0035] 如本文所述的其中全部或基本上全部的Zn以ZnAl2O4存在并且其中在粘结剂中基本上不存在ZnO的双功能催化剂表现出对COx的低选择性,即使Zn含量较高,例如高于9wt%。因此,在优选的实施方案中,新鲜的(开始运行)催化剂具有低于8%、优选低于7%,如6%或更低、或5%或更低、或甚至2%或更低的COx选择性(在420℃、20巴、10mol%甲醇和
1.6的WHSV下测定)。COx选择性被定义为根据以下净反应转化成CO和CO2的进料中甲醇的摩尔百分比:
[0036] CH3OH→CO+2H2
[0037] CH3OH+H2O→CO2+3H2
[0038] 因此,根据本申请的一些实施方案,提供了一种优选的双功能催化剂,其包含氧化铝粘结剂H-ZSM-5和总催化剂中8-15wt%的Zn,并且其中粘结剂中的Zn完全或基本完全被尖晶石化。所述催化剂在MTA反应中提供高芳烃收率,同时使甲醇的裂解降低至低于7%。
[0039] 示例性的双功能催化剂可以理想地包含30-65wt%H-ZSM-5、1-40wt%ZnAl2O4、0-40wt%AlPO4、0-40wt%Al2O3、0-10wt%ZnO。
[0040] 在一些实施方案中,催化剂的特征还可以在于具有存在于沸石相中的0.1-12wt%,如1-7wt%的Zn。
[0041] 或者,催化剂的多个实施方案可以包含50-60wt%H-ZSM-5、10-35wt%、0-30%AlPO4、2-25wt%Al2O3、0-7wt%ZnO。为了避免在粘结剂相中存在游离ZnO,至少有少量过量的Al2O3在与ZnO反应时未被尖晶石化可能是有益的。在制备“碱催化剂”时使用较高量的Al2O3将导致更稳健的催化剂制备过程。
[0042] 由于催化剂在操作过程中逐渐结焦,催化剂必须每隔一段时间在包含O2的料流中再生。
[0043] 具有中等至高的ZnAl2O4含量的部分尖晶石化催化剂可以例如通过在空气中在300-500℃下加热Zn浸渍的碱催化剂来获得。
[0044] 具有非常高的ZnAl2O4含量的部分尖晶石化催化剂、完全尖晶石化催化剂或基本上完全尖晶石化催化剂可以通过在300-550℃下在蒸汽中或在包含至少10vol%、30vol%、50vol%或80vol%蒸汽的气氛中加热Zn浸渍的碱催化剂来获得。
[0045] 具有非常高的ZnAl2O4:ZnO摩尔比的部分尖晶石化催化剂、完全尖晶石化催化剂或基本上完全尖晶石化催化剂可以通过在300-550℃下在蒸汽中或在包含至少10vol%、30vol%、50vol%或80vol%蒸汽的气氛中加热部分尖晶石化催化剂来获得。
[0046] 可以以多种方式提供如本文所述的至少部分尖晶石化催化剂,优选具有非常高的ZnAl2O4:ZnO比的部分尖晶石化催化剂、完全尖晶石化的催化剂或基本上完全尖晶石化催化剂,包括在生产期间获得期望的尖晶石化催化剂或通过生产具有低于所需的尖晶石化百分比的尖晶石化程度的催化剂,然后在随后的步骤中(例如如在原位蒸汽处理步骤中)蒸汽处理所述催化剂以获得具有所需的尖晶石化程度的催化剂。
[0047] 因此,根据本申请提供了一种基于氧化铝基粘结剂和沸石的双功能催化剂,其中所述催化剂在多个有利的实施方案中包含相对高的Zn含量(如7-15%,例如10或12wt%)和P(例如以其中Zn/P>1的量),并且其中氧化铝粘结剂中的Zn已被尖晶化至COx选择性低于期望值(例如低于5%或甚至低于2%)的程度。根据Zn和P的量以及催化剂的处理,催化剂中的Zn和P可以作为许多不同的组分存在于粘结剂和沸石相中。
[0048] 可以应用多种方法来生产双功能催化剂:三种组分(P、Zn和沸石)可以构成一个完整的实体,例如,如通过浸渍或离子交换将Zn和/或P组分引入到沸石(沸石本身上或其中沸石嵌入在氧化铝粘结剂中的挤出物上)而获得的。在成型之前,例如在混合、挤出或造粒期间,Zn和/或P组分也可以以固体物质如氧化物、氢氧化物或碳酸盐的形式与沸石、粘结剂和/或润滑剂一起加入。
[0049] 浸渍后处理(煅烧或类似的热处理)优选在潮湿的气氛中进行,例如通过在300-550℃下在蒸汽中或在包含至少10vol%、30vol%、50vol%或80vol%蒸汽的气氛中加热Zn-P浸渍的碱催化剂。
[0050] 还可以施加几种沸石和金属组分的物理混合物,并且可以将混合物装入反应器以形成均匀的混合物或形成交替层,或者它们可以分级至不同程度。
[0051] 因此,提供了一种
[0052] -用于生产包含氧化铝粘结剂、沸石、P和Zn的双功能催化剂的方法,所述方法包括以下步骤:
[0053] -用含P和/或Zn的液体溶液浸渍氧化铝/沸石催化剂;
[0054] -通过将浸渍的氧化铝/沸石催化剂加热至300-650℃达0.25-7h,至少部分地使Zn浸渍的氧化铝/沸石催化剂尖晶石化。
[0055] -用于生产包含氧化铝粘结剂、沸石、P和Zn的双功能催化剂的方法,所述方法包括以下步骤:
[0056] -通过混合将Zn和/或P化合物或Zn和/或P化合物的溶液施加到沸石或氧化铝/沸石上;
[0057] -通过挤出或造粒使所述混合物成型;
[0058] -通过将浸渍的氧化铝/沸石催化剂加热至300-650℃达0.25-7h,至少部分地使锌浸渍的氧化铝/沸石催化剂尖晶石化。
[0059] 在一些有利的实施方案中,Zn和/或P的施加和/或浸渍以至少两个步骤进行。例如,可以在第一施加/浸渍步骤中施加P之后施加Zn,或者反之亦然。
[0060] 有利地,本发明的双功能催化剂可以用于甲醇转化方法,该方法包括:
[0061] -转化步骤,其中包含含氧化合物如甲醇和/或DME的进料流被转化成富芳烃的烃流;
[0062] -分离步骤,其中将富芳烃的烃流分离成至少富芳烃的产物流、包含水的料流和再循环料流。
[0063] 根据本申请还提供了一种在包含Zn和P的双功能催化剂的存在下将包含甲醇和/或DME的进料流转化成富芳烃的烃流的方法,其中富芳烃的烃流分离成至少富芳烃的产物流、工艺冷凝物流和废气流,并且其中所述废气流的至少一部分被再循环。在该方法中,优选地从废气再循环中至少部分地除去H2。该方法可以例如是MTA或MTG方法。
[0064] 如果为该方法提供部分尖晶石化的双功能催化剂,则该方法可以有利地包括初始步骤,其中部分尖晶石化的催化剂通过在升高的温度下使蒸汽通过催化剂床原位进一步有目的地尖晶石化。例如,部分尖晶石化的双功能催化剂可以在一个或多个步骤中进行原位蒸汽处理,以便提供完全或基本上完全地尖晶石化催化剂,该催化剂此后用于将包含甲醇和/或DME的进料流转化成富芳烃的烃流。
[0065] 在该方法的优选实施方案中,双功能催化剂是如本文所述的双功能催化剂。
[0066] 实施例1:催化剂的制备
[0067] 通过混合然后按照熟知的程序进行挤出来制备含有65wt%H-ZSM-5和35%Al2O3的碱催化剂。煅烧后,将碱催化剂样品用含有不同Zn浓度的硝酸锌的水溶液浸渍。将得到的孔隙填充的挤出物在空气中加热至470℃并在470℃下保持1小时以获得具有不同Zn量的催化剂。
[0068] 实施例2:催化剂活性和再生
[0069] 使用通过实施例1中描述的程序制备的催化剂在等温固定床反应器中在420℃下进行甲醇的转化。使用N2作为惰性共进料以在反应器入口中获得7mol%的甲醇浓度。总压为20巴,甲醇的空速(WHSV)为2h-1。
[0070] Zn/H-ZSM-5催化剂具有可逆以及不可逆失活的缺点。碳(焦炭)在催化剂上的沉积导致可逆失活。在表1所示的实施例中,失活的(结焦的)催化剂通过在500℃下在2%O2(在N2中)的流中燃烧除去沉积的碳而再生。
[0071] 由于不可逆的失活,催化剂在再生后没有完全恢复其活性。表1中的结果表明,与含有5%Zn的催化剂相比,含有10%Zn的催化剂在再生后能够显著地重新获得其更多的原始活性。
[0072] 表1:再生后的催化剂活性。烃产物中芳烃的wt%被定义为芳烃质量相对于流出物流中烃的总质量。
[0073]
[0074] 实施例3:蒸汽处理的稳定性
[0075] 为了模拟在工业条件下扩展操作后的催化剂活性,在严苛条件下蒸汽处理后使催化剂经历甲醇转化。在与实施例2相同的条件下进行甲醇转化。表2中的结果表明,在严苛蒸汽处理后,含有10%Zn的催化剂比含有5wt%Zn的催化剂保持显著更多的其原始活性。
[0076] 表2:严苛蒸汽处理后的催化剂活性损失(100%蒸汽在500℃和1巴下持续48小时)。烃产物中芳烃的wt%定义为芳烃质量相对于流出物流中烃的总质量。
[0077]
[0078] 实施例4:甲醇裂解vs.Zn含量
[0079] 甲醇/DME的裂解(分解)可经由多种机理发生。例如,催化剂中的酸性位点可以催化DME裂解成CH4、CO和H2,而某些Zn物质催化甲醇裂解成CO和H2。CO2可作为主要裂解产物形成或经由气变换反应间接形成。
[0080] 当甲醇在含有Zn的催化剂上转化时,部分甲醇由于裂解而转化为COx,这导致烃产物的收率较低。在420℃、20巴、10mol%甲醇(N2平衡)和1.6的空速(WHSV)下进行了甲醇转化。
[0081] 使用根据实施例1制备的催化剂获得表3中的结果。结果表明裂解活性高度依赖于Zn的量,即较高的Zn含量导致较高的裂解活性。
[0082] 表3:在不同Zn含量下的COx选择性
[0083]Zn含量(wt%) COx选择性(%)
0 <0.1
3 2
5 4
10 9
[0084] 实施例5:煅烧和蒸汽处理后的COx选择性
[0085] 含有65%ZSM-5和35%Al2O3的碱催化剂用硝酸锌水溶液浸渍。将得到的孔隙填充的挤出物分别在空气和蒸汽中煅烧。此外,在空气中煅烧的催化剂在煅烧之后经历蒸汽处理。使用与实施例4中相同的条件在这些催化剂上进行甲醇转化。
[0086] 表4中的结果表明,在煅烧浸渍的催化剂期间蒸汽的存在或在煅烧后在蒸汽的存在下加热催化剂导致对COx的选择性较低。这种观察结果可以通过以下事实而合理化:蒸汽的存在导致在粘结剂相中形成ZnAl2O4而不是游离ZnO。
[0087] 表4:在不同蒸汽量的存在下煅烧的含有10%Zn的催化剂的COx选择性[0088]条件 COx选择性(%)
在空气中煅烧 9
在蒸汽中煅烧(500℃,2h) 2
在空气中煅烧,在煅烧后蒸汽处理(500℃,5h) 4
在空气中煅烧,在煅烧后蒸汽处理(500℃,48h) <0.1
[0089] 实施例6:包含P的催化剂的制备
[0090] 通过混合然后按照熟知的程序进行挤出来制备含有65wt%H-ZSM-5和35%Al2O3的碱催化剂。煅烧后,将碱催化剂样品用硝酸锌和磷酸的水溶液浸渍。将得到的孔隙填充的挤出物加热至470℃并在470℃下保持1h以获得具有10wt%Zn和分别0、1和3wt%P的催化剂。
[0091] 实施例7:蒸汽处理的稳定性
[0092] 为了模拟在工业条件下扩展操作后的催化剂活性,在严苛条件下蒸汽处理后使实施例6的催化剂经历甲醇转化。在420℃、20巴、10mol%甲醇(N2平衡)和1.6的空速(WHSV)下进行甲醇转化。表5中的结果表明,含有P的催化剂比不含P的催化剂保持显著更多的原始活性,导致更高得到芳烃收率。
[0093] 表5:严苛蒸汽处理后的催化剂活性损失(100%蒸汽在500℃和1巴下持续48小时)。烃产物中芳烃的wt%定义为芳烃质量相对于流出物流中烃的总质量。所有催化剂包含10wt%Zn。
[0094]
[0095] 实施例8:甲醇裂解vs.P含量
[0096] 使用根据实施例6制备的具有10%Zn和不同量的P的催化剂获得表6中的结果。在与实施例7相同的条件下进行甲醇转化。结果表明,当P存在于催化剂中时,裂解活性受到抑制。值得注意的是,含有少量P(0.8wt%)因此具有低原子P/Zn比(0.2)的催化剂在甲醇裂解中显示出与不含P的催化剂相同的活性。另一方面,含有更高量的P(2.3wt%)因此具有更高的原子P/Zn比(0.5)的催化剂显示出显著更低的甲醇裂解(即形成CO和CO2)活性,表明需要某一最小量的P以便抑制甲醇裂解。P的所需量可能取决于Zn浓度。
[0097] 表6:含有10%Zn和不同量的P的新鲜催化剂的COx选择性
[0098]P含量(wt%) 催化剂中原子P/Zn比 COx选择性(%)
0 0 9
0.8 0.2 9
2.3 0.5 2.5
[0099] 实施例9:催化剂活性,均匀地vs吊床式地(hammock)
[0100] 浸渍;吊床式P分布
[0101] 通过混合然后按照熟知的程序进行挤出来制备含有65wt%H-ZSM-5和35%Al2O3的碱催化剂。煅烧后,将碱催化剂样品用硝酸锌和磷酸的水溶液浸渍。将得到的孔隙填充的挤出物加热至470℃并在470℃下保持1h以获得最终催化剂。在图1中示出通过SEM-WDX对该催化剂的挤出物测量的Zn和P的浓度曲线。观察到挤出物中磷浓度的独特吊床式曲线,这意味着在挤出物的边缘处磷的浓度(wt%)显著高于其在中心处的浓度。事实上,几乎没有磷到达挤出物的中心。
[0102] 在挤出前加入磷;均匀P分布
[0103] 制备以65/35的比例含有H-ZSM-5和Al2O3的碱催化剂,其中在挤出之前加入磷酸。煅烧后,将碱催化剂样品用硝酸锌水溶液浸渍。将得到的孔隙填充的挤出物加热至470℃并在470℃下保持1h以获得最终催化剂。在图2中示出在该催化剂的挤出物中Zn和P的浓度曲线。在这种情况下观察到磷在挤出物中呈均匀分布。观察到浓度波动,但磷的浓度在挤出物的中心没有系统地降低。申请人还表明,P的均匀分布也可以例如通过用磷酸二氢铵浸渍来实现。
[0104] 催化活性
[0105] 在测量催化活性之前,通过在500℃下在100%蒸汽中在1巴的总压力下蒸汽处理48小时,使催化剂样品经受加速老化。在420℃、20巴、10mol%甲醇(N2平衡)和1.6的空速(WHSV)下进行甲醇转化。如图3所示,具有均匀磷分布的催化剂在蒸汽处理后显示出在烃产物中高得多的芳烃wt%。这归因于以下事实:磷遍及整个挤出物存在,导致更有效的催化剂。
[0106] 图1:通过SEM-WDX测量的挤出物中Zn、P和Al的浓度曲线。通过用Zn(NO3)2和H3PO4的水溶液共浸渍来制备样品。
[0107] 图2:通过SEM-WDX测量的挤出物中Zn和P的浓度曲线。通过在挤出之前加入H3PO4(以及ZSM-5、氧化铝等)来制备载体。该载体用Zn(NO3)2水溶液浸渍。
[0108] 图3:蒸汽处理后的催化剂(500℃,48h)的芳烃wt%。所有催化剂都用10wt%Zn浸渍。
QQ群二维码
意见反馈