序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 Integrated self injection locked self phase loop locked optoelectronic oscillator AU2014254441 2014-02-19 AU2014254441B2 2017-09-07 PODDAR AJAY KUMAR; ROHDE ULRICH L; DARYOUSH AFSHIN S
The present invention details fabrication guidelines of integrated optoelectronic oscillators (100) with frequency and phase stability, having higher frequency selectivity in a relatively small size (compared to the larger size of a higher order electrically realized RF filter), reduced temperature sensitivity, and minimized frequency drift. The integrated photonic components (101, 103, 105, 107) and RF oscillator (140) may use Silicon photonics and microelectronic integration using CMOS and BiCMOS technology, eliminating the need for bulky and/or discrete optical and microwave components.
182 OPTOELECTRONIC OSCILLATOR WITH TUNABLE FILTER CA2996033 2016-08-19 CA2996033A1 2017-03-02 NICHOLLS CHARLES WILLIAM TREMLETT
An optoelectronic oscillator (OEO) is disclosed comprising an electronically tunable filter for transposing narrow pass band characteristics of a surface acoustic wave (SAW) filter to a microwave frequency to provide mode selection in the OEO. An OEO is disclosed comprising a set of optical domain components, a downconverter in communication with an output of the optical domain components, and a set of radio frequency (RF) domain components in communication with an output of the downconverter. The set of RF domain components comprises a tunable filter operating at a filter center frequency and having an output coupled to the set of optical domain components for communicating a mode selection result. The tunable filter including a tuner; and a sub-filter. The sub-filter operating at a fixed center frequency to provide mode selection and adjacent mode suppression with respect to the tunable filter center frequency. The sub-filter center frequency being lower than the tunable filter center frequency, and a ratio of the tunable filter center frequency to a bandwidth of the sub-filter being at least 1000:1.
183 Integrated self injection locked self phase loop locked optoelectronic oscillator AU2014254441 2014-02-19 AU2014254441A1 2015-11-05 PODDAR AJAY KUMAR; ROHDE ULRICH L; DARYOUSH AFSHIN S
The present invention details fabrication guidelines of integrated optoelectronic oscillators (100) with frequency and phase stability, having higher frequency selectivity in a relatively small size (compared to the larger size of a higher order electrically realized RF filter), reduced temperature sensitivity, and minimized frequency drift. The integrated photonic components (101, 103, 105, 107) and RF oscillator (140) may use Silicon photonics and microelectronic integration using CMOS and BiCMOS technology, eliminating the need for bulky and/or discrete optical and microwave components.
184 OSCILLATEUR OPTOELECTRONIQUE ACCORDABLE ET A FAIBLE BRUIT DE PHASE FR1200858 2012-03-22 FR2988537A1 2013-09-27 VAN DIJK FREDERIC; ENARD ALAIN; ACCARD ALAIN
L'invention concerne un oscillateur optoélectronique qui comprend une source laser (1') et une boucle optoélectronique fermée (10') comportant un modulateur optoélectronique de la source laser, une fibre optique (12'), un photodétecteur (13'), des moyens de filtrage d'une fréquence d'oscillation, un coupleur-diviseur (15') relié à la sortie (S') de l'oscillateur. La source laser est un laser bi-fréquence optique à deux sections, une première section (l'a) apte à émettre un signal optique de fréquence v1, une deuxième section (1'b) apte à émettre un signal optique de fréquence v2. Le photodétecteur (13') est photo mélangeur et apte à fournir en sortie un signal électrique de fréquence F = |v1- v2|. Le modulateur (17') est relié à la première section (1'a) mais pas à la deuxième. Le laser bi-fréquence, le photodétecteur photo mélangeur et le modulateur de la première section suffisent à réaliser les moyens de filtrage.
185 ОПТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ RU2007142878 2007-11-19 RU2365027C1 2009-08-20 MIKHEEV GENNADIJ MIKHAJLOVICH; ZONOV RUSLAN GENNAD EVICH; ALEKSANDROV VLADIMIR ALEKSEEVICH; RUSSKIKH LJUDMILA MIKHAJLOVNA
Изобретениеотноситсяк оптоэлектронике, вчастностик устройствамдляпреобразованияимпульсногооптическогоизлученияв импульсныйэлектрическийсигнал. Ономожетбытьиспользованодлярегистрацииоптическогоизлучения, атакжедляпостроенияуглоизмерительныхустройств. Оптоэлектрическийпреобразовательсостоитизподложки, проводящейпленкии двухпроводящихпараллельныхэлектродов, имеющихэлектрическийконтактс поверхностьюпленки. Отличительнойособенностьюявляетсято, чтопроводящаяпленкаоптоэлектрическогопреобразователявыполненав видетолстопленочногорезисторанаосновесеребраи палладия. Техническийрезультат - повышениестойкостипреобразователяк механическими оптическимвоздействиям. 3 ил.
186 Method and system for operating an atomic clock with reduced spin-exchange broadening of atomic clock resonances AU2003253893 2003-07-15 AU2003253893A8 2004-09-30 HAPPER WILLIAM; WALTER DANIEL K
187 Source of millimetric electromagnetic radiation includes resonator coupled to antenna and resonance-shifting component for lossless switching of e.g. radar array with dielectric lens DE19941870 1999-09-02 DE19941870A1 2000-03-23 KATO TAKATOSHI; SAKAMOTO KOICHI; IIO KENICHI; ISHIKAWA YOHEI
The resonator (5) is connected to a switching unit (7) or alternatively a component with variable reactance (not shown). The resonant frequency of the resonator is changed by switching the unit on and off, or by changing the reactance of the component. An antenna (9) radiates electromagnetic energy stored in the resonator, at a fixed frequency. It also includes a transmission line (6) to be coupled with the resonator.
188 Homodyne detector, heterodyne detector and generator device for electromagnetic radiation DE19619442 1996-05-14 DE19619442A1 1998-03-05 PRETTL WILHELM PROF DR; HUBER WOLFGANG DIPL PHYS; BETZ JOSEF DR; SCHILZ ARNO DIPL PHYS
The detector and generator carries out its functions in the high temperature superconductive layers of the device. These layers are grown epitaxially on a substrate, so that the C-axis of the superconductor is tilted with respect to the substrate surface normal. The high temperature superconductive layer can be in a superconductive mode, or in a transition from normally conductive to the superconductive mode. A current is actively introduced into the high temperature superconductive layer, and the heterodyne detection local oscillator is of an external type, or may be an internal generator.
189 Optical source for a communication system DE69313287 1993-06-29 DE69313287T2 1998-01-02 WALKER NIGEL
190 Optical microwave generation method for mobile radio system DE19613824 1996-04-06 DE19613824A1 1997-10-16 NOWAK WALTER PROF DR ING; SAUER MICHAEL DIPL ING
The method involves using a light source (1), e.g. a laser, a photoreceiver (8), and a transmission path (3,6,7) between the light and the photoreceiver. The spectrally narrow band light of the source is first modulated by microwave frequencies by a modulator (3), followed by targeted, dispersive treatment. Thus a maximum microwave current (9) and maximum available performance are evoked in the photoreceiver, with the frequency equal to the modulation frequency, or its multiple. Preferably, a Mach-Zehnder type, or a linear phase modulator are used.
191 Code division multiple access signal receiving apparatus for base station AU8044894 1994-12-14 AU674111B2 1996-12-05 SATO TOSHIFUMI
192 Oscillator. ES90915802 1990-10-05 ES2080162T3 1996-02-01 LEWIS MEIRION FRANCIS; WIGHT DAVID ROBERT
EL OSCILADOR DE UNA SOLA FRECUENCIA (10) COMPRENDE UN DIODO LASER (12), UN HAZ DE FIBRAS OPTICAS (22) ACTUANDO COMO FILTRO DE LINEA DE RETARDO, UN FOTODIODO (26) Y UN CIRCUITO DE REALIMENTACION AL DIODO LASER (12) CONTENIENDO UN AMPLIFICADOR (28) Y UN FILTRADO Q INFERIOR ADICIONAL (29, 34). LA SALIDA DEL DIODO LASER (18) SOPORTA UNA SEÑAL DE MODULACION QUE ES FILTRADA A UNA SERIE DE FRECUENCIAS SINCRONICAS O "RESONANTES" POR EL HAZ (22), VUELTO A CONVERTIR EN UNA SEÑAL ELECTRICA POR EL DIODO (26), AMPLIFICADA, Y REDUCIDA A UNA SOLA FRECUENCIA RESONANTE POR EL FILTRADO INFERIOR Q (29, 34). DESPUES SE APLICA AL DIODO LASER (12) COMO REALIMENTACION POSITIVA PARA MODULAR LA SALIDA DEL DIODO (18). LA SALIDA DEL OSCILADOR (10) PUEDE TOMARSE COMO UNA SEÑAL DE MICROONDAS O EN UN PORTADOR OPTICO. LA INVENCION PROPORCIONA UN OSCILADOR INCORPORANDO REALIMENTACION EN UN PORTADOR OPTICO.
193 Code division multiple access signal receiving apparatus for base station AU8044894 1994-12-14 AU8044894A 1995-06-22 SATO TOSHIFUMI
194 Optical source for communications system AU4351893 1993-06-29 AU4351893A 1994-01-24 WALKER NIGEL GORDON
195 PHOTOSENSOR SU4461145 1988-04-26 SU1592726A2 1990-09-15 NOVINKOV GENNADIJ A
196 NON-PIEZOELECTRIC RESONATOR WITH A HIGH Q FACTOR DE3665241 1986-05-22 DE3665241D1 1989-09-28 DIEULESAINT EUGENE; ROYER DANIEL
197 A circuit, provided with a through irradiation with light controllable semiconductor element. NL7106550 1971-05-13 NL179526C 1986-09-16
198 FR2476359B1 - FR8003519 1980-02-18 FR2476359B1 1984-09-07
199 Method and device for inputting graphic data for generating electrical quantities for open-loop and closed-loop control purposes DE3239164 1982-10-22 DE3239164A1 1984-04-26 SCHWARZ HANS WERNER
For converting graphic data such as the contour variation 5 of curves and/or straight lines, into electrical quantities for open-loop or closed-loop control purposes and so forth, this variation is applied to a data carrier 1 and correspondingly cut out and the remaining opaque carrier section 7 is photo-optically or mechanically scanned along the visible contours 5. The scanned values are supplied to a device, for example a photo-electrical unit, for conversion into electrical quantities and are forwarded from this to an arrangement to be controlled. For this purpose, a movable part is displaced relative to a fixed part, namely the data carrier 1 relative to a fixed gap-shaped penetration 22 or conversely, during which process in each case the part of the visible contour variation in the penetration 22 is illuminated by a light source 23 arranged in front of it. The light rays following in accordance with the contour variation 5 and passing through the transparent part 6 of the data carrier 1 impinge on a photoelectrical unit 3 which is provided behind it and which converts the intensity of the respective incident volume of light into correspondingly large electrical values.
200 PULSED FEEDBACK CIRCUIT FOR AN OPTO-ELECTRONIC DETECTOR GB7849449 1978-12-21 GB2039183B 1983-01-06
QQ群二维码
意见反馈