首页 / 专利分类库 / 飞行器;航空;宇宙航行 / 飞机;直升飞机 / 其他类目不包含的影响流经飞机表面的空气流 / 一种飞机机翼自适应流动分离控制方法、系统及存储介质

一种飞机机翼自适应流动分离控制方法、系统及存储介质

专利类型 发明公开 法律事件 公开; 实质审查; 授权; 未缴年费;
专利有效性 失效专利 当前状态 权利终止
申请号 CN202211123296.7 申请日 2022-09-15
公开(公告)号 CN115230945A 公开(公告)日 2022-10-25
申请人 中国空气动力研究与发展中心低速空气动力研究所; 申请人类型 科研院所
发明人 张鑫; 阳鹏宇; 马志明; 第一发明人 张鑫
权利人 中国空气动力研究与发展中心低速空气动力研究所 权利人类型 科研院所
当前权利人 中国空气动力研究与发展中心低速空气动力研究所 当前权利人类型 科研院所
省份 当前专利权人所在省份:四川省 城市 当前专利权人所在城市:四川省绵阳市
具体地址 当前专利权人所在详细地址:四川省绵阳市涪城区二环路南段6号 邮编 当前专利权人邮编:621000
主IPC国际分类 B64C23/00 所有IPC国际分类 B64C23/00
专利引用数量 14 专利被引用数量 2
专利权利要求数量 10 专利文献类型 A
专利代理机构 成都行之专利代理事务所 专利代理人 马碧娜;
摘要 为解决传统技术中存在的全工作时段激励参数与分离流流动特征匹配存在困难影响控制效果的技术问题,本 发明 实施例 提供一种飞机机翼自适应流动分离控制方法、系统及存储介质,包括:根据机翼表面沿弦向布置的多个测压点的压 力 数据判断是否产生由大尺度脱落涡引起的脉动 信号 ,若是,则根据脉动信号计算脱落涡的运动速度;根据所述脱落涡的运动速度估算出当前脱落 涡流 经机翼的时间;使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间,以使 等离子体 激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制。
权利要求

1.一种飞机机翼自适应流动分离控制方法,其特征在于,包括:
根据机翼表面沿弦向布置的多个测压点的压数据判断是否产生由大尺度脱落涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;
根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;
使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间,以使等离子体激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制。
2.如权利要求1所述飞机机翼自适应流动分离控制方法,其特征在于,还包括:
实时获取机翼表面沿弦向布置的多个测压点的压力数据。
3.如权利要求1所述飞机机翼自适应流动分离控制方法,其特征在于,根据机翼表面沿弦向布置的多个测压点的压力数据判断是否产生由大尺度脱落涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;包括:
使用在机翼表面沿弦向布置的多个测压点的压力数据制成测压曲线;
判断测压曲线上是否产生由大尺度脱落涡引起的脉动信号,若是,则根据每一个测压点产生脉动信号的时刻以及每个测压点在弦向上的位置线性拟合出脱落涡的运动速度。
4.如权利要求1所述飞机机翼自适应流动分离控制方法,其特征在于,根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;包括:
用当地弦长除以所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间。
5.一种飞机机翼自适应流动分离控制系统,其特征在于,包括:
判断单元,用于根据机翼表面沿弦向布置的多个测压点的压力数据判断是否产生由大尺度脱落涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;
计算单元,用于根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;以及修正单元,用于使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间,以使等离子体激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制。
6.如权利要求5所述飞机机翼自适应流动分离控制系统,其特征在于,还包括:
获取单元,用于实时获取机翼表面沿弦向布置的多个测压点的压力数据。
7.如权利要求5所述飞机机翼自适应流动分离控制系统,其特征在于,判断单元还包括:
测压曲线单元,用于使用在机翼表面沿弦向布置的多个测压点的压力数据制成测压曲线;
脉动信号判断单元,用于判断测压曲线上是否产生由大尺度脱落涡引起的脉动信号;
以及
线性拟合单元,用于根据每一个测压点产生脉动信号的时刻以及每个测压点在弦向上的位置线性拟合出脱落涡的运动速度。
8.一种飞机机翼自适应流动分离控制系统,其特征在于, 包括:
压力传感器组,包括多个压力传感器,每个压力传感器用于在机翼表面沿弦向布置;
控制器,用于接收来自每个压力传感器的对应测压点的压力数据井根据机翼表面沿弦向布置的多个测压点的压力数据判断是否产生由大尺度脱落涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间并向高压等离子体驱动器发出控制指令;
高压等离子体驱动器,用于实时接收所述控制指令并根据所述控制指令实时调节等离子体激励器的输出电压波形,使激励器按照指定的激励间隙时间工作;以及等离子体激励器,用于与高压等离子体驱动器连接。
9.如权利要求8所述飞机机翼自适应流动分离控制系统,其特征在于,等离子体激励器为DBD等离子体激励器。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,执行如权利要求1‑4任意一项所述飞机机翼自适应流动分离控制方法。

说明书全文

一种飞机机翼自适应流动分离控制方法、系统及存储介质

技术领域

[0001] 本发明属于飞机机翼飞行控制领域,涉及一种飞机机翼自适应流动分离控制方法、系统及存储介质。

背景技术

[0002] 等离子体流动控制技术作为一种新颖的主动流动控制技术被广泛关注,其中DBD等离子体激励器由于结构小、重量轻、响应速度快,被大量研究应用于机翼前缘流动分离控制。研究结果表明其控制效果与DBD等离子体的激励参数和机翼分离流的流动特征密切相关,当激励参数与流动特征参数不匹配时,等离子体激励抑制机翼流动分离效果将变差,甚至失效;相反,如果激励参数与流动特征参数相匹配时,可获得良好的控制效果。
[0003] 在实际飞行中,分离流的流动特征随飞行雷诺数、来流迎、环境自然等因素的影响随机变化,使等离子体激励在全飞行时间内保持对分离流的良好控制效果变得困难。这需要全工作时段激励参数与分离流流动特征匹配,才能保证实际飞行中的控制效果。
[0004] 然而,要实现全工作时段激励参数与分离流流动特征匹配存在困难。

发明内容

[0005] 为解决传统技术中存在的全工作时段激励参数与分离流流动特征匹配存在困难影响控制效果的技术问题,本发明实施例提供一种飞机机翼自适应流动分离控制方法、系统及存储介质。
[0006] 本发明实施例通过下述技术方案实现:第一方面,本发明实施例提供一种飞机机翼自适应流动分离控制方法,包括:
根据机翼表面沿弦向布置的多个测压点的压数据判断是否产生由大尺度脱落
涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;
根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;
使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间,以使
等离子体激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制。
[0007] 进一步的,所述飞机机翼自适应流动分离控制方法还包括:实时获取机翼表面沿弦向布置的多个测压点的压力数据。
[0008] 进一步的,根据机翼表面沿弦向布置的多个测压点的压力数据判断是否产生由大尺度脱落涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;包括:使用在机翼表面沿弦向布置的多个测压点的压力数据制成测压曲线;
判断测压曲线上是否产生由大尺度脱落涡引起的脉动信号,若是,则根据每一个
测压点产生脉动信号的时刻以及每个测压点在弦向上的位置线性拟合出脱落涡的运动速
度。
[0009] 进一步的,根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;包括:用当地弦长除以所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间。
[0010] 第二方面,本发明实施例提供一种飞机机翼自适应流动分离控制系统,包括:判断单元,用于根据机翼表面沿弦向布置的多个测压点的压力数据判断是否产生
由大尺度脱落涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;
计算单元,用于根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;
以及
修正单元,用于使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励
间隙时间,以使等离子体激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制。
[0011] 进一步的,所述飞机机翼自适应流动分离控制系统还包括:获取单元,用于实时获取机翼表面沿弦向布置的多个测压点的压力数据。
[0012] 进一步的,判断单元还包括:测压曲线单元,用于使用在机翼表面沿弦向布置的多个测压点的压力数据制成测
压曲线;
脉动信号判断单元,用于判断测压曲线上是否产生由大尺度脱落涡引起的脉动信
号;以及
线性拟合单元,用于根据每一个测压点产生脉动信号的时刻以及每个测压点在弦
向上的位置线性拟合出脱落涡的运动速度。
[0013] 第三方面,本发明实施例提供一种飞机机翼自适应流动分离控制系统,包括:压力传感器组,包括多个压力传感器,每个压力传感器用于在机翼表面沿弦向布
置;
控制器,用于接收来自每个压力传感器的对应测压点的压力数据井根据机翼表面
沿弦向布置的多个测压点的压力数据判断是否产生由大尺度脱落涡引起的脉动信号,若
是,则根据脉动信号计算脱落涡的运动速度;根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间并向高压等离子体驱动器发出控制指令;
高压等离子体驱动器,用于实时接收所述控制指令并根据所述控制指令实时调节
等离子体激励器的输出电压波形,使激励器按照指定的激励间隙时间工作;以及
等离子体激励器,用于与高压等离子体驱动器连接。
[0014] 进一步的,等离子体激励器为DBD等离子体激励器。
[0015] 第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,执行所述飞机机翼自适应流动分离控制方法。
[0016] 本发明实施例与现有技术相比,具有如下的优点和有益效果:本发明实施例的一种飞机机翼自适应流动分离控制方法、系统及存储介质,通过
根据机翼表面沿弦向布置的多个测压点的压力数据判断是否产生由大尺度脱落涡引起的
脉动信号,根据脉动信号计算脱落涡的运动速度;根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间,使等离子体激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制;从而,使实际飞行时等离子体激励器可自适应的使等离子体激励间隙时间等于机翼分离流脱落涡的运动时间,从而获得机翼分离流良好的匹配控制效果。
附图说明
[0017] 为了更清楚地说明本发明示例性实施方式的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
[0018] 图1为飞机机翼自适应流动分离控制方法流程示意图。
[0019] 图2为一种飞机机翼自适应流动分离控制系统示意图。
[0020] 图3为另一种飞机机翼自适应流动分离控制系统示意图。
[0021] 图4为各个测压点检测大尺度脱落涡的原理示意图。
[0022] 图5为激励间隔时间与大尺度涡运动时间匹配过程示意图。
[0023] 图6为另一种飞机机翼自适应流动分离控制系统的工作过程示意图。

具体实施方式

[0024] 为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
[0025] 在以下描述中,为了提供对本发明的透彻理解阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实施例中,为了避免混淆本发明,未具体描述公知的结构、电路、材料或方法。
[0026] 在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“一个实施例”、“实施例”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和、或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的示图都是为了说明的目的,并且示图不一定是按比例绘制的。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
[0027] 在本发明的描述中,术语“前”、“后”、“左”、“右”、“上”、“下”、“竖直”、“平”、“高”、“低”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
实施例
[0028] 为解决传统技术中存在的全工作时段激励参数与分离流流动特征匹配存在困难影响控制效果的技术问题,第一方面,本发明实施例提供一种飞机机翼自适应流动分离控制方法,可实现等离子体激励参数实时匹配分离流特征参数,从而有效提高等离子体分离流的控制效果,其中,激励参数选为等离子体非定常激励间隙时间,分离流特征参数选为剪切层大尺度脱落涡流经机翼的时间。当两者相近,乃至相等时,参数达到匹配。本发明实施例通过使等离子体激励间隙时间等于机翼分离流脱落涡的运动时间,获得机翼分离流良好的匹配控制效果。参考图1所示,包括:
S1.根据机翼表面沿弦向布置的多个测压点的压力数据判断是否产生由大尺度脱
落涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;
通过采用沿弦向布置的测压点,通过检测大尺度脱落涡造成的测压点正负压力脉
动,以及各测压点的脉动时间差,来估算大尺度脱落涡的运动时间。
[0029] S2.根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;S3.使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间,
以使等离子体激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制。
[0030] 通过等离子体激励间隙时间自适应调节,获得了等离子体激励在全飞行时间内保持对机翼分离流的良好控制效果。
[0031] 从而,本发明实施例根据脉动信号计算脱落涡的运动速度;根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间,使等离子体激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制;从而,使实际飞行时等离子体激励器可自适应的使等离子体激励间隙时间等于机翼分离流脱落涡的运动时间,从而获得机翼分离流良好的匹配控制效果。
[0032] 进一步的,所述飞机机翼自适应流动分离控制方法还包括:T0.实时获取机翼表面沿弦向布置的多个测压点的压力数据。
[0033] T1.使用在机翼表面沿弦向布置的多个测压点的压力数据制成测压曲线;T2.判断测压曲线上是否产生由大尺度脱落涡引起的脉动信号,若是,则根据脉动
信号计算脱落涡的运动速度;
T3.根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;
T4.使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间,
以使等离子体激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制。
[0034] 示例性的工作过程可参考图4所示,在机翼表面沿弦向布置一组测压点,实时获取测压点的压力数据,当分离剪切层脱落的大尺度脱落涡流经测压点时,在测压曲线上会产生一个正负脉动信号,由图5所示记录每一个测压点脉动信号的时刻,然后根据每个压力传感器的弦向位置线性拟合出脱落涡的运动速度。用当地弦长除以该运动速度估算出当前脱落涡流经机翼的时间,然后将非定常激励的间隙时间动态调节为该估算时间,由此实现激励参数的匹配,由图5所示。控制过程中,通过以上方法实时估算脱落涡在机翼表面的运动时间,实时修正激励器非定常激励间隙时间,从而实现针对分离流脱落涡运动时间特征的自适应控制。
[0035] 进一步的,根据机翼表面沿弦向布置的多个测压点的压力数据判断是否产生由大尺度脱落涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;包括:S11.使用在机翼表面沿弦向布置的多个测压点的压力数据制成测压曲线;
S12.判断测压曲线上是否产生由大尺度脱落涡引起的脉动信号,若是,则根据每
一个测压点产生脉动信号的时刻以及每个测压点在弦向上的位置线性拟合出脱落涡的运
动速度。
[0036] 进一步的,根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;包括:S31.用当地弦长除以所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间。
[0037] 从而,本发明实施例可实时检测机翼分离流中大尺度脱落涡的存在及其经过机翼的运动时间;可以实现DBD等离子体激励间隙时间自适应机翼分离流大尺度脱落涡的运动时间,达到全工作时段的参数匹配控制,使得等离子体激励在全飞行时间内保持对机翼分离流的良好控制效果。
[0038] 第二方面,本发明实施例提供一种飞机机翼自适应流动分离控制系统,参考图2所示,包括:判断单元,用于根据机翼表面沿弦向布置的多个测压点的压力数据判断是否产生
由大尺度脱落涡引起的脉动信号,若是,则根据脉动信号计算脱落涡的运动速度;
计算单元,用于根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;
以及
修正单元,用于使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励
间隙时间,以使等离子体激励器工作时,剪切层大尺度脱落涡流经机翼的时间和等离子体非定常激励间隙时间相匹配以实现飞机机翼自适应流动分离控制。
[0039] 进一步的,所述飞机机翼自适应流动分离控制系统还包括:获取单元,用于实时获取机翼表面沿弦向布置的多个测压点的压力数据。
[0040] 进一步的,判断单元还包括:测压曲线单元,用于使用在机翼表面沿弦向布置的多个测压点的压力数据制成测
压曲线;
脉动信号判断单元,用于判断测压曲线上是否产生由大尺度脱落涡引起的脉动信
号;以及
线性拟合单元,用于根据每一个测压点产生脉动信号的时刻以及每个测压点在弦
向上的位置线性拟合出脱落涡的运动速度。
[0041] 第三方面,本发明实施例提供一种飞机机翼自适应流动分离控制系统,参考图3所示,包括:压力传感器组,包括多个压力传感器,每个压力传感器用于在机翼表面沿弦向布
置;
控制器,用于接收来自每个压力传感器的对应测压点的压力数据井根据机翼表面
沿弦向布置的多个测压点的压力数据判断是否产生由大尺度脱落涡引起的脉动信号,若
是,则根据脉动信号计算脱落涡的运动速度;根据所述脱落涡的运动速度估算出当前脱落涡流经机翼的时间;使用估算出的当前脱落涡流经机翼的时间修正激励器非定常激励间隙时间并向高压等离子体驱动器发出控制指令;
高压等离子体驱动器,用于实时接收所述控制指令并根据所述控制指令实时调节
等离子体激励器的输出电压波形,使激励器按照指定的激励间隙时间工作;以及
等离子体激励器,用于与高压等离子体驱动器连接。
[0042] 进一步的,等离子体激励器为DBD等离子体激励器。
[0043] 示例性的,飞机机翼自适应流动分离控制系统的工作过程参考图6所示。飞机机翼自适应流动分离控制系统包括压力传感器组、控制器、高压等离子体驱动器、DBD等离子体激励器。其中,压力传感器组的每个压力传感器与机翼表面测压点一对一联通,所有压力传感器同步实时采集各测压点的压力值,并转换为数字信号发送给控制器,控制器对每一个采集通道的压力数据流进行信号处理,以识别出由大尺度脱落涡引起的压力正负脉动信号,再由此计算出当前大尺度脱落涡流经机翼的时间。然后采用该时间值更新等离子体非定常激励的间隙时间参数,并以控制指令形式发送给高压等离子体驱动器,驱动器按照指令实时调节对DBD等离子体激励器的输出电压波形,使激励器按照指定的激励间隙时间工作。控制器采用高性能处理器,保证以上自适应控制的实时性。
[0044] 第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,执行所述飞机机翼自适应流动分离控制方法。
[0045] 以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
QQ群二维码
意见反馈