一种阵列式荷电喷雾轴流旋过滤筒

申请号 CN201910853016.X 申请日 2019-09-10 公开(公告)号 CN112547323A 公开(公告)日 2021-03-26
申请人 康孚(天津)净化空调有限公司; 发明人 敖顺荣; 尤彬彬;
摘要 本 发明 涉及一种阵列式荷电喷雾轴流旋 风 过滤筒,包括:轴流旋风过滤筒、供液喷管及静电 雾化 喷嘴 ,静电 雾化喷嘴 与供液喷管连通;高压电源,高压电源的高压供电端连接在静电雾化喷嘴的静电感应环上。本发明提供的一种阵列式荷电喷雾轴流旋风过滤筒,导电溶液从静电雾化喷嘴喷出时,在高压 电场 作用下产生感应荷电,荷电液滴表面张 力 减小,使得其粒径进一步减小,在外部风的带动下,喷出的荷电液滴迅速与含尘气流一并进入轴流旋风过滤筒,荷电液滴与含尘气流在轴流旋风过滤筒内壁形成向前螺旋旋转的气液固多相混合气流,并在静电 吸附 、碰撞、扩散等综合作用凝并成大 质量 颗粒,从而增强了其运动过程中的 离心力 及 惯性力 ,除尘效果更好。
权利要求

1.一种阵列式荷电喷雾轴流旋过滤筒,其特征在于,包括:
轴流旋风过滤筒(10),其为若干个且阵列设置;
供液喷管(11),其固定设置在轴流旋风过滤筒(10)的进风侧,供液喷管(11)内流通导电溶液;
静电雾化喷嘴(12),静电雾化喷嘴(12)与供液喷管(11)连通,静电雾化喷嘴(12)朝向轴流旋风过滤筒(10)设置,静电雾化喷嘴(12)包括雾化喷嘴(121)、静电感应环(122)和连接外壳(123),静电感应环(122)和雾化喷嘴(121)之间通过连接外壳(123)进行连接;
高压电源(13),高压电源(13)的高压供电端连接在静电雾化喷嘴(12)的静电感应环(122)上,低压供电端与供液喷管(11)连接并一同接地。
2.根据权利要求1所述的一种阵列式荷电喷雾轴流旋风过滤筒,其特征在于,轴流旋风过滤筒(10)包括:外筒(104),外筒(104)两端分别设置进风口(101)和出风口(102),外筒(104)内部靠近进风口(101)一端设置导流叶片(105),所述出风口(102)的内径小于所述外筒(104)的内径;
流体(106),其设置在外筒(104)内部中间位置
外筒(104)靠近出风口(102)一端设置排尘槽(103),所有排尘槽(103)之间相互连通。
3.根据权利要求2所述的一种阵列式荷电喷雾轴流旋风过滤筒,其特征在于,轴流旋风过滤筒(10)下方固定设置液固两相收集箱(14),液固两相收集箱(14)与排尘槽(103)连通,液固两相收集箱(14)上设置风机(141),风机(141)将液固两相收集箱(14)中的气体送入进风口(101)。
4.根据权利要求3所述的一种阵列式荷电喷雾轴流旋风过滤筒,其特征在于,供液喷管(11)与液固两相收集箱(14)连通;供液喷管(11)上设置循环(15)和过滤器(16)。
5.根据权利要求3所述的一种阵列式荷电喷雾轴流旋风过滤筒,其特征在于,液固两相收集箱(14)内部的上下两面均固定设置挡板(142),挡板(142)的高度小于液固两相收集箱(14)的高度,液固两相收集箱(14)顶面的挡板(142)位于底面的挡板(142)与排尘槽(103)之间。
6.根据权利要求1所述的一种阵列式荷电喷雾轴流旋风过滤筒,其特征在于,供液喷管(11)内流通的导电溶液为自来溶液或氢溶液或聚酯水溶液或乙二醇水溶液。

说明书全文

一种阵列式荷电喷雾轴流旋过滤筒

技术领域

[0001] 本发明涉及空气净化技术领域,特别涉及一种阵列式荷电喷雾轴流旋风过滤筒。

背景技术

[0002] 近年来,空气污染问题日渐严重引起了人们的广泛关注,污染物浓度超标,危害人类健康,尤其是空气中的细颗粒物,己成为我国城市空气污染的首要物质。为去除空气中的颗粒物,通风空调系统安装有空气过滤器,工业废气排放系统安装有除尘器,但这些空气过滤器、除尘器运行一段时间后需频繁更换滤料或进行清洗维护,且系统运行阻较高、能耗大,在去除PM2.5超细颗粒物方面普遍存在效率不高的问题。
[0003] 中国专利申请号201410549444.5,发明名称为“旋风式荷电雾空气净化除尘方法及其系统”,通过水雾与含尘气流混合后再经过高压电场荷电以获得含尘荷电气雾,然后含尘荷电气雾在一个混合反应室充分混合后,再进入反转式旋风除尘器进行分离除尘。由于该方法水雾与含尘气流先混合后再统一在电场中荷电,气流中的颗粒物和水滴被荷上了同极性的电荷,相互之间存在相互排斥的静电力,不利于水滴与颗粒物之间的吸附和凝并。由于不是水雾在喷嘴处直接荷电,因此雾滴所获得的荷质比较小,荷电水雾对除尘效率的贡献不会太大。

发明内容

[0004] 本发明提供一种阵列式荷电喷雾轴流旋风过滤筒,用以解决现有技术中荷电水雾空气净化除尘装置除尘效果差的缺陷
[0005] 为了解决上述背景技术提出的问题,本发明提供了一种阵列式荷电喷雾轴流旋风过滤筒,包括:轴流旋风过滤筒,其为若干个且阵列设置;供液喷管,其固定设置在轴流旋风过滤筒的进风侧,供液喷管内流通导电溶液;静电雾化喷嘴,静电雾化喷嘴与供液喷管连通,静电雾化喷嘴朝向轴流旋风过滤筒设置,静电雾化喷嘴包括雾化喷嘴、静电感应环和连接外壳,静电感应环和雾化喷嘴之间通过连接外壳进行连接;高压电源,高压电源的高压供电端连接在静电雾化喷嘴的静电感应环上,低压供电端与供液喷管连接并一同接地。
[0006] 为了使液固两相混合物能够及时排出,优选的技术方案为,其特征在于,轴流旋风过滤筒包括:外筒,外筒两端分别设置进风口和出风口,外筒内部靠近进风口一端设置导流叶片,所述出风口的内径小于所述外筒的内径;导流体,其设置在外筒内部中间位置;外筒靠近出风口一端设置排尘槽,所有排尘槽之间相互连通。
[0007] 为了使液固两相混合物能够收集,优选的技术方案为,轴流旋风过滤筒下方固定设置液固两相收集箱,液固两相收集箱与排尘槽连通,液固两相收集箱上设置风机,风机将液固两相收集箱中的气体送入进风口。
[0008] 为了使导电溶液能够循环使用,优选的技术方案为,供液喷管与液固两相收集箱连通;供液喷管上设置循环和过滤器。
[0009] 为了减少液固两相混合物进入风机中,优选的技术方案为,液固两相收集箱内部的上下两面均固定设置挡板,挡板的高度小于液固两相收集箱的高度,液固两相收集箱顶面的挡板位于底面的挡板与排尘槽之间。
[0010] 优选的技术方案为,供液喷管内流通的导电溶液为自来水溶液或氢溶液或聚酯水溶液或乙二醇水溶液。
[0011] 本发明的有益效果为:
[0012] 本发明提供的一种阵列式荷电喷雾轴流旋风过滤筒,导电溶液从静电雾化喷嘴喷出时,在高压电场作用下产生感应荷电,荷电液滴表面张力减小,使得其粒径进一步减小,在外部风的带动下,喷出的荷电液滴迅速与含尘气流一并进入轴流旋风过滤筒,荷电液滴与含尘气流在轴流旋风过滤筒内壁形成向前螺旋旋转的气液固多相混合气流,并在静电吸附、碰撞、扩散等综合作用凝并成大质量颗粒,从而增强了其运动过程中的离心力惯性力,除尘效果更好。
[0013] 本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
[0014] 下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。

附图说明

[0015] 附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
[0016] 图1为本发明整体结构示意图;
[0017] 图2为本发明中静电雾化喷嘴的结构示意图;
[0018] 图3为本发明中轴流旋风过滤筒的结构示意图;
[0019] 其中,10-轴流旋风过滤筒;101-进风口;102-出风口;103-排尘槽;104-外筒;105-导流叶片;106-导流体;11-供液喷管;12-静电雾化喷嘴;121-雾化喷嘴;122-静电感应环;123-连接外壳;13-高压电源;14-液固两相收集箱;141-风机;142-挡板;15-循环泵;16-过滤器。

具体实施方式

[0020] 以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
[0021] 本发明提供了一种阵列式荷电喷雾轴流旋风过滤筒,包括:轴流旋风过滤筒10,其为若干个且阵列设置,轴流旋风过滤筒10可根据处理风量的大小和安装空间的长宽比例进行调整;供液喷管11,其固定设置在轴流旋风过滤筒10进风侧,供液喷管11内流通导电溶液,本实施例中,供液喷管11内流通的导电溶液可为自来水溶液或氢氧化钙溶液或聚氨酯水溶液或乙二醇水溶液等导电溶液,以适应不同的空气净化应用场景,根据不同的空气净化应用场所采用不同的荷电喷雾溶液,例如:燃锅炉的烟气脱硫除尘系统采用氢氧化钙溶液、通风空调系统采用自来水溶液;静电雾化喷嘴12,静电雾化喷嘴12与供液喷管11连通,静电雾化喷嘴12朝向轴流旋风过滤筒10设置,静电雾化喷嘴12包括雾化喷嘴121、静电感应环122和连接外壳123,静电感应环122的材质为金属,本实施例中,静电感应环122优选的材料为、不锈;连接外壳123的材质为绝缘材料,本实施例中,连接外壳123优选的材料为塑料,静电感应环122和雾化喷嘴121之间通过连接外壳123进行连接;高压电源13,高压电源13的高压供电端连接在静电雾化喷嘴12的静电感应环122上,低压供电端与供液喷管11连接并一同接地,使雾化喷嘴121处呈零电位,起到与静电感应环122形成电位差的作用。
[0022] 优选的技术方案为,轴流旋风过滤筒10包括:外筒104,外筒104两端分别设置进风口101和出风口102,外筒104内部靠近进风口101一端设置导流叶片105,所述出风口102的内径小于所述外筒104的内径;导流体106,其设置在外筒104内部中间位置;外筒104靠近出风口102一端设置排尘槽103,所有排尘槽103之间相互连通。
[0023] 上述技术方案的工作原理和技术效果为:
[0024] 本发明提供的一种阵列式荷电喷雾轴流旋风过滤筒,导电溶液从静电雾化喷嘴12喷出时,静电感应环122在高压电场作用下产生感应荷电,荷电液滴表面张力减小,雾滴粒径均匀,粒径直径约80μm左右,在外部风的带动下,喷出的荷电液雾迅速与含尘气流一并进入轴流旋风过滤筒10,荷电液滴与含尘气流在轴流旋风过滤筒10内壁形成向前螺旋旋转的气液固多相混合气流,荷电液滴与含尘气流中的固体颗粒物之间存在静电力的作用,荷电液滴与气流中的颗粒物在扰动气流中近距离接触、碰撞、吸附,并凝并在一起形成大粒径的液固两相混合物,在离心力的作用下甩向轴流旋风过滤筒10的内壁,在惯性力的作用下沿着轴流旋风过滤筒10内壁螺旋向前移动,当喷液量大到一定程度时,在外筒104内壁处形成向前螺旋移动的含尘液膜层,防止液固两相混合物随着空气进入出风口102,因此除尘效果更好;对于高温干燥含尘烟气净化应用场合,按此技术方案可保证荷电液滴在可能被完全蒸发之前已将烟气中的颗粒粉尘吸附、凝并在一起,液滴蒸发之后将电荷遗留在凝并后的大粒径颗粒物之上,使大粒径颗粒物之间具有相互的吸引力。
[0025] 为了使液固两相混合物能够收集,优选的技术方案为,轴流旋风过滤筒10下方固定设置液固两相收集箱14,液固两相收集箱14与排尘槽103连通,液固两相收集箱14上设置风机141,风机141将液固两相收集箱14中的气体送入进风口101,本实施例中,风机141优选为负压吸尘风机,负压吸尘风机的风量约为系统处理风量的5%~10%,风机141将液固两相收集箱14中的气体送入进风口101,使轴流旋风过滤筒10的液固两相的收集效率更高;液固两相收集箱14可按常规设置有溢流口、排污口、补液口,由于属于常规技术,在此不再赘述。
[0026] 为了使导电溶液能够循环使用,优选的技术方案为,供液喷管11与液固两相收集箱14连通;供液喷管11上设置循环泵15和过滤器16;本实施例中,过滤器16有选为管道式过滤器16。
[0027] 为了减少液固两相混合物进入风机141中,优选的技术方案为,液固两相收集箱14内部的上下两面均固定设置挡板142,挡板142的高度小于液固两相收集箱14的高度,液固两相收集箱14顶面的挡板142位于底面的挡板142与排尘槽103之间。
[0028] 上述技术方案的工作原理和技术效果为:
[0029] 轴流旋风过滤筒10将空气和液固两相混合物送到出风口102,液固两相混合物与出风口102侧壁之间具有吸附力,液固两相混合物通过排尘槽103流入液固两相收集箱14,使液固两相混合物及时排出,风机141将液固两相收集箱14中的气体抽出并引入进风口101,液固两相收集箱14内部的上下两面固定设置的挡板142,对液固两相污染物进行阻挡,防止液固两相污染物被吸入进风口101中;液固两相收集箱14中的溶液被循环泵15抽出,经过过滤器16进行过滤,再次循环至供液喷管11中再次使用,提高了溶液的使用效率。
[0030] 本专利申请的工作原理为:
[0031] 含尘气流首先经过由静电雾化喷嘴喷出的水雾区,二者混合后进入到轴流旋风过滤筒10的导流叶片105处,并在导流体106与外筒104之间的通道内近距离接触、碰撞和吸附,最终凝并在一起形成大粒径的液固两相颗粒物。在此过程中悬浮物的平均粒径及平均质量大大增加,使其在下游所受离心力也大大增加,在导流叶片105的作用下,液固两相颗粒物在受离心力作用被甩向轴流旋风过滤筒10的内壁,形成含尘液膜层,并在惯性力的作用下沿着外筒104内壁螺旋向前移动,最终被截留掉入排尘槽103中,在重力和负压吸尘风机的动力作用下被收集到液固两相收集箱14之中,而洁净气流则从出风口102排出。通过本发明所述装置可有效将空气中微小粒径固体颗粒物凝并为大粒径的液固两相颗粒物,从而增加颗粒物被捕集的效率。
[0032] 显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
QQ群二维码
意见反馈