热解反应系统及热解反应方法

申请号 CN201710497315.5 申请日 2017-06-26 公开(公告)号 CN107245345B 公开(公告)日 2024-04-12
申请人 北京恒丰亚业科技发展有限公司; 发明人 石晓莉; 陈水渺; 赵延兵; 姜朝兴; 肖磊; 耿层层; 孙宝林; 吴道洪;
摘要 本 发明 公开了一种 热解 反应系统及热解反应方法,热解反应系统具有第一进料口和第二进料口,热解反应系统包括:热解炉体,第一进料口设在所述热解炉体上;加 热管 ,加热管伸入到热解炉体内;混合部件,混合部件包括混合炉体和混合器,混合炉体设在热解炉体的下方且与热解炉体连通,第二进料口设在热解炉体或者混合炉体上,热解炉体和/混合炉体上设有热解气出口,热解炉体和/或混合炉体上设有氢气进口;依次 串联 的除尘装置、油气分离装置和 净化 装置,除尘进口与热解气出口连通;提氢装置,提氢装置包括提氢进口、第一提氢出口和第二提氢出口,提氢进口与净化出口连通,第一提氢出口与氢气进口连通。根据本发明的热解反应系统,可以提高热解气品质。
权利要求

1.一种热解反应系统,其特征在于,所述热解反应系统具有第一进料口和第二进料口,所述热解反应系统包括:
热解炉体,所述第一进料口设在所述热解炉体上;
热管,所述加热管伸入到所述热解炉体内以对所述热解炉体内的物料提供热解热量;
混合部件,所述混合部件包括混合炉体和混合器,所述混合炉体设在所述热解炉体的下方且与所述热解炉体连通以接收所述热解炉体排出的热解后的物料,所述混合炉体设有出料口,所述第二进料口设在所述热解炉体或者所述混合炉体上且位于所述加热管和所述混合器之间,所述混合器用于混合从所述热解炉体和所述第二进料口排入到所述混合炉体内的物料,所述热解炉体和/或所述混合炉体上设有热解气出口,所述热解炉体和/或所述混合炉体上设有氢气进口;除尘装置,所述除尘装置包括除尘进口、第一除尘出口和第二除尘出口,所述除尘进口与所述热解气出口连通;
油气分离装置,所述油气分离装置包括油气分离进口、第一油气分离出口和第二油气分离出口,所述油气分离进口与所述第一除尘出口连通;
净化装置,所述净化装置包括净化进口和净化出口,所述净化进口与所述第一油气分离出口连通;
用于提取氢气的提氢装置,所述提氢装置包括提氢进口、第一提氢出口和第二提氢出口,所述提氢进口与所述净化出口连通,所述第一提氢出口与所述氢气进口连通;
其中,所述混合器包括多个挡板,所述多个挡板设在所述混合炉体的内周壁上,每个所述挡板的自由端沿朝向所述混合炉体的中心轴线的方向向下倾斜延伸,至少两个所述挡板的自由端朝向彼此延伸且在竖直方向上错位设置;
其中,所述热解炉体和所述混合炉体之间的长度比为2:3‑5:4。
2.根据权利要求1所述的热解反应系统,其特征在于,所述混合炉体内设有两组挡板组,每组所述挡板组包括至少两个在竖直方向上间隔设置的挡板,所述两组挡板组的挡板的自由端朝向彼此延伸,所述两组挡板组的所述挡板的自由端在竖直方向上交错设置。
3.根据权利要求1所述的热解反应系统,其特征在于,自由端错位设置的两个所述挡板的错位距离与所述挡板的长度之间的比值的取值范围为1/10‑1/5。
4.根据权利要求1所述的热解反应系统,其特征在于,每个所述挡板与所述混合炉体的侧壁之间夹的取值范围为30°‑75°。
5.根据权利要求1所述的热解反应系统,其特征在于,还包括振动装置,所述振动装置与每个所述挡板相连以驱动每个所述挡板振动。
6.根据权利要求1‑5中任一项所述的热解反应系统,其特征在于,所述除尘装置包括彼此串联的一级除尘装置和二级除尘装置。
7.根据权利要求6所述的热解反应系统,其特征在于,所述一级除尘装置和所述二级除尘装置均为旋分离器。
8.一种热解反应系统的热解反应方法,其特征在于,所述热解反应系统为根据权利要求1‑7中任一项所述的热解反应系统,所述热解反应方法包括如下步骤:
S1:通过所述第一进料口将物料输送至所述热解炉体内,控制所述加热管工作以对所述热解炉体内的物料提供热解热量,并且通过所述除尘装置、所述油气分离装置和所述净化装置依次接收从所述热解气出口排出的热解气;
S2:在预定时间后通过所述第二进料口将物料输送至所述混合炉体内,控制所述混合器工作,以混合从所述热解炉体和所述第二进料口排入到所述混合炉体内的物料,并且通过所述除尘装置、所述油气分离装置和所述净化装置依次接收从所述热解气出口排出的热解气;
S3:通过所述提氢装置接收由所述净化装置内排出的纯净的热解气,并将热解气中的氢气提取出来;
S4:将由所述提氢装置提取出来的氢气重新导入所述热解炉体和/或所述混合炉体内。

说明书全文

热解反应系统及热解反应方法

技术领域

[0001] 本发明涉及热解反应技术领域,尤其涉及一种热解反应系统及热解反应系统的热解反应方法。

背景技术

[0002] 快速热解反应后得到热解油气和半焦,相关技术中,褐煤在热解反应系统中进行热解反应后得到的热解气中的氢气和氢化合物的产率较低,热解气的品质不高。

发明内容

[0003] 本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种热解反应系统,所述热解反应系统,通过设置提氢装置使得物料热解反应后所得到
的热解气中的氢气和碳氢化合物的产率高,从而可以提高热解气的品质。
[0004] 本发明还提出一种热解反应系统的热解反应方法。
[0005] 根据本发明实施例的热解反应系统,所述热解反应系统具有第一进料口和第二进料口,所述热解反应系统包括:热解炉体,所述第一进料口设在所述热解炉体上;加热管,所
述加热管伸入到所述热解炉体内以对所述热解炉体内的物料提供热解热量;混合部件,所
述混合部件包括混合炉体和混合器,所述混合炉体设在所述热解炉体的下方且与所述热解
炉体连通以接收所述热解炉体排出的热解后的物料,所述混合炉体设有出料口,所述第二
进料口设在所述热解炉体或者所述混合炉体上且位于所述加热管和所述混合器之间,所述
混合器用于混合从所述热解炉体和所述第二进料口排入到所述混合炉体内的物料,所述热
解炉体和/或所述混合炉体上设有热解气出口,所述热解炉体和/或所述混合炉体上设有氢
气进口;除尘装置,所述除尘装置包括除尘进口、第一除尘出口和第二除尘出口,所述除尘
进口与所述热解气出口连通;油气分离装置,所述油气分离装置包括油气分离进口、第一油
气分离出口和第二油气分离出口,所述油气分离进口与所述第一除尘出口连通;净化装置,
所述净化装置包括净化进口和净化出口,所述净化进口与所述第一油气分离出口连通;用
于提取氢气的提氢装置,所述提氢装置包括提氢进口、第一提氢出口和第二提氢出口,所述
提氢进口与所述净化出口连通,所述第一提氢出口与所述氢气进口连通。
[0006] 根据本发明实施例的热解反应系统,利用除尘装置、油气分离装置和净化装置对热解气出口排出的热解气进行除尘、油气分离和净化后得到纯净的热解气,并利用用于提
取氢气的提氢装置将热解气中的氢气提取,并将提取的氢气再次通入热解炉体和/或所述
混合炉体内,从而可以大大提高物料热解反应中氢气、碳氢化合物的产率,从而提高热解气
的品质。
[0007] 另外,根据本发明实施例的热解反应系统,还可以具有如下附加技术特征:
[0008] 根据本发明的一些实施例,所述混合器包括多个挡板,所述多个挡板设在所述混合炉体的内周壁上,每个所述挡板的自由端沿朝向所述混合炉体的中心轴线的方向向下倾
斜延伸,至少两个所述挡板的自由端朝向彼此延伸且在竖直方向上错位设置。
[0009] 可选地,所述混合炉体内设有两组挡板组,每组所述挡板组包括至少两个在竖直方向上间隔设置的挡板,所述两组挡板组的挡板的自由端朝向彼此延伸,所述两组挡板组
的所述挡板的自由端在竖直方向上交错设置。
[0010] 可选地,自由端错位设置的两个所述挡板的错位距离与所述挡板的长度之间的比值的取值范围为1/10‑1/5。
[0011] 可选地,每个所述挡板与所述混合炉体的侧壁之间夹的取值范围为30°‑75°。
[0012] 根据本发明的一些实施例,所述热解炉体和所述混合炉体之间的长度比为2:3‑5:4。
[0013] 可选地,所述热解反应系统还包括振动装置,所述振动装置与每个所述挡板相连以驱动每个所述挡板振动。
[0014] 在本发明的一个实施例中,所述除尘装置包括彼此串联的一级除尘装置和二级除尘装置。
[0015] 可选地,所述一级除尘装置和所述二级除尘装置均为旋分离器。
[0016] 根据本发明实施例的热解反应系统的热解反应方法,所述热解反应系统为根据本发明上述实施例的热解反应系统,所述热解反应方法包括如下步骤:
[0017] S1:通过所述第一进料口将物料输送至所述热解炉体内,控制所述加热管工作以对所述热解炉体内的物料提供热解热量,并且通过所述除尘装置、所述油气分离装置和所
述净化装置依次接收从所述热解气出口排出的热解气;
[0018] S2:在预定时间后通过所述第二进料口将物料输送至所述混合炉体内,控制所述混合器工作,以混合从所述热解炉体和所述第二进料口排入到所述混合炉体内的物料,并
且通过所述除尘装置、所述油气分离装置和所述净化装置依次接收从所述热解气出口排出
的热解气;
[0019] S3:通过所述提氢装置接收由所述净化装置内排出的纯净的热解气,并将热解气中的氢气提取出来;
[0020] S4:将由所述提氢装置提取出来的氢气通过所述氢气进口重新导入热解炉体和/或所述混合炉体内。
[0021] 根据本发明实施例的热解反应系统的热解反应方法,利用除尘装置、油气分离装置和净化装置对热解气出口排出的热解气进行除尘、油气分离和净化后得到纯净的热解
气,并且利用提氢装置将纯净的热解气中的氢气提取出来,并将提取的氢气再次通入热解
炉体和/或混合炉体内,从而可以大大提高物料热解反应中氢气、碳氢化合物的产率,从而
提高热解气的品质。
[0022] 本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
[0023] 本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
[0024] 图1是根据本发明实施例的热解反应系统的结构示意图;
[0025] 图2是图1中所示的热解反应系统的部分结构示意图。
[0026] 附图标记:
[0027] 热解反应系统100;
[0028] 热解炉体1;第一进料口11;第二进料口12;出料口13;热解气出口14;氢气进口15;
[0029] 加热管2;燃气进口21;空气进口22;烟气出口23;
[0030] 混合部件3;混合炉体31;混合器32;挡板组321;挡板3211;
[0031] 提氢装置4;提氢进口41;第一提氢出口42;第二提氢出口43;
[0032] 除尘装置5;一级除尘装置51;二级除尘装置52;
[0033] 油气分离装置6;净化装置7;驱动装置8;加料斗9;
[0034] 干燥器200;螺旋输送机300;螺旋进料机400;半焦收集罐500;储油罐600;储气罐700。

具体实施方式

[0035] 下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附
图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
[0036] 在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明
的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
[0037] 在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可
以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是
两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以
根据具体情况理解上述术语在本发明中的具体含义。
[0038] 下面参考图1‑图2描述根据本发明实施例的热解反应系统100。该热解反应系统100可以用于褐煤等物料的快速热解。
[0039] 如图1‑图2所示,根据本发明实施例的热解反应系统100具有第一进料口11和第二进料口12,热解反应系统100包括:热解炉体1、加热管2、混合部件3、用于提取氢气的提氢装
置4、除尘装置5、油气分离装置6和净化装置7。
[0040] 具体而言,第一进料口11设在热解炉体1上,加热管2伸入到热解炉体1内以对热解炉体1内的物料提供热解热量。由此可知,物料通过第一进料口11进入到热解炉体1内后,热
解炉体1内的加热管2为物料提供热量以使物料在热解炉体1内进行充分的热解,物料热解
后形成油气和高温半焦。
[0041] 混合部件3包括混合炉体31和混合器32,混合炉体31设在热解炉体1的下方且与热解炉体1连通以接收热解炉体1排出的热解后的物料(这里所说的物料即为上述的热解炉体
1内热解产生的高温半焦),混合炉体31设有出料口13,第二进料口12设在热解炉体1或者混
合炉体31上且位于加热管2和混合器32之间,混合器32用于混合从热解炉体1和第二进料口
12排入到混合炉体31内的物料,即混合器32将热解炉体1排出的热解后的半焦产物和从第
二进料口12排入的新的物料进行混合,使得从热解炉体1排入到混合炉体31内的高温半焦
释放自身显热,从第二进料口12进入到混合炉体31内的物料吸收其释放的热量并进行热
解,热解后形成的半焦产物及释放自身显热后的半焦产物落入到混合炉体31上的出料口13
并从出料口13排出热解反应系统100。由此,充分地利用热解炉体1内物料热解后产生的高
温半焦产物自身的显热,从而有效地降低了系统的能耗,提高了热解焦油的产率。
[0042] 热解炉体1和/或混合炉体31上设有热解气出口14,即热解气出口14可以仅设在热解炉体1,也可以仅设在混合炉体31上,或者在热解炉体1和混合炉体31上均设有热解气出
口14,热解炉体1和/或混合炉体31上设有氢气进口15,即氢气进口15可以仅设在热解炉体1
上,也可以仅设在混合炉体31上,或者在热解炉体1和混合炉体31上均设有氢气进口15,由
于热解炉体1和混合炉体31彼此连通,热解气出口14和氢气进口15分别设于热解炉体1和混
合炉体31中的任意一个上时,热解炉体1和混合炉体31内热解产生的热解气均可以通过热
解气出口14排出,氢气通过氢气进口15进入后可以扩散至热解炉体1和混合炉体31内。
[0043] 除尘装置5包括除尘进口、第一除尘出口和第二除尘出口,除尘进口与热解气出口14连通,物料在热解炉体1和混合炉体31内热解产生的热解气通过热解气出口14排出热解
炉体1和混合炉体31,并通过除尘进口进入除尘装置5内,由热解气出口14排出的热解气在
除尘装置5内进行除尘以分离出混合在热解气中的半焦产物,分离出半焦的热解气通过第
一除尘出口排出除尘装置5,分离出来的半焦通过第二除尘出口排出除尘装置5,可选地,如
图1所示,第二除尘出口可以连接半焦收集罐500,以将除尘装置5分离出的半焦产物收集起
来以备后续工艺处理。
[0044] 油气分离装置6包括油气分离进口、第一油气分离出口和第二油气分离出口,油气分离进口与第一除尘出口连通,由第一除尘出口排出的热解气通过油气分离进口进入油气
分离装置6内进行油气分离,以分离出混合在热解气中的油液,分离出油液后的热解气通过
第一油气分离出口排出油气分离装置6,分离出来的油液通过第二油气分离出口排出油气
分离装置6,可选地,如图1所示,第二油气分离出口可以连接储油罐600,以将分离出来的油
液储存在储油罐600内,以备后续工艺处理。
[0045] 净化装置7包括净化进口和净化出口,净化进口与第一油气分离出口连通,由第一油气分离出口排出的热解气通过净化进口进入净化装置7内进行净化处理,以除去热解气
中的杂质和有害气体,以得到纯净的热解气,纯净的热解气通过净化出口排出净化装置。
[0046] 用于提取氢气的提氢装置4,提氢装置4包括提氢进口41、第一提氢出口42和第二提氢出口43,提氢进口41与净化出口连通,第一提氢出口42与氢气进口15相连。由净化出口
排出的纯净的热解气通过提氢进口41进入提氢装置4中,提氢装置4提取的氢气通过第一提
氢出口42排出提氢装置4,并通过与第一提氢出口42连通的氢气进口15进入热解炉体1和混
合炉体31内。提取氢气后的剩余气体通过第二提氢出口43排出提氢装置4,可选地,第二提
氢出口43可以连接储气罐700以将提取氢气后剩余的热解气收集在储气罐700内以被后续
工艺处理。
[0047] 根据本发明实施例的热解反应系统100,利用除尘装置5、油气分离装置6和净化装置7对热解气出口14排出的热解气进行除尘、油气分离和净化后得到纯净的热解气,并利用
用于提取氢气的提氢装置4将热解气中的氢气提取,并将提取的氢气再次通入热解炉体1
和/或所述混合炉体31内,可以大大提高物料热解反应中氢气、碳氢化合物的产率,从而提
高热解气的品质。
[0048] 可选地,热解气出口14可以为多个,多个热解气出口14在热解炉体1和混合炉体31的侧壁上间隔分布。从而能够提高热解气导出效率。优选地,多个热解气出口14外接热解气
管道(图未示出),多个热解气管道将热解气导向同一个热解气总出口(图未示出)。从而使
热解反应系统100的结构简单,工作效率高。
[0049] 优选地,如图1所示,除尘装置5可以包括多级除尘装置5,例如图1中所示,热解气出口14和提氢进口41之间设有彼此串联的一级除尘装置51和二级除尘装置52,具体地,一
级除尘装置51和二级除尘装置52均包括除尘进口、第一除尘出口和第二除尘出口,一级除
尘装置51的除尘进口与热解气出口14连通,一级除尘装置51的第一除尘出口与二级除尘装
置52的除尘进口连通,二级除尘装置52的第一除尘出口与油气分离装置6的油气分离进口
连通,一级除尘装置51和二级除尘装置52的第二除尘出口均可以与半焦收集罐500相连,由
此,由热解气出口14排出的热解气首先进入一级除尘装置51内进行除尘以除去混合在热解
气中的半焦,在一级除尘装置51内除尘完成后的热解气接着进入二级除尘装置52内进行进
一步除尘,除尘得到的清洁的热解气再进入油气分离装置6和净化装置7内进行油气分离和
净化处理,通过设置多级除尘装置5,使得除尘效果更好,由此使得进入提氢装置4内的热解
气更加清洁。可选地,一级除尘装置51和二级除尘装置52可以均为旋风分离器,结构简单、
成本低且除尘效果好。
[0050] 在图1所示的示例中,提氢装置4的第一提氢出口42和氢气进口15之间设有驱动装置8(例如引风机),以驱动氢气由第一提氢出口42朝向氢气进口15流动,保证氢气顺利、快
速地进入热解炉体1和混合炉体31内,提高物料热解反应产生的热解气的品质。
[0051] 在本发明的一个实施例中,如图2所示,加热管2为蓄热式辐射管。从而使加热管2的热效率高、运行稳定、可靠性高。可以理解的是,当加热管2为蓄热式辐射管时,热解炉体1
上还设有燃气进口21、空气进口22和烟气出口23,从而可以保证蓄热式辐射管内的热效率
和可靠性,进而保证加热管2为热解炉体1内的物料提供充分的热量以热解。其中蓄热式辐
射管的管壁的温度通过燃气调节(图未示出)控制。
[0052] 在本发明的一个实施例中,如图1和图2中所示,混合器32包括多个挡板3211,多个挡板3211设在混合炉体31的内周壁上,每个挡板3211的自由端沿朝向混合炉体31的中心轴
线的方向向下倾斜延伸,至少两个挡板3211的自由端朝向彼此延伸且在竖直方向上错位设
置。热解炉体1内的物料热解后产生的高温半焦产物沿着热解炉体1排入到混合炉体31内后
与从第二进料口12进入到混合炉体31内的物料被混合炉体31上的多个挡板3211承接并沿
着挡板3211向下运动,在运动的过程中高温的半焦产物和从第二进料口12排入到混合炉体
31内的物料在倾斜的挡板3211的作用下混合,使得从热解炉体1排入到混合炉体31内的高
温的半焦产物释放自身显热,从第二进料口12进入到混合炉体31内的物料吸收其释放的热
量并进行热解,热解后形成的半焦产物及释放自身显热后的半焦产物落入到混合炉体31上
的出料口13并从出料口13排出热解反应系统100。混合器32结构简单、生产制造成本低。
[0053] 根据本发明的一些实施例,混合炉体31内设有两组挡板组321,每组挡板组321包括至少两个在竖直方向上间隔设置的挡板3211,两组挡板组321的挡板3211的自由端朝向
彼此延伸,两组挡板组321的挡板3211的自由端在竖直方向上交错设置。由此可知,两组挡
板组321的结构设置能够保证从热解炉体1排入到混合炉体31内的高温的半焦产物和从第
二进料口12排入到混合炉体31内的物料在两组挡板组321上流动的时间,增强高温的半焦
产物与物料的混合效果,进而有利于提高热解反应系统100热解效率。
[0054] 可选地,每组挡板组321的相邻的两个挡板3211之间的间隔为100mm‑500mm,例如每组挡板组321的相邻的两个挡板3211之间的间隔可以为100mm、200mm、250mm或500mm等,
由此能够为混合炉体31内物料热解后产生的油气的排出提供了有效的空间,进而提高热解
反应系统100的热解效率。
[0055] 可选地,自由端错位设置的两个挡板3211的错位距离与挡板3211的长度之间的比值的取值范围为1/10‑1/5时,由此能够保证从热解炉体1排入到混合炉体31内的高温的半
焦产物和从第二进料口12排入到混合炉体31内的物料之间更加充分的混合,从而使得换热
更加充分,热量回收效率更高。
[0056] 在本发明的一个可选示例中,自由端错位设置的两个挡板3211的长度不同。从而有利于从热解炉体1排入到混合炉体31内的高温的半焦产物和从第二进料口12排入到混合
炉体31内的物料在挡板3211上反复接触、均匀混合,进而使从第二进料口12进入到混合炉
体31内的物料更加充分地吸收从热解炉体1排入到混合炉体31内的高温的半焦产物释放的
自身显热以进行热解,提高混合炉体31内的热解效率。
[0057] 进一步地,当自由端错位设置的两个挡板3211的长度比值为1.2‑1.5时,能够保证从第二进料口12进入到混合炉体31内的物料充分地吸收从热解炉体1排入到混合炉体31内
的高温的半焦产物释放的自身显热,进而保证热解反应系统100的热解焦油的产率。
[0058] 可选地,每个挡板3211与混合炉体31的侧壁之间夹角的取值范围为30°‑75°,即每个挡板3211与混合炉体31的侧壁之间夹角大于或等于30°且小于或等于75°,例如可以为
30°、40°、45°、50°、55°、60°或75°等,优选地,每个挡板3211与混合炉体31的侧壁之间夹角
为60°,由此能够在一定程度上控制每个挡板3211上从热解炉体1排入的高温的半焦产物和
从第二进料口12排入到混合炉体31内的物料向出料口13运动的速度,使混合炉体31内的物
料热解地更加充分,提高热解反应效率。优选地,热解炉体1和混合炉体31之间的长度比为
2:3‑5:4,由此可以保证热解炉体1和混合炉体31的热解反应更加充分。
[0059] 混合炉体31的内壁上可以设有保温材料件,保温材料件可以为岩件,即保温材料件可以由岩棉材料制造而成,但并不限于此,在混合炉体31的内壁上设置保温材料件,从
而有利于避免从热解炉体1排入到混合炉体31内的高温的半焦产物的热量从混合炉体31的
内周壁向外散出,进而提高了混合炉体31的保温效果,能够在一定程度上提高混合炉体31
内物料的热解效率。挡板3211可以为不锈板,从而能够保证挡板3211的耐高温和耐腐蚀
性能,提高热解反应系统100的可靠性。
[0060] 在本发明的一个实施例中,热解反应系统100还包括振动装置(图未示出),振动装置与每个挡板3211相连以驱动每个挡板3211振动。从而可知,每个挡板3211在振动装置的
驱动下可发生高频振动,使得每个挡板3211上的从热解炉体1排入到混合炉体31内的高温
的半焦产物和从第二进料口12排入到混合炉体31内的物料在挡板3211的振动作用下能够
混合地更加均匀,进而提高热解反应系统100的热解焦油的产率。同时高频振动的挡板3211
还能够有效地避免混合炉体31内的半焦产物和物料由于内摩擦、带电和成分偏析等原因在
挡板3211上堆积而堵塞混合炉体31,进而在一定程度上提高热解反应系统100的可靠性。
[0061] 具体地,振动装置包括多个振动杆(图未示出)和电机(图未示出),多个振动杆分别与电机相连,多个振动杆与多个挡板3211一一对应设置,每个挡板3211安装在相应的振
动杆上,振动装置通过每个振动杆的轴向运动把振动传递给相应的挡板3211以驱动每个
挡板3211振动,振动装置结构简单且运动可靠性高。
[0062] 可选地,热解反应系统100还可以包括螺旋输送机300,螺旋输送机300设在出料口13处。从而可以将出料口13处的半焦产物输送至热解反应系统100的外部,例如输送至半焦
收集罐500内,通过设置螺旋输送机300可以将半焦产物自动输出,由此可以简化热解反应
工艺,提高热解反应效率。
[0063] 如图1所示,第一进料口11和第二进料口12分别设有螺旋进料机400,螺旋进料机400连接加料斗9和第一进料口11和第二进料口12,由此通过螺旋进料机400可以将加料斗9
内的物料自动输送至热解炉体1和混合炉体31内,由此可以简化热解反应工艺,提高热解反
应效率。热解反应系统100还包括用于对物料原料进行干燥的干燥器200,物料在干燥器200
内干燥完后再储存至加料斗9内,由此可以提高热解反应效率。可选地,干燥器200可以为提
升管干燥器200,结构简单、成本低,干燥效率好。
[0064] 下面结合褐煤热解的具体示例进行说明。其中:表1为大雁褐煤原料的煤质分析;表2为大雁褐煤进行快速热解的工艺操作参数;表3为分别采用现有技术中的热解反应系统
(没有氢气循环过程)和本申请一个实施例的热解反应系统100(具有氢气循环过程)对褐煤
进行热解所得到的热解气中各成分含量,具体地,所述热解反应系统100包括上述的热解炉
体1、加热管2、混合部件3、提氢装置4、除尘装置5、油气分离装置6、净化装置7和振动装置8,
所述除尘装置5包括相互串联的一级除尘装置51和二级除尘装置52,且一级除尘装置51和
二级除尘装置52均为旋风分离器,混合部件3包括混合炉体31和混合器32,混合器32包括多
个挡板3211,振动装置与每个挡板相连以驱动每个挡板振动。
[0065] 表1大雁褐煤煤质分析
[0066]
[0067] 表2工艺操作参数与物料平衡
[0068]
[0069] 表3热解气主要成分含量
[0070]
[0071] 通过表3可以得出:与在现有技术中的热解反应系统中的热解反应相比,大雁褐煤在本申请一个实施例的热解反应系统100中热解后产生的热解气中的H2、CH4、C2H4和C3H6的
产率提高了10%。
[0072] 根据本发明实施例的热解反应系统的热解反应方法,所述热解反应系统为根据本发明上述实施例的热解反应系统100,所述热解反应方法包括如下步骤:
[0073] S1:通过第一进料口11将物料输送至热解炉体1内,控制加热管2工作以对热解炉体1内的物料提供热解热量,并且通过除尘装置5、油气分离装置6和净化装置7依次接收从
热解气出14口排出的热解气,具体地,通过第一进料口11进入热解炉体1内的物料在热解炉
体1内热解后产生半焦和热解气,半焦向下排入混合炉体31内,热解气由热解气出口14首先
排入除尘装置5内除去混合在热解气中的半焦后,再进入油气分离装置6内进行油气分离除
去混合在热解气中的油液,接着再进入净化装置7内进行净化处理除去热解气中的杂质和
有害气体,以得到纯净的热解气;
[0074] S2:在预定时间后通过第二进料口12将物料输送至混合炉体31内,控制混合器32工作以混合从热解炉体1和第二进料口12排入到混合炉体31内的物料,并且通过除尘装置
5、油气分离装置6和净化装置7依次接收从热解气出口14排出的热解气,预定时间可以根据
实际需要进行设定,例如可以在热解炉体1内热解产生的半焦进入混合炉体31后,再通过第
二进料口12将物料输送至混合炉体31内,从热解炉体1排入到混合炉体31内的物料(这里所
说的物料指的是热解炉体1内热解产生的半焦)为从第二进料口12排入到混合炉体31内的
物料(这里所说的物料指的是所需进行热解的原料)提供热解热量,以使从第二进料口12排
入到混合炉体31内的物料在混合炉体31内进行热解,热解产生的热解气由热解气出口14首
先排入除尘装置5内除尘,除去混合在热解气中的半焦后,再进入油气分离装置6内进行油
气分离除去混合在热解气中的油液,接着再进入净化装置7内进行净化处理除去热解气中
的杂质和有害气体,以得到纯净的热解气;
[0075] S3:通过提氢装置4接收由净化装置7内排出的纯净的热解气,并将热解气中的氢气提取出来;
[0076] S4:将由提氢装置4提取出来的氢气通过氢气进口15重新导入热解炉体1和/或混合炉体31内。
[0077] 根据本发明实施例的热解反应系统的热解反应方法,利用除尘装置5、油气分离装置6和净化装置7对热解气出口14排出的热解气进行除尘、油气分离和净化后得到纯净的热
解气,并且利用提氢装置4将纯净的热解气中的氢气提取出来,并将提取的氢气再次通入热
解炉体1和/或混合炉体31内,从而可以大大提高物料热解反应中氢气、碳氢化合物的产率,
从而提高热解气的品质。
[0078] 在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结
构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的
示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特
点可以在任何的一个或多个实施例或示例中以合适的方式结合。
[0079] 尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本
发明的范围由权利要求及其等同物限定。
QQ群二维码
意见反馈