一种以杂多蓝为前驱体的负载型加氢催化剂的合成

申请号 CN202311537187.4 申请日 2023-11-17 公开(公告)号 CN117839734A 公开(公告)日 2024-04-09
申请人 中国石油大学(华东); 发明人 卢玉坤; 张聪; 鲍文静; 孙道峰; 潘原;
摘要 本 发明 提供了一种以杂多蓝为前驱体的负载型加氢催化剂及其制备方法和应用,属于催化剂技术领域。本发明通过在加氢催化剂的浸渍溶液中添加还原剂,预还原浸渍液中的钼基杂 多酸 或杂多酸盐为杂多蓝以此作为前驱体,经过浸渍、干燥、活化步骤后得到了负载型加氢催化剂。本发明的制备方法制备工艺简单,易于操作,可大量生产,得到的负载型加氢催化剂具有 比表面积 高,催化位点多,反应活性高的特点,在加氢反应中表现出优异的催化性能。
权利要求

1.一种以杂多蓝为前驱体的负载型加氢催化剂的制备方法和应用,其特征在于,步骤如下:
(1)首先将Mo基杂多酸或杂多酸盐溶解在溶剂中获得溶液;
(2)在上述浸渍溶液中加入有机还原剂,对溶液中杂多酸或杂多酸盐的MoIV进行预还原,得到杂多蓝溶液;
(3)在上述溶液中加入助剂金属盐获得浸渍溶液;
(4)在载体上浸渍(3)所述溶液,然后依次经过搅拌、干燥、活化后得到负载型加氢催化剂。
2.根据权利要求1所述杂多蓝为前驱体的负载型加氢催化剂的制备方法,其特征在于,步骤(1)中,所述活性金属以催化剂总质量为基准,以质量百分比计,化钼的含量为催化剂总质量的5~20wt%。
3.根据权利要求1所述杂多蓝为前驱体的负载型加氢催化剂的制备方法,其特征在于,步骤(2)中,加入的还原剂为半胱酸、巯基乙酸、巯基丙酸等,且与钼元素的物质的量之比为1:1,反应时间为1~4h。
4.根据权利要求1所述杂多蓝为前驱体的负载型加氢催化剂的制备方法,步骤(3)中钼物种与钴物种物质的量的比为(2~5):(1.5~4)。
5.根据权利要求1所述杂多蓝为前驱体的负载型加氢催化剂的制备方法,其特征在于,步骤(4)所述,采用等体积浸渍法在所述载体上浸渍溶液,搅拌时间为2h,干燥时间为12h,经过活化步骤后得到负载型加氢催化剂。
6.根据权利要求1所述杂多蓝为前驱体的负载型加氢催化剂的制备方法,其特征在于,步骤(4)中,活化步骤包括氮化、磷化、硫化等活化方式。
7.一种如权利要求1所述杂多蓝为前驱体的负载型加氢催化剂在加氢反应中的应用,所述加氢的步骤为:在用于加氢的高压反应釜或固定床中加入负载型加氢催化剂和反应溶液,所述反应溶液由溶剂、反应物组成。
8.根据权利要求7所述负载型加氢催化剂的应用,其特征在于,所述步骤反应温度
350~450℃,反应时间为4h。

说明书全文

一种以杂多蓝为前驱体的负载型加氢催化剂的合成

技术领域

[0001] 本发明属于负载型加氢催化剂技术领域,涉及一种以杂多蓝为前驱体的负载型加氢催化剂及其制备方法和应用。

背景技术

[0002] 加氢精制是现代化工工业中劣质油品提质升级的重要途径,加氢精制工艺不仅可以实现对氮、硫、、氯元素化合物的去除,同时对不饱和有机物的加氢也可以使得油品品质得到提升,因此该方法具有更广泛的应用前景。清洁油品的发展趋势是低芳、低硫、低苯、和低烯烃化,寻找高效、绿色的解决方法成为了一个研究重点,因此,越来越多的化学催化剂受到了广泛的关注,并逐渐被应用于油品精制领域。加氢反应过程中多相加氢催化剂的合理设计、制备和结构调控是关键环节,加氢催化剂中,负载型金属催化剂扮演了重要色。催化剂的活性金属一般为IVB、VB、VIB、VIIB和VIIIB族的过渡金属,最常见的是Fe、Mo、Ni。其中,二硫化钼(MoS2)为代表的硫化物催化剂已经被广泛应用于加氢催化领域。
[0003] 然而,由于此类催化剂由于催化剂活化过程中活化度低,具有较少的活性相,且分散度低,活性位点稀少,不能在反应中有效的发挥双金属的协同作用,且传统浸渍液本身是复杂的溶液体系,由多种活性物质组成,难以精准调控其活性相,因此采用传统方法得到的催化剂往往显示出较差的催化性能。开发具有更高催化活性的加氢的催化剂成为了当前亟待解决的技术问题。
[0004] 近年来,由杂多酸制备的硫化态催化剂成为绿色化学的研究热点,杂多酸作为一种由多种过渡金属和氧原子组成的结构明确的无机纳米簇,是制备过渡金属硫化态材料的合适前体。这主要归功于杂多酸的结构和组成优势,通过调控杂多酸前驱体的组装能够衍生出高性能的脱硫催化剂,利于明确反应活性相和反应活性机理以进行构效关系研究。
[0005] 除了前驱体的选择外,前驱体的浸渍步骤也是制备负载型加氢催化剂合成的重要步骤。因为催化剂的活性金属可能会以单个低活性物(例如CoSx)或与载体(例如CoAl2O4)强烈相互作用的形式损失,因此需要对传统催化剂进行优化。很多改进方法已经被提出,包括浸渍液中前驱体的改进、活性相与载体的相互作用的调控,以及新的活化程序等。本专利重点针对杂多酸前驱体进行调控改性,同时调控活性相‑载体相互作用,提高加氢催化剂的性能。

发明内容

[0006] 针对现有技术的不足,本发明提供了一种杂多蓝为前驱体的负载型催化剂的制备方法,解决了传统加氢负载型催化剂的催化活性不高的问题。
[0007] 本发明提出了一种上述负载型加氢催化剂的制备方法,包括以下步骤:
[0008] (1)首先将Mo基杂多酸溶解在溶剂中获得溶液;
[0009] (2)然后在溶液中加入有机还原剂,对溶液中杂多酸或杂多酸盐的MoIV进行还原,得到杂多蓝溶液;
[0010] (3)在上述溶液中加入助剂金属盐获得浸渍溶液;
[0011] (4)在载体上浸渍(3)所述溶液,然后依次经过搅拌、干燥、活化后得到负载型加氢催化剂。
[0012] 本发明方法中,步骤(1)中,所述活性金属以催化剂总质量为基准,以质量百分比计,氧化钼的含量为催化剂总质量的5~20wt%。
[0013] 本发明方法中,步骤(2)中,加入的还原剂与钼元素的物质的量之比为1:1,搅拌时间为4h。
[0014] 本发明方法中,(3)所述,钴元素与钼元素的物质的量之比为(2~5):(1.5~4)。
[0015] 本发明方法中,(4)所述,采用等体积浸渍法在所述载体上浸渍溶液,搅拌时间为2h,干燥时间为12h,经过活化步骤后得到负载型加氢催化剂。
[0016] 本发明方法中,步骤(4)中,活化步骤为氮化、磷化、硫化其中的一种活化步骤。
[0017] 本发明提供了一种以杂多蓝为前驱体的负载型加氢催化剂及其制备方法和应用,属于催化剂技术领域。本发明通过在浸渍溶液中添加有机还原剂,预还原钼基杂多酸或杂多酸盐为杂多蓝以此作为前驱体,经过浸渍、干燥、活化步骤后得到了负载型加氢催化剂。本发明的制备方法制备工艺简单,易于操作,可大量生产,得到的负载型加氢催化剂具有比表面积高,催化位点多,反应活性高的特点,在加氢反应中表现出优异的催化性能。
[0018] 与现有技术相比,本发明具有以下优点:
[0019] (1)杂多酸作为一种由多种过渡金属和氧原子组成的结构明确的无机纳米簇,由于其氧钼相与助剂之间更好的相互作用、焙烧后具有优良的分散性等原因是制备过渡金属硫化态材料的合适前体。此外杂多酸具备接受电子和释放电子的能,因此具有良好的氧化还原性质,易被半胱酸添加剂还原为杂多蓝。因此半胱氨酸对金属组分的还原作用使6+
浸渍液中Mo 物种的比例下降,因此催化剂在后续活化过程中会产生更多的活性相。
[0020] (2)有机配体通过调控前驱体中助剂的配位状态影响活性相的结构和形貌,起到改善活性相的性质和形态的作用。由于半胱氨酸或巯基丙酸等有机还原剂同时也是一种络合剂,络合剂的主要作用在于和活性金属发生相互作用,形成了金属‑有机络合物,从而改变了浸渍液和催化剂的物化性质,络合剂与活性金属之间的作用会与金属‑载体的相互作用做竞争,增加金属分散性,并使硫化过程发生改变,使活性相的结构和形态发生变化,最终形成更多的活性中心,提高催化剂的加氢活性。对于钴助剂促进的钼基催化剂,络合剂对Co(Ni)助剂金属硫化存在延迟效应,这种效应源自于络合剂与Co或Ni助剂之间形成的稳定络合结构,从而有利于助剂更有效的修饰在活性相晶簇的边缘,生成更高活性的助剂促进的活性相。
[0021] (3)高温活化过程中有机添加剂的残留物中的沉积物介于活性相与载体之间,通过削弱活性金属相与载体相互作用进而使得更多的助剂金属有效整合到活性相上,形成更多的助剂促进的活性位点,从而有助于增强加氢催化剂活性。附图说明
[0022] 图1是实施例1、实施例2的浸渍液紫外光谱图。
[0023] 图2是实施例1的催化剂的高分辨率的透射电镜图。

具体实施方式

[0024] 为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,下面结合实施例来进一步说明本发明的技术方案和技术效果,给出了详细的实施方案和具体的操作过程。以下实施例,用于说明本发明,但不止用来限制本发明的范围。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。
[0025] 实施例1
[0026] 本实施例提供一种以杂多蓝为前驱体的负载型加氢催化剂的制备方法,所述制备方法包括如下步骤:
[0027] (1)将0.21g磷钼酸合物溶解在去7.0mL离子水中获得混合溶液,搅拌2h;然后在溶液中加入0.17g半胱氨酸,搅拌4h后加入0.20g六水合硝酸钴;
[0028] (2)将拟薄水石放在在450℃温度煅烧5h后得到γ‑Al2O3载体;将步骤(1)中的溶液加入2gγ‑Al2O3载体中,搅拌4h,干燥12h后得到固体粉末;
[0029] (3)将步骤(2)中的固体粉末在10%硫化氢/氢气气氛下进行,升温速率为5℃/min,温度为400℃,焙烧时间为4小时,得到的负载型加氢催化剂为S‑CoPMo12‑CYS/Al2O3。
[0030] 实施例2
[0031] 催化剂合成过程与实施例1基本相同,只是将步骤(1)中0.17g半胱氨酸改为0.15g巯基丙酸,其他条件同实施例1,合成的催化剂为S‑CoPMo12‑MPA/Al2O3。
[0032] 对比例1
[0033] 催化剂合成过程与实施例1基本相同,只是将步骤(1)中0.17g半胱氨酸改为0.12g丙氨酸,得到的催化剂为S‑CoPMo12‑ALA/Al2O3。
[0034] 对比例2
[0035] 催化剂合成过程与实施例1基本相同,只是步骤(1)中不添加半胱氨酸,其他条件同实施例1,得到的催化剂为S‑CoPMo12/Al2O3。
[0036] 对比例3
[0037] 催化剂的合成过程与实施例1基本一致,不同之处在于:步骤(1)将0.25g钼酸铵和0.20g六水合硝酸钴溶解在去7.0mL离子水中获得混合溶液,搅拌2h;其他条件同实施例1,得到的催化剂为S‑CoMo/Al2O3。
[0038] 应用例
[0039] 以加氢脱硫反应来测量实施例和对比例催化剂的活性。以含硫量为500ppm的二苯并噻吩的正庚烷溶液为模型油评价催化剂的性能。二苯并噻吩(DBT)的加氢脱硫是在100mL间歇反应器中进行的,加入上述催化剂100mg以及模拟油40mL,反应压力为5.5MPa,反应温度为280~300℃,反应时间为2~4h。上述部分催化剂的反应评价结果如表1所示。
[0040] 表1实施例以及对比例得到的负载型加氢催化剂加氢脱硫性能。
[0041]
[0042] 从表1可以看出,实施例1制备得到的负载型加氢催化剂在反应温度为300℃的条件下处理二苯并噻吩模拟油具有很高的脱硫率,在减少了反应时间或者降低反应温度后二苯并噻吩的转化率仍然较高。实施例2由于加入的巯基丙酸添加剂的络合能力低于半胱氨酸,导致制备得到的负载型加氢催化剂性能略微下降。半胱氨酸同时具有优异的络合能力和还原能力,因此被用作加氢脱硫添加剂可大幅度提高催化剂的催化性能。
[0043] 对比例1合成的催化剂在浸渍液中添加的丙氨酸有机物只体现了络合作用,因此其催化性能比实施例1低。实施例1中的有机添加剂半胱氨酸对磷钼酸的的还原导致钼组分硫化程度的提高,催化剂上产生了更多数量的MoS2活性相,因此产生了更多的活性位点。
[0044] 对比例2由于未在浸渍溶液中添加有机添加剂因此催化性能进一步下降,除了还原的作用外,半胱氨酸及巯基丙酸还有络合作用,可以与助剂金属结合,减弱了助剂与载体的相互作用,促进了Co‑Mo双金属协同作用,利于更高催化活性的CoMoS活性相的生成。
[0045] 对比例3使用钼酸铵作为前驱体,由于磷钼酸比钼酸铵具有更强的氧化还原性,因此对比例3合成的催化剂在活化过程中较难被硫化还原,因此其催化活性低于实施例1、实施例2、对比例1、对比例2中合成的催化剂催化活性。
[0046] 表1的结果表明,本发明所制备的以杂多蓝为前驱体的负载型加氢催化剂在二苯并噻吩加氢脱硫反应中表现出优异的催化性能,具有工业应用前景。
[0047] 催化剂结构表征
[0048] 表2实施例以及对比例得到的负载型加氢催化剂的孔道结构。
[0049]
[0050] 实施例1、实施例2、对比例1由于浸渍液中添加具有络合作用的有机添加剂,络合剂与活性金属物种的络合作用可以与金属‑载体相互作用竞争,较弱的金属‑载体相互作用增加活性相的分散性,因此制备得到的加氢催化剂具有比表面积大,孔容大的特点,不仅容易暴露更多的活性位点而且脱硫反应具有更多的反应空间。对比例2、对比例3合成的催化剂的比表面积以及孔容明显下降,反应空间减小,不利于加氢脱硫反应的进行。
[0051] 图2给出了本发明实施例1所制备的加氢催化剂的HRTEM图。对每组催化剂的不同部位拍摄约15~20张HRTEM照片﹐从中选取约500个MoS2晶簇进行统计学分析,并计算MoS2晶簇的平均堆垛层数以及平均片层长度,硫化态催化剂的MoS2晶簇的堆垛层数为1~‑4层,长度为2~5nm,如表3所示。较多的堆垛层数以及较短的板片长度利于加氢脱硫反应活性的提升。
[0052] 表3实施例以及对比例得到的负载型加氢催化剂的MoS2晶簇的平均长度和堆垛层数。
[0053]
[0054] 上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
QQ群二维码
意见反馈