一种用于噻吩脱除的萃取剂及其制备方法和应用

申请号 CN201810836411.2 申请日 2018-07-26 公开(公告)号 CN108929713B 公开(公告)日 2021-06-18
申请人 大连大学; 发明人 王莉莉; 李慎敏;
摘要 本 发明 涉及一种用于脱除噻吩的萃取剂及其制备方法和应用,属于萃取分离领域。一种用于脱除噻吩的萃取剂为:氯化胆 碱 、聚乙二醇及氯化锌按摩尔比1:1:0.05~4:1:0.1组成的深共融 溶剂 ;具体应用为:使萃取剂与混合物混合,所述萃取剂为:氯化胆碱、聚乙二醇及氯化锌按摩尔比1:1:0.05~4:1:0.1组成的深共融溶剂;所述混合物由噻吩和正辛烷组成。本本发明提供的方法 脱硫 效率高,选择性强,噻吩的脱除效率可达85%,操作条件温和、对环境友好。
权利要求

1.一种用于脱除噻吩萃取剂在噻吩脱除的应用,其特征在于:由氯化胆、聚乙二醇及氯化锌按摩尔比1:1:0.05 4:1:0.1组成的深共融溶剂;称取氯化胆碱,氯化锌,聚乙二醇按~
比例依次加入到圆底烧瓶中,在油浴80°C、加热冷凝回流下磁搅拌,当三种物质混合均匀后,继续磁力搅拌2 4 h,搅拌速度为800 rpm,直至溶液呈透明状,倒入试剂瓶中,并在真空~
干燥箱中70°C下,干燥24 h;萃取方法是将萃取剂与混合物按质量比0.25:1 5:1混合后,加~
入100 uL~500 uL的异丁,再通入O2于20°C~50°C下搅拌5~60 min,搅拌速度为200~1000 rpm,静置分层;所述混合物由噻吩和正辛烷组成,噻吩的浓度为200 2000 ppm。
~
2.根据权利要求1所述的萃取剂在噻吩脱除的应用,其特征在于:所述萃取剂与混合物的质量比为0.25:1 5:1。
~
3.根据权利要求1所述的萃取剂在噻吩脱除的应用,其特征在于:所述萃取剂与混合物的质量比为1:1。

说明书全文

一种用于噻吩脱除的萃取剂及其制备方法和应用

技术领域

[0001] 本发明属于萃取分离领域,本发明涉及一种用于脱除噻吩的萃取剂及其制备方法和应用。

背景技术

[0002] 由于环境污染越来越严重,对燃油的深度脱硫已成为全球最紧迫的话题[1]。燃油中含有许多的有机物,其中包含芳和硫化物等有机化合物。近年来,生产超低硫含量的清[2]洁柴油可从源头上控制汽车尾气污染,可实现燃油的清洁化 。
[0003] 目前,加氢脱硫技术(HDS)[3]是工业上普遍采用的脱硫方法,该方法主要用于提取燃油中的硫醇,硫化物等脂肪硫以及非脂肪硫。然而,其中噻吩及其衍生物等有机硫化物因空间位阻较大,加氢活性较低,很难实现深度脱除。所以采取更加节能、简便、有效的方法来脱除燃油中的芳香硫化物。目前,燃油脱硫的各种吸附剂已经被报道。如:、沸石、[4‑7]及有机框架(MOF) 。此外,对于商用柴油、芳烃、含氧燃料添加剂、含氮化合物等对吸附脱硫有着明显的抑制。因此,这是一个极大的挑战对提高吸附脱硫活性需找到新的高硫容量[8]
的吸附剂 。研究表明,吸附脱硫的活性主要归于特定区域的大小、吸附剂表面酸性位点及[9‑12] [13‑14]
金属的高分散性 。在过去几年里面,非加氢脱硫如:氧化脱硫(ODS) 和萃取脱硫一直被研究。萃取脱硫和氧化脱硫具有操作简单、成本低、条件温和、脱硫效果好等优点。萃取脱硫是利用有机硫化物与燃油中碳氢化合物在溶剂溶解度不同而进行分离的脱碳工艺。
[15]
液体燃料中,萃取脱硫对脱除噻吩类硫化物有着非常大的潜
[0004] 深共融溶剂又称类离子液体——因其优异的物理化学性能,受到了人们的关注。[16‑18]
它是由两种或三种廉价、绿色的组分彼此间通过氢键结合而形成的共融物 。它不仅具有离子液体的优势,如:可设计性、较好的化学稳定性、可循环使用等优点,与离子液体相比还具有原料廉价易得且绿色环保,合成工艺简单,合成过程无需引入其它有机溶剂就可获得高纯度的产物,原子经济性达100%。将深共融溶剂代替有机溶剂用于燃油脱硫中,可有效避免有毒、易挥发的有机溶剂对环境和操作者带来危害等缺点。
[0005] [1]Qiu J H,Wang G H,Zhang Y Q,et al.Direct synthesis of mesoporous H3PMo12O40/SiO2and its catalytic performance in oxidative desulfurization offuel oil.Fuel.2015,147:195‑202.
[0006] [2]Srivastava V C.An evaluation of desulfurization technologies for sulfur removal from liquid fuels.RSC Advances.2012,2:759‑783.
[0007] [3]Stanislaus A,Marafi A,Rana M S.Recent advances in the science and technology of ultra‑low sulfur diesel(ULSD)production.Catalysis Today.2010,153:1‑68.
[0008] [4]Palomino J M,Tran D T,Kareh A R,et al.Zirconia‑silica based mesoporous desulfurization adsorbents.J Power Sources.2015,278:141‑148.[0009] [5]Teymouri M,Samadi‑Maybodi  A,Vahid  A,et  al.Adsorptive desulfurization of low sulfur diesel fuel using palladium containing mesoporous silica synthesized via a novel in‑situ approach.Fuel Process Technol.2013,116:257‑64.
[0010] [6]Blanco‑Brieva  G,Campos‑Martin  J  M,Al‑Zahrani  S M,et al.Effectiveness of metal–organic frameworks for removal of refractory organo‑sulfur compound present in liquid fuels.Fuel.2011,90:190‑197.[0011] [7]Peralta D,Chaplais G,Simon‑Masseron A,et al.Metalorganic framework materials for desulfurization by adsorption.Energy Fuels.2012,26:4953‑4960.[0012] [8]Li L D,Xu C Z,Zheng M Q,et al.Effect of B2O3 modified Ag/TiO2‑Al2O3 adsorbents on the adsorption desulfurization of diesel.J Fuel Chem Technol,2015,43(8),990‑997.
[0013] [9]Liu B S,Xu D F,Che J X,et al.Deep desulfurization by the adsorption process of fluidized catalytic cracking(FCC)diesel over mesoporous Al‑MCM‑41 materials.Energy Fuels,2007,21(1):250‑255.
[0014] [10]Sun X,Wang X‑S,Li J‑S.In situ hydrothermal synthesis of cerium‑incorporated X zeolites and their performance in thiophene adsorption.J Fuel Chem Technol,2012,40(12):1480‑1486.
[0015] [11]A.H.M.Hussain S and Tatarchuk B J.Mechanism of hydrocarbon fuel desulfurization using Ag/TiO2–Al2O3 adsorbent.Fuel Process Technol,2014,126:233‑242.
[0016] [12]Shen Y,Xu X,Li P.A novel potential adsorbent for ultra deep desulfurization of jet fuels at room temperature.RSC Adv,2012,2(15):6155.[0017] [13]Nisar  A J,Zhuang J,Wang  X.Construction of Amphiphilic Polyoxometalate Mesostructures as Highly Efficient Desulfurization Catalyst.Adv.Mater.2011,23,1130‑1135.
[0018] [14]Komintarachat C,Trakarnpruk W.Oxidative Desulfurization Using Polyoxome‑talates.Ind.Eng.Chem.Res.2006,45,1853.
[0019] [15]Gano Z S,Mjalli F S,Al‑Wahaibi T,et al.Extractive desulfurization of liquid fuel with FeCl3‑based deep eutectic solvents:Experimental design and optimization by central‑composite design.Chemical Engineering and Processing.2015,93:10‑20.
[0020] [16]Zhang Q H,Vigier K O, F,et al.Deep eutectic solvents:syntheses,properties and applications.Chem.Soc.Rev.2012,41:7108‑7146.[0021] [17]Zhang Z H,Zhang X N,Mo L P,et al.Catalyst‑free synthesis of quinazoline derivatives using low melting sugar–urea–salt mixture as a solvent.Green Chem.2012,14:1502‑1506.
[0022] [18]Cooper E R,Andrews C D,Morris R E,et al.Ionic liquids and eutectic mixtures as solvent and template in synthesis of  zeolite analogues.Nature.2004,430:1012‑1016.

发明内容

[0023] 本发明的目的是提供一种用于噻吩脱除的萃取剂,所用萃取剂为深共融溶剂,深共融溶剂由氯化胆、聚乙二醇及氯化锌按摩尔比1:1:0.05~4:1:0.1组成。
[0024] 本发明的第二个目的是提供上述萃取剂的制备方法,制备步骤如下:称取氯化胆碱,氯化锌,聚乙二醇按比例依次加入到圆底烧瓶中。在油浴80℃条件下加热回流搅拌,当三种物质均匀混合成液体后,继续磁力搅拌2‑4h。反应完毕,倒入试剂瓶中。并在真空干燥箱中70℃下,干燥24h。
[0025] 优选的,萃取剂的制备方法,制备步骤如下:称取氯化胆碱0.4mol,氯化锌0.005mol,聚乙二醇按比例0.1mol依次加入到100mL圆底烧瓶中。在油浴80℃条件下加热回流搅拌,当三种物质均匀混合成液体后,继续磁力搅拌2‑4h,搅拌速度为800rpm。反应完毕,倒入试剂瓶中。并在真空干燥箱中70℃下,干燥24h。
[0026] 本发明的第三个目的是提供上述萃取剂在脱出噻吩的应用。将萃取剂与混合物混合,所述萃取剂为由氯化胆碱、聚乙二醇及氯化锌按摩尔比1:1:0.05~4:1:0.1组成的深共融溶剂;所述混合物由噻吩和正辛烷组成。噻吩为燃油中的硫化物及其芳香硫化物中的一种。
[0027] 本发明萃取剂应用具体步骤如下:由氯化胆碱、聚乙二醇及氯化锌按摩尔比1:1:0.05~4:1:0.1组成的深共融溶剂;在油浴80℃、加热冷凝回流下磁力搅拌,当三种物质混合均匀后,继续磁力搅拌2~4h,搅拌速度为800rpm。直至溶液呈透明状。
[0028] 本发明优选的萃取剂由氯化胆碱、聚乙二醇及氯化锌按摩尔比4:1:0.05组成的深共融溶剂。
[0029] 本发明优选所述混合物由噻吩与正辛烷组成,其中,噻吩的浓度为200~2000ppm,进一步优选噻吩的浓度为1600ppm。
[0030] 本发明优选所述萃取剂与混合物的质量比为0.25:1~5:1,进一步优选萃取剂与混合物的质量比为1:1。
[0031] 本发明所述萃取方法中技术方案优选为:使萃取剂与混合物混合,于20℃~50℃下搅拌5~60min,搅拌速度为200~1600rpm。
[0032] 本发明所述萃取方法进一步优选为下述技术方案:
[0033] 将由氯化胆碱、聚乙二醇及氯化锌按摩尔比1:1:0.05~4:1:0.1组成的深共融溶剂与浓度为200~2000ppm的噻吩的正辛烷溶液按质量比0.25:1~5:1混合,加入100uL~500uL的异丁(IBA),再通入O2,于20℃~50℃下搅拌5~60min,搅拌速度为200~
1600rpm,静置分层。
[0034] 进一步,优选所述萃取剂与混合物的质量比为1:1。
[0035] 本发明所述萃取剂,氯化胆碱与聚乙二醇易于合成深共融溶剂,加入氯化锌是可以提高深共融溶剂对噻吩的脱除效率。合成的深共融溶剂稳定性强,对噻吩的脱除效果较强,深共融溶剂无污染。
[0036] 本发明具有的有益效果是:本发明所采用的原料廉价易得,合成深共融溶剂的过程简单,深共融溶剂可循环使用。本方法中异丁醛对脱硫效果的作用大,在深共融溶剂与IBA体系中通入氧气后,使醛和分子氧产生过氧异丁酸形成氧化系统。
[0037] 本发明所提供的方法脱除噻吩效率高,选择性强,噻吩的脱除效率可达85%,操作条件温和、对环境友好。

具体实施方式

[0038] 下面通过具体实施例详述本发明,但不限制本发明的保护范围。如无特殊说明,本发明所采用的实验方法均为常规方法,所用实验器材、材料、试剂等均可从商业途径获得。
[0039] 实施例1~10中所用深共融溶剂由氯化胆碱、聚乙二醇及氯化锌按摩尔比4:1:0.05组成,制备步骤如下:
[0040] 称取氯化胆碱0.4mol,氯化锌0.005mol,聚乙二醇0.1mol依次加入到100mL圆底烧瓶中。在油浴80℃条件下加热回流搅拌,当三种物质均匀混合成液体后,继续磁力搅拌4h。反应完毕,倒入试剂瓶中。并在真空干燥箱中70℃下,干燥24h。
[0041] 实施例1
[0042] 称取深共融溶剂5g,噻吩浓度为1600ppm的正辛烷溶液5g,在25℃下搅拌30min,搅拌速率为800rpm,静置分层后,加入异丁醛的量为100ul,通入氧气。用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为428.8ppm,计算得到噻吩的脱除效率为73.2%。
[0043] 实施例2
[0044] 称取深共融溶剂5g,噻吩浓度为1600ppm的正辛烷溶液5g,在25℃下搅拌50min,搅拌速率为800rpm,静置分层后,加入异丁醛的量为100ul,通入氧气。用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为387.2ppm,计算得到噻吩的脱除效率为75.8%。
[0045] 实施例3
[0046] 称取深共融溶剂5g,噻吩浓度为1200ppm的正辛烷溶液5g,在25℃下搅拌30min,搅拌速率为800rpm,静置分层后,加入异丁醛的量为100ul,通入氧气。用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为245.6ppm,计算得到噻吩的脱除效率为79.53%。
[0047] 实施例4
[0048] 称取深共融溶剂5g,噻吩浓度为1200ppm的正辛烷溶液5g,在25℃下搅拌60min,搅拌速率为800rpm,静置分层后,加入异丁醛的量为100ul,通入氧气。用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为195.8ppm,计算得到噻吩的脱除效率83.68%。
[0049] 实施例5
[0050] 称取深共融溶剂5g,噻吩浓度为1000ppm的正辛烷溶液10g,在25℃下搅拌30min,搅拌速率为1000rpm,静置分层后,加入异丁醛的量为100ul,通入氧气。用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为185ppm,计算得到噻吩的脱除效率81.5%。
[0051] 实施例6
[0052] 称取深共融溶剂5g,噻吩浓度为1000ppm的正辛烷溶液10g,在25℃下搅拌60min,搅拌速率为1000rpm,静置分层后,加入异丁醛的量为100ul,通入氧气。用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为165ppm,计算得到噻吩的脱除效率83.5%。
[0053] 实施例7
[0054] 称取深共融溶剂5g,噻吩浓度为800ppm的正辛烷溶液10g,在25℃下搅拌30min,搅拌速率为1200rpm,静置分层后,加入异丁醛的量为100ul,通入氧气。用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为190ppm,计算得到噻吩的脱除效率76.3%。
[0055] 实施例8
[0056] 称取深共融溶剂5g,噻吩浓度为800ppm的正辛烷溶液10g,在25℃下搅拌60min,搅拌速率为1200rpm,加入异丁醛的量为100ul,通入氧气。静置分层后,用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为156ppm,计算得到噻吩的脱除效率80.5%。
[0057] 实施例9
[0058] 称取深共融溶剂5g,噻吩浓度为800ppm的正辛烷溶液10g,在25℃下搅拌60min,搅拌速率为1200rpm,加入异丁醛的量为100ul,通入氧气。静置分层后,用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为146ppm,计算得到噻吩的脱除效率81.75%。
[0059] 实施例10
[0060] 称取深共融溶剂5g,噻吩浓度为800ppm的正辛烷溶液5g,在25℃下搅拌30min,搅拌速率为1200rpm,加入异丁醛的量为300ul,通入氧气。静置分层后,用气相色谱法检测正辛烷层中的噻吩浓度,噻吩的浓度为120ppm,计算得到噻吩的脱除效率85%。
[0061] 以上所述实施方式仅为本发明的优选实施例,而并非本发明可行实施的全部实施例。对于本领域一般技术人员而言,在不背离本发明原理和精神的前提下对其所作出的任何显而易见的改动,都应当被认为包含在本发明的权利要求保护范围之内。
QQ群二维码
意见反馈