一种紧凑式气液旋流多级分离器

申请号 CN202111150474.0 申请日 2021-09-29 公开(公告)号 CN113953103B 公开(公告)日 2022-11-18
申请人 华南理工大学; 发明人 杨乐乐; 艾山; 王晶; 樊天慧; 陈超核; 王凯; 罗炼;
摘要 本 发明 公开了一种紧凑式气液旋流多级分离器,包括进液分离结构、主管分离结构和缓冲分离结构,进液分离结构与主管分离结构的中部连接,主管分离结构的上部与缓冲分离结构的顶部连通,主管分离结构的下部与缓冲分离结构连通。本发明结构紧凑,通过分离结构布置与传输管路结合,实现占用空间小;采用多级分离,分离效率高;在流动过程中实现气液分离, 停留时间 短,处理量大。
权利要求

1.一种紧凑式气液旋流多级分离器,其特征在于,包括进液分离结构、主管分离结构和缓冲分离结构,所述主管分离结构包括主管、环状除液器、第二旋流器、第二溢出管、第二溢出、出气管、出气电动阀、出液电动阀和出液管,所述主管的顶端通过出气管与缓冲分离结构的顶部连通,所述出气电动阀安装于出气管,所述环状除液器安装主管的上部,所述环状除液器与缓冲分离结构的顶部连通,所述进液分离结构与主管的中部连通,所述第二旋流器安装于主管的下部,所述第二溢出管的一端安装于第二旋流器的下方并位于主管的轴向中心线,所述第二溢出管的另一端与缓冲分离结构的侧方连通,所述第二溢出阀安装于第二溢出管,所述主管的底端通过出液管与缓冲分离结构的底部连通,所述出液电动阀安装于出液管;
所述环状除液器包括外管、两个安装环和内管,两个所述安装环安装于外管的两端,两个所述安装环安装于主管的上部,所述内管安装于外管的内腔,所述内管设有斜向切口,所述外管、两个安装环和内管围成环状容纳腔体,所述环状容纳腔体与缓冲分离结构的顶部连通。
2.根据权利要求1所述一种紧凑式气液旋流多级分离器,其特征在于,所述进液分离结构包括进液管、第一旋流器、第一溢出管和第一溢出阀,所述第一旋流器和第一溢出管的一端依次安装于进液管的内部,所述第一溢出管的一端位于进液管的轴向中心线,所述第一溢出管的另一端安装于进液管与环状除液器之间,所述第一溢出阀安装于第一溢出管。
3.根据权利要求2所述一种紧凑式气液旋流多级分离器,其特征在于,所述进液管和主管的夹为30°‑65°。
4.根据权利要求2所述一种紧凑式气液旋流多级分离器,其特征在于,所述进液管与主管的连接处设有楔形收缩管。
5.根据权利要求4所述一种紧凑式气液旋流多级分离器,其特征在于,楔形收缩管的出口端的截面面积为入口端的40%‑70%。
6.根据权利要求1所述一种紧凑式气液旋流多级分离器,其特征在于,所述缓冲分离结构包括除液管、除液阀、排气管、单向排气阀、缓冲罐、液位传感器、沉降管和单向电动阀,所述环状除液器通过除液管与缓冲罐的第一连接口连接,所述除液阀安装于除液管,所述出气管通过排气管与缓冲罐的第二连接口连接,所述单向排气阀安装于排气管,所述第二溢出管的另一端与缓冲罐的第三连接口连接,所述出液管通过沉降管与缓冲罐的第四连接口连接,所述单向电动阀安装于沉降管,所述单向电动阀与液位传感器连接。
7.根据权利要求1所述一种紧凑式气液旋流多级分离器,其特征在于,所述第二旋流器包括多个螺旋导流片和圆柱部,多个所述螺旋导流片的一端均匀安装于圆柱部的外壁,多个所述螺旋导流片的另一端安装于主管的内壁。
8.根据权利要求1所述一种紧凑式气液旋流多级分离器,其特征在于,所述主管与排气管的连接处设有顶盖腔。
9.根据权利要求1所述一种紧凑式气液旋流多级分离器,其特征在于,所述主管与出液管的连接处设有缓冲腔。

说明书全文

一种紧凑式气液旋流多级分离器

技术领域

[0001] 本发明涉及油气分离的技术领域,尤其涉及一种紧凑式气液旋流多级分离器。

背景技术

[0002] 近几年,世界海上油气勘探开发步伐明显加快,海上油气新发现超过陆上,储产量持续增长,海洋已成为全球油气资源的战略接替区。特别是随着海洋油气勘探新技术的不断应用和日臻成熟,全球已进入深油气开发阶段,给油气开采带来了新的挑战,对分离器的体积和效率提出更高的要求。传统的重沉降罐由于存在体积和质量庞大,分离时间长,分离效率低等缺点,不适用于海洋生产平台及深海水下生产系统。
[0003] 现有技术中存在一种含气、水原油的除水系统及其应用方法,其包括:分岔管路、缓冲罐和柱型旋流器,分岔管路包括上倾斜管、下水平管以及若干垂直管,用于除去采集液中的气体和部分油;缓冲罐通过控制罐体内的油水界面进行运行;柱型旋流器用于对缓冲罐下出口的液体进行处理,使其达到标准外排;采集液在管路结构中主要靠重力作用进行气液分离,后面靠缓冲罐等开展油水分离,结构不紧凑,无法应用于深海水下分离。

发明内容

[0004] 本发明的目的是为了克服以上现有技术存在的设备体积和质量庞大、分离时间长和分离效率低的技术问题,提供了一种紧凑式气液旋流多级分离器。
[0005] 本发明的目的通过以下的技术方案实现:一种紧凑式气液旋流多级分离器,包括进液分离结构、主管分离结构和缓冲分离结构,所述主管分离结构包括主管、环状除液器、第二旋流器、第二溢出管、第二溢出、出气管、出气电动阀、出液电动阀和出液管,所述主管的顶端通过出气管与缓冲分离结构的顶部连通,所述出气电动阀安装于出气管,所述环状除液器安装主管的上部,所述环状除液器与缓冲分离结构的顶部连通,所述进液分离结构与主管的中部连通,所述第二旋流器安装于主管的下部,所述第二溢出管的一端安装于第二旋流器的下方并位于主管的轴向中心线,所述第二溢出管的另一端与缓冲分离结构的侧方连通,所述第二溢出阀安装于第二溢出管,所述主管的底端通过出液管与缓冲分离结构的底部连通,所述出液电动阀安装于出液管。
[0006] 更优的选择,所述进液分离结构包括进液管、第一旋流器、第一溢出管和第一溢出阀,所述第一旋流器和第一溢出管的一端依次安装于进液管的内部,所述第一溢出管的一端位于进液管的轴向中心线,所述第一溢出管的另一端安装于进液管与环状除液器之间,所述第一溢出阀安装于第一溢出管。
[0007] 更优的选择,所述进液管和主管的夹为30°‑65°。
[0008] 更优的选择,所述进液管与主管的连接处设有楔形收缩管。
[0009] 更优的选择,楔形收缩管的出口端的截面面积为入口端的40%‑70%。
[0010] 更优的选择,所述缓冲分离结构包括除液管、除液阀、排气管、单向排气阀、缓冲罐、液位传感器、沉降管和单向电动阀,所述环状除液器通过除液管与缓冲罐的第一连接口连接,所述除液阀安装于除液管,所述出气管通过排气管与缓冲罐的第二连接口连接,所述单向排气阀安装于排气管,所述第二溢出管的另一端与缓冲罐的第三连接口连接,所述出液管通过沉降管与缓冲罐的第四连接口连接,所述单向电动阀安装于沉降管,所述单向电动阀与液位传感器连接。
[0011] 更优的选择,所述环状除液器包括外管、两个安装环和内管,两个所述安装环安装于外管的两端,两个所述安装环安装于主管的上部,所述内管安装于外管的内腔,所述内管设有斜向切口,所述外管、两个安装环和内管围成环状容纳腔体,所述环状容纳腔体与缓冲分离结构的顶部连通。
[0012] 更优的选择,所述第二旋流器包括多个螺旋导流片和圆柱部,多个所述螺旋导流片的一端均匀安装于圆柱部的外壁,多个所述螺旋导流片的另一端安装于主管的内壁。
[0013] 更优的选择,所述主管与排气管的连接处设有顶盖腔。
[0014] 更优的选择,所述主管与出液管的连接处设有缓冲腔。
[0015] 本发明相对现有技术具有以下优点及有益效果:
[0016] 1、本发明通过进液分离结构、主管分离结构和缓冲分离结构,结构紧凑,通过分离结构布置与传输管路结合,实现占用空间小;采用多级分离,分离效率高;在流动过程中实现气液分离,停留时间短,处理量大;可用于海洋生产平台,替代或部分替代传统的重力沉降罐,节省甲板占用面积和有效载荷,极大程度地降低平台造价;也可应用于深海油气开采,实现水下油气就地分离和分相输送,能够大幅度提高采油回收率,减少多相混输中的腐蚀、堵塞、沉积和段塞流等问题,提高下游设备如除砂分离器以及油水分离器的工作性能。附图说明
[0017] 图1是本发明一种紧凑式气液旋流多级分离器的示意图;
[0018] 图2是本发明一种紧凑式气液旋流多级分离器的图1中F处的局部放大图;
[0019] 图3是本发明一种紧凑式气液旋流多级分离器的环状除液器的剖视图;
[0020] 图4是本发明一种紧凑式气液旋流多级分离器的图1中G处的局部放大图;
[0021] 图5是本发明一种紧凑式气液旋流多级分离器的第二旋流器的示意图;
[0022] 图6是本发明一种紧凑式气液旋流多级分离器的图1中D处楔形收缩管的剖视图;
[0023] 图7是本发明一种紧凑式气液旋流多级分离器的图1中E处剖视图;
[0024] 附图中各部件的标记:1、进液管;2、第一旋流器;3、第一溢出管;4、主管;5、第二旋流器;501、圆柱部;502、螺旋导流片;6、第二溢出管;7、出液管;8、出液电动阀;9、第二溢出阀;10、单向电动阀;11、沉降管;12、缓冲罐;1201、第一连接口;1202、第二连接口;1203、第三连接口;1204、第四连接口;13、液位传感器;14、单向排气阀;15、排气管;16、出气管;17、出气电动阀;18、除液管;19、除液阀;20、环状除液器;2001、外管;2002、内管;2003、斜向切口;2004、安装环;2005、排液口;2006、环状容纳腔体;21、第一溢出阀;22、顶盖腔;23、缓冲腔;24、楔形收缩管;2401、入口端;2402、出口端;A、进液口;B、出气口;C、出液口。

具体实施方式

[0025] 下面结合附图和具体实施例对本发明的发明目的作进一步详细地描述,实施例不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施例。
[0026] 如图1所示,一种紧凑式气液旋流多级分离器,包括进液分离结构、主管分离结构和缓冲分离结构,进液分离结构与主管分离结构的中部倾斜连通,主管分离结构的上部和下部均与缓冲分离结构连通。
[0027] 一种紧凑式气液旋流多级分离器为结构紧凑的六级分离结构,分别为四级旋流分离、一级环状套管分离和一级重力分离,实现气体和液体混合流的高效分离,提高产品生产和输送效率。进液分离结构用于将采集液导入到分离器中,并在导入过程中进入第一级旋流分离、第二级旋流分离和第三级旋流分离,主管分离结构可以进行第四级旋流分离和第五级环状套管分离,缓冲分离结构实现第六级重力分离。
[0028] 如图1和6所示,进液分离结构包括进液管1、第一旋流器2、第一溢出管3、第一溢出阀21和楔形收缩管24,第一旋流器2安装在进液管1前半部分的内壁(即是进液管1的进液端),第一溢出管3安装在进液管1后半部分的内腔(即是第一旋流器2的后方),第一溢出管3的进液端位于进液管1的轴向中心线上,第一溢出阀21安装在第一溢出管3上。主管4与进液管通过楔形收缩管24连接,楔形收缩管24的入口端2401和出口端2402的截面面积之比为40‑70%(即是出口端2402的截面面积为入口端2401的40‑70%),最好的比例为68%,经过试验测试,过大或过小的收缩比都不利于气液旋流分离。第一溢出管3的出液端安装在楔形收缩管24和环状除液器20之间。进液管1倾斜地安装在主管4上,进液管1和主管4之间的夹角为30‑65°,最好的角度为63°,且进液管1内流体沿切向方向流入主管4,根据试验测试证明此角度值产生旋流分离的效果最佳。
[0029] 进液管1用于将采集液引流至主管4上并进行旋流分离;第一旋流器2用于将采集液产生旋流达到液体和气体离心分离;第一溢出管3将含气率较高的气液混合物导入主管4的上部;第一溢出阀21用于控制第一溢出管3的流通;楔形收缩管24利于气液旋流分离。
[0030] 如图1和7所示,主管分离结构包括主管4、环状除液器20、第二旋流器5、第二溢出管6、第二溢出阀9、出气管16、出气电动阀17、出液电动阀8和出液管7,主管4的顶端设有顶盖腔22,主管4与出气管16的进气端垂直连通(出气管16位于顶盖腔22的下方),出气电动阀17安装在出气管16上,出气管16的出气端与缓冲分离结构的排气管15连通(出气管16与排气管15的连接处位于出气电动阀17与出气口B之间)。环状除液器20通过法兰盘安装在主管
4的上部(位于出气管16的下方),环状除液器20的下半部分设有排液口2005,与缓冲分离结构的除液管18连接。主管4的中部分别与进液分离结构的第一溢出管3和进液管1连通。第二旋流器5安装在主管4的下部内壁。第二溢出管6的进液端安装在主管4下部的内腔(位于第二旋流器5的正下方),第二溢出管6的进液端位于主管4的轴向中心线上,第二溢出管的出液端与缓冲分离结构的缓冲罐12的左侧连通,第二溢出阀21安装在第二溢出管上。主管4的底部设有缓冲腔23,主管4与出液管7的进液端垂直连通,出液管7位于缓冲腔23的上方,出液电动阀8安装在出液管7上。出液管7的出液端与缓冲分离结构的沉降管11垂直连通,沉降管11与出液管7的连接处位于出液电动阀8与出液口C之间。
[0031] 主管4为主管分离结构的主体,用于将液体和气体进行分离并安装零部件;环状除液器20的安装数量可以根据分离后气体的含液量来选择安装单个或者多个;第二旋流器5让采集液产生旋流从而实现气体和液体离心分离;出气管16将气体收集并排出;出气电动阀17用于控制出气管16的气体流通;出液电动阀8用于控制出液管7的流通;出液管7将分离出的液体收集并统一排出;顶盖腔22起到缓冲和使气相流中夹带液体回落的作用;缓冲腔23起到缓冲和使液相中夹带气体分离上升的作用。
[0032] 如图4和5所示,第一旋流器2和第二旋流器5的结构相同,第二旋流器5包括多个螺旋导流片502和圆柱体501,多个螺旋导流片502的一端均匀地绕着圆柱体501的外壁连接,多个螺旋导流片502的另一端卡接在主管4的内壁上。可根据旋流分离需求确定螺旋导流片502的旋转角度及具体数量。螺旋导流片502用于引导液体流动方向从而产生旋流;圆柱体
501用于固定安装螺旋导流片502。
[0033] 如图2和3所示,环状除液器20包括外管2001、内管2002和两个安装环2004,内管2002安装在外管2001的内腔,两个安装环2004分别安装在外管2001的两端,内管2002安装在外管2001的内腔(内管2002的两端分别与两个安装环2004连接),内管2002的中部设有斜向切口2003,为环状斜向切口2003,外管2001、内管2002和两个安装环2004围成环状容纳腔体2006,环状容纳腔体的下部设有排液口2005,除液管18连接在排液口2005上。两个安装环
2004均通过法兰盘安装在主管4的上部。离心作用形成贴壁的旋流液体,通过环状斜向切口
2003流入到环状容纳腔体2006内,经过排液口2005流入到缓冲分离结构的除液管18。
[0034] 如图1所示,缓冲分离结构包括除液管18、除液阀19、排气管15、单向排气阀14、缓冲罐12、液位传感器13、沉降管11和单向电动阀10,缓冲罐12设有四个连接口,分别为第一连接口1201、第二连接口1202、第三连接口1203和第四连接口1204,第一连接口1201和第二连接口1202位于缓冲罐12的顶部,第三连接口1203位于缓冲罐12的左侧,第四连接口1204位于缓冲罐12的底部。环状除液器20的排液口2005通过除液管18与第一连接口1201连通,除液阀19安装在除液管18上。排气管15的进气端与第二连接口1202连通,排气管15的排气端与出气管16的出气端连通(排气管15的接入点位于出气电动阀17和出气口B之间),所有气体均从出气口B排出,单向排气阀14安装在排气管15上。第二溢出管6的出液端与第三连接口1203连通。第四连接口通过沉降管11与出液管7的出液端连通(沉降管11的接入点位于出液口C和出液电动阀8之间),所有液体均从出液管7的出液口C排出,单向电动阀10安装在沉降管11上。液位传感器13安装在缓冲罐12的右侧,液位传感器13与单向电动阀10通过无线连接。液面达到缓冲罐12的最高限制高度后,单向电动阀10打开,液体排出,液面达到最低限制高度后,沉降管11单向电动阀10关闭,液体停止排出。出气电动阀17和出液电动阀8根据进液管1的流量,结合出气口B和出液口C传感器数据,控制阀体开闭的幅度。
[0035] 除液管18将环状除液器20分离出来的液体引流到缓冲罐12内;除液阀19用于控制除液管18内液体的流通;排气管15用于收集气体并将气体统一向外排出;单向排气阀14用于控制排气管15的流通;缓冲罐12用于通过重力将气体和液体进行分离;液位传感器13感应缓冲罐12内液体的液位高度;沉降管11用于将分离出来的液体排到出液管7上;单向电动阀10用于控制沉降管11的流通。
[0036] 工作过程说明:采集液从进液口A流入进液管1,经过第一旋流器2产生旋流进而离心分离,气体聚集在进液管1轴向中心线附近,液体迁移到进液管1的管壁,属于第一级旋流分离,此时,含气率较高的气液混合物由第一溢出管3分离出,并切向流入主管4的上部。此时,气体含量较高的混合物产生旋流进而离心分离,属于第二级旋流分离,旋流产生后液体因比重大,迁移至主管4的管壁,并贴壁旋转,气体在离心作用下聚集在主管4的轴向中心线附近。采集液经进液管1沿主管4周向切向入流,产生旋流,属于第三级旋流分离,旋流分离后气体含量高的混合物沿主管4的轴线向上运动,而液体含量高的混合物在重力和离心力的作用下,沿主管4的管壁做螺旋向下运动。在主管4的下部处,液体含量高的混合物后经第二旋流器5后,旋流强度进一步增强,属于第四级旋流分离,分离出的含少量液体的气体沿第二溢出管6流出至缓冲罐12,分离出的液体经出液管7流至出液口C。在主管4的上部处,管壁附近的旋转液体通过环状除液器20时,经斜向切口2003进入外管2001和内管2002之间的环状容纳腔体2006,汇入除液管18,然后流入缓冲罐12,而分离的气体向上经主管4汇入排气管15,过程中因主管4上部突出顶盖腔具缓冲和沉降作用,液体沿管壁回落,此过程属于第五级环状套管分离。除液管18和第二溢出管6分离出的混合液流入缓冲罐12后进行重力分离,属于第六级重力分离,分离的气体经单向排气阀14,沿排气管15汇入出气管16,分离的液体经单向电动阀10,沿沉降管11汇入出液管7,此过程中液体的流出与否,由缓冲罐12中液体的液位高度决定,液位传感器13根据液位阈值,发出单向电动阀10的控制信号,高限时打开,低限时闭合。
[0037] 通过以上结构设计和工作过程设计,本系统实现了对气液流的六级分离,整体结构紧凑,分离效率高,且可在生产过程的前端对采集液进行分离,降低传输过程中因混合态传输产生的能量损耗。
[0038] 上述具体实施方式为本发明的优选实施例,并不能对本发明进行限定,其他的任何未背离本发明的技术方案而所做的改变或其它等效的置换方式,都包含在本发明的保护范围之内。
QQ群二维码
意见反馈