首页 / 专利库 / 物理 / 弯月面 / 具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统及方法

具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统及方法

阅读:35发布:2020-05-17

专利汇可以提供具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统及方法专利检索,专利查询,专利分析的服务。并且本 发明 提供了一种具有磁屏蔽和多模式的方圆坯 连铸 弯月面 电磁搅拌 系统及方法,系统包括弯月面电磁搅拌器和变频电源控制系统;所述的变频电源控制系统连接弯月面电磁搅拌器的线圈的抽头,为弯月面电磁搅拌器提供变频电源;通过改变线圈内 电流 的相序及 相位 角 ,实现弯月面电磁搅拌模式或结晶器搅拌模式;所述的弯月面电磁搅拌模式,包括分别让 钢 水 形成单一环流区和单二环流区的两 种子 模式;对内部 质量 要求较高的钢种,选择结晶器搅拌模式进行搅拌;对表面和皮下质量要求较高的钢种,选择弯月面电磁搅拌模式搅拌。能使搅拌器没有安装空间及安装 位置 的限制,有效解决 铸坯 表面质量问题,对任意断面和钢种都能取得较好的 冶金 效果。,下面是具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统及方法专利的具体信息内容。

1.一种具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,其特征在于,包括弯
月面电磁搅拌器(15)和变频电源控制系统(16);
弯月面电磁搅拌器(15)安装在结晶器(17)的弯月面附近;
所述弯月面电磁搅拌器(15)包括芯(7)、多组线圈(4)、外壳体(5)和内壳体(8);多组线圈(4)均匀绕制在铁芯(7)上,铁芯(7)和多组线圈(4)设置在由外壳体和内壳体(8)组成的封闭壳体内;封闭壳体的形状与铁芯(7)匹配;
所述的变频电源控制系统(16)连接弯月面电磁搅拌器(15)的线圈(4)的抽头,为弯月
面电磁搅拌器(15)提供变频电源;通过改变线圈(4)内电流的大小、频率相位,实现对弯月面电磁搅拌器(15)的调控;
通过改变线圈(4)内电流的相序及相位,实现两类电磁搅拌模式:弯月面电磁搅拌模式和常规的结晶器电磁搅拌模式;
所述的弯月面电磁搅拌模式,包括让(13)形成单一环流区和单二环流区的两种子
模式;
弯月面电磁搅拌模式中,让钢水形成单一环流区的子模式对应的线圈(4)布置及供电
方式为:线圈(4)包括对称绕制在铁芯(7)上的4组线圈,每一组包括相邻的三个线圈,12个线圈根据在铁芯(7)上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;线圈a、b、c与线圈g、h、i均分别通以三相电源U、V、W;线圈d、e、f与线圈j、k、l均分别通以三相电源-U、-V、-W;
弯月面电磁搅拌模式中,让钢水形成单二环流区的子模式对应的线圈(4)布置及供电
方式为:线圈(4)包括对称绕制在铁芯(7)上的6组线圈,每一组包括相邻的三个线圈,18个线圈根据在铁芯(7)上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l、m、n、o、p、q、s;线圈d、e、f、线圈l、k、j与线圈p、q、s均分别通以三相电源U、V、W;线圈a、b、c、线圈i、h、g和线圈o、n、m均分别通以三相电源-U、-V、-W;
所述的常规的结晶器电磁搅拌模式中,线圈(4)布置及供电方式为:线圈(4)包括对称
绕制在铁芯(7)上的4组线圈,每一组包括相邻的三个线圈,12个线圈根据在铁芯(7)上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;线圈a、b、c与线圈d、e、f均分别通以三相电源U、V、W;线圈g、h、i与线圈j、k、l均分别通以三相电源-U、-V、-W。
2.根据权利要求1所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,其
特征在于,还包括结晶器电磁液面检测系统;结晶器电磁液面检测系统包括传感器(14)、前端放大装置和数据处理单元;传感器(14)安装在结晶器板(1)的内侧;传感器将测量到的液面位置信号传送至前端放大装置,信号经放大后,传送至数据处理单元,继而输出至变频电源控制系统(16),以实时检测和显示钢水液面(13)的实际位置;变频电源控制系统(16)根据检测结果对钢水液面(13)进行调控,防止钢水液面波动而引起卷渣。
3.根据权利要求2所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,其
特征在于,所述结晶器电磁液面检测系统的传感器(14)安装在结晶器(17)内的任意一侧,并位于该侧铜板中心位置并与其平行布置,传感器的前端与结晶器铜板的立面平行。
4.根据权利要求3所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,其
特征在于,所述结晶器电磁液面检测系统的传感器(14)为电磁式传感器或涡流式传感器。
5.根据权利要求4所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,其
特征在于,所述弯月面电磁搅拌器(15)包括两种结构形式,即环形式弯月面电磁搅拌器和凸极式弯月面电磁搅拌器;
所述环形式弯月面电磁搅拌器的铁芯(7)由多个不设齿槽的电工钢片叠成;线圈(4)
采用克莱姆绕组形式绕在铁芯上;
所述凸极形弯月面电磁搅拌器的铁芯(7)由多个带凸极的电工硅钢片叠成;线圈(4)采
用克莱姆绕组形式或集中式绕组形式绕在铁芯上。
6.根据权利要求5所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,其
特征在于,对于线圈(4)采用克莱姆绕组形式绕在铁芯上的弯月面电磁搅拌器(15),还加装有磁屏蔽罩(6);所述磁屏蔽罩(6)是由电导率σ>58000000S/m的紫铜板制成的凹字形开口罩,置于所述线圈(4)与铁芯之间或线圈(4)外围,其开口侧面向所述的结晶器铜板(1)。
7.一种具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌方法,其特征在于,采用权
利要求1~6中任一项所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统;
通过改变线圈(4)内电流的相序及相位角,实现两类电磁搅拌模式:弯月面电磁搅拌模式和常规的结晶器电磁搅拌模式;
所述的弯月面电磁搅拌模式,包括让钢水(1)形成单一环流区和单二环流区的两种子
模式;
弯月面电磁搅拌模式中,让钢水形成单一环流区的子模式对应的线圈4布置及供电方
式为:线圈(4)包括对称绕制在铁芯(7)上的4组线圈,每一组包括相邻的三个线圈,12个线圈根据在铁芯(7)上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;线圈a、b、c与线圈g、h、i均分别通以三相电源U、V、W;线圈d、e、f与线圈j、k、l均分别通以三相电源-U、-V、-W;
弯月面电磁搅拌模式中,让钢水形成单二环流区的子模式对应的线圈4布置及供电方
式为:线圈(4)包括对称绕制在铁芯(7)上的6组线圈,每一组包括相邻的三个线圈,18个线圈根据在铁芯(7)上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l、m、n、o、p、q、s;线圈d、e、f、线圈l、k、j与线圈p、q、s均分别通以三相电源U、V、W;线圈a、b、c、线圈i、h、g和线圈o、n、m均分别通以三相电源-U、-V、-W;
所述的常规的结晶器电磁搅拌模式中,线圈4布置及供电方式为:线圈(4)包括对称绕
制在铁芯(7)上的4组线圈,每一组包括相邻的三个线圈,12个线圈根据在铁芯(7)上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;线圈a、b、c与线圈d、e、f均分别通以三相电源U、V、W;线圈g、h、i与线圈j、k、l均分别通以三相电源-U、-V、-W。
8.根据权利要求8所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌方法,其
特征在于,通过结晶器电磁液面检测系统实时检测和显示钢水液面(13)的实际位置;变频电源控制系统(16)根据检测结果对钢水液面(13)进行调控,防止钢水液面波动而引起卷渣。
9.根据权利要求7或8所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌方法,
其特征在于,根据不同钢种冶金效果需要,通过调整变频电源控制系统(16)或者线圈接线方式选择所需要的搅拌模式;对内部质量要求较高的钢种,选择结晶器搅拌模式进行搅拌;
对表面和皮下质量要求较高的钢种,选择弯月面电磁搅拌模式进行搅拌。

说明书全文

具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统及

方法

技术领域

[0001] 本发明属于一项熔融金属连续铸造(连铸)用电磁控流技术,涉及一种具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统及方法。本发明也适用于常规的结晶器电磁搅拌。

背景技术

[0002] 连铸实践表明,结晶器内流动形貌不仅影响着铸坯表面和内部夹杂物和气泡的上浮、去除,而且会对结晶器内钢—渣自由液面(简称自由面)行为和初生坯壳生长状况产生影响。由于结晶器内自由面行为的复杂性和难控制性,使自由面处钢水流动控制为结晶器内钢水流动控制的重点和难点。一方面自由面附近的钢水要保持一定的流动速度,这样有利于增强熔融保护渣的润滑作用以及吸收气泡和夹杂物的能,也可降低钢水过热度,减缓结晶器内钢水的凝固速度,从而提高铸坯的表面和皮下质量;另一方面自由面附近钢水流动又不能太快,以避免造成弯月面变形和自由面波动而破坏结晶器润滑、保护渣卷吸及水口的侵蚀,导致表面和皮下缺陷。在现有结晶器电磁控流技术中,板坯连铸中具有代表性的有:基于行波磁场的结晶器电磁搅拌技术;基于直流的结晶器电磁制动技术,以及以行波磁场为基础的多模式结晶器电磁搅拌技术。而在方圆坯连铸中基本上只有旋转磁场的结晶器电磁搅拌技术。
[0003] 但现有结晶器电磁搅拌技术在冶金效果上存在某些不足:1、安装空间有要求。现有电磁搅拌的安装位置一般要求距离结晶器弯月面250~400mm,以满足既搅拌弯月面处的钢水又不引起弯月面变形和自由面波动的冶金效果。2、改善铸坯的表面质量有限。现有结晶器电磁搅拌器虽针对大部分钢种和断面都能取得较好的冶金效果,但对于表面质量要求较高的品种钢,由于其安装位置靠下,对非金属夹杂物的清洗和初期凝固坯壳的控制有限。3、大断面方圆坯的冶金效果有限。结晶器电磁搅拌器多采用一对极旋转磁场设计,断面越大,磁场在气隙中衰减越严重,有效搅拌钢水的作用力越小。4、易导致长宽比较大的方坯产生部裂纹。由于结晶器电磁搅拌采用旋转磁场一对极设计,方坯结晶器内的流动在中部,围绕中心做旋转运动,形成的流场为一个圆形,所以在四个角部呈现漩涡状的二次回流,夹杂物一旦进入其中则无法去除,形成角部夹渣,严重的导致角部裂纹或漏钢。
[0004] 因此,有必要设计一种没有安装空间的限制,能改善铸坯质量,适用性广的电磁搅拌系统及方法。

发明内容

[0005] 本发明所解决的技术问题是,针对背景技术中存在的缺点和问题,提供一种带磁屏蔽和多种控流模式的方圆坯连铸弯月面电磁搅拌系统及方法,该系绕顾名思义将电磁搅拌器安装在结晶器弯月面处对钢水实施多模式的电磁搅拌,既涵盖已有功能,同时又能使搅拌器没有安装空间及安装位置的限制,能有效地解决铸坯表面和皮下质量问题,对任意断面和钢种都能取得较好的冶金效果。
[0006] 为了实现上述技术目的,本发明采用如下技术方案:
[0007] 一种具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,包括弯月面电磁搅拌器15和变频电源控制系统16;
[0008] 弯月面电磁搅拌器安装在结晶器17的弯月面附近;
[0009] 所述结晶器17的结构形式通常采用管式或者组合式,其采用高热导率(λ>397W/(m·℃))、低电导率(σ<49000000S/m)的材制成。无论哪种结构形式都能方便弯月面电磁搅拌器安装在弯月面附近,满足结晶器内钢水离搅拌器15内壳体8的距离L尽量小;
[0010] 所述弯月面电磁搅拌器15包括芯7、多组线圈4、外壳体5和内壳体8;多组线圈4均匀绕制在铁芯7上,铁芯7和多组线圈4设置在由外壳体和内壳体8组成的封闭壳体内;封闭壳体的形状与铁芯7匹配;
[0011] 所述的变频电源控制系统16含有两个功能,一是实现对弯月面电磁搅拌器15的调控;二是实时显示检测的结晶器内钢水液面13的位置(见下文所述)。
[0012] 所述的变频电源控制系统16连接弯月面电磁搅拌器15的线圈4的抽头,为弯月面电磁搅拌器15提供三相或者两相变频电源;通过改变线圈4内电流的大小、频率相位,实现对弯月面电磁搅拌器15的调控;
[0013] 所述的弯月面电磁搅拌器15的磁场区大小及磁场方向均可独立通过变频电源控制系统16实时调控;
[0014] 通过改变线圈4内电流的相序及相位角,实现两类电磁搅拌模式:弯月面电磁搅拌模式和常规的结晶器电磁搅拌模式,前者用于表面质量要求较高的铸坯,后者用于内部质量要求较高的铸坯;
[0015] 所述的弯月面电磁搅拌模式包括多种子模式,可以让钢水形成单一环流区和多个环流区等;
[0016] 弯月面电磁搅拌模式中,让钢水形成单一环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,共需要4n(n≥1)组线圈,n为每一组线圈包括的相邻线圈个数;以n=3为例,即每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;通过调整变频电源控制系统16或者接线方式将线圈a、b、c与线圈g、h、i均分别通以三相电源U、V、W;
线圈d、e、f与线圈j、k、l均分别通以三相电源-U、-V、-W;
[0017] 弯月面电磁搅拌模式中,让钢水形成单二环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的6组线圈,共需要6n(n≥1)组线圈,n为每一组线圈包括的相邻线圈个数;以n=3为例,即每一组包括相邻的三个线圈,18个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l、m、n、o、p、q、s;通过调整变频电源控制系统16或者接线方式将线圈d、e、f、线圈l、k、j与线圈p、q、s均分别通以三相电源U、V、W;线圈a、b、c、线圈i、h、g和线圈o、n、m均分别通以三相电源-U、-V、-W;
[0018] 所述的弯月面电磁搅拌模式中采用多对磁极11的模式,其磁场设计特点是:磁路短,磁力线12不穿透铸坯,主要集中在凝固前沿附近,所以产生的电磁力不穿过铸坯中心,主要作用于铸坯凝固前沿。在磁场运行10下,可以使电磁力主要集中在凝固前沿附近,使其中的钢水作旋转流动,其流场特点:使结晶器内钢水2形成多个小的环流区域,凝固前沿附近流速快,向中心逐渐变慢,中心为零。流场形态9是一个方坯或矩形坯电磁搅拌形成的一个矩形环流或多个矩形环流。
[0019] 所述的常规的结晶器电磁搅拌模式中,线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,共需要4n(n≥1)组线圈,n为每一组线圈包括的相邻线圈个数;以n=3为例,即每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;通过调整变频电源控制系统16或者接线方式将线圈a、b、c与线圈d、e、f均分别通以三相电源U、V、W;线圈g、h、i与线圈j、k、l均分别通以三相电源-U、-V、-W。
[0020] 所述的常规的结晶器搅拌模式中,磁场为一对磁极11,磁力线12穿透钢水2内部。在磁场运行10下,使其激发的电磁力在钢水2内部产生旋转流动。流场形态9是一个类圆形(方坯、圆坯都是类圆形流场)。
[0021] 在连铸生产过程中,根据不同钢种冶金效果需要,通过调整变频电源控制系统16或者接线方式选择所需要的搅拌模式。如果是对铸坯内部质量要求较高的钢种,例如要求提高等轴晶、减少中心偏析、疏松,可以选择结晶器搅拌模式。如果主要是对铸坯表面和皮下质量要求较高的钢种,例如要减少铸坯非金属夹杂物,减少铸坯表面针孔数量以及铸坯表面纵向裂纹可以优先考虑弯月面电磁搅拌模式:例如对300立方米以下的铸坯,一般采用单一搅拌区的弯月面电磁搅拌模式,对300立方米以上的铸坯,一般采用多搅拌区的弯月面电磁搅拌模式。特别指出的是,对于方坯或矩形坯,推荐使用弯月面电磁搅拌模式,因为方坯、矩形坯采用结晶器搅拌模式铸坯四个角部呈现漩涡状的二次回流,容易形成角部夹渣。而弯月面电磁搅拌模式一定程度上具备结晶器搅拌提高等轴晶、降低中心偏析、疏松问题的功能,还可以大幅度提高铸坯表面和皮下质量。在选择好搅拌模式后,可以通过调整变频电源控制系统16电流、频率等参数形成最佳的流场,达到最佳冶金效果,满足不同生产的需求。
[0022] 所述具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,还包括自主研发的结晶器电磁液面检测系统,可以实时检测和显示钢水液面(13)的实际位置,该系统包括传感器14、前端放大装置和数据处理单元;传感器14安装在结晶器铜板1的内侧,能实时检测结晶器内钢水液面13的位置;传感器将测量到的液面位置信号传送至前端放大装置,信号经放大后,传送至数据处理单元,继而输出至变频电源控制系统16。
[0023] 所述传感器14安装在结晶器17内的任意一侧,并位于该侧铜板中心位置并与其平行布置,传感器的前端与结晶器铜板的立面平行。以便于传感器能实时检测结晶器内钢液的波高及位置。
[0024] 所述传感器14为电磁式传感器或涡流式传感器;其冷却方式为水冷;
[0025] 所述传感器14可自带或不带电缆
[0026] 所述的结晶器电磁液面检测系统是稳定弯月面的先决条件,也是弯月面电磁搅拌的必要条件。液面偏高在弯月面电磁搅拌器运行时易引发弯月面变形和自由面波动;液面偏低影响弯月面电磁搅拌器的使用效果。通过液面检测和调控,防止钢水液面波动而引起卷渣。
[0027] 所述弯月面电磁搅拌器15包括两种结构形式,即环形式弯月面电磁搅拌器和凸极式弯月面电磁搅拌器,其差别在于铁芯7结构和线圈4的安装形式不同,而形成的磁场形态是一样的。
[0028] 所述环形式弯月面电磁搅拌器的铁芯7应与搅拌铸坯或结晶器结构形式相匹配,由多个不设齿槽的方形、多边形、圆形的电工钢片叠成;线圈4采用克莱姆绕组形式绕在铁芯上;此结构的弯月面电磁搅拌器15一般需要在其外围加装磁屏蔽罩6,以屏蔽线圈(4)外侧激发的磁场。
[0029] 所述凸极形弯月面电磁搅拌器的铁芯7按照搅拌铸坯或结晶器结构形式的不同,有方形、多边形或圆形等。它由多个带凸极的电工硅钢片叠成;线圈4采用克莱姆绕组形式或集中式绕组形式绕在铁芯上。对于采用克莱姆绕组形式的凸极形弯月面电磁搅拌器15一般需要在其外围加磁屏蔽罩6,而采用集中式绕组形式的凸极形弯月面电磁搅拌器15一般不需要加磁屏蔽罩6。
[0030] 所述磁屏蔽罩6,是一个由高导电率(电导率σ>58000000S/m)紫铜板制成的凹字形开口罩,置于所述线圈4与铁芯之间或线圈4外侧,其开口侧面向所述的结晶器铜板1,参看图2。
[0031] 所述线圈4,由扁铜线或空芯铜管线绕制而成。
[0032] 所述封闭壳体为空腔结构,内通有循环冷却水,用于对空腔内的铁芯和线圈进行实时冷却;
[0033] 所述具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,还包括与封闭壳体相连的冷却水系统,为弯月面电磁搅拌器提供循环冷却水。
[0034] 一种具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌方法,采用上的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统;
[0035] 通过改变线圈4内电流的相序及相位角,实现两类电磁搅拌模式:弯月面电磁搅拌模式和常规的结晶器电磁搅拌模式;
[0036] 所述的弯月面电磁搅拌模式,包括让钢水1形成单一环流区和单二环流区的两种子模式;
[0037] 弯月面电磁搅拌模式中,让钢水形成单一环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,共需要4n(n≥1)组线圈,n为每一组线圈包括的相邻线圈个数;以n=3为例,即每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;线圈a、b、c与线圈g、h、i均分别通以三相电源U、V、W;线圈d、e、f与线圈j、k、l均分别通以三相电源-U、-V、-W;
[0038] 弯月面电磁搅拌模式中,让钢水形成单二环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的6组线圈,共需要6n(n≥1)组线圈,n为每一组线圈包括的相邻线圈个数;以n=3为例,即每一组包括相邻的三个线圈,18个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l、m、n、o、p、q、s;线圈d、e、f、线圈l、k、j与线圈p、q、s均分别通以三相电源U、V、W;线圈a、b、c、线圈i、h、g和线圈o、n、m均分别通以三相电源-U、-V、-W;
[0039] 所述的常规的结晶器电磁搅拌模式中,线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,共需要4n(n≥1)组线圈,n为每一组线圈包括的相邻线圈个数;以n=3为例,即每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;线圈a、b、c与线圈d、e、f均分别通以三相电源U、V、W;线圈g、h、i与线圈j、k、l均分别通以三相电源-U、-V、-W。
[0040] 通过结晶器电磁液面检测系统实时检测和显示钢水液面13的实际位置;变频电源控制系统16根据检测结果对钢水液面13进行调控,防止钢水液面波动而引起卷渣。
[0041] 根据不同钢种冶金效果需要,通过调整变频电源控制系统(16)或者线圈接线方式选择所需要的搅拌模式;对内部质量要求较高的钢种,选择结晶器搅拌模式进行搅拌;对表面和皮下质量要求较高的钢种,选择弯月面电磁搅拌模式进行搅拌。
[0042] 有益效果:
[0043] 本发明通过改变弯月面电磁搅拌器15的磁路设计、所提到的结晶器电磁液面检测系统及变频电源控制系统16试制了一套适用于方圆坯连铸的带磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统及方法。与目前的结晶器电磁搅拌相比,该系统既保留了原有结晶器电磁搅拌功能,同时又实现了弯月面电磁搅拌功能,搅拌功能大大增强。可以根据不同铸坯断面尺寸灵活选择不同的搅拌模式,取得了比单一结晶器电磁搅拌模式更优的冶金效果,为多断面钢种,尤其是大方坯和长宽比较大铸坯的连铸提供了新的电磁搅拌方式。方圆坯连铸弯月面电磁搅拌系统成为方圆坯连铸电磁搅拌的发展方向。
[0044] 所述的弯月面电磁搅拌模式,是电磁搅拌技术的一次变革,在以往的电磁搅拌器设计中,都是将磁场设计为磁力线穿透整个铸坯的结构,而弯月面电磁搅拌是采用短磁路的结构,磁力线沿铸坯表面附近运行,对铸坯表面起作用,进而带动钢水旋转。这样的磁场特性,特别适用于大方坯和长宽比较大铸坯,搅拌均匀,不存在搅拌死区,也避免了传统结晶器电磁搅拌容易引起弯月面变形和自由面波动的问题,也不存在大方圆坯磁力线穿不透铸坯而引起的电磁推力不够的问题。在线试验表明,弯月面电磁搅拌模式可以大幅度减少铸坯表面和皮下非金属夹杂物、减少铸坯表面针孔数量以及铸坯表面纵向裂纹;对扩大等轴晶率,改善内部凝固组织,减轻偏析、疏松也有一定成效。所以弯月面电磁搅拌模式对改善铸坯质量非常有益,特别是适合于对表面质量较高的特殊钢种。
[0045] 本发明还包括结晶器电磁液面检测系统。因为液面偏高在弯月面电磁搅拌器运行时易引发弯月面变形和自由面波动;液面偏低影响弯月面电磁搅拌器的使用效果。本发明通过液面检测和调控,防止钢水液面波动而引起卷渣;通过自主研发的结晶器电磁液面检测系统,稳定弯月面,保证了弯月面电磁搅拌器的使用效果。附图说明
[0046] 图1是本发明的方圆坯连铸弯月面电磁搅拌系统总图
[0047] 图2是本发明的方圆坯连铸弯月面电磁搅拌系统的环形式铁芯结构以及安装示意图
[0048] 图3是图2的俯视图
[0049] 图4是本发明的方圆坯连铸弯月面电磁搅拌系统的凸极铁芯克莱姆绕组的结构形式
[0050] 图5是本发明的方圆坯连铸弯月面电磁搅拌系统的凸极铁芯克集中绕组的结构形式
[0051] 图6是图5的B-B视图
[0052] 图7是弯月面电磁搅拌模式下形成单一环流区的磁场运行原理图
[0053] 图8是图7中与磁场运行对应的钢水环流区与三相绕组简图
[0054] 图9是弯月面电磁搅拌模式下与形成2个小的钢水环流区相对应的磁场运行原理图
[0055] 图10是图9中磁场运行对应的钢水环流区与三相绕组简图
[0056] 图11是结晶器电磁搅拌模式下的磁场运行原理图
[0057] 图12是图11中磁场运行对应的钢水环流区与三相绕组简图
[0058] 附图标记说明:
[0059] 1、结晶器铜板,2、钢水,3、浸入式水口,4、线圈,5、外壳体,6、磁屏蔽罩,7、铁芯,8、内壳体,9、钢水流动方向,10、磁场运动方向,11、多对磁极,12、磁力线,13、钢水液面,14、传感器,15、弯月面电磁搅拌器,16、变频电源控制系统,17、结晶器、18、前端放大器和数据处理器。

具体实施方式

[0060] 下面结合实施例的附图对本发明的具体实施方式进行详细说明:
[0061] 图1所示是本发明具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统总图;图2是本发明的环形式铁芯结构以及安装示意图;图3是图2的俯视图;
[0062] 如图所示,本发明提供了一种具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,包括弯月面电磁搅拌器15、变频电源控制系统16和结晶器电磁液面检测系统;
[0063] 弯月面电磁搅拌器安装在结晶器17的弯月面附近;
[0064] 所述结晶器17的结构形式通常采用管式或者组合式,其采用高热导率(λ>397W/(m·℃))、低电导率(σ<49000000S/m)的铜材制成。无论哪种结构形式都能方便弯月面电磁搅拌器安装在弯月面附近,满足结晶器内钢水离搅拌器15内壳体8的距离L尽量小;
[0065] 所述弯月面电磁搅拌器15包括铁芯7、多组线圈4、外壳体5和内壳体8;多组线圈4均匀绕制在铁芯7上,铁芯7和多组线圈4设置在由外壳体和内壳体8组成的封闭壳体内;封闭壳体的形状与铁芯7匹配,其示意图见图2;
[0066] 所述的变频电源控制系统16含有两个功能,一是实现对弯月面电磁搅拌器15的调控;二是实时显示检测的结晶器内钢水液面13的位置(见下文所述)。
[0067] 所述的变频电源控制系统16连接弯月面电磁搅拌器15的线圈4的抽头,为弯月面电磁搅拌器15提供三相或者两相变频电源;通过改变线圈4内电流的大小、频率和相位,实现对弯月面电磁搅拌器15的调控;
[0068] 所述的弯月面电磁搅拌器15的磁场区大小及磁场方向均可独立通过变频电源控制系统16实时调控;
[0069] 通过改变线圈4内电流的相序及相位角,实现两类电磁搅拌模式:弯月面电磁搅拌模式和常规的结晶器电磁搅拌模式;
[0070] 所述的弯月面电磁搅拌模式包括多种子模式,可以让钢水形成单一环流区和多个环流区等;
[0071] 弯月面电磁搅拌模式中,让钢水形成单一环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;通过调整变频电源控制系统16或者接线方式将线圈a、b、c与线圈g、h、i均分别通以三相电源U、V、W;线圈d、e、f与线圈j、k、l均分别通以三相电源-U、-V、-W;图7是该模式下的磁场运行原理图,图8是图7中磁场运行对应的钢水运动与三相绕组简图;
[0072] 弯月面电磁搅拌模式中,让钢水形成单二环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的6组线圈,每一组包括相邻的三个线圈,17个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l、m、n、o、p、q、s;通过调整变频电源控制系统16或者接线方式将线圈d、e、f、线圈l、k、j与线圈p、q、s均分别通以三相电源U、V、W;线圈a、b、c、线圈i、h、g和线圈o、n、m均分别通以三相电源-U、-V、-W;图9是该模式下的磁场运行原理图,图10是图9中磁场运行对应的钢水运动与三相绕组简图;
[0073] 所述的弯月面电磁搅拌模式中采用多对磁极11的模式,其磁场设计特点是:磁路短,磁力线12不穿透铸坯,主要集中在凝固前沿附近,所以产生的电磁力不穿过铸坯中心,主要作用于铸坯凝固前沿。在磁场运行10下,可以使电磁力主要集中在凝固前沿附近,使其中的钢水作旋转流动,其流场特点:使结晶器内钢水2形成多个小的环流区域,凝固前沿附近流速快,向中心逐渐变慢,中心为零。钢水流动方向9是一个方坯或矩形坯电磁搅拌形成的一个矩形环流或多个矩形环流。图11是该模式下的磁场运行原理图;图12是图11中磁场运行对应的钢水运动与三相绕组简图。
[0074] 所述的常规的结晶器电磁搅拌模式中,线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;通过调整变频电源控制系统16或者接线方式将线圈a、b、c与线圈d、e、f均分别通以三相电源U、V、W;线圈g、h、i与线圈j、k、l均分别通以三相电源-U、-V、-W。
[0075] 所述的常规的结晶器搅拌模式中,磁场为一对磁极11,磁力线12穿透钢水2内部。在磁场运行10下,使其激发的电磁力在钢水2内部产生旋转流动。流场形态9是一个类圆形(方坯、圆坯都是类圆形流场)。
[0076] 所述具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,还包括自主研发的结晶器电磁液面检测系统,可以实时检测和显示钢水液面(13)的实际位置,该系统包括传感器14、前端放大装置和数据处理单元;传感器14安装在结晶器铜板1的内侧,能实时检测结晶器内钢水液面13的位置;传感器将测量到的液面位置信号传送至前端放大装置,信号经放大后,传送至数据处理单元,继而输出至变频电源控制系统16。
[0077] 所述传感器14安装在结晶器17内的任意一侧,并位于该侧铜板中心位置并与其平行布置,传感器的前端与结晶器铜板的立面平行。
[0078] 所述传感器14为电磁式传感器或涡流式传感器;其冷却方式为水冷;
[0079] 所述传感器14可自带或不带电缆。
[0080] 所述的结晶器电磁液面检测系统是稳定弯月面的先决条件,也是弯月面电磁搅拌的必要条件。液面偏高在弯月面电磁搅拌器运行时易引发弯月面变形和自由面波动;液面偏低影响弯月面电磁搅拌器的使用效果。通过液面检测和调控,防止钢水液面波动而引起卷渣。
[0081] 所述弯月面电磁搅拌器15包括两种结构形式,即环形式弯月面电磁搅拌器和凸极式弯月面电磁搅拌器,其差别在于铁芯7结构和线圈4的安装形式不同,而形成的磁场形态是一样的。
[0082] 所述环形式弯月面电磁搅拌器的铁芯7应与搅拌铸坯或结晶器结构形式相匹配,由多个不设齿槽的方形、多边形、圆形的电工硅钢片叠成(图3中的铁芯);线圈4采用克莱姆绕组形式绕在铁芯上;此结构的弯月面电磁搅拌器15一般需要在其外围加装磁屏蔽罩6,以屏蔽线圈4外侧激发的磁场。
[0083] 所述凸极形弯月面电磁搅拌器的铁芯7按照搅拌铸坯或结晶器结构形式的不同,有方形、多边形或圆形等。它由多个带凸极(图4、图5和图6中的铁芯)的电工硅钢片叠成;线圈4采用克莱姆绕组形式或集中式绕组形式绕在铁芯上。对于采用克莱姆绕组形式的凸极形弯月面电磁搅拌器15一般需要在其外围加磁屏蔽罩6,而采用集中式绕组形式的凸极形弯月面电磁搅拌器15一般不需要加磁屏蔽罩6。
[0084] 所述磁屏蔽罩6,是一个由高导电率紫铜板制成的凹字形开口罩,置于所述线圈4与铁芯之间或线圈4外侧,其开口侧面向所述的结晶器铜板1,参看图2。
[0085] 所述线圈4,由扁铜线或空芯铜管线绕制而成。
[0086] 所述封闭壳体为空腔结构,内通有循环冷却水,用于对空腔内的铁芯和线圈进行实时冷却;
[0087] 所述具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统,还包括与封闭壳体相连的冷却水系统,为弯月面电磁搅拌器提供循环冷却水。
[0088] 本发明还提供了一种具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌方法,采用上述任一项所述的具有磁屏蔽和多模式的方圆坯连铸弯月面电磁搅拌系统;
[0089] 通过改变线圈4内电流的相序及相位角,实现两类电磁搅拌模式:弯月面电磁搅拌模式和常规的结晶器电磁搅拌模式;
[0090] 所述的弯月面电磁搅拌模式,包括让钢水1形成单一环流区和单二环流区的两种子模式;
[0091] 弯月面电磁搅拌模式中,让钢水形成单一环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的4组线圈,共需要4n(n≥1)组线圈,n为每一组线圈包括的相邻线圈个数;以n=3为例,即每一组包括相邻的三个线圈,12个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;线圈a、b、c与线圈g、h、i均分别通以三相电源U、V、W;线圈d、e、f与线圈j、k、l均分别通以三相电源-U、-V、-W;
[0092] 弯月面电磁搅拌模式中,让钢水形成单二环流区的子模式对应的线圈4布置及供电方式为:线圈4包括对称绕制在铁芯7上的6组线圈,共需要6n(n≥1)组线圈,n为每一组线圈包括的相邻线圈个数;以n=3为例,即每一组包括相邻的三个线圈,18个线圈根据在铁芯7上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l、m、n、o、p、q、s;线圈d、e、f、线圈l、k、j与线圈p、q、s均分别通以三相电源U、V、W;线圈a、b、c、线圈i、h、g和线圈o、n、m均分别通以三相电源-U、-V、-W;
[0093] 所述的常规的结晶器电磁搅拌模式中,线圈4布置及供电方式为:线圈(4)包括对称绕制在铁芯7上的4组线圈,共需要4n(n≥1)组线圈,n为每一组线圈包括的相邻线圈个数;以n=3为例,即每一组包括相邻的三个线圈,12个线圈根据在铁芯(7)上的排布位置,按顺时针方向依次分别命名为线圈a、b、c、d、e、f、g、h、i、g、k、l;线圈a、b、c与线圈d、e、f均分别通以三相电源U、V、W;线圈g、h、i与线圈j、k、l均分别通以三相电源-U、-V、-W。
[0094] 通过结晶器电磁液面检测系统实时检测和显示钢水液面13的实际位置;变频电源控制系统16根据检测结果对钢水液面13进行调控,防止钢水液面波动而引起卷渣。
[0095] 根据不同钢种冶金效果需要,通过调整变频电源控制系统16或者线圈接线方式选择所需要的搅拌模式;对内部质量要求较高的钢种,选择结晶器搅拌模式进行搅拌;对表面和皮下质量要求较高的钢种,选择弯月面电磁搅拌模式进行搅拌。
[0096] 在连铸生产过程中,根据不同钢种冶金效果需要,通过调整变频电源控制系统16或者接线方式选择所需要的搅拌模式。如果是对铸坯内部质量要求较高的钢种,例如要求提高等轴晶、减少中心偏析、疏松,可以选择结晶器搅拌模式。如果主要是对铸坯表面和皮下质量要求较高的钢种,例如要减少铸坯非金属夹杂物,减少铸坯表面针孔数量以及铸坯表面纵向裂纹可以优先考虑弯月面电磁搅拌模式:例如对300立方米以下的铸坯,一般采用单一搅拌区的弯月面电磁搅拌模式(图10),对300立方米以上的铸坯,一般采用多搅拌区的弯月面电磁搅拌模式(图12)。特别指出的是,对于方坯或矩形坯,推荐使用弯月面电磁搅拌模式,因为方坯、矩形坯采用结晶器搅拌模式铸坯四个角部呈现漩涡状的二次回流,容易形成角部夹渣。而弯月面电磁搅拌模式一定程度上具备结晶器搅拌提高等轴晶、降低中心偏析、疏松问题的功能,还可以大幅度提高铸坯表面和皮下质量。在选择好搅拌模式后,可以通过调整变频电源控制系统16电流、频率等参数形成最佳的流场,达到最佳冶金效果,满足不同生产的需求。
[0097] 本发明所述的实施例仅是对本发明的优选实施方式进行的描述,并非对本发明构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域中工程技术人员对本发明的技术方案作出的各种变型和改进,如采用均应落入本发明的保护范围,本发明请求保护的技术内容,已经全部记载在权利要求书中。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈