首页 / 专利库 / 物理 / 电场 / 一种检定风电场出力相关性的方法

一种检定电场相关性的方法

阅读:1033发布:2020-06-19

专利汇可以提供一种检定电场相关性的方法专利检索,专利查询,专利分析的服务。并且一种检定 风 电场 出 力 相关性的方法,包括以下步骤:a.以风电场历史出力为样本数据,采用非参数核 密度 估计法分别求出两风电场出力的概率密度函数;b.计算两个风电场的累计分布函数值;d.采用多维核密度估计求出两个风电场的联合概率密度函数和联合分布函数H(u1,u2);e.计算不同风电场之间出力序列的Spearman秩相关系数和Kendall秩相关系数;f.将秩相关系数与设定 阈值 比较,得出多风电场出力是否具有相关性以及相关性大小的结论。本 发明 能有效反映风电场出力的相关性特征,表明了多风电场出力的同步性概率,呈现了多风电场出力场景,对确保风电并网电力系统的稳定和经济运行具有重要意义。,下面是一种检定电场相关性的方法专利的具体信息内容。

1.一种检定电场相关性的方法,其特征在于,所述方法包括以下步骤:
a.以风电场历史出力为样本数据,采用非参数核密度估计法分别求出两风电场出力的概率密度函数:
设两个风电场出力样本序列为ω1r,ω2r,L,ωnr(r=1,2),其中r为风电场序号,n为样本容量,采用Gauss核函数建立如下的优化模型:
由此计算出两个风电场出力样本序列的窗宽h1,h2;
选取Gauss函数作为核函数,将两个风电场出力序列用概率密度函数 进行刻画:
式中, 分别为第一风电场和第二风电场出力的概率密度函数;K(g)为核函数;ω1为第一风电场出力;ω2为第二风电场出力;
b.计算两个风电场出力的概率分布函数F(ωr)(r=1,2),具体计算如下:
式中,Φ为标准正态分布函数
c.将两个风电场的历史出力序列ω1r,ω2r,L,ωnr(r=1,2)代入到风电场出力的累积分布函数F(ωr)(r=1,2),计算出两个风电场的累计分布函数值Ur=(u1r,u2r,L,unr)T,(r=
1,2);
d.令ur=F(ωr)(r=1,2),将两个风电场的累积分布视为随机变量,采用多维核密度估计求出两个风电场的联合概率密度函数h(u1,u2)和联合分布函数H(u1,u2),其中H(g,g)的边缘分布为均匀分布;
e.将联合分布函数H(u1,u2)作为核Copula函数并记作 计算不同风电场之间出力序列的Spearman秩相关系数 和Kendall秩相关系数
f.将两个秩相关系数与设定阈值比较,得出表征风电场间出力波动规律的相似程度;
若所述数值等于零,表示不相关;大于设定阈值,表示多风电场出力具有相当相关性,对区域内的多个风电场出力值进行预测或进行电力系统潮流计算、稳定分析以及调度时,必须考虑风电场间的相关性影响,以保障风电并网电力系统的可靠运行;所述阈值取值范围为大于0,小于1,一般取值0.4到0.6。
2.根据权利要求1所述的检定风电场出力相关性的方法,其特征在于,采用多维核密度估计求两个风电场的联合概率密度函数h(u1,u2)和联合分布函数H(u1,u2)的具体过程如下:
①确定均匀序列u11,u21,L,un1;u12,u22,L,un2的最优窗宽矩阵H:
取H为正定对矩阵,即H=diag(h1,h2),通过求解如下优化模型得到H:
②确定多维核函数K(g)为:
式中,x,y为函数的变量;
③将最优窗宽矩阵H和二维核函数K(x,y)代入随机变量u1,u2的联合概率密度表达式,得到两个风电场的联合概率密度函数h(u1,u2):
二元随机变量u1,u2的核Copula密度函数表达式如下:
两个风电场的联合分布函数H(u1,u2)为:

说明书全文

一种检定电场相关性的方法

技术领域

[0001] 本发明涉及风电场出力相关性的检定方法,属发电技术领域。

背景技术

[0002] 当前,风电能量得到大规模的开发和利用,风电装机容量增长十分迅速。截止到2017年底,我国风电装机容量已达到188.3GW。由于风电的随机性和波动性,大规模风电并网势必会对电力系统的安全稳定运行造成一定的影响。随着风电场规模的不断扩大,同一地区往往汇聚有多个风电场,这些风电场的风电出力具有一定的相关性,尤其是距离较近的风电场一般处于同一风速带上,这样,各个风电场出力不仅具有时间上的随机性,在空间上也具有很强的相关性。我国风电资源的分布极不均匀,往往采用集中开发、基地建设的模式,风电场的相关性及其影响较为严重。检测确定多风电场出力的相关结构及其变化规律对大规模风电并入电网后的安全稳定、经济运行具有重要意义。
[0003] 相关性风速下的风电场出力具有一定同步性,样本粒子空间分布更为密集,使风电功率的波动性得到叠加,威胁电网的安全运行,且随着风速相关性增强,电网失去稳定的概率增大。因此,对一定范围内的多风电场进行出力相关性检定非常必要。
[0004] 大型风电场风电出力相关性的准确检定十分困难,涉及因素很多;只有准确地描述了多风电场的风电出力相关性,才能客观地分析或预测风电场出力。本发明涉及一种确定风电场出力相关性的核Copula函数,利用该函数计算表征相关性的秩相关系数,检定风电场出力相关性的方法,从而有效反映相关性风速下的风电场出力特征,提高风电场并网运行的稳定性和经济性,属于发电技术领域。
[0005] 目前,对风电场出力相关性分析、测定中,广泛采用的是在Copula函数族中选取一个或多个Copula函数描述风电场出力的相关结构,选取的准则是基于备选Copula与经验Copula函数之间最小的欧式距离法,并以欧式距离最小所对应的Copula函数来描述风电场出力的相关特性。事实上,经验Copula函数是不连续的,基于经验法确定的Copula函数可能不唯一,并且经验Copula函数分布只是真实分布的一个近似,无论样本容量多大,二者之间总会存在一定的差距。此外,经验Copula函数不存在解析的表达式,当数据信息量很大时,采用该方法进行合理Copula函数选择将耗时很长,甚至陷入困境。迄今为止,如何建立准确的风电场出力相关性模型进行相关性测定仍是一大难点。

发明内容

[0006] 本发明的目的在于针对现有技术之弊端,提供一种检定风电场出力相关性的方法,明确多风电场出力一致性的几率,以提高分析或预测风电场出力的精度,进而提高风电场并网运行的稳定性。
[0007] 本发明所述问题是以下述技术方案来实现的。
[0008] 一种检定风电场出力相关性的方法,包括以下步骤:
[0009] a.以风电场历史出力为样本数据,采用非参数核密度估计法分别求出两风电场出力的概率密度函数:
[0010] 设两个风电场出力样本序列为ω1r,ω2r,L,ωnr(r=1,2),其中r为风电场序号,n为样本容量,采用Gauss核函数建立如下的优化模型:
[0011]
[0012] 由此计算出两个风电场出力样本序列的窗宽h1,h2;
[0013] 选取Gauss函数作为核函数,将两个风电场出力序列用概率密度函数进行刻画:
[0014]
[0015]
[0016] 式中, 分别为第一风电场和第二风电场出力的概率密度函数;K(g)为核函数;ω1为第一风电场出力;ω2为第二风电场出力;
[0017] b.计算两个风电场出力的概率分布函数F(ωr)(r=1,2),具体计算如下:
[0018]
[0019]
[0020] 式中,Φ为标准正态分布函数;
[0021] c.将两个风电场的历史出力序列ω1r,ω2r,L,ωnr(r=1,2)代入到风电场出力的累积分布函数F(ωr)(r=1,2),计算出两个风电场的累积分布函数值Ur=(u1r,u2r,L,unr)T,(r=1,2);
[0022] d.令ur=F(ωr)(r=1,2),将两个风电场的累积分布视为随机变量,采用多维核密度估计求出两个风电场的联合概率密度函数h(u1,u2)和联合分布函数H(u1,u2),其中H(g,g)的边缘分布为均匀分布;
[0023] 其中联合概率密度函数h(u1,u2)和联合分布函数H(u1,u2)的具体处理过程如下:
[0024] ①确定均匀序列u11,u21,L,un1;u12,u22,L,un2的最优窗宽矩阵H:
[0025] 取H为正定对矩阵,即H=diag(h1,h2),通过求解如下优化模型得到H:
[0026]
[0027] ②确定多维核函数K(g)为:
[0028]
[0029] 式中,x,y为函数的变量;
[0030] ③将最优窗宽矩阵H和二维核函数K(x,y)代入随机变量u1,u2的联合概率密度表达式,得到两个风电场的联合概率密度函数h(u1,u2):
[0031]
[0032] 二元随机变量u1,u2的核Copula密度函数表达式如下:
[0033]
[0034] 两个风电场的联合分布函数H(u1,u2)则为:
[0035]
[0036] e.将联合分布函数H(u1,u2)作为核Copula函数并记作 计算不同风电场之间出力序列的Spearman秩相关系数 和Kendall秩相关系数
[0037]
[0038]
[0039] f.将两个秩相关系数与设定阈值比较,得出表征风电场间出力波动规律的相似程度;若所述数值等于零,表示不相关;大于设定阈值,表示多风电场出力具有相当相关性,对区域内的多个风电场出力值进行预测或进行电力系统潮流计算、稳定分析以及调度时,必须考虑风电场间的相关性影响,以保障风电并网电力系统的可靠运行;所述阈值取值范围为大于0,小于1,一般取值0.4到0.6。
[0040] 本发明基于非参数核密度估计和Copula函数理论构建了适用于检测确定风电场出力相关性的核Copula函数,并根据该函数直接建立了用于检测风电场出力相关性的算法模型,避免了Copula函数选择、参数确定两大难点。该技术方案中所得到的风电场之间出力序列的Spearman秩相关系数 和Kendall秩相关系数 能有效反映风电场出力的相关性特征,表明了多风电场出力的同步性概率,呈现了多风电场出力场景,对确保风电并网电力系统的稳定和经济运行具有重要意义。附图说明
[0041] 下面结合附图对本发明作进一步详述。
[0042] 图1是本发明方案的流程示意图;
[0043] 图2是第一风电场出力分布的核密度估计曲线;
[0044] 图3是第二风电场出力分布的核密度估计曲线;
[0045] 图4是两个风电场出力的累积分布函数的频率直方图;
[0046] 图5是两个风电场出力的累积分布函数的核Copula密度函数示意图。
[0047] 图4说明第一风电场与第二风电场的出力具有尾部相关性(图2与图3数据曲线的规律描述),且下尾相关性较强,上尾相关相对较弱,即风电出力同时较小的概率较大,风电出力同时较大的概率较小。
[0048] 图5说明了本技术方案的有效性。
[0049] 文中所用符号分别表示为:r为风电场序号;n为样本容量;h1,h2为两个风电场出力样本序列的窗宽; 分别为第一风电场和第二风电场出力的概率密度函数;K(g)为核函数;ω1为第一风电场出力;ω2为第二风电场出力;F(ωr)(r=1,2)为两个风电场出T力的概率分布函数;Ur=(u1r,u2r,L,unr) ,(r=1,2)为两个风电场的累计分布函数值;h(u1,u2)为两个风电场的联合概率密度函数;H(u1,u2)为两个风电场的联合分布函数;为不同风电场之间出力序列的Spearman秩相关系数;为不同风电场之间出力序列的Kendall秩相关系数;H为最优窗宽矩阵。

具体实施方式

[0050] 本发明提供了一种检定风电场出力相关性的方法,旨在解决常规Copula函数在出力预测中所面临的选取困难以及参数确定麻烦等问题,能够更加准确方便地确定风电场出力的相关特性。
[0051] 本发明所述技术方案包括下述步骤:
[0052] (1)为准确得到风电场出力的概率密度函数,采用非参数核密度估计法计算影响风电出力序列拟合精度的窗宽值。过程如下:
[0053] 设两个风电场出力样本序列为ω1r,ω2r,L,ωnr(r=1,2),采用Gauss核函数建立如下优化模型
[0054]
[0055] 该模型可用于准确计算两个风电场出力样本序列的窗宽h1,h2。
[0056] 选取Gauss函数作为核函数,将两个风电场出力序列用概率密度函数进行刻画,具体是:
[0057]
[0058]
[0059] 式中,n为样本容量;K(g)为核函数。
[0060] (2)计算两个风电场出力的概率分布函数F(ωr)(r=1,2),具体计算如下:
[0061]
[0062]
[0063] (3)为消除不同容量风电场带来的差异,采用分布函数F(ω1),F(ω2)将两个风电T T场出力样本w1=(ω11,ω21,L,ωn1) ,w2=(ω12,ω22,L,ωn2) 进行归一化处理,得到归一化处理后的样本为U1=(u11,u21,L,un1)T,U2=(u12,u22,L,un2)T,并且有uir:U[0,1](i=1,2,L,n;r=1,2)。
[0064] (4)令u1=F(ω1),u2=F(ω2),采用多维核密度估计求出描绘两个风电场出力内在联系的联合概率密度函数h(u1,u2)和联合分布函数H(u1,u2),具体过程如下:
[0065] 1)确定均匀序列u11,u21,L,un1;u12,u22,L,un2的最优窗宽矩阵H。由于H为正定对称矩阵,通常取H为正定对角矩阵,即H=diag(h1,h2)。通过求解如下优化模型可以得到H:
[0066]
[0067] 2)确定多维核函数K(g)。为简化计算,K(g)可取两个单核Ki(g)的乘积,即K(g)=K1(g)K2(g)
[0068] 单核Ki(g)取Gauss函数,则K(g)可表示为:
[0069]
[0070] 3)将上述确定的窗宽矩阵H和二维核函数K(x,y)代入随机变量u1,u2的联合概率密度表达式
[0071]
[0072] 即可得到二元随机变量u1,u2的核Copula密度函数表达式,如下:
[0073]
[0074] 相应地,二元随机变量u1,u2的核Copula函数表达式为
[0075]
[0076] 该核Copula函数具有灵活的表达形式,对于各类型的样本具有更强的适应性。此外,该核Copula函数也具有与常规Copula函数类似的数学特性。
[0077] (5)利用上述得到的核Copula函数,计算多风电场出力的Spearman秩相关系数和Kendall秩相关系数,具体表达式如下:
[0078] 1)Spearman秩相关系数:
[0079]
[0080] 2)Kendall秩相关系数:
[0081]
[0082] (6)将秩相关系数与设定阈值比较,得出多风电场出力是否具有相关性以及相关性大小的结论。
[0083] 本发明提出了一种用于检定风电场出力相关性的函数构造方法,降低了目前检定多风电场出力相关性的难度,提高了检定多风电场出力相关性的适应范围。采用该核Copula函数计算秩相关系数时,无需从Copula函数族中去选择能准确拟合样本数据的Copula函数,并且对样本边缘分布也无限制,根据该函数可直接建立出用于检测确定风电场出力相关性的模型,避免了Copula函数选择、参数确定这两大难点。该技术方案能较准确反映变量间的非线性、非对称的相关结构,为分析风电场并网对电力系统的影响提供有利的信息。检定风电场出力的相关性,确定多风电场出力一致性的几率,对提高风电场出力的预测精度,进而提高电力系统的稳定和经济运行有着重要意义。
[0084] 为进一步展现本发明给出的用于检定风电场出力相关性的方法,下面结合具体实例进行叙述:
[0085] 选取华北地区某两个相邻风电场一段时间内的16068个出力样本,两个风电场的基本信息如下表:(出力样本可以是风速,也可以是风电场监测的功率)
[0086]风电场 均值(m/s) 方差(m/s) 容量(MW)
第一风电场 9.23 3.37 24
第二风电场 8.81 3.28 15
[0087] (1)确定各个风电场出力的概率密度函数。
[0088] 采用本发明所介绍的技术方案,可以得到两个风电场出力分布的核密度估计如图2和图3所示。由图可看出,风电场出力的核密度估计曲线几乎与经验法曲线完全重合。
[0089] (2)绘制出两个风电场出力的累计频率直方图,如图4所示。从图4可看出,两个风电场的出力具有非对称的尾部相关结构。
[0090] (3)由风电场出力的核密度估计得到出力的核分布函数,并根据核分布函数将两个风电场的出力序列变换为[0,1]上的均匀分布。
[0091] (4)利用本发明所述方案求出变换后的风场出力序列的最优窗宽矩阵H,结果如下:
[0092]
[0093] (5)将最优窗宽矩阵H代入核Copula函数表达式,得到第一风电场和第二风电场出力的联合分布函数:
[0094]
[0095] (6)按照本发明所述方式,计算描述多风电场出力相关性的Spearman秩相关系数和Kendall秩相关系数,如下:
[0096]
[0097]
[0098] 即:采用本发明所阐述的技术方案得到的风电场出力相关性量值为:Spearman秩相关系数0.7392以及Kendall秩相关系数0.5489。这两个量值表征了风电场间出力波动规律的相似程度。当该值(其范围为大于等于0,小于等于1,等于0表示不相关)大于设定阈值(具体阈值可视应用场景而定,通常可取0.5或0.4),表示多风电场出力具有相当的相关性,对该区域内的多个风电场出力值进行预测或进行电力系统潮流计算、稳定分析以及经济调度时,就必须考虑风电场间的相关性影响,才能保障风电并网电力系统的可靠运行。
相关专利内容
标题 发布/更新时间 阅读量
高压电场治疗仪 2020-05-12 438
一种电场装置 2020-05-12 894
海水电场淡化法 2020-05-13 606
电场感应设备 2020-05-13 576
一种电场传感器 2020-05-13 296
集风电场 2020-05-11 271
电场发电机 2020-05-11 947
电场灭菌机 2020-05-12 722
电场传感器 2020-05-11 117
风电场控制系统 2020-05-13 571
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈