首页 / 专利库 / 物理 / 波动 / 引力波 / 容性负载驱动电路以及容性负载驱动方法及使用这些的装置

容性负载驱动电路以及容性负载驱动方法及使用这些的装置

阅读:437发布:2021-02-02

专利汇可以提供容性负载驱动电路以及容性负载驱动方法及使用这些的装置专利检索,专利查询,专利分析的服务。并且用于使容性负载(11)进行充放电的容性负载驱动 电路 (1),具备用于将电源 电压 (VH)分压成多个不同电压(V1~V9)的 分压器 (5)、电压(V1~V9)被作为 端子 电压进行充电的多个电容(2a~i),以及用于对容性负载(11)和电容(2a~i)的连接进行切换的 开关 (7),而开关(7),在容性负载(11)进行充电时,将电容(2a~i)自端子电压低的一方起依次连接,以便向容性负载(11)提供静 电能 ,而在容性负载(11)进行放电时,将电容(2a~i)自端子电压高的一方起依次连接,以便从容性负载(11)回收静电能。由此,可以提供一种具有简单的电路结构、且能高效地回收、再利用储存于容性负载的 能量 的容性负载驱动电路以及容性负载驱动方法。,下面是容性负载驱动电路以及容性负载驱动方法及使用这些的装置专利的具体信息内容。

1.一种用于向容性负载进行充放电的容性负载驱动电路,具备:
用于把从电源提供的静电能进行分割而储存的多个能量储存元 件;和
用于切换上述的容性负载与上述的多个能量储存元件之间的连接 的切换装置,
上述切换装置,在容性负载进行充电时,切换上述的连接,以便 从上述的多个能量储存元件依次、向容性负载提供静电能,而在容性 负载放电时,则切换上述的连接以便把静电能依次从容性负载回收至 上述的多个能量储存元件,
上述的能量储存元件,具有互不相同的端子电压
上述切换装置,在容性负载进行充电时,把各能量储存元件从端 子电压的绝对值小的一方起依次与容性负载连接;而在容性负载放电 时,则把各能量储存元件从端子电压的绝对值大的一方起依次与容性 负载连接。
2.一种用于向容性负载进行充放电的容性负载驱动电路,具备:
被赋予了多个不同初始电位的多个能量储存元件;
将接地电位或来自电源的基准电源电位作为基准电位赋予的基准 电位端子;和
用于把上述的能量储存元件以及基准电位端子选择性地与容性负 载连接的切换装置,
上述的多个能量储存元件,包括,具有非0的第1初始电位的第 1能量储存元件、以及与第1初始电位同极性且具有绝对值大于第1 初始电位的第2初始电位的第2能量储存元件,
上述基准电位为,接地电位、与电源提供的第1初始电位同极性 且绝对值小于第1初始电位的电位、或与电源提供的第1初始电位相 反极性的电位,
上述切换装置进行:通过把容性负载选择性地与基准电位端子连 接后,再选择性地与第1能量储存元件连接,从而把容性负载的端子 电压变化为接近于第1初始电位的第1充电步骤;然后通过把容性负 载选择性地与第2能量储存元件连接,从而增大容性负载的端子电压 的绝对值的第2充电步骤;然后通过把容性负载选择性地与第1能量 储存元件连接,从而减小容性负载的端子电压的绝对值的同时,将第1 能量储存元件的储存静电能再生至与进行第1充电步骤前大致相等的 状态的放电步骤。
3.权利要求2所述的容性负载驱动电路,
上述基准电位端子为,具有接地电位的接地端子,
上述切换装置为,为了把接地端子以及多个能量储存元件选择性 地与容性负载连接,分别在接地端子以及多个能量储存元件和容性负 载之间设置的多个切换元件,
在多个能量储存元件中,至少具有最大绝对值的初始电位的能量 储存元件,直接或间接地连接于电源。
4.一种用于进行容性负载的充放电的容性负载驱动电路,具备:
从电源赋予了电源电位的电源端子;
赋予了多个不同初始电位的多个能量储存元件;以及
用于把上述的能量储存元件以及电源端子选择性地与容性负载连 接的切换装置,
上述的多个能量储存元件,包括:与电源电位同极性且具有其绝 对值小于电源电位的第1初始电位的第1能量储存元件;以及与第1 初始电位同极性且具有其绝对值小于第1初始电位的电位、接地电位、 或与第1初始电位相反极性的电位的第3初始电位的第3能量储存元 件,
上述切换装置进行:通过把容性负载选择性地与第3能量储存元 件连接后,再选择性地与第1能量储存元件连接,改变容性负载的端 子电压使得其值接近于第1初始电位的第1充电步骤;然后通过把容 性负载选择性地与电源端子连接,从而增大容性负载的端子电压的绝 对值的第2充电步骤;然后通过把容性负载选择性地与第1能量储存 元件连接,从而减小容性负载的端子电压的绝对值,同时,将第1能 量储存元件的储存静电能再生至与第1充电步骤前大致相等的状态的 放电步骤。
5.一种用于进行容性负载的充放电的容性负载驱动电路,具备:
赋予了多个不同初始电位的多个能量储存元件、
用于把上述多个能量储存元件以及电源端子选择性地与容性负载 连接的切换装置,
上述的多个能量储存元件,包括:具有非0的第1初始电位的第 1能量储存元件;具有其绝对值大于第1初始电位的第2初始电位的第 2能量储存元件;与第1初始电位同极性且具有其绝对值小于第1初始 电位的电位、接地电位、或与第1初始电位相反极性的电位的第3初 始电位的第3能量储存元件,
上述切换装置进行:通过把容性负载选择性地与第3能量储存元 件连接后,再选择性地与第1能量储存元件连接,改变容性负载的端 子电压使得其值接近于第1初始电位的第1充电步骤;然后通过把容 性负载选择性地与第2能量储存元件连接,从而增大容性负载的端子 电压的绝对值的第2充电步骤;然后通过把容性负载选择性地与第1 能量储存元件连接,从而减小容性负载的端子电压的绝对值,同时, 将第1能量储存元件的储存静电能再生至与第1充电步骤前大致相等 的状态的放电步骤。
6.权利要求5所述的容性负载驱动电路,
还包括具有接地电位的接地端子,
上述切换装置为,为了把接地端子以及多个能量储存元件选择性 地与容性负载连接,分别在接地端子以及多个能量储存元件和容性负 载之间设置的多个切换元件,
在多个能量储存元件中,至少具有最大绝对值的初始电位的能量 储存元件,直接或间接地连接于电源。
7.权利要求5所述的容性负载驱动电路,
上述切换装置为,为了把多个能量储存元件选择性地与容性负载 连接,分别在多个能量储存元件和容性负载之间设置的多个切换元件,
在多个能量储存元件中,至少具有最大绝对值的初始电位的能量 储存元件,直接或间接地连接于电源。
8.一种用于进行容性负载的充放电的容性负载驱动电路,具备:
从电源赋予了电源电位的电源端子;
以与电源电位不同的基准电源电位、或接地电位作为基准电位赋 予的基准电位端子;
在基准电位与电源电位之间,赋予了互不相同的初始电位的多个 第1能量储存元件;
用于把基准电位端子、多个第1能量储存元件、以及电源端子选 择性地与容性负载连接的切换装置,
上述切换装置进行:通过将基准电位端子与容性负载连接后,再 将第1能量储存元件从其初始电位接近基准电位的一方起依次与容性 负载连接,使容性负载的端子电压变化到接近于电源电位的第1步骤; 然后通过将容性负载选择性地与电源端子连接,从而增大容性负载的 端子电压的绝对值的第2步骤;然后通过将第1能量储存元件从其初 始电位接近电源电位的一方起依次与容性负载连接,从而减少容性负 载的端子电压的绝对值,同时将第1能量储存元件的储存静电能再生 至大致与进行第1充电步骤前相等的值的第3步骤。
9.权利要求2至8中的任一项所述的容性负载驱动电路,
为了防止由向容性负载充放电导致的第1能量储存元件的电压的 漂移,向能量储存元件注入能量的直流电源,通过电阻电路连接于第1 能量储存元件。
10.权利要求9所述的容性负载驱动电路,向上述的容性负载施 加规定周期的驱动脉冲,
根据上述电阻电路的电阻值与第1能量储存元件的静电容量成分 决定的时间常数为,施加于上述容性负载的驱动脉冲的周期的50倍以 上。
11.权利要求9所述的容性负载驱动电路,向上述的容性负载施 加规定周期的驱动脉冲,
上述切换装置,在驱动脉冲的1周期内,切换容性负载的连接点, 从而进行数次向容性负载提供静电能的充电步骤,
在设第1能量储存元件的静电容量成分为Cs、施加于上述容性负 载的驱动脉冲的周期为Tp、自各直流电源至第1能量储存元件的能量 注入线路的电阻值为Rs、驱动脉冲的1周期内充电步骤的实行次数为 N时,满足以下的关系:
当N=2时         3×Tp≤Rs·Cs≤6×Tp
当N=3时         3×Tp≤Rs·Cs≤7×Tp
当N=4时         3×Tp≤Rs·Cs≤8×Tp
当N≥5时         3×Tp≤Rs·Cs≤10×Tp。
12.权利要求1所述的容性负载驱动电路,
上述的各能量储存元件,具有正极性的初始电位。
13.权利要求1所述的容性负载驱动电路,
上述的各能量储存元件,具有负极性的初始电位。
14.一种容性负载驱动电路,将权利要求12所述的容性负载驱动 电路、与权利要求13所述的容性负载驱动电路并联而成。
15.权利要求1所述的容性负载驱动电路,
上述的能量储存元件为电容。
16.权利要求1所述的容性负载驱动电路中,
能量储存元件的一部分,连接有用于把从上述容性负载回收至能 量储存元件的静电能提供给不同于上述容性负载的外部元件的能量输 出线路。
17.权利要求16所述的容性负载驱动电路,
上述切换装置,在容性负载进行放电时,将容性负载与端子电压 的绝对值最小的能量储存元件连接后,使容性负载接地。
18.权利要求15所述的容性负载驱动电路,
上述切换装置,在容性负载进行放电时,将容性负载与端子电压 的绝对值最小的能量储存元件连接后,至容性负载开始充电的期间内, 维持容性负载与端子电压的绝对值最小的能量储存元件连接。
19.权利要求1所述的容性负载驱动电路,
还设有将电源提供的电压分压成互不相同的多个电压,并将这些 电压作为端子电压提供给能量储存元件的分压装置。
20.权利要求19所述的容性负载驱动电路,
还具备控制从上述分压装置向能量储存元件提供电压的切换部,
上述切换部,只在容性负载充电前的规定期间内成为连接状态。
21.权利要求19所述的容性负载驱动电路,具有,
接地端子,
以及连接在接地端子与直流电源之间,并对接地电位与电源电压 之间的电位差进行分压的分压装置,
在提供被分压装置分压的电压的分压点上,连接了上述的多个能 量储存元件。
22.权利要求19所述的容性负载驱动电路,具有,
具有不同电源电压的多个直流电源、
以及连接在这些直流电源之间,并对这些电源电压间的电位差进 行分压的分压装置,
在提供被分压装置分压的电压的分压点上,连接了上述的多个能 量储存元件。
23.权利要求19所述的容性负载驱动电路,
上述分压装置,包含多个串联于电源的电阻。
24.权利要求23所述的容性负载驱动电路,
夹在上述电阻与能量储存元件之间还具备缓冲放大装置,对流过 上述电阻的电流进行放大,同时输出不同于输入电压的电压使各能量 储存元件的端子电压被调整至规定的电压。
25.权利要求19所述的容性负载驱动电路,
上述分压装置,包含用于稳定被分压的电压的稳压装置。
26.权利要求25所述的容性负载驱动电路,
上述分压装置,包含串联连接于电源和地线之间的多个稳压元件,
在这些稳压元件与电源或地线之间内插有电阻。
27.权利要求25所述的容性负载驱动电路,
上述分压装置,具备,
并联连接在电源与地线之间的第1分压器以及第2分压器,
第1分压器以及第2分压器又分别包含稳压装置,
第1分压器中,在稳压装置与电源之间内插有上拉电阻,
第2分压器中,在稳压装置与地线之间内插有下拉电阻。
28.权利要求27所述的容性负载驱动电路,
第1分压器所包含的稳压元件的个数、与第2分压器所包含的稳 压元件的个数之差,为1个以下。
29.权利要求25至28中的任一项所述的容性负载驱动电路,
在稳压装置与能量储存元件之间,内插有限流电阻。
30.权利要求25所述的容性负载驱动电路,
上述稳压装置,包含稳压元件,
上述稳压元件为,稳压二极管
31.权利要求1所述的容性负载驱动电路,
能量储存元件的一端全部连接于电源或地线。
32.权利要求1所述的容性负载驱动电路,
还具备控制从上述电源至能量储存元件的静电能提供的切换部,
上述切换部,只在容性负载进行充电前的规定期间内,从上述电 源向能量储存元件提供静电能。
33.权利要求1所述的容性负载驱动电路,
还具备通过切换内部的连接状态,对一部分的容性负载进行选择 性地充电或放电的选择装置。
34.权利要求33所述的容性负载驱动电路,
单独设置了用于把分配到多个能量储存元件的静电能提供给容性 负载的能量提供线路、以及用于从多个能量储存元件中回收静电能的 能量回收线路,
上述选择装置,分别设置在能量供给线路以及能量回收线路。
35.权利要求34所述的容性负载驱动电路,
还具备用于对上述能量供给线路以及能量回收线路的电流进行整 流的整流装置。
36.权利要求1所述的容性负载驱动电路,
上述容性负载为,以液滴状喷出墨的喷墨头所具备的,用于对 墨水加压的压电元件。
37.权利要求1所述的容性负载驱动电路,
上述容性负载为,利用静电引以液滴状喷出墨水的静电方式的 喷墨头所具备的静电驱动电极
38.一种具备容性负载和对所述容性负载进行充放电的容性负载 驱动电路的装置,其中,上述容性负载驱动电路为权利要求1至37中 的任一项所述的容性负载驱动电路,
设能量储存元件的静电容量成分为Cs、容性负载的静电容量为 Cd、能量储存元件被连接的持续时间为Ts、包含切换装置,并由能量 储存元件向容性负载进行充放电的线路的电阻值为R,
当Ts/(R·Cd)<2.5时
Cd/Cs≤0.164{Ts/(R·Cd)}0.2198       成立
    当Ts/(R·Cd)≥2.5时
     Cd/Cs≤0.2    成立。
39.一种具备容性负载和对所述容性负载进行充放电的容性负载 驱动电路的装置,其中,上述容性负载驱动电路为权利要求1至37中 的任一项所述的容性负载驱动电路,
上述能量储存元件的静电容量成分是容性负载的静电容量的100 倍以上。
40.一种具备容性负载、以及用于对容性负载进行充放电的容性 负载驱动电路的装置,
上述容性负载驱动电路,具备:
从电源赋予了电源电位的电源端子;
以与电源提供的电源电位不同的基准电源电位、或接地电位作为 基准电位赋予的基准电位端子;
在基准电位与电源电位之间,赋予了初始电位的能量储存元件; 以及
用于把基准电位端子、能量储存元件、以及电源端子选择性地与 容性负载连接的切换装置,
上述切换装置进行:把基准电位端子与容性负载连接后,再把能 量储存元件与容性负载连接的第1充电步骤;然后把容性负载选择性 地与电源端子连接的第2充电步骤;以及然后把能量储存元件与容性 负载连接的放电步骤,
设能量储存元件的静电容量成分为Cs、容性负载的静电容量为 Cd、能量储存元件被连接的持续时间为Ts、包含切换装置,并由能量 储存元件向容性负载进行充放电的线路的电阻值为R,
当Ts/(R·Cd)<2.5时
Cd/Cs≤0.164{Ts/(R·Cd)}0.2198    成立
   当Ts/(R·Cd)≥2.5时
    Cd/Cs≤0.2  成立。
41.一种具备容性负载、以及用于向容性负载进行充放电的容性 负载驱动电路的装置,
上述容性负载驱动电路,具备:
从电源赋予了电源电位的电源端子;
以与电源提供的电源电位不同的基准电位、或接地电位作为基准 电位赋予的基准电位端子;
在基准电位与电源电位之间,赋予了初始电位的能量储存元件; 以及
用于把基准电位端子、多个能量储存元件、以及电源端子选择性 地与容性负载连接的切换装置,
上述切换装置进行:将基准电位端子与容性负载连接后,再将各 能量储存元件从其初始电位接近基准电位的一方起依次与容性负载连 接的第1充电步骤;然后将容性负载与电源端子进行选择连接的第2 充电步骤;然后将各能量储存元件从其初始电位接近电源电位的一方 起依次与容性负载连接的放电步骤,
设能量储存元件的静电容量成分为Cs、容性负载的静电容量为 Cd、能量储存元件被连接的持续时间为Ts、包含切换装置,并由能量 储存元件向容性负载进行充放电的线路的电阻值为R,
当Ts/(R·Cd)<2.5时
Cd/Cs≤0.164{Ts/(R·Cd)}0.2198   成立,
当Ts/(R·Cd)≥2.5时
   Cd/Cs≤0.2  成立。
42.权利要求40所述的装置,其特征在于,
设容性负载的静电容量为Cd、包含切换装置、并且能量储存元件 向容性负载进行充放电的线路的电阻值为R、能量储存元件被连接的 持续时间为Ts、最终达到电压为V、发生电压波形转换速度(10%-90% 的上升速度)为SR、
若y=Ts/(R·Cd),则满足
SR≤V/(R·Cd)*(-0.0002y4+0.001y3+0.009y2-0.100y+0.386) 。
43.权利要求42所述的装置,
设容性负载的静电容量为Cd、包含切换装置,并且能量储存元件 向容性负载进行充放电的线路的电阻值为R、能量储存元件被连接的 持续时间为Ts、最终达到电压为V、
若y=Ts/(R·Cd),则满足
50(V/μsec)≤V/(R·Cd)* (-0.0002y4+0.001y3+0.009y2-0.100y+0.386) 。
44.权利要求41所述的装置,
设容性负载的静电容量为Cd、包含切换装置、并且能量储存元件 向容性负载进行充放电的线路的电阻值为R、能量储存元件被连接的 持续时间为Ts、最终达到电压为V、根据驱动脉冲1周期内的各能量 储存元件的充电步骤的进行次数为N、发生电压波形转换速度 (10%-90%的上升速度)为SR、
若y=Ts/(R·Cd),
当N=3时,满足
SR≤V/(R·Cd)*(0.0008y4-0.012y3+0.071y2-0.229y+0.414)
当N=4时,满足
SR≤V/(R·Cd)*(0.0023y4-0.028y3+0.138y2-0.336y+0.434)
当N≥5时,满足
SR≤V/(R·Cd)*(0.0026y4-0.032y3+0.153y2-0.356y+0.413) 。
45.权利要求44所述的装置,
设容性负载的静电容量为Cd、包含切换装置、并且能量储存元件 向容性负载进行充放电的线路的电阻值为R、能量储存元件被连接的 持续时间为Ts、最终达到电压为V、根据驱动脉冲1周期内的各能量 储存元件的充电步骤的进行次数为N、
若y=Ts/(R·Cd),
当N=3时,满足
50(V/μsec)≤V/(R·Cd)* (0.0008y4-0.012y3+0.071y2-0.229y+0.414)
当N=4时,满足
50(V/μsec)≤V/(R·Cd)* (0.0023y4-0.028y3+0.138y2-0.336y+0.434)
当N≥5时,满足
50(V/μsec)≤V/(R·Cd)* (0.0026y4-0.032y3+0.153y2-0.356y+0.413) 。
46.权利要求40至45中的任一项所述的装置,
设能量储存元件的静电容量成分为Cs、容性负载的静电容量为 Cd,那么
Cd/Cs≤0.01 。
47.权利要求40所述的装置,
上述容性负载为,通过向墨水加压使墨水以液滴状喷出的喷墨头 所具备的静电驱动电极或压电元件,
上述容性负载驱动电路为,驱动喷墨头的静电驱动电极或压电元 件的驱动电路。
48.一种图像形成装置,具备通过作为容性负载的静电驱动电极 或压电元件向墨水加压使得墨水以液滴状喷出的喷墨头、以及驱动上 述喷墨头的静电驱动电极或压电元件的驱动电路,
上述驱动电路为,权利要求1至35的任一项中所述的容性负载驱 动电路。
49.权利要求48所述的装置,
上述喷墨头,通过压电元件向墨水加压使墨水以液滴状喷出,
上述驱动电路为驱动喷墨头的压电元件的电路。
50.一种具备显示元件、以及驱动显示元件的驱动电路的显示装 置,
上述驱动电路,使用权利要求1至34的任一项所述的容性负载驱 动电路,进行施加在显示元件的脉冲的发生以及从显示元件回收电能。
51.一种直流-交流逆变器,具有驱动电路,从单一的直流电压发 生交流电压,
上述驱动电路,使用权利要求1至34的任一项所述的容性负载驱 动电路进行电能的回收的同时发生交流。
52.一种对容性负载进行充放电的容性负载驱动方法,包括:
将静电能分割到具有互不相同的端子电压的多个能量储存元件中 进行储存的储存步骤;
通过从上述的多个能量储存元件依次向容性负载提供静电能,对 容性负载进行充电的充电步骤;以及
使容性负载进行放电、从而从容性负载依次把静电能回收至多个 能量储存元件的回收步骤,其中,
在上述充电步骤中,把各能量储存元件从端子电压的绝对值小的 一方起依次与容性负载连接;而在上述回收步骤中,把各能量储存元 件从端子电压的绝对值大的一方起依次与容性负载连接。
53.一种使容性负载进行充放电的容性负载驱动方法,包括:
准备具有非0的第1初始电位的第1能量储存元件、第2能量储 存元件、接地电位、与基准电源提供的第1初始电位同极性且绝对值 小于第1初始电位的电位、或与电源提供的第1初始电位相反极性的 电位作为基准电位赋予的基准电位端子的步骤;
在对第1能量储存元件赋予第1初始电位的同时,对第2能量储 存元件赋予与第1初始电位同极性且绝对值大于第1初始电位的第2 初始电位的初始电位赋予步骤;
通过把容性负载选择性地与基准电位端子连接后,再选择性地与 第1能量储存元件连接,改变容性负载的端子电压,使得其值接近于 第1初始电位的第1充电步骤;
然后通过把容性负载选择性地与第2能量储存元件连接,增大容 性负载的端子电压的绝对值的第2充电步骤;以及
然后通过在把容性负载选择性地与第1能量储存元件连接减小容 性负载的端子电压的同时,将第1能量储存元件的储存静电能再生至 与第1充电步骤前大致相等的状态的放电步骤。
54.一种使容性负载进行充放电的容性负载驱动方法,包括:
准备由电源赋予了电源电位的电源端子、和第1能量储存元件以 及第3能量储存元件的步骤;
在对第1能量储存元件赋予与电源电位同极性且绝对值小于电源 电位的第1初始电位的同时,对第3能量储存元件赋予与第1初始电 位同极性且绝对值小于第1初始电位的电位、接地电位、或与第1初 始电位相反极性的电位的第3初始电位的初始电位赋予步骤;
通过把容性负载选择性地与第3能量储存元件连接后,再选择性 地与第1能量储存元件连接,改变容性负载的端子电压,使得其值接 近于第1初始电位的第1充电步骤;
然后通过把容性负载选择性地与电源端子连接,增大容性负载的 端子电压的绝对值的第2充电步骤;以及
然后通过在把容性负载选择性地与第1能量储存元件连接减小容 性负载的端子电压的的绝对值的同时,将第1能量储存元件的储存静 电能再生至与第1充电步骤前大致相等的状态的放电步骤。
55.一种使容性负载进行充放电的容性负载驱动方法,包括:
准备第1能量储存元件、第2能量储存元件、以及第3能量储存 元件的步骤;
对第1能量储存元件赋予非0的第1初始电位,而对第2能量储 存元件赋予绝对值大于第1能量储存元件的初始电位的第2初始电位, 对第3能量储存元件赋予与第1初始电位同极性且绝对值小于第1初 始电位的电位、接地电位、或与第1初始电位极性相反的电位的第3 初始电位的初始电位赋予步骤;
通过将容性负载选择性地与第3能量储存元件连接后,再选择性 地与第1能量储存元件连接,改变容性负载的端子电压,使之接近第1 初始电位的第1充电步骤;
然后通过将容性负载选择性地与第2能量储存元件连接,增大容 性负载的端子电压的绝对值的第2充电步骤;
然后通过在将容性负载选择性地与第1能量储存元件连接,减少 容性负载的端子电压的绝对值的同时,使第1能量储存元件的储存静 电能再生至与进行第1充电步骤前大致相等的值的放电步骤。
56.一种使容性负载进行充放电的容性负载驱动方法,包括:
准备从电源赋予电源电位的电源端子、以不同于基准电源提供的 电源电位的基准电源电位、或接地电位作为基准电位赋予的基准电位 端子、以及多个第1能量储存元件的配置步骤;
对于上述的多个第1能量储存元件,在基准电位和电源电位之间, 赋予互不相同的初始电位的初始电位赋予步骤;
通过将基准电位端子与容性负载连接后,再将第1能量储存元件 从其初始电位接近基准电位的一方起依次与容性负载连接,使容性负 载的端子电压变化到接近于第1初始电位的第1步骤;然后通过将容 性负载选择性地与电源端子连接,从而增大容性负载的端子电压的绝 对值的第2步骤;然后通过将第1能量储存元件从其初始电位接近电 源电位的一方起依次与容性负载连接,从而减少容性负载的端子电压 的绝对值,同时将第1能量储存元件的储存静电能再生至与进行第1 充电步骤前大致相等的值的第3步骤。

说明书全文

技术领域

发明涉及一种用于驱动容性负载的容性负载驱动电路以及容性 负载驱动方法、和使用其的装置。更详细的讲,本发明涉及,把作为 容性负载的压电元件或静电驱动电极等用于喷墨的图像装置、等离子 显示的放电电极、或液晶显示的驱动电路等所具备的,用于驱动容性 负载的容性负载驱动电路以及容性负载驱动方法、和,使用该电路和 方法的图像装置、显示装置、电压脉冲发生装置、直流(DC)-交流(AC) 逆变器(逆变器)等的装置(特别是具备容性负载与容性负载驱动电 路的装置),特别是,涉及能够减低消耗功率的容性负载驱动电路以及 容性负载驱动方法、和使用该电路和方法的图像形成装置、显示装置、 电压脉冲发生装置、直流-交流逆变器等装置。

背景技术

以往,把压电元件用于喷墨的喷墨打印机(例如参照专利文献1[日 本国特开昭63-247051号公报(公开日:昭和63年(1988)10月13 日)]和专利文献2[日本国特开2001-10043号公报(公开日:平成13 年(2001)1月16日)]),以及静电方式的喷墨打印机、热式喷墨打 印机(例如参照专利文献3[日本国特开2000-238245号公报(公开日: 平成12年(2000)9月5日)])等喷墨打印机已被公知。
在把压电元件用于喷墨的喷墨打印机中,在连接于喷墨头的喷嘴 开口的压发生室内装有压电元件。给作为容性负载的压电元件施加 电压作为驱动信号,并根据反复地给压电元件的进行充电和放电,使 墨汁从喷嘴开口喷出。在这里,对驱动这种容性负载的容性负载驱动 电路进行考虑。
图25中示出了作为如上述的以往的容性负载驱动电路的一个例 子的推挽方式。容性负载驱动电路,如图25(a)的电路图中所示,连 接于作为容性负载的电容CL。对于施加在容性负载驱动电路的主电压 V,电容CL,通过被用于给电容CL提供能量的充电路径中具备的晶 体管Vupd以及、从电容CL中消除能量的放电路径中具备的晶体管 Vdwnd所控制而被驱动。
表示控制晶体管Vupd以及晶体管Vdwnd的工作的控制信号的波 形的图为,图25(b)以及(c)的波形图。如果2种晶体管Vupd以 及晶体管Vdwnd根据图25(b)以及(c)的控制信号进行工作,电容 CL的端子电压Vo如图25(d)所示的那样随时间而变化,而流过电 阻R的电流Ic则如图25(e)所示的那样随时间而变化。
因此,在如图25(a)所示的推挽方式中,把晶体管Vupd设成 NO并通过充电路径使充电电流后流过容性负载后,把晶体管Vdwnd 设成NO并通过放电路径把电荷全部放电到大地。
在以往的容性负载驱动电路中,把储存于电容CL的电荷全部放 电到大地,因而就成为全部丢掉电容CL中储存的静电能的状态,所以 出现了电能损耗很大的问题。例如,如果把Vupd的频率f设为126kHz、 电容CL的容量CL设为0.1Mf、主电压V设为20V,平均电源电流 为,
f×CL×V=0.2520A
,电能损耗为5.04W。
因此,提出了通过回收由容性负载放电的电荷,从而再利用到容 性负载的充电的方式,实现电能损耗的降低的容性负载驱动电路。例 如,在专利文献4[日本国特开平11-3143634号公报(公开日:平成11 年(1999)11月16日)]中公开了,在印刷动作中,利用由压电元件 (压电振动元件)放出的放电电流通过磁性电路的互感作用给二次电 源(二次电池,或大容量电容)进行充电,把储存于二次电源的电荷 再次地,用到压电元件的充电的存储(磁)头驱动电路。
此外,还公开了在进行等离子显示板的放电单元的驱动的驱动电 路中,通过LC共振进行电能回收的技术(参照专利文献5[美国专利 第4,866,349号(公开日:1989年9月12日)])。根据图28对这种通 过放电单元引起的LC共振进行电能回收的驱动电路的一例进行说明。 并且,图28中,Cd表示作为容性负载的等离子显示板的电容成分(容 性负载)、Css表示电容、S1~S4表示开关、L表示电感(线圈)、D1·D2 表示整流二极管、2VO表示提供电源电压2VO的电源端子。
首先,在初始状态下,给电容Css加初始电位VO。这种初始状态 下的Cd的电位为0。且,电容Css的容量Css,与容性负载Cd的容 量Cd相比非常大。
继而,对于上述构成中的容性负载Cd的充放电动作,参照表示容 性负载Cd的端子电压V的变化与开关S1~S4的状态的图29进行说 明。且,开关S1~S4,在图29中表示为「On」的期间以外为OFF状 态。
首先,在充电时,只把开关S1~S4中的开关S1设成ON。于是, 电流从电容Css通过电感线圈L流至容性负载Cd,从而容性负载Cd 被充电(图29中的①)。由于LC共振容性负载Cd被充电至端子电压 V成为VO以上(图29中的②)。电流要反向时,被整流二极管D1所 阻止,从而容性负载Cd的端子电压V被钳位(图29中的③)。然后, 把开关S1设为OFF,接着把开关S3设为ON。于是,容性负载Cd被 充电至端子电压V成为2VO(图29中的④)。
在放电时,把开关S3设为OFF,继而把开关S2设为ON。由此, 电流从容性负载Cd通过电感线圈L流至电容Css,从而容性负载Cd 被放电,而电容Css被充电(图29中的⑤)。容性负载Cd通过LC共 振被充电至端子电压V成为VO以上(图29中的⑥)。电流要反向时, 被整流二极管D2所阻止,从而容性负载Cd的端子电压V被钳位(图 29中的⑦)。然后,把开关S2设为OFF,接着把开关S4设为ON。于 是,容性负载Cd被放电至端子电压V成为0(图29中的⑧)。如上所 述,在上述构成中,通过利用LC共振可以从容性负载Cd中回收电能 至电容Css。
此外,在如上所述的通过LC共振进行电能回收的电路中,也有 换多个电感线圈L来使用的先例(参照专利文献6[日本国特开平 2-87789号公报(公开日:平成2年(1990)3月28日;日本国特许 第2771523号)])。
此外,在专利文献7[日本国特开平11-170529号公报(公开日: 平成11年(1999)6月29日)]以及专利文献8[日本国特开2000-218782 号公报(公开日:平成12年(2000)8月2日)]中,记载了用于回收 能量而内插电感线圈的技术。
此外,把容性负载放电时的电荷储存于电容,只把没被储存的电 荷放电至大地,充电过程中,把储存于电容中的电荷再次用于压电元 件的充电中,电源只供给没被充电的电荷的方式也被公知。例如,专 利文献9[日本国特开平9-322560号公报(公开日:平成9年(1997) 12月12日;日本国特许第3120210号)]中公开了,在EL(场致发光) 元件等容性负载的驱动电路中,设置电容,在使容性负载进行放电的 过程成中,把充电电荷的一部分转移到电容后,将剩余的充电电荷进 行放电,把转移到电容中的电荷返至容性负载后开始充电,由此可以 再利用被充电在容性负载中的电荷的一部分的技术。在专利文献9中 公开了,作为静电能的回收·再利用的一种方法,如图26所示,用1 个电容263从容性负载(EL元件)261回收静电能,进行再利用的方 法。
继而,根据图27对专利文献9中所公开的容性负载的驱动电路的 具体动作进行说明。且,在图26以及图27中,为了能够容易理解动 作原理,把专利文献9中所述的驱动电压发生电路表示为电源电压VH 的电源端子VH,把专利文献9中所述的驱动电压发生电路的ON/OFF 控制,表示为开关262。
首先,作为初始状态如图26(a)所示,把容性负载261以及回收 用的电容263,通过ON状态的开关264·265接地。此时,将开关262 设为OFF状态,停止从电源端子VH(未图示的驱动电压发生电路) 向容性负载261提供驱动电压。
继而,如图27(b)所示,把开关264·265设成OFF状态,而把 开关262设成ON状态。由此,自电源端子VH通过ON状态的开关 262给容性负载261输出电源电压VH,容性负载261,被来自电源端 子VH的电源电压VH充电。由此,容性负载261的端子电位,上升 至与电源电压VH相等。
继而,如图27(c)所示,将开关262设成OFF状态,同时把开 关265设成ON状态。由此,停止从电源端子VH向容性负载261提 供驱动电压,而容性负载261的一端则被连接于电容263。其结果,被 充电到容性负载261的电荷的一部分转移至电容263,容性负载261 被放电,同时把储存于容性负载261的静电能的一部分从容性负载261 回收至电容263。
继而,如图27(d)所示,将开关265设成OFF状态,而把开关 264设成ON状态。由此,容性负载261的残余的电荷,通过开关263 放电至大地(未图示的电源端子)。即,残存于容性负载261中的能量, 通过开关263所消耗。因此,根据此步骤,容性负载261的电压,变 成接地电位。
进而为了把回收于电容263的静电能再利用于初始电荷“0”的容 性负载261中,如图27(e)所示,开关264设成OFF状态,把开关 265设成ON状态。由此,电容263中的充电电荷移动到容性负载261 中,从电容263再生至容性负载261电能。
然后,通过重复进行图27(b)~图27(e)的动作,从而容性负 载261被驱动。根据以上所述,通过把容性负载261放出(放电)的 电荷的一部分回收于电容263中从而再返回到容性负载中261,为容性 负载261再生电能。
再者,还公开了通过回收、再利用储存于液晶显示板中的电荷, 降低电能损耗的技术(参照专利文献10[日本国特开平11-326863号公 报(公开日:平成11年(1999)11月26日)]、专利文献11[日本国 特开平11-352459号公报(公开日:平成11年(1999)12月24日)]、 以及专利文献12[日本国特开平2001-22329号公报(公开日:平成13 年(2001)1月26日)])。
此外,在专利文献13[日本国特开平11-206191号公报(公开日: 平成11年(1999)7月26日)]中,公开了电动机控制电路。
但是,专利文献4中所述的利用磁路的互感作用的电能再生电路 中,根据互感作用的变换率、以及充电电路的效率,无法有效地对容 性负载中储存的静电能进行回收·再利用。
在专利文献4的存储磁头驱动电路中,压电元件的放电电流通过 电感线圈间的互感引起感应电动势,由产生的感应电动势给二次电池 或大容量电容充电。这种构成,可以重复进行静电能的回收·再利用, 但是需要有电感线圈,所以构成变得复杂,同时还有由电感线圈的直 流电阻成分引起的静电能的损失、以及电感线圈间的互感率引起的损 失,从而有电荷的回收率降低的问题。还要加上用于由感应电动势给 二次电池或大容量电容充电的充电电路的损失,系统整体的回收率不 超过50%。
专利文献5·6的构成,存在以下问题。
首先,专利文献5的构成,只适用于成为驱动对象的容性负载的 静电容量值固定或变化很小的状态。即,当驱动喷墨头中的多个压电 元件时,根据进行墨汁的喷出的压电元件的数目,容性负载的静电容 量值变大。且,在等离子显示中,当由1个驱动电路驱动多个发光元 件时,根据使得发光的发光元件的数目容性负载的静电容量值变大。 在专利文献5的构成中,若容性负载的静电容量产生变化,LC共振频 率就发生变化,从而电路的工作特性也会发生变化。尤其当容性负载 的静电容量值变大时,波形的上升会延迟,在开关S1为ON的期间内, 容性负载的端子电压有可能无法上升至规定的电压,可能导致再生率 的降低。因此,专利文献5的构成,静电容量值变大的容性负载,例 如适用在使用压电元件的喷墨头的容量成分的驱动中是很困难的。也 可以考虑把专利文献5的电路设置在每个喷墨头的每个压电元件上, 但那时,成为设置了多个电感线圈L的状况,从而电路规模变得非常 大。
如果根据容性负载的静电容量的变化,连续变化电感线圈L的感 应系数L,能够解决上述问题,但是连续变化电感线圈L的感应系数L 是很困难的。
此外,切换多个电感线圈L使用的专利文献6的构成,虽能解决 至上述问题的程度,但由于要设置多个电感线圈L,电路的规模还是 要变大。因此,这种构成,只能用于有限的用途中。
此外,作为使用电感线圈L(线圈)的构成中共同存在的问题, 也有电路规模变大、因有磁通量的泄漏而电路的配置困难、以及成本 提高等问题。
此外,在专利文献7·8中,没有记载回收·再利用静电能的技术。
专利文献9的容性负载驱动电路,有至电容的电荷的回收率低、 以及容性负载的电能再生率(对于初始电能的再生电能的比例)低等 问题。
即,首先,在图27(b)的步骤中,容性负载261的端子电位V (Cd)成为,
V(Cd)=VH。
在图27(C)的步骤中,容性负载261的能量的一部分被电容263 回收时,容性负载261的端子电位V(Cd)以及电容263的端子电位 V(Cs),若设容性负载261的静电容量为Cd、设电容263的静电容量 为Cs,成为
V(Cd)=V(Cs)={Cd/(Cd+Cs)}VH。
例如,当容性负载261的静电容量与电容263的静电容量相等 时,电压VH/2由电容263中提供。
根据图27(e)的步骤,由容性负载261提供的电压V(Cd)成 为,
V(Cd)={Cd·Cs/(Cd+Cs)2}VH。
例如,当容性负载261的静电容量与电容263的静电容量相等 时,电压VH/4可提供给容性负载261。这种电能再生后的容性负载261 的端子电位V(Cd)最大时,得到最大的电能再生率。若把此时的来 自初始电压VH的电压的再生率设为Re,便成为,
Re=Cd·Cs/(Cd+Cs)2。
若把此式表示为容性负载261与电容263的静电容量比X= Cd/Cs,就变成,
Re=X/(1+X)2。
因此,电能再生率,在X=1时,即容性负载261的静电容量与 电容263的静电容量相等时最大,成为,
Re=1/(1+1)2=4。
因此,在专利文献7的构成中,理论上的最大再生率为25%。 如果进行重复的充放电,残留电荷的再利用率变得要比25%低一些。
再者,在专利文献8~10的构成中,也无法对液晶显示板中储存 的电荷有效地进行回收、再利用。且,在专利文献13中没记载回收·再 利用静电能的技术。

发明内容

本发明,鉴于上述的以往的问题而提出的,其目的在于,提供有 简单的电路结构,且,能够有效地回收·再利用容性负载中储存的能 量的容性负载驱动电路以及容性负载驱动方法,以及,具备降低了电 能损耗的容性负载和容性负载驱动电路的图像形成装置等装置。
本发明的容性负载驱动电路,其特征在于,为解决上述的问题, 在用于充放电容性负载的容性负载驱动电路中,具备:用于把从电源 提供的静电能进行分割而储存的多个能量储存元件、以及用于切换上 述容性负载与上述多个能量储存元件的连接的切换装置,上述切换装 置,在容性负载的充电时,切换上述连接,以便从上述的多个能量储 存元件依次,向容性负载提供静电能,而在容性负载放电时,切换上 述连接,以便把静电能依次,从容性负载回收上述的多个能量储存元 件,其特征在于,上述的能量储存元件,具有互不相同的端子电压, 上述切换装置,在容性负载进行充电时,把各能量储存元件从端子电 压的绝对值小的一方起依次与容性负载连接;而在容性负载放电时, 则把各能量储存元件从端子电压的绝对值大的一方起依次与容性负载 连接。
根据上述结构,由多个能量储存元件依次,给容性负载提供静电 能,而从容性负载把静电能回收至上述的多个能量储存元件,因此可 以进行高效率的能量回收·再利用。且,又因其把储存于能量储存元 件中的静电能照原样回收,所以可以通过简单的电路结构实现。根据 上述结构,可以减少向容性负载的充电·放电周期中的能量消耗,可 以通过简单的电路而得到与静电能储存元件的个数对应的电能回收 率。此外,根据上述结构,通过把能量储存元件的连接根据端子电压 的大小顺序依次切换,把充电时自能量储存元件向容性负载的能量的 传递、与放电时自容性负载向能量储存元件的能量传递最有效地相抵 消,且,可以把能量储存元件以及容性负载的冲击电流抑制得很小, 减少能量损失。其结果,可以进一步减少电能损耗。
此外,在上述结构中,通过改变切换时间,可以对波形进行形状, 即使产生了容性负载的静电容量的变化,也不会影响于波形整体的上 升速度(转换速度),能够稳定地进行工作。
本发明的容性负载驱动电路,其特征在于,为解决上述问题,在对 容性负载进行充放电的容性负载驱动电路中,具备:被赋予了多个不 同初始电位的多个能量储存元件;将接地电位或来自电源的基准电源 电位作为基准电位赋予的基准电位端子;和用于把上述的能量储存元 件以及基准电位端子选择性地与容性负载连接的切换装置,上述的多 个能量储存元件,包括,具有非0的第1初始电位的第1能量储存元 件、以及与第1初始电位同极性且具有绝对值大于第1初始电位的第2 初始电位的第2能量储存元件,上述基准电位为,接地电位、与电源 提供的第1初始电位同极性且绝对值小于第1初始电位的电位、或与 电源提供的第1初始电位相反极性的电位,上述切换装置进行:通过 把容性负载选择性地与基准电位端子连接后,再选择性地与第1能量 储存元件连接,从而把容性负载的端子电压变化为接近于第1初始电 位的第1充电步骤;然后通过把容性负载选择性地与第2能量储存元 件连接,从而增大容性负载的端子电压的绝对值的第2充电步骤;然 后通过把容性负载选择性地与第1能量储存元件连接,从而减小容性 负载的端子电压的绝对值的同时,将第1能量储存元件的储存静电能 再生至与进行第1充电步骤前大致相等的状态的放电步骤。并且,其 结构可以是,容性负载驱动电路的上述基准电位端子为具有接地电位 的接地端子,上述切换装置为,为了把接地端子以及多个能量储存元 件选择性地与电容负载连接,分别在接地端子以及多个能量储存元件 和容性负载间设置的多个切换元件,在多个能量储存元件中,至少具 有最大绝对值的初始电位的能量元件,直接或间接(通过某些电路) 连接于电源的结构。
本发明的容性负载驱动电路,其特征在于,为解决上述问题,在对 容性负载进行充放电的容性负载驱动电路中,具备:从电源赋予了电 源电位的电源端子;赋予了多个不同初始电位的多个能量储存元件; 以及用于把上述的能量储存元件以及电源端子选择性地与容性负载连 接的切换装置,上述的多个能量储存元件,包括:与电源电位同极性 且具有其绝对值小于电源电位的第1初始电位的第1能量储存元件; 以及与第1初始电位同极性且具有其绝对值小于第1初始电位的电位、 接地电位、或与第1初始电位相反极性的电位的第3初始电位的第3 能量储存元件,上述切换装置进行:通过把容性负载选择性地与第3 能量储存元件连接后,再选择性地与第1能量储存元件连接,改变容 性负载的端子电压使得其值接近于第1初始电位的第1充电步骤;然 后通过把容性负载选择性地与电源端子连接,从而增大容性负载的端 子电压的绝对值的第2充电步骤;然后通过把容性负载选择性地与第1 能量储存元件连接,从而减小容性负载的端子电压的绝对值,同时, 将第1能量储存元件的储存静电能再生至与第1充电步骤前大致相等 的状态的放电步骤。
本发明的容性负载驱动电路,其特征在于,为解决上述问题,在对 容性负载进行充放电的容性负载驱动电路中,具备:赋予了多个不同 初始电位的多个能量储存元件、用于把上述多个能量储存元件以及电 源端子选择性地与容性负载连接的切换装置,上述的多个能量储存元 件,包括:具有非0的第1初始电位的第1能量储存元件;具有其绝 对值大于第1初始电位的第2初始电位的第2能量储存元件;与第1 初始电位同极性且具有其绝对值小于第1初始电位的电位、接地电位、 或与第1初始电位相反极性的电位的第3初始电位的第3能量储存元 件,上述切换装置进行:通过把容性负载选择性地与第3能量储存元 件连接后,再选择性地与第1能量储存元件连接,改变容性负载的端 子电压使得其值接近于第1初始电位的第1充电步骤;然后通过把容 性负载选择性地与第2能量储存元件连接,从而增大容性负载的端子 电压的绝对值的第2充电步骤;然后通过把容性负载选择性地与第1 能量储存元件连接,从而减小容性负载的端子电压的绝对值,同时, 将第1能量储存元件的储存静电能再生至与第1充电步骤前大致相等 的状态的放电步骤。其结构可以是,上述容性负载驱动电路,还包括 具有接地电位的接地端子,上述切换装置,为了把接地端子以及多个 能量储存元件选择性地与电容负载连接,分别在接地端子以及多个能 量储存元件和容性负载间设置的多个切换元件,在多个能量储存元件 中,至少具有最大绝对值的初始电位的能量元件,直接或间接连接于 电源的结构。并且,上述容性负载驱动电路中的上述切换装置为,为 了把多个能量储存元件选择性地与电容负载连接,分别在多个能量储 存元件和容性负载间设置的多个切换元件,在多个能量储存元件中, 至少具有最大绝对值的初始电位的能量元件,直接或间接连接于电源 的结构。
本发明的容性负载驱动电路,其特征在于,为解决上述问题,在对容 性负载进行充放电的容性负载驱动电路中,具备:从电源被赋予了电 源电位的电源端子、以与由基准电源提供的电源电位不同的基准电源 电位或接地电位作为基准电位赋予的基准电位端子、在基准电位与电 源电位之间,赋予了互不相同的初始电位的多个第1能量储存元件; 用于把基准电位端子、多个第1能量储存元件、以及电源端子选择性 地与容性负载连接的切换装置,上述切换装置进行:通过将基准电位 端子与容性负载连接后,再将第1能量储存元件从其初始电位接近基 准电位的一方起依次与容性负载连接,使容性负载的端子电压变化到 接近于电源电位的第1步骤;然后通过将容性负载选择性地与电源端 子连接,从而增大容性负载的端子电压的绝对值的第2步骤;然后通 过将第1能量储存元件从其初始电位接近电源电位的一方起依次与容 性负载连接,从而减少容性负载的端子电压的绝对值,同时将第1能 量储存元件的储存静电能再生至大致与进行第1充电步骤前相等的值 的第3步骤。
根据上述结构,在减小容性负载的端子电压的绝对值使得容性负 载放电时,还可以把第1能量储存元件的储存静电能,再生至与给容 性负载提供能量前大致相等的状态。因此,第1能量储存元件在表观 上不消耗能量,可以高效率地进行电能再生。
在上述各结构中,为防止由容性负载的充放电引起第1能量储存 元件的电压的漂移在第1能量储存元件中注入了能量的直流电源,也 可以通过电阻电路连接于第1能量储存元件。
由此,可以抑制电压的漂移,从而可以提高电能再生率。
在上述的具备用于防止漂移的直流电源的结构中,可以给上述容 性负载中施加规定周期的驱动脉冲,并根据上述电阻电路的电阻值和 第1能量储存元件的静电容量成分而定的时间常数,优选为施加于上 述容量负载的驱动脉冲的周期的50倍以上。并且,在上述的具备用于 防止漂移的直流电源的结构中,可以给上述容性负载中施加规定周期 的驱动脉冲,上述切换装置,可以在驱动脉冲1周期内,切换容性负 载的连接点实行多次给容性负载提供静电能的充电步骤,把第1能量 储存元件的静电容量成分设为Cs、施加于上述容性负载的驱动脉冲的 周期设为Tp、自各直流电源至第1能量储存元件的能量注入线路的电 阻值设为Rs、驱动脉冲的1周期内充电步骤的实行次数设为N时,满 足以下的关系
当N=2时    3×Tp≤Rs·Cs≤6×Tp
当N=3时    3×Tp≤Rs·Cs≤7×Tp
当N=4时    3×Tp≤Rs·Cs≤8×Tp
当N≥5时    3×Tp≤Rs·Cs≤10×Tp
为好。
也可以将在上述各结构的容性负载驱动电路中各能量储存元件具 有正极性的初始电位的正极性脉冲发生用的容性负载驱动电路,与在 上述各结构的容性负载驱动电路中,各能量储存元件具有负极性的初 始电位的负极性脉冲发生用的容性负载驱动电路并联。
此时,由具有最高(发生正极性脉冲)正极性的初始电位的静电 能储存元件提供的能量、由具有最高(发生负脉冲)负极性的初始电 位的静电能储存元件提供的能量、以及由发生(一)的脉冲侧的电位 最低的静电能储存元件提供的能量,在最接近接地电位的端子被消耗。
本发明的装置,其特征在于,为解决上述问题,在具备容性负载、 以及用于给容性负载充放电的容性负载驱动电路的装置中,上述容性 负载驱动电路,具备由电源赋予了电源电位的电源端子、以与由电源 提供的电源电位不同的基准电源电位、或接地电位作为基准电位而被 赋予的基准电位端子、在基准电位和电源电位之间被赋予互不相同的 初始电位的多个能量储存元件、以及把基准电位端子、能量储存元件、 以及电源端子选择性地与容性负载连接的切换装置,上述切换装置实 行,把基准电位端子与容性负载连接后,把能量储存元件与容性负载 连接的第1充电步骤、然后把容性负载选择性地与电源端子连接的第2 充电步骤、而后把能量储存元件与容性负载连接的放电步骤,若把能 量储存元件的将电容量成分设为Cs、把容性负载的静电容量设为Cd、 把能量储存元件被连接的持续时间设为Ts、以包含切换装置的、电能 量储存元件向容性负载进行充放电路径的电阻值设为R,
当Ts/(R·Cd)<2.5时
  Cd/Cs≤0.164{Ts/(R·Cd)}0.2198成立,
            当Ts/(R·Cd)≥2.5时
              Cd/Cs≤0.2  成立。
此外,本发明的装置,其特征在于,为解决上述问题,在具备容 性负载、以及用于给容性负载充放电的容性负载驱动电路的装置中,
上述容性负载驱动电路,具备:由电源赋予了电源电位的电源端 子、以与由电源提供的电源电位不同的基准电源电位、或接地电位作 为基准电位而被赋予的基准电位端子、被赋在基准电位和电源电位之 间、且赋予了互不相同的初始电位的多个能量储存元件、以及把基准 电位端子、多个能量储存元件、以及电源端子选择性地与容性负载连 接的切换装置,上述切换装置实行,把基准电位端子与容性负载连接 后把能量储存元件自其初始电位接近基准电位处依次与容性负载连接 的第1充电步骤、然后把容性负载选择性地与电源端子进行选择连接 的第2充电步骤、而后把各能量储存元件自其初始电位接近电源电位 处起依次与容性负载连接的放电步骤,若把能量储存元件的将电容量 成分设为Cs、把容性负载的静电容量设为Cd、把能量储存元件被连接 的持续时间设为Ts、以包含切换装置的、由能量储存元件向容性负载 进行充放电的路径的电阻值设为R,
当Ts/(R·Cd)<2.5时
  Cd/Cs≤0.164{Ts/(R·Cd)}0.2198成立,
           当Ts/(R·Cd)≥2.5时
             Cd/Cs≤0.2  成立。
根据上述结构,在减小容性负载的端子电压的绝对值使得容性负 载放电时,还可以把第1能量储存元件的储存静电能,再生至与给容 性负载提供能量前大致相等的状态。因此,第1能量储存元件在表观 上不消耗能量,可以以高效率进行电能再生。
进而,根据上述结构,在第1~第3步骤中,容性负载的电压, 达到最终达到电压(将第1充电步骤持续无限长时间时容性负载的电 压达到的最终电压)的90%。由此,通过电荷由能量储存元件至容性 负载的流出带来的能量储存元件的电压变化变小,脉冲发生时的电能 再生率变好,可以更进一步减少电能损耗。并且,由1次脉冲的发生 引起的能量储存元件的电压变化变小,因而不必对电压变化进行校正 就可以进行下次的脉冲的发生。
具备了能量储存元件的本发明的装置(2级的装置),把容性负载 的静电容量设为Cd、把包含切换装置的、与容性负载对应的能量储存 元件的充放电路径的电阻值设为R、把能量储存元件被连接的持续时 间设为Ts、最终达到电压设为V、把发生的电压波形转换速度 (10%-90%的上升速度)设为SR,
若,设y=Ts/(R·Cd),满足
SR≤V/(R·Cd)*(-0.0002y4+0.001y3+0.009y2-0.100y+0.386)
为好。
具备了能量储存元件的本发明的装置(2级的装置),把容性负载 的静电容量设为Cd、把包含切换装置的、与容性负载对应的能量储存 元件的充放电路径的电阻值设为R、把能量储存元件被连接的持续时 间设为Ts、最终达到电压设为V、
若,设y=Ts/(R·Cd),满足
50(V/μsec)≤V/(R·Cd)* (-0.0002y4+0.001y3+0.009y2-0.100y+0.386)
为好。
具备了多个能量储存元件的本发明的装置(3级以上的装置),把 容性负载的静电容量设为Cd、把包含切换装置的、与容性负载对应的 能量储存元件的充放电路径的电阻值设为R、把能量储存元件被连接 的持续时间设为Ts、最终达到电压设为V、驱动脉冲1周期内的各能 量储存元件的充电步骤的实行次数为N、把发生的电压波形转换速度 (10%-90%的上升速度)设为SR,
若,设y=Ts/(R·Cd),满足
当N=3时,SR≤V/(R·Cd)* (0.0008y4-0.012y3+0.071y2-0.229y+0.414)
当N=4时,SR≤V/(R·Cd)* (0.0023y4-0.028y3+0.138y2-0.336y+0.434)
当N≥5时,SR≤V/(R·Cd)* (0.0026y4-0.032y3+0.153y2-0.356y+0.413)
为好。
具备了多个能量储存元件的本发明的装置(3级以上的装置),把 容性负载的静电容量设为Cd、把包含切换装置的、与容性负载对应的 能量储存元件的充放电路径的电阻值设为R、把能量储存元件被连接 的持续时间设为Ts、最终达到电压设为V、驱动脉冲1周期内的各能 量储存元件的充电步骤的实行次数为N,
若,设y=Ts/(R·Cd),满足
当N=3时,
50(V/μsec)≤V/(R·Cd)* (0.0008y4-0.012y3+0.071y2-0.229y+0.414)
当N=4时,
50(V/μsec)≤V/(R·Cd)* (0.0023y4-0.028y3+0.138y2-0.336y+0.434)
当N≥5时,
50(V/μsec)≤V/(R·Cd)* (0.0026y4-0.032y3+0.153y2-0.356y+0.413)
为好。
根据上述结构,关于作为发生的波形所需的转换速度的电路的参 数,进而,在连接维持时间可以使得驱动波形发生电路稳定地工作。 特别是如喷墨打印机那样需要高速的转换速度时,通过将转换速度的 下限值设为50(V/μsec)来稳定墨汁的喷出。因此,根据如上所述的 方法,可以把很陡的波形的脉冲施加于容性负载中,从而装置的响应 性变得很好。
再者,在上述各不等式中,右边的值(例如V/(R·Cd)* (-0.0002y4+0.001y3+0.009y2-0.100y+0.386)),在不超过驱动电路的界 限的范围内尽量使之变大为好,对上限没有特别的限定。
具备了上述各结构的容性负载驱动电路、以及通过此容性负载驱 动电路进行充放电的容性负载的装置中,上述能量储存元件的静电容 量成分,是容性负载的静电容量的100倍以上为好。
用于本发明的电容等能量储存元件,依赖于所发生的脉冲的波形, 但是为得到上升沿陡峭的波形的脉冲,优选频率特性(充放电特性) 优良的元件(等价电阻R很小的元件)。由此,容性负载的电压以饱和 到某种程度的状态移至下一部分,因此可以得出上升沿陡峭的波形的 脉冲。为了减小等价电阻从而提高能量储存元件的充放电特性,也可 以把例如连接于能量储存元件的切换元件的ON电阻减小。
当上述能量储存元件的静电容量成分,为容性负载的静电容量的 100倍以上时,可以使驱动系统稳定地工作。且,当上述能量储存元件 的静电容量成分,小于容性负载的静电容量的100倍时,通过给容性 负载注入能量,使上述能量储存元件的电位变化变大,从而增大了电 能再生率的降低。
再者,本说明书中的「容性负载」,是指静电容量为主要成分的负 载。作为容性负载,可举出有:图像形成装置等中配备的压电元件(压 电体)、静电方式的喷墨头中配备的静电驱动电极(静电执行机构)、 图像形成装置等离子显示的放电电极、液晶显示的电压施加电极、压 电执行机构(压电元件)、电容、静电达、静电图像形成装置。进而 在消耗电流较小时也可以考虑应用在直流-交流转换装置以及电压波 形发生装置等。
关于本发明的具备容性负载和容性负载驱动电路的装置,其特征 在于,上述容性负载,为通过给墨加压使墨水以液滴状喷出的喷墨 头中所配备的静电驱动电极或压电元件,上述容性负载驱动电路,为 喷墨头的静电驱动电极或驱动压电元件的驱动电路时,发生电压脉冲, 同时在同-脉冲发生周期中进行电能的再生,因此压电元件或静电驱动 电极(静电执行机构)驱动时的电能损耗很少。因此,可以提供电能 损耗被减少的图像形成装置。
作为能量储存元件,可以使用二次电池以及电容器等。
电容器,由于内部电阻小于二次电池等,其自身的损失小于二次 电池,以高效率回收静电能进行再利用。
此外,电容器,即使重复多次充放电,其劣化程度也很小,因而 寿命很长,所以可以长时间使用。
进而,电容器,一般频率特性比二次电池优良,因此即使在10μs 左右的脉冲驱动中,也可以高效地进行静电能的回收。
作为电容器,具有优良的上述的特性(充放电引起的劣化特性、 内部阻抗、以及频率特性)的片状电容、钽电容、电双层电容、功能 性高分子电容、以及陶瓷电容更为适合。
一方面,二次电池,在静电能的储存(充电)时需要时间,另外 由于可以储存较大的能量,所以可以长时间维持电压。因此,具有如 以电源不提供电压的状态,经过长时间,可以使容性负载驱动电路进 行工作的优点。
作为二次电池,除了使用镍·镉电池、镍·氢电池、·镉 电池等性蓄电器以外,还可以使用锰·锂电池、·锂电池、锂·聚 合物电池、锂离子电池等锂二次电池。在二次电池中,锂离子电池, 没有如镍·镉电池以及镍·氢电池的存储效果,适于重复进行充电·放 电,因此很好。
此外,也可以在能量储存元件的一部分连接用于把由上述容性负 载回收至能量储存元件的静电能,提供给与上述容性负载不同的外部 的元件的能量输出线路。
根据上述的结构,可以把回收至能量储存元件的静电能利用在与 回收前的容性负载不同的外部的元件中,因此可以高效地再利用回收 至能量储存元件中的静电能。
上述的多个能量储存元件,具有互不相同的端子电压,上述的切 换装置,以在容性负载充电时,把各能量储存元件自端子电压的绝对 值小的一方起依次与容性负载连接,而在容性负载放电时,把各能量 储存元件自端子电压的绝对值大的一方起依次与容性负载连接为好。
根据上述的结构,通过把能量储存元件的连接根据端子电压的大 小顺序依次切换,把充电时自能量储存元件向容性负载的能量的传递、 与放电时自容性负载向能量储存元件的能量传递最有效地相抵消,且, 可以把能量储存元件以及容性负载的冲击电流抑制得很小,减少能量 损失。其结果,可以进一步减少电能损耗。
上述切换装置,在容性负载放电时把容性负载连接于端子电压最 小的能量储存元件后,也可以使容性负载接地。
根据上述结构,容性负载的电能消耗因为是由端子电压的绝对值 最小的能量储存元件与接地电位的电位差确定的值,因此可以使能量 消耗成为最小。进而,在能量储存元件的充电前,可以使储存于容性 负载的电荷为0,因此可以在能量储存元件中重复进行稳定的工作。
上述切换装置,也可以使得在容性负载放电时把容性负载连接于 端子电压最小的能量储存元件后,至开始容性负载的充电期间,维持 容性负载与端子电压的绝对值最小的能量储存元件的连接。
根据上述的结构,由于不是丢掉而是保持容性负载中储存的能量, 因此可以将容性负载中储存的静电能几乎全部回收并再利用。其结果, 可以进一步高效的回收·再利用容性负载中储存的静电能。此时,通 过从端子电压的绝对值最小的能量储存元件起给其他电路提供电能, 可以防止端子电压的绝对值最小的能量储存元件的电压漂移的同时进 行高效的回收·再利用。
此外,在本发明的容性负载驱动电路中,也可以进一步设计出将 电源提供的电压分压为互不相同的多个电压,把这些电压作为端子电 压提供给各能量储存元件的分压装置。分压装置,被设计作为各个能 量储存元件的初始能量储存装置。
根据上述结构,在容性负载的充电·放电的电压脉冲发生同时电 能再生周期中,由于在容性负载中的损失以及释放能量等,在自容性 负载回收静电能后,能量储存元件的电荷量不恢复到初始值(提供静 电能前的值)的情况下,也可以通过分压装置把能量储存元件的端子 电压强制性地调节至规定的电压。特别是通过适当选择分压装置的电 压校正能力,在容性负载的充电放电的电压脉冲发生同时电能再生周 期中几乎不响应,但是可以防止电压脉冲发生同时电能再生周期反复 中的漂移。其结果,可以给容性负载提供极稳定的电压,可以稳定地 进行重复工作。
此外,根据上述结构,可以在容性负载充电时,从多个能量储存 元件对容性负载依次地、提供不同的电压,依次给容性负载的驱动电 压升压,而在容性负载放电时,从多个能量储存元件对容性负载依次 地、提供不同的电压,依次给容性负载的驱动电压降压。因此,通过 调整切换装置的切换时序可以得到各种驱动电压波形。
上述分压装置,把电源提供的电压分成n等分(n为2以上)为 好。由此,把充电时能量向容性负载的传递和能量从放电时容性负载 向能量储存元件的传递最有效地相抵消,且,可以把能量储存元件以 及容性负载的冲击电流抑制得很小,更进一步减少能量损失。
上述分压装置,也可以含串联于电源的多个电阻。根据上述结构, 以简单的结构可实现分压装置。
在具备含有上述的多个电阻的分压装置的结构中,夹在上述电阻 和能量储存元件之间,还具备给流过上述电阻的电流放大的同时,输 出与输入电压不同的电压,使得各能量储存元件的端子电压被调整至 规定的电压的缓冲放大装置为好。
根据上述结构,当被上述电阻分压的电压偏离了规定电压时,例 如,由于在容性负载中的静电能损失以及静电能释放等,自容性负载 回收静电能后,能量储存元件的端子电压未恢复到初始值(提供静电 能量前的值)时,也可以通过缓冲放大装置把能量储存元件的端子电 压调整至规定的电压。
此外,根据上述结构,可以降低流过上述电阻的电流,因此可以 降低由上述电阻消耗的电能损耗。
再者,上述缓冲放大装置,可通过射极跟随器实现。
上述分压装置,也可以含有用于稳定被分压的电压的稳压二极管 等稳压装置。
根据上述结构,即使由于容性负载的损耗以及能量的释放等,从 容性负载回收静电能后能量储存元件的电荷量未恢复到初始值(提供 静电能前的值)时,也可以通过稳压二极管等稳压装置把能量储存元 件的端子电压准确地调节至规定的电压。其结果,可以给容性负载提 供极稳定的电压,能够进行稳定的反复操作。
具备了上述稳压二极管等稳压装置的分压装置,含有在电源和地 线之间串联连接的多个稳压二极管等稳压元件,并在这些稳压二极管 等稳压元件与电源或地线之间插入电阻为好。
根据上述结构,即使在稳压二极管等稳压元件的两端电压(当稳 压二极管时,为齐纳电压)的总合与电源电压不一致时,也可以通过 电阻吸收电压的不一致,可以以任意的电压进行稳定的反复动作。
具备上述稳压二极管等稳压元件的分压装置,其构成也可以是, 具备在电源与地线之间并联连接的第1分压器以及第2分压器,第1 分压器以及第2分压器分别,含有稳压二极管等稳压元件,在第1分 压器中,在稳压二极管等稳压元件与电源之间内插有上拉电阻的,而 在第2分压器中,在稳压二极管等稳压元件与地线之间内插有下拉电 阻。
根据上述结构,即使在稳压二极管等稳压元件的两端电压(当稳 压二极管时,为齐纳电压)的总合与电源电压不一致时,也可以通过 上拉电阻以及下拉电阻吸收电压的不一致,可以以任意的电压进行稳 定的反复动作。
在具备了上述的第1分压器以及第2分压器分压装置中,第1分 压器所含的稳压二极管等稳压元件的个数、以及第2分压器所含的稳 压二极管等稳压元件的个数之差,是1个以下为好。
根据上述结构,可以进一步提高能量储存元件的端子电压的稳定 性,从而可以进行稳定的反复动作。
具备包含上述稳压二极管等稳压元件的分压装置的结构中,在稳 压二极管等稳压元件与能量储存元件之间,内插限流电阻为好。
根据上述结构,根据限流电阻,通过适当选择分压装置的电压校 正能力,在容性负载的充电、放电引起的电压脉冲发生同时电能再生 周期中几乎不响应,但是可以防止在反复进行电压脉冲发生同时电能 再生周期过程中的漂移,且可以吸收流过容性负载的电流的突变的同 时,限制流入稳压二极管等稳压元件的电流,从而可以减轻稳压二极 管等稳压元件的负担。
此外,全部的能量储存元件的一端,与电源或地线连接为好。
根据上述结构,可以把能量储存元件各自分离开,从而防止干扰, 因此有自电容负载向特定的能量储存元件的电流流过时,且能量储存 元件的电压变化不对其他的能量储存元件产生影响。因此,可以进一 步提高能量储存元件的端子电压的稳定性,从而可以进行稳定的反复 工作。
此外,本发明的容性负载驱动电路中,还具备用于控制由上述电 源给能量储存元件提供静电能的切换部,而上述切换部,仅在容性负 载的充电前的规定期间内,自上述电源给能量储存元件提供静电能为 好。
根据上述结构,仅在规定期间内从电源给能量储存元件提供静电 能,因此与平时从电源给能量储存元件提供静电能的情况相比,可以 降低在容性负载驱动电路中的电能损耗,特别是,当具备含有多个串 联于电源的电阻的分压装置时,能够降低电阻的电能损耗。
此外,本发明的容性负载驱动电路中,还具备通过切换内部的连 接状态,选择性地对一部分的容性负载进行充电或放电的选择装置也 是可以的。
根据上述结构,选择装置选择性地对一部分的容性负载进行充电 或放电,因此可以把多个容性负载以不同的时序进行驱动。
此外,在还具备上述选择装置的结构中,单独设置用于把分配到 多个能量储存元件的静电能提供给容性负载的能量提供线路、以及用 于从能量储存元件回收静电能的能量回收线路,而上述选择装置,则 分别设置于能量提供线路以及能量回收线路中为好。
根据上述结构,由于单独设置能量供给线路(充电路径)与能量 回收线路,可以同时进行对一部分容性负载的充电、以及对其余容性 负载的放电。由此,当以不同的时序对多个容性负载进行驱动时,可 增加单位时间所对应的容性负载的工作次数。因此,可以使容性负载 以高速工作。
此外,根据上述结构,通过单独设置能量提供线路以及能量回收 线路,可以使充电特性和放电特性适用于其他用途、以及最佳化。
此外,在单独设置了上述的能量提供线路及能量回收线路的结构 中,还具备用于整流能量提供线路以及能量回收线路的电流的整流装 置为好。
根据上述结构,根据切换装置的ON/OFF工作的延迟等,可以防 止有短路电流的流过损坏电路。
利用上述的容性负载驱动电路,配备于使墨水以液滴状喷出的喷 墨头的、用于给墨水加压的压电元件当作容性负载驱动为好。
根据上述结构,一般,对于以电能损耗大、介电常数大(例如, expε4300左右)、容量大(例如,80pF×320ch=0.0256μF)、给负 载充放电过程中很高的重复频率(10kpps~150kpps)被驱动的喷墨头 的压电元件,可以进行高效的能量回收·再利用,因此可得出很大大 降低电能损耗的效果。
本发明的喷墨打印机,为解决上述为题,在具备通过由压电元件 给墨水加压,使墨水以液滴状喷出的喷墨头、以及驱动上述喷墨头的 压电元件的驱动电路的喷墨打印机中,其特征在于,上述驱动电路为, 上述的任一种结构的容性负载驱动电路。
根据上述结构,自多个能量储存元件依次给压电元件提供静电能, 再给上述的多个能量储存元件依次从压电元件回收静电能,所以可以 进行高效的能量回收·再利用。因此,可以提供降低了电能损耗的喷 墨打印机。
具备利用本发明的电压脉冲发生同时电能周期的容性负载驱动电 路的图像形成装置,其特征在于,产生电压脉冲的同时,在同-脉冲发 生周期中进行电能的再生,因此压电元件或静电驱动电极(静电执行 机构)驱动时的电能损耗会减少。因此,可以提供降低了电能损耗的 图像形成装置。
本发明的容性负载驱动方法,在给容性负载进行充放电的容性负 载驱动方法中,其特征在于,包括:把静电能分配给具有互不相同的 端子电压的多个能量储存元件进行储存的储存步骤;通过从上述的多 个能量储存元件依次给容性负载提供静电能从而对容性负载进行充电 的充电步骤;以及使容性负载放电、使得把静电能依次从容性元件回 收至上述的多个能量储存元件的回收步骤,其中,在上述充电步骤中, 把各能量储存元件从端子电压的绝对值小的一方起依次与容性负载连 接;而在上述回收步骤中,把各能量储存元件从端子电压的绝对值大 的一方起依次与容性负载连接。
根据上述方法,在给容性负载充电时,从多个能量储存元件依次 给容性负载提供静电能,相反在从容性负载放电时,把静电能依次从 容性负载回收至上述多个能量储存元件中,因此可以进行高效的能量 回收·再利用。此外根据上述方法,通过把能量储存元件的连接根据 端子电压的大小顺序依次切换,把充电时自能量储存元件向容性负载 的能量的传递、与放电时自容性负载向能量储存元件的能量传递最有 效地相抵消,且,可以把能量储存元件以及容性负载的冲击电流抑制 得很小,减少能量损失。其结果,可以进一步减少电能损耗。
本发明的容性负载驱动方法,为解决上述问题,在给容性负载进行 充放电的容性负载驱动方法中,其特征在于,包含:准备具有非0的初 始电位的第1能量储存元件、第2能量储存元件、接地电位、与基准 电源提供的第1初始电位同极性且绝对值小于第1初始电位的电位、 或与基准电源提供的第1初始电位相反极性的电位被作为基准电位赋 予的基准电位端子的步骤;在给第1能量储存元件赋予第1初始电位 的同时,给第2能量储存元件赋予与第1初始电位同极性且绝对值大 于第1初始电位的第2初始电位的初始电位赋予步骤;通过把容性负 载选择性地与基准电位端子连接后,选择性地与第1能量储存元件连 接,改变容性负载的端子电压,使其值接近于第1初始电位的第1充 电步骤;然后通过把容性负载选择性地与第2能量储存元件连接,增 大容性负载的端子电压的绝对值的第2充电步骤;以及然后通过在把 容性负载选择性地与第1能量储存元件连接减少容性负载的端子电压 的绝对值的同时,把第1能量储存元件的储存静电能再生至与第1充 电步骤前大致相等的程度的放电步骤。
本发明的容性负载驱动方法,为解决上述问题,在给容性负载进行 充放电的容性负载驱动方法中,其特征在于,包括:准备由电源赋予了 电源电位的电源端子、和第1能量储存元件以及第3能量储存元件的 步骤;在给第1能量储存元件赋予与电源电位同极性且绝对值小于电 源电位的第1初始电位的同时,给第3能量储存元件赋予与第1初始 电位同极性且绝对值小于第1初始电位的电位、接地电位、或与第1 初始电位相反极性的电位的第3初始电位的初始电位赋予步骤;通过 把容性负载选择性地与第3能量储存元件连接后,选择性地与第1能 量储存元件连接,改变容性负载的端子电压使其值接近于第1初始电 位的第1充电步骤;然后通过把容性负载选择性地与电源端子连接, 增大容性负载的端子电压的绝对值的第2充电步骤;以及然后通过在 把容性负载选择性地与第1能量储存元件连接减少容性负载的端子电 压的绝对值的同时,把第1能量储存元件的储存静电能再生至与第1 充电步骤前大致相等的程度的放电步骤。
本发明进一步的目的、特征、以及优点,根据以下所述可更充分 被理解。此外,本发明的优点,通过参照了附图的下面的说明会更明 了。

附图说明

图1为表示有关本发明的实施方式的容性负载驱动电路的结构的 电路图。
图2(a)~(c)为表示图1的容性负载驱动电路的工作状态的时 序图,图2(a)为同步信号的波形图、图2(b)为晶体管控制电压的 波形图、图2(c)为向电容施加的电压的波形图。
图3(a)~(d)为把图(a)~(c)表示的时序图的一部分扩大 表示的同时表示开关的工作状态的图,图3(a)为同步信号的波形图、 图3(b)为表示开关的工作状态的时序图、图3(c)为晶体管控制电 压的波形图、图3(d)为向电容施加的电压的波形图。
图4为表示关于本发明的其他实施方式的容性负载驱动电路的结 构的电路图。
图5(a)~(c)为表示图4的容性负载驱动电路的工作状态的时 序图,图5(a)为同步信号的波形图、图5(b)为晶体管控制电压的 波形图、图5(c)为向电容施加的电压的波形图。
图6(a)~(d)为把图5(a)~(c)表示的时序图的一部分扩 大表示的同时表示开关的工作状态的图,图6(a)为同步信号的波形 图、图6(b)为表示开关的工作状态的时序图、图6(c)为晶体管控 制电压的波形图、图6(d)为向电容施加的电压的波形图。
图7为表示关于本发明的另一种实施方式的容性负载驱动电路的 结构的电路图。
图8为表示关于本发明的另一种实施方式的容性负载驱动电路的 结构的电路图。
图9(a)~(c)为表示图8的容性负载驱动电路的工作状态的时 序图,图9(a)为同步信号的波形图、图9(b)为晶体管控制电压的 波形图、图9(c)为向电容施加的电压的波形图。
图10(a)~(d)为把图9(a)~(c)表示的时序图的一部分 扩大表示的同时表示开关的工作状态的图,图10(a)为同步信号的波 形图、图10(b)为表示开关的工作状态的时序图、图10(c)为晶体 管控制电压的波形图、图10(d)为向电容施加的电压的波形图。
图11为表示用于图8的容性负载驱动电路的变形例的射极跟随器 的结构的电路图。
图12为表示用于图8的容性负载驱动电路的其他变形例的射极跟 随器的结构的电路图。
图13为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图14(a)~(c)为表示通过图13的容性负载驱动电路施加于电 容的电压的波形的波形图,图14(a)为A相电压的波形图、图14(b) 为B相电压的波形图、图14(c)为C相电压的波形图。
图15为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图16(a)~(c)为表示通过图15的容性负载驱动电路施加于电 容的电压的波形的波形图,图16(a)为A相电压的波形图、图16(b) 为B相电压的波形图、图16(c)为C相电压的波形图。
图17为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图18(a)(b)为用于说明设置于图17的容性负载驱动电路中的 分压器的工作状态的电路图。
图19为表示图17的容性负载驱动电路的变形例的电路图。
图20为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图21为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图22为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图23为表示关于本发明的一个实施方式的喷墨打印机(图像形成 装置)的主要部位的透视图。
图24为表示图23的喷墨打印机(图像形成装置)具备的喷墨头 的结构的剖视图。
图25(a)~(e)为表示以往的容性负载驱动电路的一例的图, 图25(a)为表示容性负载驱动电路的结构的电路图、图25(b)及(c) 为控制容性负载驱动电路所具备的2个晶体管的工作状态的控制电压 的波形图、图25(d)为被驱动的电容的端子电压的波形图、图25(e) 为流过容性负载驱动电路的电阻的电流的波形图。
图26为表示以往的容性负载驱动电路的一例的电路图。
图27(a)~(e)为用于说明图26所示的以往的容性负载驱动电 路的工作状态的电路图。
图28为表示以往的容性负载驱动电路的一例的电路图。
图29为用于说明图28所示的以往的容性负载驱动电路的工作状 态的波形图,表示容性负载的端子电压以及开关的状态。
图30为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图31(a)~(e)为用于说明图30所示的容性负载驱动电路的工 作状态的电路图。
图32(a)~(d)为用于说明图30所示的容性负载驱动电路的工 作状态的电路图。
图33为用于说明图30所示的容性负载驱动电路的工作状态的波 形图。
图34为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图35(a)~(f)为用于说明图34所示的容性负载驱动电路的工 作状态的电路图。
图36为表示通过图34所示的容性负载驱动电路发生的脉冲的一 例的波形的波形图。
图37为表示通过图34所示的容性负载驱动电路发生的脉冲的一 例的波形的波形图。
图38为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图39为表示通过图38所示的容性负载驱动电路发生的脉冲的一 例的波形的波形图。
图40为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图41为表示通过图40所示的容性负载驱动电路发生的脉冲的一 例的波形的波形图。
图42为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图43为表示通过图42所示的容性负载驱动电路发生的脉冲的一 例的波形的波形图。
图44为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图45为表示通过图44所示的容性负载驱动电路发生的脉冲的一 例的波形的波形图。
图46为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图47为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图48为表示通过图47所示的容性负载驱动电路发生的脉冲的一 例的波形的波形图。
图49为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图50为用于说明本发明的原理的电路图之一。
图51(a)以及(b)为用于说明本发明的原理的图之一,图51(a) 为表示电压变化的曲线、图51(b)为表示电流变化的曲线。
图52为用于说明本发明的原理的另一个电路图。
图53为用于说明本发明的原理的另一个电路图。
图54为表示有关于本发明的容性负载驱动电路中的1个电容给容 性负载提供能量的示意图。
图55为表示由电容提供能量引起的容性负载的电压变化的曲线。
图56(a)为表示由1个电容提供能量引起的容性负载的电压变化 的曲线,图56(b)为表示由本发明的容性负载驱动电路中的多个电容 提供能量引起的容性负载的电压变化的曲线,任何一项,都表示电容 的切换时间(Ts)短于时间常数(R·Cd)的状态。
图57(a)为表示由1个电容提供能量引起的容性负载的电压变化 的曲线,图57(b)为表示由本发明的容性负载驱动电路中的多个电容 提供能量引起的容性负载的电压变化的曲线,任何一项,都表示切换 时间(Ts)与时间常数相等的状态。
图58(a)为表示由1个电容提供能量引起的容性负载的电压变化 的曲线,图58(b)为表示由本发明的容性负载驱动电路中的多个电容 提供能量引起的容性负载的电压变化的曲线,任何一项,都表示切换 时间(Ts)长于时间常数的状态。
图59为表示使用关于本发明的一个实施方式的容性负载驱动电 路的显示装置的图。
图60为表示使用关于本发明的一个实施方式的容性负载驱动电 路的直流-交流逆变器的图。
图61为以从记录媒体侧看记录头中的一部分的状态的表示的俯 视图。
图62为记录头的纵向剖视图。
图63(a)~(c)为用于说明图62的记录头的工作状态的剖视图。
图64为用于说明图62的记录头的工作状态的脉冲波形图。
图65为表示使用关于本发明的另一实施方式的容性负载驱动电 路的喷墨打印机(图像形成装置)的剖视图。
图66为表示使用本发明的另一实施方式的容性负载驱动电路的 喷墨打印机(图像形成装置)的透视图。
图67为表示图65的喷墨打印机(图像形成装置)控制系统的框 图。
图68为表示本发明的一个实施方式的容性负载驱动电路中反复 进行容性负载的充放电时的能量储存元件的电压变化的图。
图69为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图70(a)~(c)为表示图69的容性负载驱动电路的动作例的时 序图,图70(a)为同步信号的波形图、图70(b)为开关的控制电压 的波形图、图70(c)为电容的施加电压的波形图。
图71(a)~(d)为表示图69的容性负载驱动电路的另一的工作 例的时序图,图71(a)为同步信号的波形图、图71(b)为开关的控 制电压的时序图、图71(c)为开关(切换装置)的控制电压的波形图、 图71(d)为向电容施加的电压的波形图。
图72为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图73(a)~(c)为表示图72的容性负载驱动电路的工作例的时 序图,图73(a)为同步信号的波形图、图73(b)为开关的控制电压 的波形图、图73(c)为电容的施加电压的波形图。
图74(a)~(d)为表示图72的容性负载驱动电路的另一的工作 例的时序图,图74(a)为同步信号的波形图、图74(b)为开关(切 换装置)的工作状态的时序图、图74(c)为开关的控制电压的波形图、 图74(d)为向电容施加的电压的波形图。
图75为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图76(a)(b)为表示关于本发明的另一种实施方式的容性负载驱 动电路的结构的电路图。
图77为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图78为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图79为表示关于本发明的另一种实施方式的容性负载驱动电路 的结构的电路图。
图80(a)(b)为用于说明被设置于图79的容性负载驱动电路中 的分压器的工作状态的电路图。
图81为表示关于本发明的一个实施方式的容性负载驱动方法的 流程图
图82为在图30所示的容性负载驱动电路中,对于时间常数与切 换时间之比,表示在第1~第3步骤期间使电容量负载的电压达到待达 到电压的90%以上的最大的负载容量比的曲线。
图83为表示在把图30所示的4级的容性负载驱动电路中只把级 数换成2级的容性负载驱动电路中,把负载容量比从0.003变化至0.3 时的,切换元件的能量消耗率对时间常数与切换时间之比的变化的曲 线。
图85为表示在图30所示的4级的容性负载驱动电路中,负载容 量比从0.003变化至0.3时的,切换元件的能量消耗率对时间常数与切 换时间之比的变化的曲线。
图86为表示在把图30所示的4级的容性负载驱动电路中只把级 数换成5级的容性负载驱动电路中,把负载容量比从0.003变化至0.3 时的,切换元件的能量消耗率对时间常数与切换时间之比的变化的曲 线。
图87为表示在把图30所示的4级的容性负载驱动电路中只把级 数换成6级的容性负载驱动电路中,把负载容量比从0.003变化至0.3 时的,切换元件的能量消耗率对时间常数与切换时间之比的变化的曲 线。
图88为表示在把图30所示的4级的容性负载驱动电路中只把级 数换成2级的容性负载驱动电路中,把负载容量比X从0.001变化至 0.1时的,切换速度(10%-90%)对时间常数与切换时间之比的变化的 曲线。
图89为表示在把图30所示的4级的容性负载驱动电路中只把级 数换成3级的容性负载驱动电路中,把负载容量比X从0.001变化至 0.1时的,切换速度(10%-90%)对时间常数与切换时间之比的变化的 曲线。
图90为表示在把图30所示的4级的容性负载驱动电路中,把负 载容量比从0.001变化至0.3时的,切换速度(10%-90%)对时间常数 与切换时间之比的变化的曲线。
图91为表示在把图30所示的4级的容性负载驱动电路中只把级 数换成5级的容性负载驱动电路中,把负载容量比X从0.003变化至 0.3时的,切换速度(10%-90%)对时间常数与切换时间之比的变化的 曲线。
图92为表示在把图30所示的4级的容性负载驱动电路中只把级 数换成6级的容性负载驱动电路中,把负载容量比X从0.003变化至 0.3时的,切换速度(10%-90%)对时间常数与切换时间之比的变化的 曲线。

具体实施方式

[实施方式1]
下面根据图1、图2(a)~(c)、以及图3(a)~(d)对于本发 明的1个实施方式进行说明。
如1图所示,本实施方式的容性负载驱动电路1,具备,由9个 电容(能量储存元件)2构成的蓄电器3、由10个电阻构成的分压器 (分压装置)5、晶体管(切换部)6、开关(切换装置)7、电阻8、 以及电源端子9。本实施方式的容性负载驱动电路1,对于作为容性负 载的电容11施加电压V从而使电容11进行充放电。
在容性负载驱动电路1中,自未图示的设置于容性负载驱动电路 1的外部的主电源通过电源端子9提供电源电压VH。且,电源电压 VH,自电源端子9通过晶体管6施加到分压器5。
晶体管6,具有根据控制电压Q,使电源端子9和分压器5的连接 进行ON/OFF的开关的作用。本实施方式中,晶体管6为,PNP型晶 体管,电源端子9与其射极连接,分压器5与其集电极连接,控制电 压Q被加至基极。晶体管6,在驱动时通常为导通状态(ON)。因此, 省去晶体管6,把电源端子9直接、连接到分压器也是可以的。
分压器5,将由外部的主电源提供的电源电压VH被10个电阻4 进行分压。分压器5由在电源端子9和地线(成为电源电压的基准的 电位的点;典型的是电位为0的点)之间串联连接10个电阻4构成, 并根据这些电阻4使来自外部的主电源的电源电压VH分压成互不相 同的电压V1~V9。即,晶体管6为导通状态,分压器5上被提供正向 的电源电压VH时(以下,称作「电能提供时」),在连接电阻4之间 的9个连接点a·b·c·d·e·f··g·h·i上,产生电压V1,V2,V3, V4,V5,V6,V7,V8,V9(且满足0<V1<V2<V3<V4<V5<V6<V7< V8<V9<VH)。更具体讲,若把存在于自连接点至电源端子9之间的 电阻4的电阻值的总合设为R1,把存在于自连接点至地线之间的电阻 4的电阻值的总合设为R2,电压V1~V9,可以表示为VH·R2/ (R1+R2)。在本实施方式中,作为每个电阻4,使用具有同一电阻值 的电阻元件。因此,在本实施方式中,电压V1~V9,成为V1=VH/10, V2=2VH/10,V3=3VH/10,V4=4VH/10,V5=5VH/10,V6=6VH10, V7=7VH/10,V8=8VH/10,V9=9VH/10。
蓄电器3,由并联连接于地线与分压器5之间的9个电容2a~2i 构成。且,电容2a、2b、2c、2d、2e、2f、2g、2h、2i分别,连接于 前述的连接点a、b、c、d、e、f、、g、h、i。因此,在电能提供时,对 于电容2a、2b、2c、2d、2e、2f、2g、2h、2i,可以施加被分压器5 分压的电压V1,V2,V3,V4,V5,V6,V7,V8,V9作为端子电压 (连接于开关7的端子的电压)。
由此,借助于分压器5,蓄电器3的电容2a~2i的端子电压被调 整到规定的电压V1~V9,而各电容2a~2i被分配不同的端子电压 V1~V9。由此,在电能提供时,在电容2a、2b、2c、2d、2e、2f、2g、 2h、2i中分别,被储存对应于电压V1,V2,V3,V4,V5,V6,V7, V8,V9的电荷(静电能)。
在本实施方式中,作为电容2a~2i,使用了具有充分大于电容11 的容量CL的同一容量(静电容量)C的电容器。因此储存于电容2a、 2b、2c、2d、2e、2f、2g、2h、2i中的电荷分别成为C·V1,C·V2, C·V3,C·V4,C·V5,C·V6,C·V7,C·V8,C·V9。
再者,电容2a~2i的容量C,是电容11的容量CL的100倍以上 为好。由此,可以提高静电能的回收率。
蓄电器3以及分压器5,通过开关7以及电阻8与电容11连结。 开关7,具有11个接点T0~T10,并把这些接点T0~T10中的1个选 择性地连接于输出端(与电阻8连接的端)。在11个接点T0~T10中, 接点T0被接地,接点T1、T2、T3、T4、T5、T6、T7、T8、T9,分别 连接于电容2a、2b、2c、2d、2e、2f、2g、2h、2i,T10连接于电源端 子9。因此,在电容11驱动时,接点T0、T1、T2、T3、T4、T5、T6、 T7、T8、T9、T10上分别被施加电压0、V1、V2、V3、V4、V5、V6、 V7、V8、V9、VH。
开关7,在初始状态(驱动动作开始前的状态)被连接于接点T0, 若开始驱动动作,变反复进行自接点T0至接点T10依次切换接点后, 再由接点T10至接点T0依次切换的工作。此外,开关7中,由未图示 的同步信号源输入用于脉冲驱动电容的同步信号SYNC,对应于同步 信号SYNC,进行接点T0~T10的切换操作。而,对于同步信号SYNC 以及接点T0~T10的切换时序的详细内容将后述。
电阻8,用于限制流过电容(容性负载)的电流。在开关7使用 半导体开关时,作为半导体开关的ON电阻,电阻8被等价的插入。
其次,对于容性负载驱动电路1的工作状态,根据图2以及图3 进行说明。且,在这里,VH当作正电压来进行说明。
图2(a)~(c)为,表示容性负载驱动电路1的工作状态的时序 图。图2(a)为表示输入到开关7的同步信号SYNC的波形的波形图。 图2(b)为表示控制晶体管6的工作状态的晶体管6的控制电压Q的 波形的波形图。图2(c)为表示施加于电容11的电压V的波形的波 形图。
图3(a)~(d)为扩大表示图2(a)~(c)所示的时序图的一 部分的同时,也是表示开关7的工作状态的图。图3(a)为扩大表示 图2(a)所示的同步信号SYNC的波形的一部分的波形图。图3(b) 为表示图1的开关7的工作状态、即接点T0~T10中的任一点是否被 连接的时序图。图3(c)为扩大表示图2(b)所示的控制电压Q的波 形的一部分的波形图。图3(d)为扩大表示图2(c)所示的电压V的 波形的一部分的波形图。
首先,作为开始进行驱动电容11动作前的准备工作,如图2(b) 所示,控制电压Q变成高电平,晶体管6变为导通状态(ON)。由此, 通过来自外部的电源电压VH由分压器5分压得出的,互不相同的规 定电压V1~V9,作为端子电压施加于蓄电器3的电容2a~2i,电容 2a~2i被充电。在本实施方式中,晶体管6,在然后,至电容11的驱 动工作结束为止,通常是导通状态。且,此时,开关7连接于接点T0, 电容11则被接地。
做了这种电容2a~2i的端子电压调整为规定的电压V1~V9的准 备工作后,如图2(a)所示同步信号SYNC变有效,开始驱动工作。 此时,从晶体管6变成导通状态的时刻(准备工作开始时刻)至同步 信号SYNC变有效的时刻(驱动工作开始时刻)的时间t0,设定为使 得电容2a~2I能充分充电而的时间常数的2.5倍以上为好。
并且,通过根据同步信号SYNC把开关7依次由接点T0切换至 接点T10,把不同的多个电压V1~V9、以及VH,作为电压V施加在 电容11上。由此,如图2(c)以及图3(c)所示,将大致为梯形的 阶梯脉冲电压作为电压V施加于电容11上。
继而,对电容11的驱动工作状态,进行详细的说明。在这里,同 步信号SYNC,如图3(a)所示,是具有一定的周期T脉宽为t的脉 冲信号。例如,设定周期T为8μs、脉宽t为0.32μs。
在电容11驱动时,首先,与同步信号SYNC的上升沿同步,开关 7由接点T0切换至接点T1。开关7切换至接点T1后,蓄电器3的电 容2a与电容11被连接。此时,电容2a的端子电压为V1,电容11的 端子电压为接地电位,因此由电容2a给电容11提供静电能(电荷), 从而电容11被充电。
此时,储存于电容2a中的电荷为C·V1,因此如果把电容11的 容量设为CL,并假设只有电容2a给电容11提供电荷,施加于电容11 的电压V为,
V=C·V1/(C+CL)。
且,电容2a的容量C充分大于电容11的容量CL,因此可以认为 电压V与由分压器5生成的规定的电压V1大致相等。因此,通过开 关7由接点T0切换至接点T1,电压V1由电容2a施加于电容11。
然后,开关7的连接,由接点T1切换至T2、由接点T2切换至 T3、由接点T3切换至T4、由接点T4切换至T5、由接点T5切换至 T6、由接点T6切换至T8、由接点T8切换至T9。通过开关7的这些 切换步骤,电容11以端子电压递增的顺序与电容2b~2i连接。由此, 与由接点T0切换至接点T1一样,按电容2b~2I顺序给电容11提供 静电能,电压V2~V9以递增的顺序施加于电容11。其结果,电容11 的电压V上升至电压V9。
继而,如果开关7的连接,由接点T9切换至接点T10,电容11 便连接于电源端子9,施加于电容11的电压V,将与外部的电源电压 VH相等。
通过以上步骤,电容11的电压V,如图3(d)所示,大致以阶梯 状由0上升至电源电压VH。
继而,开关7的连接保持在接点T10上,电容11的电压V维持 在电源电压VH后,开关7的接点由接点T10切换至接点T9。由此, 蓄电器3的电容2i与电容11连接。
此时储存在电容2i中的电荷为C·V9,因此如果认为只由电容11 给电容2i提供电荷,施加于电容11的电压为,
V=(CL·VH+C·V9)/(C+CL)。
且,电容2i的容量C充分大于电容11的容量CL,因此电压V, 将大致与电压V9相等。因此,通过开关7自接点T10切换至接点T9, 电容11被连接于电容2i,电容11的电压V,如图3(d)所示,减少 至被分压器5调整的规定电压V9。
此时,在电容11连接至电容2h后再与电容2i连接的步骤中,因 从电容2i给电容11注入能量,所以假设在电压脉冲自上升至下降期间 内未从电容11以外的电路给蓄电器3提供能量,在电容11连接至电 源端子9后,在连接至电容2i前的电容2i的端子电压,严格讲并非是 V9而比V9稍小一些的值。
但是,继而把被充电至电源电压VH的电容11与变为比V9小若 干值的端子电压的电容2i连接后,因电容11的端子电压为VH而大于 电容2i的端子电压,所以把静电能(电荷)由电容11回收至电容2i, 从而电容11被放电。此时,通过从电容11回收能量,电容2i的电压 恢复(被再生)至大致与V9相等的值(可以认为是V9的值)。
然后,开关7的连接,由接点T9切换至T8、由接点T8切换至 T7、由接点T7切换至T6、由接点T6切换至T5、由接点T5切换至 T4、由接点T4切换至T3、由接点T2切换至T2、由接点T2切换至 T1。通过开关7的这些切换,电容11以端子电压递减的顺序与电容2a~ 2h连接。由此,与由接点T10切换至接点T9一样,把能量依次从电 容11回收至电容2a~2h,电压V1~V8以递减的顺序施加于电容11。
最后,开关7的连接,由接点T1切换至接点T0,从而电容11被 接地,施加于电容11的电压V成为与地线相同的0。在此之所要将电 压V变为0,是因为要把积存在电容11中的电荷变为0,从而进行稳 定的反复操作的缘故。
通过以上的步骤,电容11的电压V,如图3(d)所示,大致以阶 梯状由电源电压VH减少至0。
再者,在开关7的阶梯降压的最后(由接点T1切换至接点T0) 时,不把储存于电容11的电荷归还到电容2a~2i而全部接地放走,因 此会丢失储存于电容11的静电能的一部分。本实施方式中,施加于电 容11的电压V,最大为VH,开关7的阶梯降压的最后的电容11的电 压V,为V1,即等同于VH/10。因此,被储存于电容11的电荷为CL·VH, 在开关7的阶梯降压的最后,由电容11放出的电荷为CL·VH/10。因 此,如果假设在电压脉冲的上升至下降期间内,未从电容11以外的电 路对蓄电器3进行能量的提供,除开关7的阶梯降压的最后以外,由 电容11放出的电荷全部被电容2a~2i回收,那么,由电容11回收至 电容2a~2i的电荷为9CL·VH/10。因此,静电能的回收率达到 9/10=90%。
由此,通过把开关7由接点T0依次切换至接点T10,从而使电容 11的施加电压V阶梯升压,然后,相反,把开关7由接点T10依次切 换至接点T0,从而使电容11的施加电压V阶梯降压,可以由蓄电器3 的电容2a~2i给电容11提供能量,且把电容11中储存的静电能大致 回收到蓄电器3的电容2a~2i。
如上所述,本实施方式的容性负载驱动电路1为,将主电源的电 压分成n份储存于蓄电器3,并根据对蓄电器3与电容11的连接进行 切换,由蓄电器3给电容11提供静电能,把由电容11放出的静电能 回收至蓄电器3的结构,因此能够进行高效的能量回收、再利用。
再者,本实施方式的容性负载驱动电路1中,晶体管6在驱动时 通常为导通状态(ON),但也可以如将后述的实施方式4,只在驱动期 间和驱动期间之间的规定期间内,将晶体管6设为导通状态,给分压 器5提供电源电压,当不需要给分压器5提供电能时,把晶体管6设 为OFF状态,切断主电源与分压器5的连接。由此,可以减少由分压 器5中时常有电流流过导致的电能损耗的浪费。
此外,在本实施方式的容性负载驱动电路1中,虽把电源端9直 接与开关7的接点T10连接,但也可以使电源端9通过晶体管6与开 关7的接点T10连接。
[实施方式1A]
对于本发明的另一实施方式,根据图69、图70(a)~(c)、以 及图71(a)~(d)进行说明如下。并且,为便于说明,对于具有与 前述实施方式1所示的各构件相同功能的构件,标以相同的标号,省 略其说明。
本实施方式的容性负载驱动电路,除以下的不同点以外,具有与 实施方式1的容性负载驱动电路1相同的结构。
第1不同点在于:对于在实施方式1的容性负载驱动电路1中, 分压器5的9个连接点(分压点)a~i、与连接于接点T1~T9的线直 接连接的这一点,如图69所示,本实施方式的容性负载驱动电路1A 中,分压器5的9个连接点(分压点)a~i、与连接于接点T1~T9的 线之间分别设置了开关SW1~SW9。开关SW1~SW9,作为控制由分 压器5给蓄电器3的电容2a~2i提供电压的切换部而被设置,因此进 行控制,使得仅在电容11充电前的规定期间成为连接状态。
第2不同点在于:对于在实施方式1的容性负载驱动电路1,具 备晶体管6,并根据如图2(a)~(c)以及图3(a)~(d)所示的 时序图进行工作的这一点,在容性负载驱动电路1A中,取代晶体管6, 而配备根据如图70(a)~(c)或图71(a)~(d)的时序图所示的 控制电压控制工作过程的开关16A。
即,开关16A,与实施方式1的晶体管6不同,而如图70(a)~ (c)所示,在电容11开始充电前的期间(此时,电容11连接于开关 7的接点T0,而被接地)内,被控制成在规时序间t0内,成为导通状 态(ON)。再者,前述的开关SW1~SW9,也被与开关16A的控制电 压Q相同的控制电压控制其动作。
在实施方式1中,蓄电器3与分压器5时常相连,且在驱动时对 于分压器5通常提供电源电压,因此电压脉冲的上升至下降期间里, 由其他电路给蓄电器3进行能量提供。如果如此的进行能量供给,会 有自电容11至蓄电器3的能量回收率变低的忧虑。
对此,在本实施方式中,前述的第1以及第2不同点,在电压脉 冲的上升至下降的期间里,不从其他电路给蓄电器3进行能量的供给。 由此,可以避免由其他电路的供给能量导致的电容11至蓄电器3的能 量回收率低的问题。
继而,对于容性负载驱动电路1A的电容11的驱动工作,根据图 70(a)~(c)或图71(a)~(d)进行说明。这里,同步信号SYNC 为,如图70(a)所示,具有一定周期T、且脉宽为t的脉冲信号。例 如,设定周期T为8μs、脉宽t为0.32μs。并且,把VH当作正向电压 进行说明。
图70(a)~(c)为,表示容性负载电路1A的工作例的时序图。 图70(a)为,表示输入到开关7的同步信号SYNC的波形的波形图。 图70(b)为,表示控制开关16A的工作状态的控制电压Q的波形的 波形图。图70(c)为,表示施加于电容11的电压V的波形的波形图。
图71(a)~(d)为,表示容性负载驱动电路1A的另一工作例 的图。图71(a)为,扩大表示图70(a)所示的同步信号SYNC的波 形的一部分的波形图。图71(b)为,表示图1的开关7的动作状态、 即接点T0~T10中的任一点是否被连接的时序图。图71(c)为,扩 大表示控制开关16A的工作状态的控制电压Q的波形的一部分的波形 图。图71(d)为,扩大表示图70(c)所示的电压V的波形的一部分 的波形图。
图70(a)~(c)的工作例和图71(a)~(d)的工作例,在电 容11上施加脉冲的间隔内,控制电压Q被置为ON的这一点是相同的, 但把控制电压Q置为ON的周期不同,前者为数个脉冲周期为一周期, 后者为1脉冲周期为一周期。在电压漂移量小时,如图70(a)~(c) 所示,以数个脉冲1次的比例将开关16A置成ON(连接状态)从而 进行标准化(电容2a~2i的端子电压的校正)为好。当电压漂移量大 时,为确保稳定工作,如图71(a)~(d)所示,在每1脉冲便把开 关16A置ON(连接状态)进行标准化为好。
电容11驱动时,首先,与实施方式1一样,开关7的连接,由 T0切换至T1、由接点T1切换至T2、由接点T2切换至T3、由接点 T3切换至T4、由接点T4切换至T5、由接点T5切换至T6、由接点 T6切换至T8、由接点T8切换至T9,由电容2b~2i对电容11提供静 电能。继而,开关7的连接由接点T9切换至接点T10,施加于电容11 的电压V将与电源电压VH相等。通过以上步骤,电容11的电压V, 如图71(d)所示,大致以阶梯状由0上升至电源电压VH。
继而,开关7的接点由接点T10切换至接点T9。由此,蓄电器3 的电容2i与电容11连接。
此时储存于电容2i中的电荷为C·V9,大致上仅由电容11向电 容2i提供电荷,施加于电容11的电压为
V=(CL·VH+C·V9)/(C+CL)
于是,由于电容2i的容量C比电容11的容量CL充分大,因此电 压V,变得大致与电压V9相等。
此时,把电容11与电容2h连接后,在与电容2i连接的步骤中, 由电容2i给电容11注入能量,并在电压脉冲的上升至下降期间里未由 电容11以外的电路对蓄电器3进行能量提供,因此把电容11连接于 电源端子9后,连接到电容2i之前的电容2i的端子电压,严格讲,并 非是V9而是比V9小若干的值。
连接电容11前的电容2i的端子电压大致为V9,但严格讲在把电 容11连接于电容2h后,在连接于电容2i的步骤中,由电容2i给电容 11注入能量,电容2i的电压成为比电压V9小若干的值。
但是,继而在把被充电至电源电压VH的电容11与成为比V9小 若干值的端子电压的电容2i连接,因电容11的端子电压为电源电压 VH,而大于电容2i的端子电压,所以把静电能(电荷)从电容11回 收至电容2i,从而电容11被放电。此时,电容2i的电压,通过由电容 11回收能量恢复(再生)至大致与V9相等的值(视为V9的值)。
然后,开关7的连接,由接点T9切换至T8、由接点T8切换至 T7、接点T7切换至T6、由接点T6切换至T5、由接点T5切换至T4、 由接点T4切换至T3、由接点T2切换至T2、由接点T2切换至T1, 把能量从电容11回收至电容2h。最后,开关7的连接,由接点T1切 换至接点T0,电容11被接地,施加于电容11的电压V成为与地线相 同的0。
通过以上步骤,电容11的电压V,如图71(d)所示,大致以阶 梯状由电源电压VH减少至0。
在开关7的阶梯降压的最后(由接点T1切换至接点T0)步骤中, 不把储存于电容11的电荷归还到电容2a~2i而全部接地放走,因此会 丢失储存于电容11的静电能的一部分。本实施方式中,施加于电容11 的电压V,最大为VH,开关7的阶梯降压的最后的电容11的电压V, 为V1,即等同于VH/10。在本实施方式中电压脉冲的上升至下降期间 里未从电容11以外的电路对蓄电器3进行能量提供,因此除开关7的 阶梯降压的最后步骤以外,由电容11放出的电荷大致回收至电容2a~ 2i。因此,被储存于电容11的电荷为CL·VH,在开关7的阶梯降压 的最后,从电容11放出的电荷为CL·VH/10。因此,从电容11回收 至电容2a~2i的电荷为9CL·VH/10。因此,静电能的回收率达到 9/10=90%。
由此,通过把开关7由接点T0依次切换至接点T10,从而使电容 11的施加电压V阶梯升压,然后,相反把开关7由接点T10依次切换 至接点T0,从而使电容11的施加电压V阶梯降压,可以由蓄电器3 的电容2a~2i给电容11提供能量,且把电容11中储存的静电能大致 回收到蓄电器3的电容2a~2i。
如上所述,本实施方式的容性负载驱动电路1A为,将主电源的电 压分成n份储存于蓄电器3,并根据对蓄电器3与电容11的连接进行 切换,由蓄电器3给电容11提供静电能,把由电容11放出的静电能 回收至蓄电器3的结构,因此能够进行高效的能量回收、再利用。
此外,因蓄电器3的电容2a~2i按端子电压的大小顺序进行切换, 所以可以把电容2a~2i以及电容11的冲击电流控制到很小,从而可以 减少能量损失。且,可以对电容11进行脉冲驱动。且,通过增多开关 7的切换级数n,进一步减少电能损耗。
进而,实施方式1以及1A的容性负载驱动电路1以及1A的构成 是,具有串联的电阻4的分压器5,因此电容2a~2i的端子电压被调 整为规定的电压V1~V9,从而可以进行稳定的反复工作。
再者,实施方式1以及1A中。输出电压V取得的电压值(0,V1~ V9,VH)的间隔,即V1-0、V2-V1、V3-V2、V4-V3、V5-V4、V6-V5、 V7-V6、V8-V7、V9-V8、VH-V9,设为相等的值VH/10。但是,没必 要一定把这种间隔变成相等值。但是,使得这种间隔相等的方式具有 提高能量回收率的优点。且,使得这种间隔相等的方式可以更进一步 把电容2a~2i以及电容11的冲击电流抑制得很小。
此外,在本实施方式1以及1A中,把蓄电器3的电容个数定为 10个,但这种个数只要是2个以上,而没有特别的限定。再者,当把 蓄电器的电容个数定为n个(n为2以上的整数)时,静电能的回收率 成为n/(n+1)。
此外,在本实施方式1以及1A的容性负载驱动电路1以及1A中, 在一连串脉冲发生时,把开关7由T0使用至T10,但当所需的脉冲波 峰值低于VH时,不使用开关7的部分接点,而把电容11的电压V的 上升止于任意的电压m·VH/10(m为2以上9以下的整数),也能够 进行充分的驱动工作。例如,当所需的脉冲波峰值为9VH/10时,使用 如开关7的接点T0至T9的形式也是可以的。同样,即使把电容11的 电压V的上升止于任意的电压m·VH/10(m为2以上9以下的整数), 也能进行充分的驱动动作。在把电容11的电压V的上升止于任意的时 间性压m·VH/10(m为2以上9以下的整数)的情况下,静电能的回 收率成为(m-1)/m。
在这些不使用开关7的一部分接点的方式中,对蓄电器3的一部 分存在给电容11提供能量和ww电容11回收能量间的失衡引起的电 容(2a~2i任一个),因此需要校正由分压器5提供能量等引起的失衡。
实施方式1A为,给作为容性负载的电容11施加电压脉冲过程中, 通过在电压波形的上升时,从蓄电器3逐次给电容11提供能量,相反, 在电压波形下降时,从电容11回收能量至蓄电器3,来减少系统的电 能损耗的方法,如果电压脉冲的上升至下降期间内由其他电路给蓄电 器3提供能量,从电容11至蓄电器3的能量回收率将降低。
因此,蓄电器3中产生的能量提供与能量回收间的失衡的校正应 在没有进行电容11的波形发生的期间内进行,或与电容11的外加波 形的时间相比,以更慢的速度进行。
此外,本实施方式1以及1A的容性负载驱动电路1以及1A中, 使用了旋转型开关7,但是作为切换装置,也可以使用并列设置的11 个的1接点的开关。或者,作为切换装置,也可以使用半导体开关。
[实施方式2]
对于本发明的另一实施形式根据图4、图5(a)~(c)、以及图6 (a)~(d)进行说明。如下。且,为便于说明,对于具有与前述实 施方式1所示的各构件相同功能的构件,标以相同的标号,略去其说 明。
如图4所示,本实施方式的容性负载驱动电路20,除取代实施方 式1中的开关7,而使用开关(切换装置)17的点以外,具有与实施 方式1的容性负载驱动电路1相同的结构。
开关17,除了略去接地的接点T0以外,具有与实施方式1的旋 转型开关7相同的结构。
即,实施方式1的开关7,在使电容11的电压V降压时(放电时), 连接于接点T1,使电容11的电压V变为电压V1后,再连接于接点 T0,使电容11的电压V变为与地线相同的电位(下降至0)。
对此,本实施方式的开关17,在使电容11的电压V降压时(放 电时),连接于接点T1,使电容11的电压V变为电压V1后,继而至 电容11开始充电期间内,维持这种连接状态,就会维持端子电压最小 的电容2a与电容11间的连接。
继而,对于容性负载驱动电路20的工作状态,根据图5以及图6 进行说明。
图5(a)~(c)为,表示容性负载驱动电路20的工作状态的时 序图。图5(a)为,表示输入于开关17的同步信号SYNC的波形的 波形图。图5(b)为,表示控制晶体管6的工作状态的晶体管6的控 制电压Q的波形的波形图。图5(c)为,表示施加于电容11的电压V 的波形的波形图。
图6(a)~(d)为,扩大表示图5(a)~(c)所示的时序图的 一部分的同时,表示开关17的工作状态的图。图6(a)为,扩大表示 如图5(a)所示的同步信号SYNC的波形的一部分的波形图。图6(b) 为,表示图4的开关17的工作状态、即接点T1~T10中的任一点被连 接的时序图。图6(c)为,扩大表示图5(b)所示的控制电压Q的波 形的一部分的波形图。图6(d)为,扩大表示图5(c)所示的电压V 的波形的一部分的波形图。
由图3(a)~(d)与图6(a)~(d)的比较可知,本实施方式 的容性负载驱动电路20,除在实施方式1的容性负载驱动电路1把开 关7被连接于接点T0的期间,把开关17连接于接点T1,把电容11 的电压V变为V1点以外,其余与实施方式1的容性负载驱动电路1 一样工作。
即,首先,作为电容11开始进行驱动工作前的准备工作,如图5 (b)所示控制电压Q变成高电平,晶体管6变为导通状态(ON)。由 此,规定电压V1~V9,作为端子电压施加于蓄电器3的电容2a~2i, 电容2a~2i被充电。此时,开关17被连接在接点T1,因此电容11的 电压V上升至电压V1。
继而,如图5(a)所示,同步信号SYNC变有效,开始驱动工作。 且,通过开关17由接点T1依次切换至接点T9,由电容2b~2i依次给 电容11提供静电能,电容11的电压V由电压V1上升至电压V9。 继而,开关17的连接,由接点T9切换至接点T10后,电容11被连接 于电源端子9,施加于电容11的电压V,将与外部的电源电压VH相 等。
继而,开关17的接点保持在接点T10上,电容11的电压V被维 持在电源电压VH后,根据开关17依次由接点T10切换至接点T1, 把能量从电容11依次回收至电容2a~2i,电容11的电压V由电压VH 下降至电压V1。
并且,如上所述,然后,继而至电容11的电压V上升为止,继续 给电容11施加非0的电压V1。由此,能够不丢失电容11中储存的静 电能,而保持着。
如上所述,依次切换开关17,使输出电压V阶梯升压,然后相反, 切换开关17,把输出电压V阶梯降压至非0的电压V1,然后,维持 此电压至下次阶梯升压,便可以不丢失电容11中储存的静电能而保持 之。其结果,可以将电容11中储存的静电能大致全部回收至蓄电器3 的电容2a~2i中。因此,可以进一步提高静电能的回收率。
在本实施方式的电容性负载驱动电路20中,阶梯降压的最后,即, 把开关17连接于接点T1时,与电压V1对应的静电能被储存的状态原 样地留在电容11中。因此,把开关17连接在接点T1时,可以把电容 11中储存的静电能提供给其他的容性负载或电路。即,如图4所示, 通过连接于端子电压最低的电容2a的能量输出路径15,可以把从电容 11回收至电容2a的静电能,提供给与电容11不同的外部的元件。由 此,可以减少作为包含容性负载驱动电路及外部的元件的装置整体的 能量消耗。且还可以进行电容2a中能量提供和能量回收之间的失衡的 校正。
其结果,可以大致全部再利用储存于电容11中的静电能。因此, 可以进一步提高静电能的再利用率。且作为不同于电容11的外部的元 件,例如有消电能损耗的存储电路等。
[实施方式2A]
对于本发明的另一种实施方式根据图72、图73(a)~(c)、以 及图74(a)~(d)进行说明如下。且,为便于说明,对于具有与前 述实施方式1、1A、或2所示的各构件相同的功能的构件,标以相同 的标号,略去其说明。
本实施方式的容性负载驱动电路20A,除以下的不同点以外,具 有与实施方式2的容性负载驱动电路20相同的结构。
第1不同点在于:对于实施方式2的容性负载驱动电路20中,分 压器5的9个连接点(分压点)a~i、与连接于接点T1~T9的线直接 连接的这一点,在本实施方式的容性负载驱动电路20A中,如图72 所示,分压器5的9个连接点(分压点)a~i、与连接于接点T1~T9 的线之间分别设置了与实施方式1A相同的开关SW1~SW9。
第2不同点在于:对于在实施方式2的容性负载驱动电路20,具 备晶体管6,并根据如图5以及图6所示的时序图进行工作的这一点, 在容性负载驱动电路20A中,取代晶体管6而具备与实施方式1A相 同的开关16A,根据如图73(a)~(c)或图74(a)~(d)所示的 时序图进行工作。
图73(a)~(c)为,表示容性负载电路20A的工作状态的时序 图。图73(a)为,表示输入到开关7的同步信号SYNC的波形的波 形图。图73(b)为,表示控制开关16A的工作状态的控制电压Q的 波形的波形图。图73(c)为,表示施加于电容11的电压V的波形的 波形图。
图74(a)~(d)为,表示容性负载驱动电路20A的另一工作例 的图。图74(a)为,扩大表示图73(a)所示的同步信号SYNC的波 形的一部分的波形图。图74(b)为,表示图1的开关7的动作状态、 即接点T0~T10中的任一点是否被连接的时序图。图74(c)为,扩 大表示控制开关16A的工作状态的控制电压Q的波形的一部分的波形 图。图74(d)为,扩大表示图73(c)所示的电压V的波形的一部分 的波形图。
再者,图73(a)~(c)的工作例和图74(a)~(d)的工作例 间的不同,与前述的图70(a)~(c)的工作例和图71(a)~(d) 的工作例间的不同是一样的。
在本实施方式的电容性负载驱动电路20A中,在阶梯降压的最后, 即,把开关17连接于接点T1时,与电压V1对应的静电能被储存的状 态原样地留在电容11中。因此,把开关17连接在接点T1时,可以把 电容11中储存的静电能提供给其他的容性负载或电路。即,如图72 所示,通过连接于端子电压最低的电容2a的能量输出路径15,可以把 从电容11回收至电容2a的静电能,提供给与电容11不同的外部的元 件。由此,可以减少作为包含容性负载驱动电路20及外部的元件的装 置整体的能量消耗。且还可以进行电容2a中能量提供和能量回收之间 的失衡的校正。
其结果,可以大致全部再利用储存于电容11中的静电能。因此, 可以进一步提高静电能的再利用率。且作为不同于电容11的外部的元 件,例如有消电能损耗的存储电路等。
此外,在本实施方式中,根据前述的第1以及第2不同点,就会 在电压脉冲的上升至下降期间内,未能由其他电路给蓄电器3提供能 量。由此,通过由其他电路提供能量可以避免由电容11至蓄电器3能 量回收率的降低。
[实施方式3]
继而,对于本发明的另一种实施方式根据图7进行以下的说明。 且,为便于说明,对于具有与前述实施方式1中所示的各构件相同功 能的构件,标以相同的标号,略去其说明。
本实施方式的容性负载驱动电路为,如图7所示,与实施方式1 相同的容性负载驱动电路1、或图75所示的与实施方式1A相同的容 性负载驱动电路1A。
在本实施方式中,仅在成为容性负载驱动电路1或1A的驱动对象 的容性负载的结构上与实施方式1及1A不同。换言之,本实施方式, 仅在容性负载驱动电路1或1A的使用方法上与实施方式1及1A不同。
对于在实施方式1或1A中,对于作为驱动对象的容性负载是电容 11的这一点,在本实施形态中,把作为驱动对象的容性负载,如图7 以及图75所示,变成喷墨头23所具备的多个压电元件21。且,喷墨 头23中,除具有压电元件21,还具备用于使容性负载驱动电路1或 1A与压电元件21的连接进行ON/OFF操作的模拟开关22。
根据上述的使用方法,介电常数变大,且通过大容量的压电元件 21的充电,以很大的反复频率进行驱动,且在电能损耗很大的喷墨头 23的驱动中,可进行高效的能量回收·再利用。
在本实施方式的容性负载驱动电路1A、以及不进行静电能回收的 以往的容性负载驱动电路中,试着估计驱动喷墨头23时的电能损耗。
首先,喷墨头23,具有YMCK的4色的喷头,每种颜色的喷头都 设有64个压电元件以及墨汁喷出喷嘴,并假设各颜色的喷头中最大的 3色的喷头同时被置成ON。那么,连接于容性负载驱动电路的压电元 件21的个数为,最大可达64×3个。因此,当每个压电元件21的容 量为80pF时,连接于容性负载驱动电路的压电元件21的容量的合计, 最大为,
80×64×3=0.0153μF。
并且,在以往的容性负载驱动电路中,作为驱动电压,当把波峰 值20V、脉宽为8μs的矩形波施加到压电元件21时,由容性负载驱动 电路流过压电元件21的电流I,成为
I=0.0153μF×20V÷8μs=0.0384A。
因此,以往的容性负载驱动电路,1脉冲对应的电能损耗E,成为
E=0.0384A×20V=0.768W。
对此,使用本实施方式的容性负载驱动电路1A,设V1=2(V)、 V2=4(V)、V3=6(V)、V4=8(V)、V5=10(V)、V6=12(V)、V7=14 (V)、V8=16(V)、V9=18(V)、VH=20(V),进行与把以往的容性 负载驱动电路用于喷墨头23时相同的工作时,1脉冲对应的电能损耗, 成为0.077W。
因此,在本实施方式的容性负载驱动电路1A中,电能损耗为,以 往的容性负载驱动电路的1/10,故很好。此1/10为,最后不把能量归 还至蓄电器3的电容而放到地线的部分,而此外因归还至电容,而不 被消耗。
在本实施例的情况下,为进行充分的电能回收,构成蓄电器3的 电容2的各自的静电容量需要大于把喷墨头23的压电元件21进行最 大数驱动时的负载容量(在上述例中为80×64×3=0.0153μF)。
再者,在本实施方式的装置中,使用电容来回收电能,因此不同 于使用LC共振来回收电能的电路,所以即使同时驱动多个容性负载 (压电元件21),也能得到与驱动1个容性负载时相等的工作特性(再 生率等)。
[实施方式4]
继而,根据图8、图9(a)~(c)、图10(a)~(d)、图11、 以及图12对于本发明的另一实施方式进行如下的说明。且,为便于说 明,对于具有与前述实施方式1中所示的各构件相同功能的构件,标 以相同的标号,略去其说明。
如图8所示,本实施方式的容性负载驱动电路30中,在蓄电器3 与分压器5之间夹有缓冲电路(缓冲放大装置)31这一点、以及取代 晶体管6具备晶体管16的这一点以外,其余与上述的实施方式1的容 性负载驱动电路1相同。
此外,由容性负载驱动电路30驱动的容性负载,与上述的实施方 式3一样,是具备于喷墨头23的压电元件21。且,在喷墨头23上, 与上述的实施方式3一样,除具有压电元件21,还具备模拟开关22。
分压器5,根据10个电阻把来自电阻4外部的电源电压VH分配 成电压V1~V9,并由电阻4间的连接点a~i输出电压V1~V9。
缓冲电路31,由9个射极跟随器32构成,而各射极跟随器32, 分别内插于分压器5的电阻4间的连接点a~i和电容2a~2i之间。
缓冲电路31为,调整分压器5的电压V1~V9,并把调整后的电 压V1′~V9′作为端子电压赋给电容2a~2i的电路。射极跟随器32 为,使用NPN型的晶体管32a从输出电压V1~V9上升输入电压V1′~ V9′的NPN型的射极跟随器。由此,当电压V1~V9、VH为正向电 压,驱动压电元件21,使由压电元件21回收电荷后的蓄电器3的电容 2a~2i的电荷量变得少于初始电荷量时,可以避免蓄电器3的电容2a~ 2i的端子电压低于规定的电压V1′~V9′的状况,从而可以把蓄电器 3的电容2a~2i的端子电压准确地调整至规定的电压V1′~V9′。
此外,缓冲电路31,使得分压器5内流过的电流放大后输出到电 容2a~2i。由此,可以减少流过分压器5的电阻4的电流量,从而可 以减少在分压器5中消耗的电能。其结果,可以更进一步减少消电能 损耗。
此外,晶体管16是,作为用于给蓄电器3以及分压器5提供电能 进行ON/OFF控制的开关的部件,不同于实施方式1~3的晶体管6, 只在一定的期间(供应静电能期间)被导通。
继而,根据图9(a)~(c)以及图10(a)~(d)对于容性负 载驱动电路30的工作状态进行说明。
图9(a)~(c)为,表示容性负载电路30的工作状态的时序图。 图9(a)为,表示输入到开关17的周期信号SYNC的波形的波形图。 图9(b)为,表示控制晶体管16的工作状态的晶体管16的控制电压 Q的波形的波形图。图9(c)为,表示施加于电容11上的电压的波形 的波形图。
图10(a)~(d)为,扩大表示图9(a)~(c)所示的时序图 的一部分的同时,表示开关7的工作状态的图。图10(a)为,扩大表 示图9(a)所示的同步信号SYNC的波形的一部分的波形图。图10 (b)为,表示图8的开关7的工作状态、即接点T0~T10中的哪一个 是否被连接的时序图。图10(c)为,扩大表示图9(b)控制电压Q 的波形的一部分的波形图。图10(d)为,扩大表示图9(c)所示的 电压V的波形的一部分的波形图。
首先,作为电容11开始进行驱动工作前的准备工作,如图9(b) 所示控制电压Q变成高电平,晶体管16变为导通状态(0N)。由此, 缓冲电路31的输出电压V1′~V9′,作为端子电压施加于蓄电器3的 电容2a~2i。然后,经过规时序间,控制电压Q如图9(b)所示变为 低电平,晶体管16变为断开状态(OFF)。这种规定期间,设定为能够 充分进行电容2a~2i的充电的时间。
晶体管16变为断开状态(OFF)后,如图9(a)所示同步信号 SYNC变有效,开始进行驱动工作。
驱动工作,与实施方式1相同。即,首先,通过开关17依次由接 点T0切换至接点T9,由电容2a~2i依次给电容11提供静电能,电容 11的电压V由0上升至电压V9′。继而,如果开关17的连接,由接 点T9切换至接点T10,电容11就被连接于电源端子9,而施加于电 容11的电压V,将与来自外部的电源电压VH相等。
继而,在长于同步信号SYNC的脉宽t的期间里,开关17的接点 保持在接点T10上,电容11的电压V维持在电源电压VH后,开关 17通过由接点T10切换至接点T1,由电容11依次把能量回收至电容 2a~2i中,电容11的电压V由电源电压VH下降至电压V1′。
然后,通过开关7的连接由接点T1切换至接点T0,电容11被接 地,施加于电容11的电压成为与地线相同的0。
然后,晶体管16仅在规定期间内成为导通状态(ON)后,移至 下一个电容11的驱动工作。
通过以上步骤,晶体管16,在电容11上未被施加驱动电压的期间 里,即电容11被接地的期间内,仅在规定的时间内成为导通状态(ON)。 由此,仅在规定的时间内把电源电压VH施加到分压器5,因此可以进 一步减少电能损耗。
再者,在上述实施方式中的容性负载驱动电路30中,对应正向电 压的下降,使用NPN型的晶体管32a具备把输出电压V1′~V9′从 输入电压V1~V9提升的NPN型的射极跟随器32。
但是,当引起负向电压的下降(绝对值减少)时,取代NPN型的 射极跟随器32,而如图11所示,使用PNP型的晶体管33a,把输出电 压从输入电压下降的PNP型射极跟随器为好。由此,当电压V1~V9、 VH为负向电压,驱动压电元件21,由压电元件21回收电荷后的蓄电 器3的电容2a~2i的电荷量变得少于初始电荷量时,可以避免蓄电器 3的电容2a~2i的端子电压的大小小于规定的电压V1′~V9′的大小 的状况,从而可以把蓄电器3的电容2a~2i的端子电压准确地调整至 规定的电压V1′~V9′。
此外,即使在把正向电压V输出给压电元件21时、以及由机械振 动引起的压电效果、由负载的感应成分的影响等引起的电容2a~2i的 电荷量变得多于初始电荷量时,为避免蓄电器3的电容2a~2i的端子 电压高于规定的电压V1′~V9′,取代NPN型的射极跟随器32,而 使用如图11所示的PNP型的射极跟随器33为好。
此外,使电路进行工作时,若不知电容2a~2i的端子电压是高于 还是低于规定的电压V1′~V9′时,取代NPN型的射极跟随器32, 而使用如图12所示的推拉输出电路型的射极跟随器34为好。在这种 结构中,根据在各通道的输入方设置开关16B,构成无法预期的迷宫, 可以准确地防止由基极电流流过引起电路的误动。
本实施方式的容性负载驱动电路30,如上所述,具备了具有电压 调整功能的缓冲放大装置(缓冲装置)的射极跟随器32,因此可以更 准确地得到被分压器5调整的端子电压(V1′~V9′)的同时,可以 减少分压器5中消耗的电能损耗。
此外,本实施方式的容性负载驱动电路30,是作为切换部的晶体 管16仅在规定的期间内把电源电压VH施加到分压器5的结构,因此 可以进一步减少电能损耗。
[实施方式4A]
继而,对于本发明的另一种实施方式根据图76(a)(b)进行如下 的说明。且,为便于说明,具有与前述实施方式1、1A或3中所示的 各构件相同功能的构件,标以相同的标号,略去其说明。
如图76(a)所示,本实施方式的容性负载驱动电路30A中,除 了蓄电器3与分压器5之间夹有缓冲电路(缓冲放大装置)31的这一 点以外,与上述的实施方式1A的容性负载驱动电路1A一样。
此外,被容性负载驱动电路30A驱动的容性负载,与上述的实施 方式3·4一样,是喷墨头23所具备的压电元件21。且,在喷墨头23 中,与上述的实施方式3·4一样,除压电元件21外还备有模拟开关 22。
分压器5,根据10个电阻把来自电阻4外部的电源电压VH分配 成电压V1~V9,并由电阻4间的连接点a~i输出电压V1~V9。
缓冲电路31,由9个推挽晶体管35构成,而各推挽晶体管35, 分别被内插于分压器5的电阻4间的连接点a~i与电容2a~2i之间。
缓冲电路31为,调整分压器5的电压V1~V9,并把调整后的电 压V1′~V9′作为端子电压提供给电容2a~2i的电路。推挽晶体管 35为,如图76(b)所示,用NPN型的晶体管35a、以及PNP型的晶 体管35b使输出电压V1~V9与输入电压V1′~V9′调合的射极跟随 器。由此,当电压V1~V9、VH为正向电压,驱动压电元件21,从压 电元件21回收电荷后的蓄电器3的电容2a~2i的电荷量变得少于初始 电荷量时,可以避免蓄电器3的电容2a~2i的端子电压低于规定的电 压V1′~V9′,从而可以把蓄电器3的电容2a~2i的端子电压准确地 调整至规定的电压V1′~V9′。反之,驱动压电元件21,从压电元件 21回收电荷后的蓄电器3的电容2a~2i的电荷量变得多于初始电荷量 时,可以避免蓄电器3的电容2a~2i的端子电压高于规定的电压V1′~ V9′,从而可以把蓄电器3的电容2a~2i的端子电压准确地调整至规 定的电压V1′~V9′。
此外,缓冲电路31,可使分压器5内流过的电流放大后输出到电 容2a~2i。由此,可以减少流过分压器5的电阻4的电流量,从而可 减少分压器5消耗的电能。其结果,可以进一步减少电能损耗。
开关16A的动作被图9(b)以及图10(b)中表示波形的控制电 压Q控制。
驱动工作,与实施方式1A相同。即,首先,通过开关17依次由 接点T0切换至接点T9,由电容2a~2i依次给电容11提供静电能,电 容11的电压V由0上升至电压V9′。继而,如果开关17的连接,由 接点T9切换至接点T10,电容11就被连接于电源端子9,而施加于 电容11的电压V,将与来自外部的电源电压VH相等。
继而,在长于同步信号SYNC的脉宽t的期间里,开关17的接点 保持在接点T10上,电容11的电压V维持在电源电压VH后,开关 17通过依次由接点T10切换至接点T1,由电容11把能量依次回收至 电容2a~2i中,电容11的电压V由电源电压VH下降至电压V1′。
然后,通过开关7的连接由接点T1切换至接点T0,电容11被接 地,施加于电容11的电压成为与地线相同的0。
本实施方式的容性负载驱动电路30A,如上所述,具备了具有电 压调整功能的缓冲放大装置(缓冲装置)的推挽晶体管35,因此可以 更准确地得到被分压器5调整的端子电压(V1′~V9′)的同时,可 以减少分压器5中消耗的电能损耗。
[实施方式5]
继而,对于本发明的另一种实施方式根据图13以及图14(a)~ (c)进行说明。且,为便于说明,对于具有与前述的实施方式1中所 示的各构件相同功能的构件,标以相同的标号,略去其说明。
如图13所示,在本实施方式的容性负载驱动电路40中,与实施 方式1的容性负载驱动电路1一样,具备由电容2a~2i构成的蓄电器 3、以及例如1kΩ的电阻4构成的分压器5。
本实施方式的容性负载驱动电路40为,对于作为容性负载的电容 11A·11B·11C分别施加其位相互不相同的电压VA·VB·VC使电容 11A·11B·11C进行充放电的电路。即,作为驱动对象的容性负载, 被分为3相,由施加A相的电压VA的电容11A、和施加B相的电压 VB的电容11B、以及施加C相的电压VC的电容11C构成。
在本实施方式中,与上述的实施方式不同,由蓄电器3以及分压 器5分别把电压VA·VB·VC输出到电容11A·11B·11C的输出线 37、38、39,在其当中,分离成互不相同的2种路径,即,作为由蓄 电器3给电容11A·11B·11C提供静电能的路径的充电路径(能量提 供路径)37a·38a·39a、以及作为由电容11A·11B·11C把静电能回 收至蓄电器3的路径的放电路径(能量回收路径)37b·38b·39b。
充电路径37a·38a·39a中,设置了设定由蓄电器3至电容 11A·11B·11C的方向的电流的方向的整流二极管(整流装置)65,而 在放电路径37b·38b·39b中设置了设定由电容11A·11B·11C至蓄 电器3的方向的电流的方向的整流二极管(整流装置)66。由此,来 自蓄电器3的电压,通过充电路径37a·38a·39a施加于容性负载,由 电容11A·11B·11C放电所得的静电能则通过放电路径37b·38b·39b 归还到蓄电器3。
并且,在本实施方式的容性负载驱动电路40中,取代实施方式1 中的旋转型的开关7,具备当作开关使用的晶体管 67A·67B·67C·68A·68B·68C、分别由9个晶体管41~49以及9 个晶体管51~59构成的转换电路(切换装置)50·60、由晶体管 61A·61B·61C构成的选择电路(选择装置)62、以及由晶体管 63A·63B·63C构成的选择电路(选择装置)64。
晶体管67A·67B·67C,相当于实施方式1中的开关7的接点T10。 晶体管67A·67B·67C为,把来自电源端子9的电源电压VH通过输 出线37·38·39提供给电容11A·11B·11C的部件,仅在相当于实 施方式1中的开关7的接点T10被连接的期间内变为导通状态。且, 晶体管67A·67B·67C中,设有用于保护晶体管67A·67B·67C的 二极管69。
晶体管68A·68B·68C,相当于实施方式1中的开关7的接点T0。 晶体管68A·68B·68C为,通过输出线37·38·39把电容11A·11B·11C 接地的部件,并仅在相当于实施方式1中的开关7的接点T0被连接的 期间内变为导通状态。且,晶体管68A·68B·68C中,设有用于保护 晶体管68A·68B·68C的二极管73。
转换电路50的9个晶体管41·42·43·44·45·46·47·48·49 以及转换电路60的9个晶体管51·52·53·54·55·56·57·58·59 分别,相当于实施方式1中的开关7的接点 T1·T2·T3·T4·T5·T6·T7·T8·T9。
转换电路50,被设置于充电路径37a·38a·39a中。且,晶体管 41·42·43·44·45·46·47·48·49,一端通过分压器5分别与电容 2a·2b·2c·2d·2e·2f·2g·2h·2i连接的同时,另一端则共同连接 于后述的晶体管61A·61B·61C。晶体管41·42·43·44·45·46·47·48·49 分别在与在实施方式1中的开关7的接点 T1·T2·T3·T4·T5·T6·T7·T8·T9被连接的期间内的升压期间 (充电期间)所相当的期间内变为导通状态。
转换电路60,被设置于放电路径37b·38b·39b中。且,晶体管 51·52·53·54·55·56·57·58·59,一端通过分压器5分别与电容 2a·2b·2c·2d·2e·2f·2g·2h·2i连接的同时,另一端则共同连接 于后述的晶体管63A·63B·63C。晶体管51·52·53·54·55·56·57·58·59 分别在与在实施方式1中的开关7的接点 T1·T2·T3·T4·T5·T6·T7·T8·T9被连接的期间内的降压期间 (放电期间)所相当的期间内变为导通状态。
因此,晶体管68A(或68B或68C)、晶体管67A(或67B或67C)、 晶体管41·42·43·44·45·46·47·48·49、以及晶体管 51·52·53·54·55·56·57·58·59中,仅有1个选择性的变为导 通状态。且,这些是以晶体管68A(或68B或68C)、41、42、43、44、 45、46、47、48、49、67A(或67B或67C)、59、58、57、56、55、 54、53、52、51、68A(或68B或68C)的顺序被选择。由此,与实施 方式1一样,如图14(a)~(c)所示大致以梯形的阶梯状脉冲电压 作为电压VA·VB·VC施加于电容11A·11B·11C。且,与实施方式 1一样,在电压VA·VB·VC的上升时,从电容 2a·2b·2c·2d·2e·2f·2g·2h·2i给电容11A·11B·11C提供静 电能,而电压VA·VB·VC的下降时,从电容11A·11B·11C把静 电能回收至电容2a·2b·2c·2d·2e·2f·2g·2h·2i。
选择电路62为,用于通过切换内部的晶体管61A·61B·61C的 连接状态对电容11A~11C中的1个选择性的进行充电的电路,设置于 充电路径37a·38a·39a中。通过把充电路径37a·38a·39a中具备的 晶体管61A·61B·61C作为开关使用,可以选择把转换电路50的输 出电压施加于电容11A~11C的某一个,并由此,可以将各电容11A~ 11C以不同的时序充电。
选择电路64为,用于通过切换内部的晶体管63A·63B·63C的 连接状态对电容11A~11C中的1个选择性的进行充电的电路,设置于 放电路径37b·38b·39b中。通过把放电路径37b·38b·39b中具备 的晶体管63A·63B·63C作为开关使用,可以选择把转换电路60的 输出电压施加于电容11A~11C的某一个,并由此,可以将各电容 11A~11C以不同的时序放电。
表示这种工作例的便是图14(a)(b)(c)的时序图。各种图,表 示各自的施加于电容11A~11C的电压VA·VB·VC的时间变化。通 过把充电路径37a·38a·39a中所具备的晶体管61A·61B·61C、以 及放电路径37b·38b·39b中所具备的晶体管63A·63B·63C当作开 关使用从而调整ON-OFF时序,可以以如图14(a)~(c)所示的时 序驱动电容11A~11C。
本实施方式的容性负载驱动电路40,如上所述,与实施方式1一 样,可以把储存在电容11A·11B·11C的静电能的大部分回收至电容 2a·2b·2c·2d·2e·2f·2g·2h·2i,并再利用。
此外,本实施方式的容性负载驱动电路40,因具有选择多个电容 11A~11C的选择电路62·64,所以可以对于多个电容11A~11C以不 同的时序施加电压。
此外,本实施方式的容性负载驱动电路40为,充电路径 37a·38a·39a与放电路径37b·38b·39b进而被分离的结构。
由此,可以对充电的时序和放电的时序进行独立的控制,如图14 (a)~(c)所示,能在某个电容11A的放电期间中进行其他的电容 11B的充电。且,由于把充电路径37a·38a·39a与放电路径37b·38b·39b 分离,可对于充电特性与放电特性单独地进行最佳化处理。
[实施方式5A]
对于本发明的另一种实施方式根据图77进行说明,如以下所述 且,为便于说明,对于具有与前述的实施方式1、1A、或5中所示的 各构件相同功能的构件,标以相同的标号,略去其说明。
本实施方式的容性负载驱动电路40A,除以下的不同点以外,具 有与实施方式2的容性负载驱动电路40相同的结构。
第1不同点为,对于实施方式5的容性负载驱动电路40中,分压 器5的9个连接点(分压点)a~i、与连接于接点T1~T9的线直接连 接的这一点,在本实施方式的容性负载驱动电路40A中,如图77所示, 分压器5的9个连接点(分压点)a~i、与连接于接点T1~T9的线之 间分别设置了与实施方式1A相同的开关SW1~SW9的这一点。
第2不同点为,容性负载驱动电路40A,具备与实施方式1A相同 的开关16A的这一点。
在本实施方式中,根据这些第1以及第2不同点,使得在电压脉 冲的上升至下降期间内未能由其他电路给蓄电器3提供能量。由此, 根据由其他电路提供能量,可以避免从电容器11至蓄电器3的能量回 收率劣化。
[实施方式6]
继而,对于本发明的另一种实施方式根据图15以及图16(a)~ (c)进行以下说明。且,为便于说明,对于具有与前述的实施方式1 或5中所示的各构件相同功能的构件,标以相同的标号,略去其说明。
本实施方式的容性负载驱动电路70,对于实施方式5的容性负载 驱动电路40,仅在转换电路50·60中的选择电路62·64一侧,设置 整流二极管(整流装置)71·72的这一点上与实施方式5的容性负载 驱动电路40不同。
整流二极管71,设置于转换电路50的每个晶体管41~49中的选 择电路62一侧。且,整流二极管72,设置于转换电路60的每个晶体 管51~59中的选择电路64一侧。
根据如此设置整流二极管71·72,通过转换电路50·60的ON/OFF 动作的延迟等,即使在转换电路50或转换电路60中多个晶体管(41~ 49、51~59)成为导通状态时,也没有短路电流流过,从而可以防止 破坏电路。
在本实施方式中,也与上述的实施方式5一样,驱动对象的容性 负载,被分成3相,由施加了A相电压VA的电容11A、施加了B相 电压VB的电容11B、以及施加了C相电压VC的电容11C构成。
此外,在本实施方式中,也与上述的实施方式5一样,根据把充 电路径37a·38a·39a所具备的晶体管61A·61B·61C、以及放电路 径37b·38b·39b所具备的晶体管63A·63B·63C当作开关使用,可 以选择要把转换电路60的输出电压施加到电容11A~11C的某一个。 由此,对各电容11A~11C可以以不同的时序进行充电以及放电。
表示这种工作例的图为图16(a)(b)(c)的时序图。各图,表示 分别施加在电容11A·11B·11C的电压VA·VB·VC的时间变化。 根据把充电路径37a·38a·39a所具备的晶体管61A·61B·61C、以 及放电路径37b·38b·39b所具备的晶体管63A·63B·63C当作开关 使用从而调整ON-OFF时序,可以以图16(a)~(c)所示的时序驱 动电容11A~11C。
[实施方式6A]
对于本发明的另一种实施方式根据图78进行说明,如下所述。且, 为便于说明,对于具有与前述的实施方式1、1A、或6中所示的各构 件相同功能的构件,标以相同的标号,略去其说明。
本实施方式的容性负载驱动电路70A,除以下的不同点以外,具 有与实施方式2的容性负载驱动电路70相同的结构。
第1不同点为,对于实施方式6的容性负载驱动电路70中,分压 器5的9个连接点(分压点)a~i、与连接于接点T1~T9的线直接连 接的这一点,在本实施方式的容性负载驱动电路70A中,如图78所示, 分压器5的9个连接点(分压点)a~i、与连接于接点T1~T9的线之 间分别设置了与实施方式1A相同的开关SW1~SW9的这一点。
第2不同点为,容性负载驱动电路70A,具备与实施方式1A相同 的开关16A的这一点。
在本实施方式中,根据这些第1以及第2不同点,使得在电压脉 冲的上升至下降期间内未能由其他电路给蓄电器3提供能量。由此, 根据由其他电路提供能量,可以避免电容器11至蓄电器3的能量回收 率劣化。
[实施方式7]
继而,对于本发明的另一种实施方式根据图17、图18(a)(b)、 以及图19进行以下说明。且,为便于说明,对于具有与前述的实施方 式1中所示的各构件相同功能的构件,标以相同的标号,略去其说明。
对于实施方式1的容性负载驱动电路1,具备使用电阻4,分割电 压而设定的分压器5的结构这一点,如图17所示,本实施方式的容性 负载驱动电路81,具备使用作为用于稳定被分压的电压的稳压装置(稳 压元件)的稳压二极管84A~84E分割电压而设定的分压器85的这一 点与实施方式1的容性负载驱动电路1不同。
此外,本实施方式的容性负载驱动电路81,取代并联连接了电容 2a~2i的结构的蓄电器3,而具备串联连接了电容82A~82E(能量储 存元件)的结构的蓄电器3的这一点,也与实施方式1的容性负载驱 动电路1不同。
此外,本实施方式的容性负载驱动电路81,取代旋转型开关7, 而具备由多个开关91~96构成的转换电路(切换装置)87的这一点也 与实施方式1的容性负载驱动电路1不同。
分压器85,根据串联连接在电源端子9与地线之间的多个作为稳 压元件的稳压二极管84A·84B·84C·84D·84E,把电源电压VH分 压成规定的电压V1~V4,并从稳压二极管84A·84B·84C·84D·84E 之间的连接点输出至蓄电器3。
蓄电器83,自地线侧起把电容82A·82B·82C·82D·82E按顺 序串联连接在地线与电源端子9之间的结构。且,电容82A的一端被 接地,电容82A的另一端由分压器85施加电压V1。且,分别在电容 82B的两端施加电压V1以及电压V2、电容82C的两端施加电压V2 以及电压V3、电容82D的两端施加电压V3以及电压V4。且,在电 容82E的一端由电源端子9提供电源电压VH,而在电容82E的另一 端由分压器85提供电压V4。
转换电路87的6个开关91~96,基本上,相当于开关7的接点 T0~T10。即,转换电路87,选择被接地的开关91、由蓄电器83以 及分压器85分别施加电压V1·V2·V3·V4的开关92~95、以及连 接于电源端子9的开关96中的1个使之成为ON状态。且,在初始状 态中开关91被选择。且,继而,根据开关92、9S(4)、95以此顺序 被选择,由电容82A~82E依次给电容11提供静电能,电容11的电压 V由0上升至V4。继而,若开关96被选择,电容11被连接于电源端 子9,施加于电容11的电压V,变得与来自外部的电源电压VH相等。
继而,在规定期间内,开关96维持ON状态,电容11的电压V 维持在电源电压VH后,根据开关95、94、9S(2)以此顺序被选择, 由电容11把能量依次回收至电容82A~82E,电容的电压V由电源电 压VH下降至电压V1。
然后,根据开关91被选择,电容11被接地,施加于电容11的电 压V变为与地线相同的0。
继而,对于分压器85的工作原理,使用图18(a)(b)进行说明。
如图18(a)所示,若在输出端子电压(开关93的电位)P2相对 稳压二极管84B的射极侧的端子电压V2上升的方向上,引起自电容 11的电流的流入,对应来自电容11的电流的流出入,负载电流流入电 容82A·82B从而实现吸收。与此并行,稳压二极管84A、84B的工作 点变深,阻抗降低,电流由电容11通过稳压二极管84A·84B流入地 线,输出端子电压P2维持齐纳电压V2。
此外,如图18(b)所示,若在输出端子电压P2相对稳压二极管 84C的集电极侧的端子电压V2上升的方向上,引起自电容11的电流 的流入,对应来自电容11的电流的流出入,负载电流流入电容 82C·82D·82E,从而实现吸收。与此并行,稳压二极管84C、84D、 84E的工作点变深,阻抗降低,电流由电源线通过稳压二极管 84C·84D·84E流入电容11,输出端子电压P2维持齐纳电压V2。
如此使得输出端子电压P2上升或下降的自电容11的电流的流出 入则由稳压二极管84A·84B·84C·84D·84E吸收。严格讲伴随工作 点的移动,引起稳压二极管84A·84B·84C·84D·84E的稳压-电压 有变化。但是,此变化量很小,在使用时可以忽略。因此,输出端子 电压P1~P4、即可以维持一定的电容82A~82E的端子电压。
再者,对于本实施方式的容性负载驱动电路81,如图19所示的 容性负载驱动电路100,在地线与电源端子9之间设置从地线侧起把电 容101A、101B、101C、101D、101E按顺序串联连接的结构的缓冲电 路102也是可以的。由此,可以缓冲吸收由电容11至分压器85的流 入电流、或由分压器85至电容11的流出电流。其结果,可以减少稳 压二极管84A、84B、84C、84D、84E的负担。
进而,如图19所示的容性负载驱动电路100,在稳压二极管84A、 84B、84C、84D、84E之间的连接点与电容82A、82B、82C、82D、 82E间的连接点之间,插入限流电阻103、104、105、106,从而构成 变动调整部107也是可以的。由此,可以进一步减少作用于稳压二极 管84A、84B、84C、84D、84E的负载。
[实施方式7A]
对于本发明的另一种实施方式根据图79以及图80进行说明,如 下所述。且,为便于说明,对于具有与前述的实施方式1或7中所示 的各构件相同功能的构件,标以相同的标号,略去其说明。
本实施方式的容性负载驱动电路81A,除以下的不同点以外,具 有与实施方式2的容性负载驱动电路81相同的结构。
不同点为,对于实施方式6的容性负载驱动电路70中,分压器5 的6个连接点与开关91~96直接连接的这一点,在本实施方式的容性 负载驱动电路70A中,如图79以及图80所示,分压器5的6个连接 点中除了被接地的点以外的5个连接点与开关91~96之间分别、设置 了与实施方式1A的开关SW1~SW9相同的开关SW12~SW16的这一 点。
在本实施方式中,根据这些第1以及第2不同点,使得在电压脉 冲的上升至下降期间内不能由其他电路给蓄电器3提供能量。由此, 根据由其他电路提供能量可以避免电容器11至蓄电器3的能量回收率 的降低。
[实施方式8]
继而,对于本发明的另一种实施方式根据图20进行以下说明。且, 为便于说明,对于具有与前述的实施方式1或7中所示的各构件相同 功能的构件,标以相同的标号,略去其说明。
在上述的实施方式7的结构中,根据电源电压以及稳压二极管 84A、84B、84C、84D、84E的齐纳电压的漂移、按时变化、温度变动 等,如果电源电压VH相对于稳压二极管84A、84B、84C、84D、84E 的齐纳电压的合计变大,有烧坏稳压二极管84A、84B、84C、84D、 84E的担忧。且,在上述的实施方式7的结构中,如果电源电压VH相 对于稳压二极管84A、84B、84C、84D、84E的齐纳电压的合计变小, 有稳压二极管84A、84B、84C、84D、84E的端子电压不稳定的担忧。
在本实施方式中,对于解决这些问题的容性负载驱动电路进行说 明。
如图20所示,本实施方式的容性负载驱动电路110,取代实施方 式7的容性负载驱动电路81中的稳压二极管84E,而使用上拉电阻 108,将稳压二极管84D的端通过上拉电阻108上拉到电源线97。即, 容性负载驱动电路110,将稳压二极管84A、84B、84C、84D、84E的 齐纳电压的合计与电源电压VH之差,被离电源线97最近的级(最上 级)吸收。这种结构,自电源线97通过上拉电阻108给稳压二极管84A、 84B、84C、84D提供偏置电流,从而稳定电容82A、82B、82C、82D、 82E的端子电压。稳压二极管84A、84B、84C、84D的齐纳电压的合 计被设定成小于电源电压VH。
此外,在本实施方式的容性负载驱动电路110中,也与如图19所 示的容性负载驱动电路100一样,在稳压二极管84A、84B、84C、84D、 上拉电阻108之间的连接点和电容82A、82B、82C、82D、82E间的 连接点之间,插入限流型电阻103、104、105、106,从而构成变动调 整部107。由此,可以进一步减少作用于稳压二极管84A、84B、84C、 84D、84E的负载。
再者,取代上拉电阻108的设置,代替实施方式7的容性负载驱 动电路81中的稳压二极管84A,使用下拉电阻,把稳压二极管84D的 端子通过下拉电阻下拉至地线98也是可以的。由此,得到与上拉时相 同的效果,稳定电容82A、82B、82C、82D、82E的端子电压。
[实施方式9]
继而,对于本发明的另一种实施方式根据图21进行以下说明。且, 为便于说明,对于具有与前述的实施方式1或7中所示的各构件相同 功能的构件,标以相同的标号,略去其说明。
在本实施方式中,对于解决实施方式8中所述的有关稳压二极管 84A、84B、84C、84D、84E的齐纳电压的合计与电源电压VH之差的 问题的容性负载驱动电路进行说明。
本实施方式的容性负载驱动电路120,如图21所示,为使得在中 间级吸收电源电压VH与稳压二极管84A、84B、84C、84D的齐纳电 压的合计之差,把稳压二极管(84A、84B、84C、84D、84E)分割为 电源线97侧(84D、84E)和地线98侧(84A、84B),把电源线97侧 的稳压二极管84D、84E通过上拉电阻111上拉至电源线97,把地线 98方的稳压二极管84A、84B通过下拉电阻112下拉至地线98,提供 偏置电流。稳压二极管84A、84B、84C、84D、84E的齐纳电压的合 计被设定成小于电源电压VH。
容性负载驱动电路120,具备有并联连接于电源线97和地线98 之间的第1分压器113A以及第2分压器113B构成的分压器113。第1 分压器113A,包含并联连接于电源线97和地线98之间的稳压二极管 84A、84B,在与电源线97间内插了上拉电阻111。第2分压器113B, 包含串联连接于电源线97和地线98之间的稳压二极管84D、84E,在 稳压二极管84D、84E与地线98间内插了下降电阻112。
由此,根据在中间级吸收电源电压VH与稳压二极管84A、84B、 84C、84D的齐纳电压的合计之差,可以确保电源线97附近以及地线 98附近的端子的电压的稳定性。
此外,在本实施方式的容性负载驱动电路120中,也与如图19所 示的容性负载驱动电路100一样,在稳压二极管84A、84B、84C、84D、 上拉电阻111、下拉电阻112之间的连接点、以及电容82A、82B、82C、 82D、82E间的连接点之间,插入限流型电阻103、104、105、106,从 而构成变动调整部107。由此,可以进一步减少作用于稳压二极管84A、 84B、84C、84D、84E的负载。
[实施方式10]
继而,对于本发明的另一种实施方式根据图22进行以下说明。且, 为便于说明,对于具有与前述的实施方式1、7或9中所示的各构件相 同功能的构件,标以相同的标号,略去其说明。
如实施方式7~9,串联连接了电容82A~82E的结构的蓄电器83 中,即使在开关91~96的任一个被导通时,也会有电流自(至)电容 11的流出流入,给全部的电容82A~82E带来影响的问题。
于是,在本实施方式中,基于图22对用于解决此问题的容性负载 驱动电路进行说明。
如图22所示,本实施方式的容性负载驱动电路130,除了取代蓄 电器83而具备蓄电器125的点以外,具有与实施方式9的容性负载驱 动电路120相同的结构。
在蓄电器125中,电容(能量储存元件)121~124的一端连接于 电源线97或地线98,而电容121~124的另一端,连接于施加了把电 源电压VH进行分压的电压V1~V4的开关92~95。更详细讲,电容 121,夹在地线98与开关92之间,电容122,夹在地线98与开关93 之间,电容123,夹在电源线97与开关94之间,电容124,夹在电源 线97与开关95之间。
由此,如果选择了开关92~95中的1个,只有电容121~124中 的1个电容与电容11连接。由此,电容121~124分离成多个,可以 防止电容121~124相互之间的干扰。即,即使在开关92~95的任一 个被导通时,电流自(至)电容11的流出流入只影响电容121~124 中的1个。
如实施方式9以及实施方式10,当在中间级吸收电源电压VH与 稳压二极管84A、84B、84C、84D的齐纳电压的合计之差时,吸收的 级数、即被上拉的线和被下拉的线之间夹有的电容82A、82B、82C、 82D、82E的个数,为任意的,但设为1级更好。
此外,如实施方式9以及实施方式10,当在中间级吸收电源电压 VH与稳压二极管84A·84B·84C·84D的齐纳电压的合计之差时, 地线98侧的稳压二极管个数,即第1分压器113A所含的稳压二极管 个数、电源线97侧的稳压二极管个数,即第2分压器113B所含的稳 压二极管个数之差从电压稳定性这一点考虑优选在1个以内。
再者,在实施方式7~10中,对于作为用于稳定被分压的电压的 稳压装置(稳压元件)的稳压二极管的情况进行了说明,但是取代稳 压二极管可以使用其它稳压装置(稳压元件),例如并联稳压器。
[实施方式11]
对于使用了本发明的喷墨打印机(图像形成装置)的实施方式之 一,根据图7、图23、以及图24进行说明。
图23为表示喷墨打印机(图像形成装置)的主要部位的侧视图。
如图23所示,在本实施方式的喷墨打印机(图像形成装置)210 中为,托架211通过同步皮带212连接于脉冲马达213,并被导向构件 214引导,从而在记录用纸215的纸宽方向上进行往返移动的结构。
喷墨头23,由置于托架211上边的墨盒217接受墨汁的提供并与 托架211的移动相配合,给记录用纸215喷出墨滴,从而形成点,在 记录用纸215上印刷图像以及文字。
图24为表示图23的喷墨打印机(图像形成装置)具备的喷墨头 的结构的剖视图。
如图24所示,在喷墨头23中,在喷嘴板220上形成喷嘴开口221, 在流路形成板223中,形成了划分压力发生室223的通孔、在两侧与 压力发生室223连通的划分2个墨汁提供口224的通孔或沟槽、以及 分别与这些墨汁提供口224连通的划分2个共通的墨水室225的通孔。 振动板226,由可弹性变形的薄板构成,且连接于压电元件等压电元件 21的前端,并夹着流路形成板222,与喷嘴板220液密封地固定为一 体,从而构成流路单元228。压电元件21,被固定在固定基板232上。
根据这种结构,若压电元件21收缩而压力发生室223膨胀,共同 的墨水室225的墨水通过墨汁提供口224流入压力发生室223。经过规 时序间后如果压电元件21伸长而压力发生室223收缩,压力发生室223 的墨水便被压缩而从喷嘴开口221喷出墨滴。
在喷墨头23的压电元件21上,如图7所示,通过模拟开关22连 接有容性负载驱动电路1。容性负载驱动电路1被构成为能够发生从喷 嘴开口221喷出墨滴所需的电压值的梯形波。且,模拟开关22,将容 性负载驱动电路1的输出电压V,选择性地施加给对应于印刷数据的 压电元件21。
通过以上步骤,将有关本发明的容性负载驱动电路1用于喷墨打 印机(图像形成装置)210的压电元件的驱动,可以把喷墨打印机(图 像形成装置)210的电能损耗抑制到很低程度。
再者,以上,在把压电元件作为根据给墨水加压以液滴状喷出墨 水的墨汁喷出装置使用的喷墨打印机(图像形成装置)210中,对于把 有关本发明的容性负载驱动电路用于压电元件(容性负载)的驱动的 例子进行了说明。但是有关本发明的容性负载驱动电路,也可以用于 把静电驱动电极作为墨汁喷出装置使用的静电方式(利用在2个电极 (静电驱动电极)间施加电压引起的电极间的静电吸引力喷出墨水的 方式等)的喷墨打印机中的静电驱动电极的驱动,此时也可以得到同 样的耗电抑制效果。
此外,有关本发明的喷墨打印机或图像形成装置,当然,也可以 不是印刷专用的装置,而为兼有复印机或传真装置等功能的组合机也 是可以的。
[实施方式12]
在这里,对于本发明的原理进行说明。
图50(a)所示的电路中,如图50(a)所示,设能量储存元件 Cs1的初始电位为V0、设容性负载Cd的初始电位为0。在t=0时把开 关SW1置于ON,便如图50(b)所示,根据能量储存元件Cs1与容 性负载Cd的电位之差,由能量储存元件Cs1至容性负载Cd流过电流 I,从而容性负载Cd被充电。此时容性负载Cd的两端电压为,以下的 式表达:
V = Cs 1 Cd + Cs 1 · V 0 · { 1 - Exp ( - t τ 1 ) }
τ 1 = Cd · Cs 1 Cd + Cs 1 · R
开关SW1置于ON后,经过充分长的时间,能量储存元件Cs1的 电压Vs与容性负载Cd的电压Vd之差(能量储存元件Cs1与容性负 载Cd的电位之差)将消失,电流I成为0。把这种电压Vs、Vd以及 电流I的时间变化表示在图51(a)、(b)中。设这种饱和电压,为V1。
继而,把开关SW1置于OFF,在初始电位V0+ΔV的能量储存元
V 1 = Cs 1 Cd + Cs 1 · V 0
件Cs2上连接容性负载Cd(参照图52)。容性负载Cd,根据容性负载 Cd与能量储存元件Cs2的电位差被充电。此时的容性负载Cd的两端
V = Cs 2 Cd + Cs 2 · ( V 0 + ΔV - V 1 ) · { 1 - Exp ( - t τ 2 ) } + V 1
τ 2 = Cd · Cs 2 Cd + Cs 2 · R
电压,由以下的式表示:
开关SW2置于ON后,经过充分长的时间,能量储存元件Cs1与 容性负载Cd的电位之差将消失,电流I成为0(参照图52)。设这种 饱和电压为V2。
V 2 = Cs 2 Cd + Cs 2 · ( V 0 + ΔV - V 1 ) + V
进而,把开关SW2置于OFF,开关SW1置于ON(参照图53)。 根据容性负载Cd与能量储存元件Cs2的电位差,容性负载Cd被充电。 此时的容性负载Cd的两端电压,由以下的式表示。
V = Cs 1 Cd + Cs 1 · ( V 1 - V 2 ) · { 1 - Exp ( - t τ 1 ) } + V 2
开关SW1置于ON后,经过充分长的时间,能量储存元件Cs1与 容性负载Cd的电位之差将消失,电流I成为0。设这种饱和电压为V3。
V 3 = Cs 1 Cd + Cs 1 · ( V 1 - V 2 ) + V 2
与现在容性负载Cd的静电容量Cd比较而言,考虑能量储存元件 Cs1的静电容量Cs1以及能量储存元件Cs2的静电容量Cs2充分大时 的情况,以下表达式成立。
Cs 1 Cd + Cs 1 1 , Cs 2 Cd + Cs 2 1
V3=V1=V0
因此,对于能量储存元件Cs1,初始电位V0、给容性负载Cd充 电后的电位V1、以及由容性负载Cd接受再生后的电位V3变得大致 相等,在能量储存元件Cs1与容性负载Cd之间能量损失表观上成为0。
继而,作为用于说明工作原理的实施方式,举如图30所示的4级 的容性负载驱动电路301的例子进行说明。
容性负载驱动电路301,根据给压电元件等容性负载311充放电来 驱动容性负载的311,并具备作为并联连接于容性负载311与地线之间 的能量储存元件的电容C(1)、C(2)、以及C(3)。且,还设有用于 提供电源电压VH的直流电源(电源)的功率:电源309。
虽未图示,但设有给这些电容C(1)~C(3)赋予初始电位(初 始电荷)的初始电位赋予装置。这种初始电位赋予装置,把电功源309 提供的电源电压VH与接地电位(=0)间的电位差(电压)分割(分 压)为4等分,并把由分压生成的3个电位V1(=1/4·VH)、V2 (=2/4·VH)、以及V3(=3/4·VH)作为初始电压分别赋给电容C(1)~ C(3)。这种初始电位赋予装置为,例如,连接于地线(接地点)与电 功源309之间,将接地电位与电源电压VH之间的的电位差进行分压, 把被分压的电压提供给连接了电容C(1)~C(3)的分压点的分压装 置。作为上述分压装置,例如可以使用与前述的分压器5相同,被提 供了电源电压V的电能提供点VH(电源端子)与地线(接地端子) 之间具备串联连接的4个电阻的电阻分压电路。
进而,在容性负载311与电容C(1)、C(2)、以及C(3)之间 分别连接切换元件S(1)、S(2)、以及S(3),而在电功源309与容 性负载311之间连接切换元件S(4),在接地电位G与容性负载311 之间连接切换元件S(0)。在这种形态中,由切换元件S(0)~S(4) 构成了切换装置。另一方面,容性负载311的另一端连接至地线。且, 电容C(1)、C(2)、C(3)的另一端通过接地点(基准电位端子、接 地端子)C(0)连接至地线。
对于具备以上结构的容性负载驱动电路301的工作状态,以下, 根据图31(a)~(e)、图32(a)~(d)、以及图33进行说明。且, 以下,为便于说明,对电源电压VH为正电位的情况进行说明。电源 电压VH为负电位时的工作状态,除电位的极性以及电荷移动方向相 反以外,其余都一样。
初始时,如图31(a)所示,只把切换元件S(0)~S(4)中的切 换元件S(0)设为连接状态(ON状态),而容性负载311设为没有储 存电荷的状态(初始状态)(图81的S0)。
作为第1步骤,如图31(b)所示,把切换元件S(0)设成切断 状态(OFF状态),继而,把切换元件S(1)设成连接状态。此时, 电位V1(=1/4·VH)的能量被储存在电容C(1)中,容性负载311 中未被储存电荷,因此在电容C(1)与容性负载311之间,有电位差 VH/4。根据此电位差VH/4,对应于电容C(1)的静电容量C1与容性 负载311的静电容量Cd的比率的电荷由电容C(1)移动至容性负载 311。即,进行由电容C(1)至容性负载311的静电能量(以下、适 当的简称为「能量」)的注入,容性负载311被充电(图81的S1)。电 容C(1)的电位变低的量相当于流入容性负载311的电荷,相反,容 性负载311的电位变高的量相当于由电容(1)流入的电荷。当电容C (1)的静电容量C1充分大于容性负载311的静电容量Cd(C1>Cd) 时,电容C(1)的电位变化很小。当切换元件S(1)设成连接状态的 时间充分长时,通过能量的移动电容C(1)与容性负载311的电位变 得大致相等。因此,充电后的电容C(1)以及容性负载311的电位, 变成比电容C(1)的初始电位VH/4(=V1)低若干值的电位(参照图 33)。把此电位设为V1′。
作为第2步骤,如图31(c)所示,把切换元件S(1)设成切断 状态,继而把切换元件S(1)设成连接状态。此时电容C(2)中被存 有高于电位V1′的电位的电位V2的能量,因此对应于电容C(2)的 静电容量C2与容性负载311的静电容量Cd的比率的电荷由电容C(2) 移动至容性负载311。即,根据电位差V2-V1′(=VH/4+α;α与VH 相比,是非常小的正值),进行由电容C(2)至容性负载311的能量 的注入,容性负载311被进一步充电(图81的S2)。电容C(2)的电 位变低的量相当于流入容性负载311的电荷,相反,容性负载311的 电位变高的量相当于由电容C(2)流入的电荷。当电容C(2)的静电 容量C2充分大于容性负载311的静电容量Cd(C2>Cd)时,电容C (2)的电位变化很小。当切换元件S(2)设成连接状态的时间充分长 时,通过能量的移动电容C(2)与容性负载311的电位变得大致相等。 因此,充电后的电容C(2)以及容性负载311的电位,变成比电容C (2)的初始电位2VH/4(=V2)低若干值的电位(参照图33)。把此 电位设为V2′。
作为第3步骤,如图31(d)所示,把切换元件S(2)设成切断 状态,继而把切换元件S(3)设成连接状态。此时电容C(3)中被存 有高于电位V2′的电位的电位V3的能量,因此对应于电容C(3)的 静电容量C3与容性负载311的静电容量Cd的比率的电荷由电容C(3) 移动至容性负载311。即,根据电位差V3-V2′(=VH/4+α),进行由 电容C(3)至容性负载311的能量的注入,容性负载311被进一步充 电(图81的S3)。电容C(3)的电位变低的量相当于流入容性负载 311的电荷,相反,容性负载311的电位变高的量相当于由电容C(3) 流入的电荷。当电容C(3)的静电容量C3充分大于容性负载311的 静电容量Cd(C3>Cd)时,电容C(3)的电位变化很小。当切换元件 S(3)设成连接状态的时间充分长时,通过能量的移动电容C(3)与 容性负载311的电位变得大致相等。因此,充电后的电容C(3)以及 容性负载311的电位,变成比电容C(3)的初始电位3VH/4(=V3) 低若干值的电位(参照图33)。把此电位设为V3′。
作为第4步骤,如图31(e)所示,把切换元件S(3)设成切断 状态,继而把切换元件S(4)设成连接状态。此时,电源电压(电源 电位)VH高于电位V3′,因此根据这些电位差VH-V3′(=VH/4+ α)进行由电功源309至容性负载311的能量的注入,容性负载311 被进一步充电(图81的S4)。当切换元件S(4)设成连接状态的时间 充分长时,充电后的容性负载311的电位,上升至电源电压VH。
作为第5步骤,如图32(a)所示,把切换元件S(4)设成切断 状态,继而把切换元件S(3)设成连接状态(图81的S5)。此时容性 负载311中,被存有高于电容C(3)的电位V3′的电位的电位VH的 能量,因此根据为VH/4+α的电位差VH-V3′,对应于电容C(3) 的静电容量C3与容性负载的静电容量Cd的比率的电荷移动至电容C (3),从而由容性负载311给电容C(3)充电。由此,电容C(3)的 电位变高的量相当于流入容性负载311的电荷,相反,容性负载311 的电位变低的量相当于流入电容C(3)的电荷。当切换元件S(3)设 成连接状态的时间充分长时,通过能量的移动电容C(3)与容性负载 311的电位变得大致相等。作为充电的结果电容C(3)的电位大致变 回原来的V3=3VH/4,由容性负载311至电容C(3)进行能量再生(图 81的S5)。
作为第6步骤,如图32(b)所示,把切换元件S(3)设成切断 状态,继而把切换元件S(2)设成连接状态(图81的S6)。此时容性 负载311中被存有高于电位V2′的电位的电位V3的能量,因此根据 为VH/4+α的电位差V3-V2′,对应于电容C(2)的静电容量C2与 容性负载的静电容量Cd的比率的电荷移动至电容C(2),从而由容性 负载311给电容C(2)充电。由此,电容C(2)的电位变高的量相当 于由容性负载311流入的电荷,相反,容性负载311的电位变低的量 相当于流入电容C(3)的电荷。当切换元件S(2)设成连接状态的时 间充分长时,通过能量的移动电容C(2)与容性负载311的电位变得 大致相等。作为充电的结果电容C(2)的电位大致变回原来的 V2=2VH/4,由容性负载311至电容C(2)进行能量再生(图81的S6)。
作为第7步骤,如图32(c)所示,把切换元件S(2)设成切断 状态,继而把切换元件S(1)设成连接状态(图81的S7)。此时容性 负载311中,被存有高于电位V1′的电位的电位V2的能量,因此根 据为VH/4+α的电位差V2-V1′,对应于电容C(1)的静电容量C1 与容性负载的静电容量Cd的比率的电荷移动至电容C(1),从而由容 性负载311给电容C(1)充电。由此,电容C(1)的电位变高的量相 当于由容性负载311流入的电荷,相反,容性负载311的电位变低的 量相当于流入电容C(1)的电荷。当切换元件S(1)设成连接状态的 时间充分长时,通过能量的移动电容C(1)与容性负载311的电位变 得大致相等。作为充电的结果电容C(1)的电位大致变回原来的 V1=VH/4,由容性负载311至电容C(1)进行能量再生(图81的S7)。
作为第8步骤,如图32(d)所示,把切换元件S(1)设成切断 状态,继而把切换元件S(0)设成连接状态。此时容性负载311中被 存有高于接地电位′的电位的电位V1′的能量,因此根据为VH/4+α 的电位差V1′,容性负载311的电荷流到接地电位(放电),即被消 耗(废弃)(图81的S8)。然后,变回S1。
以上,在第1~第8步骤S1~S8中,从能量观点看,在第1步骤 S1中注入到容性负载311的电容C(1)的储存能量,通过第7步骤 S7中从容性负载311移回至电容C(1)的能量而被再生。在第2步骤 S2中注入到容性负载311的能量,通过第6步骤S6中从容性负载311 移回至电容C(1)的能量而被再生。在第3步骤S3中注入到容性负 载311的能量,通过第5步骤S5中从容性负载311移回至电容C(1) 的能量而被再生。即,若总结第1~第8步骤S1~S8,在第1~第8 步骤S1~S8中,至容性负载311的能量注入在第4步骤S4进行,能 量消耗在第8步骤S8中进行,其他步骤中的能量传递,由于被对应的 步骤被抵消(参照图33),因此在表观上不进行能量的注入、消耗。即 与充电成电压VH,照原值放电的Push-Pull等方式相比可以以25%的 能量消耗进行充放电。
作为更具体的例子,对于使用上述4级的容性负载驱动电路301 生成波峰值10Vpp的脉冲时的电压变化进行描述。若给10V进行4分 割,1级对应的电位差为2.5V,并分割为电容C(1)~C(3)的各电 位为2.5V、5.0V、7.5V,接地电位0V以及电源电位10V的5个电位。 且,电容C(1)~C(3)的静电容量,与容性负载311的静电容量相 比以大为好,但是为易于判断工作状态,设成容性负载311的4倍。 且,系统中使用的切换元件S(0)~S(4)中,通常使用半FET(电 场效应晶体管)以及GTO晶闸管等半导体开关,使用半导体开关时, 不可忽略ON电阻,因此对容性负载311的充放电以具有特时序间常 数的指数函数进行。因此,当波形形成时切换元件S(0)~S(4)的 ON时间与容性负载311的充放电时间常数的关系变得很重要,但是为 简化,以切换元件S(0)~S(4)的ON电阻非常小,可忽略由切换 元件S(0)~S(4)的ON电阻引起的系统的影响的程度的充分长的 切换时间切换至下级的前提下进行计算。计算结果表示在表1。在表1 中,Vd为容性负载311的电位、Vs_0为接地电位、Vs_n(n为1~ 3)为各级的电容C(n)的电位、Vs_4为表示电源电位。
表1   Vs_4   Vs_3   Vs_2   Vs_1   Vs_0   Vd   10.0   7.5   5.0   2.5   0.0   0.0   初始状态(S0)   10.0   7.5   5.0   2.0   0.0   2.0   第1步骤S1结束后的状态   10.0   7.5   4.4   2.0   0.0   4.4   第2步骤S2结束后的状态   10.0   6.9   4.4   2.0   0.0   6.9   第3步骤S3结束后的状态   10.0   6.9   4.4   2.0   0.0   10.0   第4步骤S4结束后的状态   10.0   7.5   4.4   2.0   0.0   7.5   第5步骤S5结束后的状态   10.0   7.5   5.0   2.0   0.0   5.0   第6步骤S6结束后的状态   10.0   7.5   5.0   2.5   0.0   2.5   第7步骤S7结束后的状态   10.0   7.5   5.0   2.5   0.5   0.0   第8步骤S8结束后的状态
由此结果明确得知,如果由各电容给容性负载注入能量,随之各 电容的电位也减少。但是,相反由容性负载给各电容注入能量时,各 电容的电位变回原值,作为结果电能被再生。
如上所述,有关本实施方式的容性负载驱动电路301,由电功源 309赋予了电源电压VH的电源端子309a、赋予接地电位(基准电位) 的接地端子C(0)(基准电位端子)、以及接地电位和电源电位VH之 间,且具备互不相同的初始电位V(1)~V(3)的3个电容C(1)~ C(3)、接地端子C(0)、电容C(1)~C(3)、以及选择性的把电源 端子309a连接于容性负载311的切换元件S(0)~S(4),上述切换 元件S(0)~S(4)可以实行,根据把接地端子C(0)连接于容性负 载311后,把各电容C(1)~C(3)由其初始电位接近接地电位的一 方依次连接到容性负载311,把容性负载311的端子电压变化到接近电 源电压VH的第1步骤(S1~S3)、然后根据把容性负载311选择性地 与电源端子309a连接,增大容性负载311的端子电压的绝对值的第2 步骤(S4)、然后根据把各电容C(1)~C(3)由其初始电位接近电 源电位一方依次连接到容性负载311,减少容性负载311的端子电压的 绝对值的同时,把电容C(1)~C(3)的储存静电能再生至与第1步 骤前大致相等的值的第3步骤(S5~S7)。
再者,在这里,在接地电位与电源电位VH之间,且被赋予了互 不相同的初始电位的电容的个数为3个,给容性负载311充电(或放 电)的步骤数(比切换元件S(0)~S(4)的电位的种类数少1个, 比电容数多1个;以下,称作「级数」)为4级的情况进行了说明。
但是,级数只要在2级以上,则没有特别的限定。理想的是,2 级时为再生率50%、3级时为再生率66.7%、4级时为再生率75%、5 级时为再生率80%、级数越增加再生率越高。但是,级数越增加电压 上升所需的时间也变长,且所需的电路数也增加。因此,级数,根据 所需的驱动波形和电路的大小、以及成本等决定为好。一般,需要高 速上升时为3~4级的电路结构为好,而要抑制电能消耗时为4~5级 的电路结构为好。
此外,在上述的说明中,利用电源电压VH等分为4级的情况进 行了说明,但是没必要一定均等的分割。但是,本实施方式的容性负 载驱动电路301,将根据由电容C(I)(I=1,2,3)至具有V(I-1)(但 是V(0)=0)的电位的容性负载311的能量注入(S1~S3)引起的电 容C(I)的能量减少的量,由具有V(I)(但V(4)=0)的电位的容 性负载311至C(I)的能量注入而再生的原理进行电能再生,由此为 理想地进行电能再生,进行等分为最好。
在这里,对于容性负载311的时间常数与电容C(I)的切换时间 进行考察。
在图54所示的电路中,若考虑电容Cs中被赋予初始电位,从而 容性负载Cd被放电的状态,开关SW置于ON后,容性负载Cd的电 压,如图55所示,随时间的流逝而上升。若经过充分长的时间,容性 负载Cd,与电容Cs间的电位差消失,电流I成为0。在本说明书中, 把这种饱和电压称作「达到电压」。
在图54所示的电路中,若在经过了某些时间(切换时间(Ts)) 后的时刻断开开关,当切换时间(Ts)短于时间常数(τo=R·Cd;R 为包含能量储存元件与容性负载的充电路径或放电路径的直流电阻成 分、Cd为容性负载的静电容量)时,容性负载Cd的电压,按如图56 (a)所示的状态变化。因此,在有关本发明的3级容性负载驱动电路 中,容性负载Cd的电压,按如图56(b)所示的状态变化。
当切换时间(Ts)与时间常数(τo=R·Cd)相等时,容性负载 Cd的电压,按如图57(a)所示的状态变化。因此,在有关本发明的 3级容性负载驱动电路中,容性负载Cd的电压,按如图57(b)所示 的状态变化。
当切换时间(Ts)长于时间常数(τo=R·Cd)时,容性负载Cd 的电压,按如图58(a)所示的状态变化。因此,在有关本发明的3级 容性负载驱动电路中,容性负载Cd的电压,按如图58(b)所示的状 态变化。
在本发明的容性负载驱动电路中,设能量储存元件的静电容量成 分为Cs、设容性负载的静电容量为Cd、设包含能量储存元件与容性负 载的充电路径或放电路径的直流电阻成分为R、设能量储存元件的切 换时间(切换时间;)继续连接容性负载的时间)为Ts、优选
τo≤Ts≤2.5·τo
(但是,τo=R·Cd)
若Ts<τo,所得脉冲的波峰值成为达到电压的63%以下,向容性负载 的能量供给率降低。且,若Ts>2.5·τo,切换时间则变得极长。
[实施方式13]
继而,对于本发明的另一种实施方式根据图24、图35(a)~(f)、 图36、以及图37进行以下说明。且,为便于说明,对于具有与前述的 实施方式1、7或9中所示的各构件相同功能的构件,标以相同的标号, 略去其说明。
有关本实施方式的容性负载驱动电路302,在实施方式1的容性 负载驱动电路301中的电功源309与连接于此的切换元件S(4)之间 增加作为能量储存元件的电容C(N),一般化了级数(电容数)。
有关本实施方式的容性负载驱动电路302,如图34以及图35所 示,包含具有接地电位(基准电位)V(0)(=0)的接地端子C(0)、 具有非0初始电位V(1)…V(N)(N为2以上的自然数)的N个电 容C(1)…C(N)(能量储存元件)、连接接地端子C(0)(基准电位 端子)与容性负载311的切换元件S(0)(切换装置)、选择性的连接 电容C(1)…C(N)(切换状置)与容性负载311的N个切换元件S (1)…S(N),且把电容C(N)(直接、或通过一些电路)连接于电 能发生源的脉冲发生电路,上述N个电容C(1)…C(N),包含具有 非0的第1初始电位V(I)的电容C(I)(第1能量储存元件)、具有 与初始电位V(I)同极性且绝对值大于初始电位V(I)的第2初始电 位V(I+1)的电容C(I+1)(第2能量储存元件),而切换元件S(0)~ S(N)(切换装置)能够实行:通过把容性负载311选择性地与接地端 子或电容C(I-1)(接地端子或第3能量储存元件)连接后,再把容性 负载311选择性地与电容C(I)连接,从而把容性负载311的电位(端 子电压)变化成接近电容C(I)的初始电位的第1充电步骤;然后通 过把容性负载311选择性地与电容C(I+1)连接,从而增大容性负载 311的电位(端子电压)的绝对值的第2充电步骤;然后通过把容性负 载311选择性地与电容C(I)连接,从而减少容性负载311的电位(端 子电压)的绝对值,同时把电容C(I)的储存静电能量再生至与第1 充电步骤前大致相等的放电步骤。且,在图34中,也略去了赋予初始 电荷的电路。
将上述结构的工作状态根据图35(a)~(f)进行说明。
发生脉冲的能量消耗,由电容C(N)至电容C(N-1)的电荷移 动量向接地电位传递,从而在接地端子C(0)消耗。由图35(a)至 图35(f)的周期(循环),产生与实施方式12中的步骤S1~S8的周 期相同的效果。即,通过使从图35(a)移动至图35(b)时从电容C (I)流出的电荷、与从图35(d)移动至图35(e)时从流入电容C (I)的电荷大致相等,在从图35(a)至图35(f)的周期中电容C(I) 在表观上不消耗能量。
因此,可以实行至少由图35(a)至图35(f)的周期,也可以使 用N个电容C(1)…C(N)全部或一部分。使用的电容根据待发生 的脉冲适当的设定为好。例如,要发生基极电位为接地电位,脉宽大 的脉冲时,使用全部的电容C(1)…C(N)为好。且,待发生的脉冲 的波峰值低于电源电压VH时、以及想要发生基极电位不是接地电位 的脉冲时,只使用一部分的电容为好。
因此,有关本实施方式的容性负载驱动电路302具备:赋予了多 个不同初始电位V(1)…V(N)(N为2以上的自然数)的多个电容 C(1)…C(N);用于将上述电容C(1)…C(N)选择性地与容性负 载311连接的切换元件S(1)…S(N);上述多个电容C(1)…C(N) 包括:具有非0的第1初始电位V(I)的电容C(I)、具有绝对值大 于第1初始电位V(I)的第2初始电位V(I+1)的电容、具有与第1 初始电位V(I)同极性且绝对值小于第1初始电位V(I)的第3初始 电位V(I-1)的电容C(I-1);切换元件S(1)…S(N)可以实行: 通过把容性负载311选择性地与电容C(I-1)连接后,再选择性地与 电容C(I)连接,从而把容性负载311的端子电压变化成接近第1初 始电位的第1充电步骤;然后通过把容性负载311选择性地与第2初 始电位V(I+1)和能量储存元件连接,从而增大容性负载311的端子 电压的绝对值的第2充电步骤;然后通过把容性负载311选择性地与 电容C(I)连接从而减少容性负载311的端子电压的绝对值,同时把 第1电容C(I)的储存静电能量再生至与第1充电步骤前大致相等的 放电步骤。
此外,初始电位V(1)…V(N),可以是正值,也可以是负值, 但当初始电位V(1)…V(N)为正值时,例如能够发生图36所示的 脉冲。且,当初始电位V(1)…V(N)为负值时,例如能够发生图 37所示的脉冲。
再者,在本实施方式中,即使没有连接于电功源309的电容C(N) 也可以进行工作(通常内置于电功源)。
因此,有关本实施方式的容性负载驱动电路302具备:从电功源 309赋予电源电位VH的电源端子(VH)、赋予了多个不同的初始电位 V(1)…V(N)(N为2以上的自然数)的N个电容C(1)…C(N)、 用于将上述电容C(1)…C(N)以及电源端子(VH)选择性地与容 性负载311连接的切换元件S(1)…S(N);上述电容C(1)…C(N) 包括:具有与电源电位VH同极性且绝对值小于电源电位VH的第1 初始电位V(I)的电容C(I)、具有与第1初始电位V(I)同极性且 绝对值小于第1初始电位V(I)的第3初始电位V(I-1)的电容C(I-1); 上述切换元件S(1)…S(N)可以实行:通过把容性负载311选择性 地与电容C(I-1)连接后,再选择性地与电容C(I)连接,从而把容 性负载311的端子电压变化成接近第1初始电位V(I)的第1充电步 骤;然后通过把容性负载311选择性地与电源端子(VH)连接,从而 增大容性负载311的端子电压的绝对值的第2充电步骤;然后通过把 容性负载311选择性地与电容C(I)连接,从而减少容性负载311的 端子电压的绝对值,同时把电容C(I)的储存静电能量再生至与第1 充电步骤前大致相等的放电步骤。
继而,在图30所示的4级容性负载驱动电路301中,对于电容C (1)~C(3)的静电容量成分、容性负载311的静电容量、切换元件 S(1)~S(3)的切换时间、以及充放电路径的电阻值的设定进行研 究。容性负载311的电压,希望在第1~第3步骤中达到达到电压(持 续了无限时间的第1~第3步骤时容性负载311的电压所达到的最终电 压)的90%。因此,求出其条件。
首先,设,切换元件S(1)的切换时间为第1步骤的时间、切换 元件S(2)的切换时间为第2步骤的时间、切换元件S(3)的切换时 间为第3步骤的时间,并使这些值相等。
在这里,如果设容性负载311的静电容量为Cd(单位F)、电容C (1)~C(3)对容性负载311的充放电路径的各电阻值为R(单位Ω), 则电容C(1)~C(3)的各充放电时间常数τ0(单位sec)可以表示 为下式。
                    τ0=R·Cd
如果设电容C(1)~C(3)的静电容量成分为Cs(单位F)、负载容 量比Cd/Cs为X、切换元件S(1)~S(3)的切换时间为Ts(单位sec), 在第1~第3步骤中容性负载311的电压达到达到电压的90%的条件, 可以根据理论计算求出,成为如图82中实线表示的状态。图82表示, 对于时间常数τ0与切换时间Ts之比Ts/τ0,在第1~第3步骤中容 性负载311的电压表示达到达到电压的90%以上的最大负载容量比X (=Cd/Cs)。
如图82所示,当Ts/τ0<2.5时,在第1~第3步骤中容性负载311 的电压达到达到电压的90%的条件为,与近似曲线
X=0.164(Ts/τ0)0.2198
大致相等。另一方面,当Ts/τ0≥2.5时,在第1~第3步骤中容 性负载311的电压达到达到电压的90%的条件为,与直线
X=0.2
大致相等。
因此,在第1~第3步骤中容性负载311的电压变为达到电压的 90%的条件,可近似表示为
当Ts/(R·Cd)<2.5时
  Cd/Cs≤0.164{Ts/(R·Cd)}0.2198
当Ts/(R·Cd)≥2.5时
  Cd/Cs≤0.2。
因此,如果满足上述条件,容性负载311的电压便能在第1~第3 步骤中达到达到电压的90%以上。当上述的式子不成立时,根据从电 容C(1)~C(3)流出至容性负载311的电荷导致电容C(1)~C(3) 的电压变化变大,因而容性负载311的电压在第1~第3步骤中达不到 达到电压的90%。其结果,脉冲发生时的电功再生率变小,影响容性 负载驱动电路的能量节省驱动。且,当上述的式子不成立时,由1次 的脉冲发生导致的C(1)~C(3)的电压变化变大,因而需要到下次 脉冲发生前,校正其电压变化。
在以上的说明中,对于在第1~第3步骤中容性负载311的电压达 到达到电压的90%以上的条件进行了研究,但是提高能量再生率也很 重要。
在图30所示的4级的容性负载驱动电路301中,如果设容性负载 311的静电容量为Cd(单位F)、电容C(1)~C(3)对容性负载311 的充放电路径的各电阻值为R(单位Ω),则电容C(1)~C(3)的 各充放电时间常数τ0(单位sec)可以表示为下式:
τ0=R·Cd。
如果设电容C(1)~C(3)的静电容量成分为Cs(单位F)、负 载容量比Cd/Cs为X、切换元件S(1)~S(3)的切换时间为Ts(单 位sec),把负载容量比X从0.003变化至0.3时,时间常数τ0与开关 时间之比Ts/τ0对应的能量消耗率的变化为,基于理论计算,可以求 出如图85所示的值。
另外,在只把图30所示的4级的容性负载驱动电路301中的级数 变更为2级的容性负载驱动电路中,把负载电容比X从0.003变化到 0.3时,此时的能量消耗率对时间常数τ0与切换时间Ts之比Ts/τ0 的变化,变为如图83所示。
另外,在只把图30所示的4级的容性负载驱动电路301中的级数 变更为3级的容性负载驱动电路中,把负载电容比X从0.003变化到 0.3时,此时的能量消耗率对时间常数τ0与切换时间Ts之比Ts/τ0 的变化,变为如图84所示。
此外,在只把如图30所示的4级的容性负载驱动电路中的级数更 换成5级的电容容性负载驱动电路中,把负载容量比X从0.003变化 至0.3时,能量消耗率对时间常数τ0与开关时间之比Ts/τ0的变化, 变为如图86所示。
此外,在只把如图30所示的4级的容性负载驱动电路301中的级 数更换成6级的电容容性负载驱动电路中,把负载容量比X从0.003 变化至0.3时,能量消耗率对时间常数τ0与开关时间之比Ts/τ0的变 化,变为如图87所示。且,虽未在图83~图87表示,但当负载容量 比X为0.001时,也与负载容量比X为0.003时大致相同。
根据这些结果可知,能量消耗率虽然主要依赖于Ts/τ0,但当负 载容量比X满足
X≤0.01 时,即使增大容性负载的静电容量Cd,能量消耗率也能充分的降低。 当上述的式子成立时,可以不降低电容的输出电压的前提下有效地赋 于容性负载311。且,当X≤0.01时,抑制了由电容或容性负载的静电 容量的漂移及变动(温度变化等)导致驱动电压的变动,可以进行高 可靠性的喷出工作,从而可以使包含容性负载311的驱动系统(通过 容性负载驱动电路进行驱动)稳定地进行工作。另一方面,当上述式 不成立时,在容性负载的静电容量Cd增大时,能量再生率会降低。
继而,对于施加于容性负载的脉冲的波形的转换速度(10%-90%) (脉冲的波峰值从10%上升至90%时所需的时间对应的,脉冲的波峰 值从10%上升至90%时的电压变化量)变得良好的条件进行研究。
在图30所示的4级的容性负载驱动电路301中,如果设,容性负 载311的静电容量为Cd(单位F)、电容C(1)~C(3)对容性负载 311的充放电路径的各电阻值为R(单位Ω),则电容C(1)~C(3) 的各充放电时间常数τ0(单位sec),可以表示为下式:
τ0=R·Cd。
如果设电容C(1)~C(3)的静电容量成分为Cs(单位F)、切 换元件S(1)~S(3)的切换时间为Ts(单位sec)、最终达到电压(经 过无限长时间进行对电容C(1)~C(3)的充电时电容负载311达到 的电压)为V(=3VH/4)、施加于容性负载311的脉冲的波形的转换速 度(10%-90%)为SR(单位V/μsec),则
X=Ts/τ0,
把负载容量比X从0.001变化至0.3时,转换速度(10%-90%) SR对时间常数τ0与开关时间Ts之比X=Ts/τ0的变化,可根据理论 计算,求出如图90所示的值。且,虽未在图90中表示,但当负载容 量比X为0.003~0.03时,也与负载容量比X为0.001时大致相同。
此外,在只把如图30所示的4级的容性负载驱动电路301中的级 数更换成2级的电容容性负载驱动电路中,把负载容量比X从0.001 变化至0.1时,转换速度(10%-90%)SR对时间常数τ0与开关时间 之比x=Ts/τ0的变化,变为如图88所示。且,虽未在图88表示,但 当负载容量比X为0.003时,也与负载容量比X为0.001时大致相同。
此外,在只把如图30所示的4级的容性负载驱动电路301中的级 数更换成3级的电容容性负载驱动电路中,把负载容量比X从0.001 变化至0.1时,转换速度(10%-90%)SR对时间常数τ0与开关时间 之比x=Ts/τ0的变化,变为如图89所示。且,虽未在图89表示,但 当负载容量比X为0.003~0.01时,也与负载容量比X为0.001时大致 相同。
此外,在只把如图30所示的4级的容性负载驱动电路301中的级 数更换成5级的电容容性负载驱动电路中,把负载容量比X从0.003 变化至0.3时,转换速度(10%-90%)SR对时间常数τ0与开关时间 之比x=Ts/τ0的变化,变为如图91所示。且,虽未在图91表示,但 当负载容量比X为0.003~0.03时,也与负载容量比X为0.001时大致 相同。
此外,在只把如图30所示的4级的容性负载驱动电路301中的级 数更换成6级的电容容性负载驱动电路中,把负载容量比X从0.003 变化至0.3时,转换速度(10%-90%)SR对时间常数τ0与开关时间 之比x=Ts/τ0的变化,变为如图92所示。且,虽未在图92表示,但 当负载容量比X为0.003~0.1时,也与负载容量比X为0.001时大致 相同。
根据以上的结果,如果设驱动脉冲1周期之内由每个电容充电步 骤的实行次数(级数)为N,则转换速度(10%-90%)SR的临界值为, 表示成
当N=2(2级)时
SR=V/(R·Cd)*(-0.0002y4+0.001y3+0.009y2-0.100y+0.386)
当N=3(3级)时
SR=V/(R·Cd)*(0.0008y4-0.012y3+0.071y2-0.229y+0.414)
当N=4(4级)时
SR=V/(R·Cd)*(0.0023y4-0.028y3+0.138y2-0.336y+0.434)
当N≥5(5级)时
SR=V/(R·Cd)*(0.0026y4-0.032y3+0.153y2-0.356y+0.413)。
因此,在转换速度的设计上,可以根据上面的式子设定切换时间 以极级数。
因此,为满足装置所要求的转换速度SR,电路参数、开关时间为,
当N=2(2级)时
SR≤V/(R·Cd)*(-0.0002y4+0.001y3+0.009y2-0.100y+0.386)
当N=3(3级)时
SR≤V/(R·Cd)*(0.0008y4-0.012y3+0.071y2-0.229y+0.414)
当N=4(4级)时
SR≤V/(R·Cd)*(0.0023y4-0.028y3+0.138y2-0.336y+0.434)
当N≥5(5级)时
SR≤V/(R·Cd)*(0.0026y4-0.032y3+0.153y2-0.356y+0.413)为 好。
进而,在如墨汁喷射方式等需要50(V/μsec)的以上的高转换速 度的装置中,需要满足下述的条件。
当N=2(2级)时
50(V/μsexc)≤V/(R·Cd)* (-0.0002y4+0.001y3+0.009y2-0.100y+0.386)
当N=3(3级)时
50(V/μsexc)≤V/(R·Cd)* (0.0008y4-0.012y3+0.071y2-0.229y+0.414)
当N=4(4级)时
50(V/μsexc)≤V/(R·Cd)* (0.0023y4-0.028y3+0.138y2-0.336y+0.434)
当N≥5(5级)时
50(V/μsexc)≤V/(R·Cd)* (0.0026y4-0.032y3+0.153y2-0.356y+0.413)
此外,根据图88~图92的结果可知,增加电路的级数可以减少 波形的转换速度。
[实施方式14]
继而,对于本发明的另一种实施方式根据图38以及图39进行以 下说明。且,为便于说明,对于具有与前述的实施方式中的任一项中 所示的各构件相同功能的构件,标以相同的标号,略去其说明。
如图38所示,本实施方式的容性负载驱动电路303,取代接地端 子C(0),除具备与电功源309同极性的第2电功源(基准电源、基 准电位端子、直流电源)319以及电容C(0)以外,还具有与实施方 式13的容性负载驱动电路302相同的结构。即,本实施方式的容性负 载驱动电路303,具备同极性电源的第1电功源309以及第2电功源 319,发生在第1电功源的电位VH1与第2电功源的电位VH2之间的 电压脉冲。在这里,第1电功源的309电位VH1的绝对值,与第2电 功源319的电位VH2相比更大。在这里,也省略赋予初始电荷的电路。
上述结构,也与实施方式13一样,如图35(a)~(f)所示进行 工作。因此,通过使从图35(a)移动至图35(b)时,从电容C(I) 流出的电荷、与从图35(d)移动至图35(e)时,与流入电容C(I) 的电荷大致相等,在从图35(a)至图35(f)的周期中,电容C(I) 在表观上不消耗能量。
发生脉冲的能量消耗,由电容C(N)至电容C(N-1)的电荷移 动量向第2电功源319传递,从而在第2电功源319消耗。
再者,第1电功源309的电位VH1的绝对值也可以比第2电功源 319的电位VH2的绝对值小。此时,与前述结构相反,发生脉冲的能 量消耗由电容C(0)至电容C(1)的电荷移动量向第1电功源309 传递,从而在第1电功源309消耗。
此外,即使没有连接于第1电功源309的电容C(N)、连接于第 2电功源319的电容C(0)也可以进行工作(通常内藏于电功源)
此时,如果第1电功源309以及第2电功源319为正极性电源, 能发生例如图39所示的正极性脉冲。且,如果第1电功源309以及第 2电功源319为负极性电源,能发生例如图39所示的负极性脉冲。
[实施方式15]
继而,对于本发明的另一种实施方式根据图40以及图41进行以 下说明。且,为便于说明,对于具有与前述的实施方式中的任一项中 所示的各构件相同功能的构件,标以相同的标号,略去其说明。
如图40所示,本实施方式的容性负载驱动电路304,取代接地端 子C(0),除具备与电功源309相反极性的第2电功源(基准电源、 基准电位端子、直流电源)329以及电容C(0)以外,还具有与实施 方式13的容性负载驱动电路302相同的结构。即,本实施方式的容性 负载驱动电路304,具备相对极性电源的第1电功源(电源或基准电源) 309以及第2电功源(基准电源或电源)329,发生在第1电功源的电 位VH1与第2电功源的电位VH2之间的电压脉冲。此时,第1电功 源的309电位为正(+)极性,第2电功源329的电位为负(-)极性。 在这里,也省略赋予初始电荷的电路。
本实施方式的容性负载驱动电路304,也与实施方式13一样,如 图35(a)~(f)所示进行工作。因此,通过使从图35(a)移动至图 35(b)时,从电容C(I)流出的电荷、与从图35(d)移动至图35 (e)时,流入电容C(I)的电荷大致相等,在从图35(a)至图35 (f)的周期中电容C(I)在表观上不消耗能量。
正向脉冲发生时,发生脉冲的能量消耗由电容C(N)移动至电容 C(N-1)的电荷量向第2电功源329传递,从而在最接近接地电位的 正向电容中所消耗。相反,负向脉冲发生时,发生脉冲的能量消耗由 电容C(0)移动至电容C(1)的电荷量向第1电功源309传递,从而 在最接近接地电位的负向电容中所消耗。特别是当第1电功源309与 第2电功源329的绝对值相等时,从正侧起能量最接近接地电位的电 容的电能消耗与从负侧起能量最接近接地电位的电容的电能消耗相抵 消,因此不需要用于消电能损耗的外部电路。
在本实施方式的容性负载驱动电路304中,可以发生例如图41所 示的近似正弦波的脉冲。
[实施方式16]
本实施方式的容性负载驱动电路,如图42所示,并联于包含正极 性电功源309P(电源电位VH1),并发生正向脉冲的实施方式13的容 性负载驱动负载电路302、以及包含负向的第2电功源319(电源电位 VH2)及第1电功源309M(电源电位VH3),并发生负向脉冲的实施 方式14的容性负载驱动电路303。在这里,也省略了赋予初始电位的 电路。
在这里,如果设容性负载驱动电路303的电容C(I-1)-的初始电 位为V(I-1)-、容性负载驱动电路303的电容C(I)-的初始电位为 V(I)-、容性负载驱动电路303的电容C(I+1)-的初始电位为V(I+1) -、容性负载驱动电路302的电容C(I-1)+的初始电位为V(I-1)+、 容性负载驱动电路302的电容C(I)+的初始电位为V(I)+、容性负 载驱动电路302的电容C(I+1)+的初始电位为V(I+1)+,那么,则 有
VH3<…<V(I-1)-<V(I)-<V(I+1)-…<VH2<0
0<…<V(I-1)+<V(I)+<V(I+1)+<…<VH1。
此时,能够发生例如图43所示的脉冲。
[实施方式17]
本实施方式的容性负载驱动电路,如图44所示,并联于包含正极 性第1电功源309P(电源电位VH1)及第2电功源319(电源电位VH2), 并发生正向脉冲的实施方式14的容性负载驱动负载电路303、以及包 含负极性的第1电功源309M(电源电位VH3),并发生负向脉冲的实 施方式15的容性负载驱动电路304。电功源319(电源电位VH2),在 容性负载驱动电路304中也作为第2电功源329使用。在这里,也省 略向各电容赋予初始电荷的电路。
在这里,如果设容性负载驱动电路303的电容C(I-1)-的初始电 位为V(I-1)-、容性负载驱动电路303的电容C(I)-的初始电位为 V(I)-、容性负载驱动电路303的电容C(I+1)-的初始电位为V(I+1) -、容性负载驱动电路304的电容C(I-1)+的初始电位为V(I-1)+、 容性负载驱动电路304的电容C(I)+的初始电位为V(I)+、容性负 载驱动电路304的电容C(I+1)+的初始电位为V(I+1)+,那么,则 有
VH3<…<V(I-1)-<V(I)-<V(I+1)-…<0
0<VH2<V(0)+<…<V(I-1)+<V(I)+<V(I+1)+<…<VH1。
电功源319,设置于最接近接地电位处,并具有通过吸收电能从 而防止电压的漂移的功能。电功源319的电源电位VH2,根据电容的 初始电位的设定而确定为好。此时,能够发生例如图45所示的脉冲。
[实施方式18]
本发明的容性负载驱动电路,可以通过向容性负载提供储存于多 个能量储存元件的静电能而向容性负载充电后,通过将由容性负载放 电产生的能量回收至能量储存元件,再生至将能量储存元件的储存静 电能向容性负载提供前大致相同的电位,但是这种再生过程是在所限 的时间内进行,因此不能完全恢复到原来的电位。因此,当赋予初始 电位后,进行没有能量注入的反复充放电时,如图68所示,会引起各 能量储存元件的电压的漂移(向最高电位和最低电位的中间值靠近的 现象)。即,具有比最高电位和最低电位的中间值高的初始电位的能量 储存元件,因从容性负载的能量回收不足,导致电位下降。另一方面, 具有比最高电位和最低电位的中间值低的初始电位的能量储存元件, 因从容性负载的能量回收过剩,导致电位上升。
再者,图68为表示,在把图30的容性负载驱动电路301的级数 变换为6级的结构的,具有电容C(1)~C(5)的容性负载驱动电路 中,把电源电压分割为6等分的的初始电位赋予电容C(1)~C(5) 后,无能量注入地反复进行向容性负载311的充放电时的电容C(1)~ C(5)的电压变化的图。
因此,相对实施方式13的容性负载驱动电路302,除去接地端子 C(0)、以及连接于电功源309的电容C(N)而具有对应于电容C(1)~ C(N-1)的电功源339(1)~339(N-1)(直流电源),通过电阻电 路R(1)~R(N-1)连接电功源339(1)~339(N-1)与电容C(1)~ C(N-1),并由于从电功源339(1)~339(N-1)注入能量,可以防 止上述的电压的漂移。
可以是如图47所示的,相对实施方式13的容性负载驱动电路302, 增加分别连接于电容C(1)~C(N-1)的电功源339(1)~339(N-1) 以及伴随它的电阻R(1)~R(N-1)的结构,也可以是如图46所示 的,相对实施方式14的容性负载驱动电路303,增加分别连接于电容 C(1)~C(N-1)的电功源339(1)~339(N-1)以及伴随它的电 阻R(1)~R(N-1)的结构。当如图47所示的结构时,可以发生例 如图48所示的脉冲。
在这里,对于设置于电功源339(1)~339(N-1)与电容C(1)~ C(N-1)间的电阻R(1)…R(N-1),由电阻R(1)…R(N-1)与 电容C(1)~C(N-1)的容量成分确定的时间常数,为施加在容性 负载311的驱动脉冲周期的50倍以上为好。
即,如果设施加在电容负载311的驱动脉冲的周期(参照图48) 为发生脉冲周期Tp、电容C(i)(i=1,…,I-1,I,I+1,…,N-1) 的静电容量为C(i)、设置于电功源339(I)与电容C(I)之间的电 阻R(i)的电阻值为R(i),则电容C(i)的时间常数τ(i)成为,
τ(i)=C(i)×R(i)。
在这里,为
Tp*10≤τ(i)=C(i)×R(i)
为好。
Tp*50≤τ(i)=C(i)×R(i)
为更好。
以下对其理由进行说明。
如果来自电功源339(1)~339(N-1)的电能提供速度过快,则 通过本发明电路进行再生之前,便进行自电功源339(1)~339(N-1) 的电能提供,从而导致整个系统的电能再生效率下降。
为了在向容性负载311的能量注入与再生的时间间隔中,把来自 电功源39(1)~339(N-1)的电能提供抑制在5%以内,来自电功源 39(1)~339(N-1)的电能提供的时间常数以能量向311自注入至再 生的时间间隔的20倍以上为好。此外,为了在向容性负载311的能量 注入与再生的时间间隔中,把自电功源39(1)~339(N-1)的电能提 供抑制在1%以内,自电功源39(1)~339(N-1)的电能提供的时间 常数以能量向容性负载311自注入至再生的时间间隔的100倍以上为 好。
一方面,认为能量自注入至再生的时间间隔的最大值,是发生脉 冲周期Tp的1/2。因此,自电功源39(1)~339(N-1)的电能提供 的时间常数τ(i),若为发生脉冲周期Tp的10倍以上,便可以在向 容性负载311的能量注入与再生的时间间隔中,把自电功源339(1)~ 339(N-1)的电能提供抑制在5%以内。自电功源339(1)~339(N-1) 的电能提供的时间常数τ(i),若为发生脉冲周期Tp的50倍以上, 便可以在向容性负载311的能量注入与再生的时间间隔中把自电功源 339(1)~339(N-1)的电能提供抑制在1%以内,从而大致可以忽略 带给电能再生的影响。
对于τ(i)/Tp的上限没有明确的限制,但是如果τ(i)/Tp过 大,会导致无法进行自339(1)~339(N-1)的提供,因而当因某种 原因产生能量的提供与再生之间的失衡时,不能实现系统的稳定化。 即自电功源339(1)~339(N-1)的电能提供的时间常数τ(i)在对 能量再生率的影响很小的范围内尽可能小的值为好。
对于这一点,进一步进行说明。
本实施方式的容性负载驱动电路,如前所述,在通过选择性的连 接多个电容C(1)~C(N-1)来控制施加于容性负载311的电压的 容性负载驱动电路中,为防止由电容C(1)~C(N-1)向容性负载 311的充放电导致的电压的漂移,对电容C(1)~C(N-1)进行自电 功源339(1)~339(N-1)的能量注入。
在这里,从容性负载驱动电路可以向容性负载311施加规定周期 的驱动脉冲,且,在驱动脉冲的1周期内,切换容性负载311的连接 点从而可以进行数次自电容C(1)~C(N-1)向容性负载311提供 静电能的充电步骤,且如果设电容C(1)~C(N-1)的静电容量成 分为Cs(单位F)、施加于容性负载311的驱动脉冲的周期为Tp(单 位Sec)、自电功源339(1)~339(N-1)至电容C(1)~C(N-1) (第1能量储存元件)的能量注入线路的电阻值为Rs、驱动脉冲1周 期内的充电步骤的进行次数(级数)为N时,则满足以下的关系,
当N=2时,3×Tp≤Rs·Cs≤6×Tp
当N=3时,3×Tp≤Rs·Cs≤7×Tp
当N=4时,3×Tp≤Rs·Cs≤8×Tp
当N≥5时,3×Tp≤Rs·Cs≤10×Tp
为好。
由于满足上述的关系时,可得出以下的效果。即,满足上述关系 时,可以进行作为本发明的特征的不对容性负载311进行充放电时的 电能回收带来影响,同时保持电容C(1)~C(N-1)的电压。相反, 当Rs·Cs小于上述的下限值时,还未充分进行电能再生时,便从电功 源339(1)~339(N-1)注入能量,因而电能再生率会降低。相反, 当Rs·Cs比上述的上限值大很多时,电容C(1)~C(N-1)的电压 漂移会变得很大,因而电能再生率会降低。Rs·Cs的上限值根据容性 负载311的能量消耗不同而不同。设计上的Rs·Cs时,在能满足上述 关系的基础上尽量小的值更为合适。
继而,在有关本实施方式的容性负载驱动电路中,满足上述关系 的例子示于图49。此例为,把图46所示的容性负载电路中的,连接在 用于防止电压漂移的电功源339(1)~339(N-1)的电容C(1)~C (N-1)的级数(=N-1)设为3级(N=4)的电路。且,在这里,把 切换元件S(N)的等价ON电阻在图中表示为R。
此外,在这里,设容性负载311的静电容量(喷墨打印机的墨汁 喷出元件(PZT)的等价电容)Cd为1nF、电容C(1)~C(3)的静 电容量C(1)~C(3)为10nF(设定为Cd的10倍)、切换元件S(N) 的等价On电阻R为10Ω、电功源309的电源电压VH为10V、电功 源339(3)的电源电压V(3)为7.5V、电功源339(2)的电源电压 (2)为5.0V、电功源339(1)的电源电压V(1)为2.5V、脉冲发生 周期为1msec
R(1)=R(2)=R(3)=400kΩ。那么,
容性负载311的充放电时间常数为,
R×Cd=10nsec,
因此与脉冲发生周期Tp相比,变得很短。此时,前述4级时的关系式 Rs·Cs≤8×Tp的右边为
8×Tp=8mSec,
而前述4级时的关系式Rs·Cs≤8×Tp的左边为
Cs×Rs=400kΩ×10nF=4mSec。
因此,前述4级时的关系式Rs·Cs≤8×Tp变为,
4mSec≤8mSec,
所以能够满足。因此,此时,向容性负载311施加电压脉冲导致的能 量储存元件Cs的电压漂移,可以因从电功源的能量注入而得以防止。 另一方面,对前述的关系式3×Tp≤Rs·Cs进行研究的结果,由于满 足这种关系式,即使时间常数成为脉冲周期的3倍以上,能够把以指 数函数形式的电压的漂移抑制在5%以内。因此,在从充分提高电路的 稳定性以及再生率这一点上,需要满足上述关系式。
[实施方式19]
矩阵型显示装置,具备:显示元件阵列(显示元件)340、列选择 驱动电路341、行选择驱动电路342、以及用于向行选择驱动电路342 提供电能的电功源349。显示元件阵列340,通过行选择驱动电路342 (驱动电路)以及列选择驱动电路341(驱动电路)选择,且被施加特 定脉冲。在此所讲的显示元件阵列为,表示液晶显示元件阵列、放电 显示(等离子显示)、以及EL元件阵列等。此时,通过使用作为用于 向列选择驱动电路341提供列脉冲的列脉冲发生电路的本发明的容性 负载驱动电路,进行列脉冲的发生以及自显示元件阵列回收电能。在 图59中,表示将前述实施方式18的容性负载驱动电路305用作列脉 冲发生电路(包含电能再生电路)时的状况,但是容性负载驱动电路 的结构没有特别地限定。
再者,当行选择驱动电路342侧需要脉冲发生装置时,也可以取 代电功源349而使用本发明的容性负载驱动电路。
[实施方式20]
在从直流电源提供的单一电压发生交流电压的直流-交流逆变器 中,使用有关本发明的容性负载驱动电路的应用例示于图60中。
直流-交流逆变器,如图60所示,具备:有关本发明的容性负载 驱动电路601、发生与未图示的来自直流电源的电压相反极性的电压的 逆电压发生电路602、生成多个电压的电压倍增电路(倍电压发生电路) 603。容性负载驱动电路601,具有进行回收电能的同时发生交流的功 能。这种直流-交流逆变器为,普通的逆电压发生电路602与电压倍增 电路603的组合。
对于图60所示的直流-交流逆变器的工作状态,根据图60所述的 标号进行说明。
①经常,在A端,被施加V。且,电容C2,被施加V电压。
②继而,连接切换元件S1,S3,S4,S5,S9,S10,把电容C1, C4,C5,C6充电至电压V。
③断开切换元件S1,S3,S4,S5,S9,S10的连接,继而连接 S2,S6,S7,S8,S11,S12,把电容C3,C7,C8,C9充电至电压V。
④断开切换元件S2,S6,S7,S8,S11,S12的连接,连接切换 元件S14,S16,S17,S19。由此,电容C4,C5,C6,C7,C8,C9 全被串联连接,可以以接地端子GND为中心发生3V,2V,V,-V, -2V,-3V的电压。
⑤在应把2V,3V,-2V,-3V的电压储存在C10,C12,C11,C13 的各电压的发生处连接切换元件S15,S13,S18,S20,并将各电压向 外输出。
直流-交流逆变器,需要时,将电容C4,C5,C6,C7,C8,C9, 并联连接在电压V的端子A并充电至电压V后,根据改换成串联连接 使得发生电压。
[实施方式21]
在喷墨打印机中,可以使用公知的利用了陶瓷等压电材料的剪切 模型的记录头(例如特开昭63-247051号公报)。对于用于剪切模型的 喷墨打印机的记录头的结构以及功能,进行如下说明。
图61为将记录头的一部分,以从记录媒体侧看到的状态表示的俯 视图。另一方面,图62为记录头的纵向剖视图。
如图61所示,记录头1100具备:压电材料200、顶板300、以及 多个墨水室400。
压电材料200形成梳齿状,在各梳齿的间隙中嵌有墨水室400…。
墨水室400具备:形成于两侧的驱动电极500、以及喷嘴600。在 这种喷墨打印机中,通过在相邻的墨水室400的驱动电极500彼此之 间发生电场,使得墨汁从喷嘴600喷出。其详细内容后述。
顶板300,把多个墨水室400嵌合到压电材料200中,因此具备 由导电性树脂构成的连接电极。
此外,如图62所示,墨水被储存在记录头1100内的墨水箱700 内,并通过与在多个墨水室400中的喷嘴600连接的通用墨水通道800, 根据后述的顺序从喷嘴喷出。
继而,对于剪切模型的喷墨打印机喷出墨水的状态进行说明。且, 在以下的说明中,将相邻的3个墨水室分别以A槽·B槽·C槽进行 区别。且,在以下的说明中,对于从B槽墨水室喷出墨水的状况进行 说明,但对于从A槽·C槽墨水室喷出墨水的情况也是相同的。
这种记录头1100,用前述实施方式5、5A、6、6A的容性负载驱 动电路来驱动A槽、B槽、C槽墨水室的驱动电极500(容性负载)。
如图63(a)所示,在不喷出墨水的通常状态下,A槽、B槽、C 槽墨水室中,任一个墨水室的驱动电极都未加有电场。且,压电材料, 沿平行于驱动电极表面的方向即正交于驱动电场的方向极化。
然后,如图64所示,向B槽墨水室的驱动电极500提供喷出脉冲。 另一方面,对于A槽·B槽墨水室,不加喷出脉冲。
那么,将产生从B槽墨水室的驱动电极500朝向A槽以及C槽墨 水室的驱动电极500的电场。根据这种电场方向,压电材料有要移动 的倾向。其结果,如图63(b)所示,B槽墨水室的侧壁被扩张。
然后,如图64所示,将共用脉冲,施加于A槽以及C槽的墨水 室的驱动电极500上。那么,产生从A槽以及C槽的墨水室的驱动电 极500,朝向B槽墨水室500的驱动电极的电场。其结果,如图63(c) 所示,B槽墨水室的侧壁被收缩,B槽墨水室内的体积将减少。由此, 从B槽墨水室的喷嘴喷出墨水。
再者,当哪一槽都不喷出墨水时,向A槽以及C槽墨水室的驱动 电极500施加共用脉冲的同时,向B槽墨水室的驱动电极500,施加 与共用脉冲同电位的非喷出脉冲。由此,A~C槽墨水室的驱动电极 500成为相同电位,所以在各驱动电极间500不产生电场。因此,在任 一槽的墨水室中,都没有侧壁扩张或收缩的现象,所以不进行墨汁喷 出程序。
如此,记录头1100,通过反复进行依次进行的喷出的A~C槽的 切换从而喷出墨水、即通过3相驱动逐步完成印刷工作。
此外,施加喷出脉冲的时间AL、施加公用脉冲的时间AL′,由 以下的式①决定。
AL(or AL′)=墨水室长度/墨水中的音速…①
因此,如果3个槽的墨室长度都相同,便成为,
AL′=2AL。
且,如果是一般的喷墨打印机,为AL=2μs左右。
[实施方式22]
继而,对于把通过向记录媒体喷出墨水进行印刷的喷墨打印机的 复位动作时的喷出动作进行改良,从而能够进行比实施方式21还高精 度且高速度的印刷的喷墨打印机的一种实施方式进行说明。
如图65所示,喷墨打印机1001,由供纸部(供纸装置)1002、 分离部1003、传送部1004、印刷部(印字部)1005以及排出部1006 构成。
所谓供纸部1002,为进行印刷时提供纸张P的装置,由供纸盘1007 以及未图示的捡拾辊构成。当不进行印刷时,具有保管纸张P的功能。
分离部1003为,把由供纸部提供的纸张P一张一张地提供给印刷 部1005的装置,由供纸辊1008以及分离装置1009构成。在分离装置 1009中,将底座部分(与纸张的接触部分)与纸张间的摩擦设定得大 于纸张间的摩擦。且,在供纸滑轮1008中,把供纸滑轮1008与纸张 间的摩擦设定得大于底座与纸张间的摩擦或纸张间的摩擦。因此,即 使2张纸被送到分离部1003,借助于供纸滑轮1008,也可以将这些纸 张分开,并只把上面的纸张送往传送部1004。
传送部1004为,将由分离部1003一张一张地提供的纸张P送到 印刷部1005的装置,由导引板1010以及一对滑轮1011(传送机构) 构成。一对滑轮1011为,在把纸张P送往记录头1100与印字压板1013 之间时,调整纸张P的传送位置,使得来自记录头1100的墨水能喷在 纸张P的适当位置的构件。
印刷部1005为用于向由传送部4的一对滑轮1011提供的纸张P 进行印刷的装置,由记录头1100(印字头)、搭载了记录头1100的托 架1014、作为用于引导托架的构件的导引轴1015(参照图66)、以及 印刷时成为纸张P的台面的印字压板1013构成。
排出部1006为用于把进行了印刷的纸张P排出到喷墨打印机1001 的外部的装置,由墨水干燥部(未图示)、排出滑轮1016以及排出盘 1017构成。
在上述的结构中,喷墨打印机1001,通过以下的动作进行印刷。
首先,通过未图示的计算机等,将基于图像信息的印刷请求,提 供到喷墨打印机1001。收到印刷请求的喷墨打印机1001,把供纸盘 1007上的纸张P,通过捡拾滑轮从供纸部1002抽出。
继而,被抽出的纸张P,通过供纸滑轮1008经过分离部1003,送 入传送部1004。在传送部1004中,通过一对滑轮1011,将纸张P送 入记录头1012与印字压板1013之间。
并且,在印刷部1005中,由记录头1012的喷嘴向印字压板1013 上的纸张P,对应图像信息喷出墨水。此时,纸张在印字压板1013上 停止片刻。喷出墨水的同时,托架1014,被引到导引轴1015上,在主 扫描方向D2上扫描一行。扫描结束后,纸张P在印字压板1013上的 副扫描方向D1上被移动一定的宽度。在印刷部1005中,通过持续地 对图像信息进行上述处理,可以在纸张P上全表面上完成印刷。
进行了印刷的纸张P,经过墨水干燥部,通过排出滑轮1016排到 排出盘1017。然后,纸张当作印刷品提供给用户。
继而,对于本实施方式的喷墨打印机1001的控制系统进行说明。
如图67所示,喷墨打印机1001的控制部1018具备:接口部1019、 存储部1020、图像处理部1021、以及驱动系统控制部1022。
接口部1019为进行外部机器与图像处理部1021以及驱动控制部 1022的信号交换的电路。
图像处理部1021,根据来自接口部1019的图像信息进行图像处 理。且,图像处理部1021被连接至用于控制记录头1100的驱动的头 驱动电路1023。
驱动系统控制部1022,控制托架1014的驱动、以及纸张P的传 送。具体讲,驱动系统控制部1022,被连接至用于控制托架马达的驱 动的托架驱动电路1024、以及用于控制用纸传送马达的驱动的用纸传 送驱动电路1025。
根据以上结构,喷墨打印机驱动记录头1100、托架1014、以及用 纸传送马达等,从而进行印刷作业。
继而,对于作为本实施方式的特征点的记录头1100的墨水喷出动 作状况进行说明。
记录头1100,用于具备如图61所示的压电材料200、顶板300、 多个墨水室400、以及驱动电极500的剪切模型的喷墨打印机。
用于印字的喷出动作中,多个墨水室400,把相邻的3个墨水室 分成A槽、B槽、以及C槽进行3相驱动。这种记录头1100,使A槽、 B槽、C槽的墨水室的驱动电极500(容性负载),用前述实施方式5、 5A、6、6A的容性负载驱动电路进行驱动。这种驱动为使用图63以及 图64进行了详细说明的3相驱动,因此在此略去其说明。
本发明的容性负载驱动电路,如上所述,具备:用于分割由电源 提供的静电能后进行储存的多个能量储存元件、以及用于切换上述容 性负载与上述的多个能量储存元件之间的连接的切换装置;而上述切 换装置,在容性负载进行充电时,切换上述连接,使得从上述的多个 能量储存元件起依次向容性负载提供静电能,而在容性负载进行放电 时,切换上述连接,使得上述的多个能量储存元件依次从容性负载回 收静电能。
根据上述结构,可以在充电时从多个能量储存元件依次向容性负 载提供静电能,相反,在放电时上述的多个能量储存元件依次从容性 负载回收静电能,因此没被回收的量成为系统的能量消耗,从而能进 行高效的能量回收、再利用。且,原封不动地对储存于能量储存元件 中的静电能进行回收,因此可以通过简单的电路结构来实现。因此, 上述结构,具有简单的电路结构,且,能够高效地回收、再利用储存 于容性负载中的能量,得到降低消电能损耗的效果。
本发明的容性负载驱动电路,如上所述,具备:赋予了多个不同 初始电位的多个能量储存元件、以来自电源的基准电位或接地电位作 为基准电位赋予的基准电位端子、以及用于将上述能量储存元件以及 基准电位端子选择性地与容性负载连接的切换装置;上述的多个能量 储存元件,包含:具有非0的第1初始电位的第1能量储存元件和具 有与第1初始电位同极性且绝对值大于第1初始电位的第2初始电位 的第2能量储存元件;上述基准电位为,接地电位、或与由基准电源 提供的第1初始电位同极且绝对值小于第1初始电位的电位、或与电 源提供的第1初始电位相反极性的电位;上述切换装置,可以实行: 第1充电步骤,通过将容性负载选择性地与基准电位端子连接后再选 择性地与第1能量储存元件连接,使容性负载的端子电压变化到接近 于第1初始电位;第2充电步骤,然后通过将容性负载选择性地与第2 能量储存元件连接,从而增大容性负载的端子电压的绝对值;以及放 电步骤,然后通过将容性负载选择性地与第1能量储存元件连接,从 而减少容性负载的端子电压的绝对值,同时将第1能量储存元件的储 存静电能再生至大致等同于进行充电步骤前的值。
本发明的容性负载驱动电路,如上所述,用于向容性负载进行冲 放电,具备:从电源赋予电源电位的电源端子、赋予多个不同的初始 电位的多个能量储存元件、以及将上述能量储存元件及电源端子选择 性地与容性负载连接的切换装置;而上述的多个能量储存元件包含: 具有与电源电位同极性且绝对值小于第1初始电位的第1能量储存元 件和具有与第1初始电位同极性且绝对值小于第1初始电位的电位、 接地电位、或与第1初始电位极性相反的电位的第3初始电位的第3 能量储存元件;上述切换装置,可以实行:第1充电步骤,通过将容 性负载选择性地与第3能量储存元件连接后再选择性地与第1能量储 存元件连接,使容性负载的端子电压变化到接近于第1初始电位;第2 充电步骤,然后通过将容性负载选择性地与电源端子连接,从而增大 容性负载的端子电压的绝对值;以及放电步骤,然后通过将容性负载 选择性地与第1能量储存元件连接,从而减少容性负载的端子电压的 绝对值,同时将第1能量储存元件的储存静电能再生至大致等同于进 行充电步骤前的值。
本发明的容性负载驱动电路,如上所述,用于向容性负载进行冲 放电,具备:赋予多个不同的初始电位的多个能量储存元件、以及将 上述能量储存元件选择性地与容性负载连接的切换装置;而上述的多 个能量储存元件包含:具有非0的第1初始电位的第1能量储存元件; 具有绝对值大于第1初始电位的第2初始电位的第2能量储存元件、 具有与第1初始电位同极性且绝对值小于第1初始电位的电位、接地 电位、或与第1初始电位极性相反的电位的第3初始电位的第3能量 储存元件;上述切换装置可以实行:第1充电步骤,通过将容性负载 选择性地与第3能量储存元件连接后再选择性地与第1能量储存元件 连接,使容性负载的端子电压变化到接近于第1初始电位;第2充电 步骤,然后通过将容性负载选择性地与第2能量储存元件连接,从而 增大容性负载的端子电压的绝对值;以及放电步骤,然后通过将容性 负载选择性地与第1能量储存元件连接,从而减少容性负载的端子电 压的绝对值,同时将第1能量储存元件的储存静电能再生至大致等同 于进行第1充电步骤前的值。
本发明的容性负载驱动电路,用于向容性负载进行冲放电,具备: 自电源赋予了电源电位的电源端予;将不同于电源提供的电源电位的 基准电源电位、或接地电位作为基准电位赋予的基准电位端子;在基 准电位与电源电位之间,赋予了互不相同的初始电位的多个第1能量 储存元件;用于将基准电位端子、多个第1能量储存元件、以及电源 端子选择性地与容性负载连接的切换装置;上述切换装置,可以进行: 第1步骤,通过将基准电位端子与容性负载连接后再将第1能量储存 元件从其初始电位接近基准电位的一方依次与容性负载连接,使容性 负载的端子电压变化到接近于第1初始电位;第2步骤,然后通过将 容性负载选择性地与电源端子连接,从而增大容性负载的端子电压的 绝对值;以及第3步骤,然后通过将第1能量储存元件从其初始电位 接近电源电位的一方依次与容性负载连接,从而减少容性负载的端子 电压的绝对值,同时将第1能量储存元件的储存静电能再生至大致等 同于进行第1充电步骤前的值。
根据上述结构,在通过减少容性负载的端子电压的绝对值使容性 负载进行放电时,能够将第1能量储存元件的储存静电能,再生至大 致等同于向容性负载提供能量前的值。因此,在表观上第1能量储存 元件不消耗能量,并能高效地进行电能的再生。
此外,上述的能量储存元件优选为电容。
根据上述结构,可以通过使用内部电阻小于二次电池的电容,以 高效回收静电能进行再利用。且,因使用了进行多次反复的充放电其 劣化程度也很小而寿命很长的电容,所以可以长时间使用。进而,通 过使用具有优良的频率特性的电容,即使在10μs左右的脉冲驱动下, 也可以高效地进行静电能地回收。
此外,在能量储存元件的一部分,也可以连接用于将从上述容性 负载回收至能量储存元件的静电能,提供给与上述容性负载不同的外 部元件的能量输出线路。
根据上述结构,可以使回收至能量储存元件的静电能被不同于回 收点的容性负载的外部元件利用,因此可以高效地再利用回收至能量 储存元件的静电能。
上述的多个能量储存元件,具有互不相同的端子电压,上述切换 装置,在容性负载进行充电时,将各能量储存元件自端子电压的绝对 值小的一方起依次与容性负载连接,而在容性负载进行放电时,将各 能量储存元件自端子电压的绝对值大的一方起依次与容性负载连接为 好。
根据上述结构,通过将能量储存元件的连接依次以端子电压值的 大小的顺序切换,可以把能量储存元件以及容性负载的突入电流抑制 到很小,从而可以减少能量损失。其结果,可以进一步减少消电能损 耗。
上述切换装置,也可以将容性负载进行放电时的容性负载连接到 端子电压的绝对值最小的能量储存元件后,使容性负载接地。
根据上述结构,在能量储存元件进行充电前便可以把储存于能量 储存元件的电荷变为0,因此可以稳定地对能量储存元件进行反复操 作。
上述切换装置,也可以将容性负载进行放电时的容性负载连接到 端子电压的绝对值最小的能量储存元件后,至容性负载开始进行充电 前的期间内,维持容性负载与端子电压最小的能量储存元件的连接。
根据上述结构,能不丢失储存于容性负载中的能量而进行保持, 因此能将储存于容性负载的静电能几乎全部回收并再利用。
此外,在本发明的容性负载驱动电路中,也可以进一步设置将自 电源提供的电压分压成多个互不相同的电压,并将这些电压作为端子 电压提供给能量储存元件的分压装置。
根据上述结构,由于容性负载中的损失以及能量释放等,当从容 性负载回收静电能后能量储存元件的电荷量即使不能恢复至初始值 (提供静电能前的值),也可以通过分压装置将能量储存元件的端子电 压强制性地调节到规定的电压。其结果,可以向容性负载提供极稳定 的电压,从而能够进行稳定的反复操作。
此外,根据上述结构,可以在容性负载进行充电时,从多个能量 储存元件依次向容性负载提供不同的电压,从而依次使容性负载的驱 动电压升压,而在容性负载进行放电时,从多个能量储存元件依次向 容性负载提供不同的电压,从而依次使容性负载的驱动电压降压。所 以,通过调整切换装置的切换时序,可以得到各种各样的驱动电压波 形。
上述分压装置,将电源提供的电压分压成n等分(n为2以上) 为好。由此,可以进一步抑制能量储存元件以及容性负载突入电流到 到更小,从而可以更进一步减少能量损失。
上述分压装置,也可以包括串联连接于电源的多个电阻。根据上 述结构,可以通过简单的结构实现分压装置。
在具备包含上述的多个电阻的分压装置的结构中,还具备介于上 述的电阻与能量储存元件之间,放大流过上述电阻的电流的同时,输 出与输入电压不同的电压,使得各能量储存元件的端子电压被调整至 规定电压的的缓冲放大装置为好。
根据上述结构,当被上述电阻分压的电压偏离了规定电压时,例 如,由于容性负载中的静电能损失以及静电能释放等,从容性负载回 收静电能后,能量储存元件的端子电压不能恢复到初始值(提供静电 能前的值)时,也可以通过缓冲放大装置准确地把能量储存元件的端 子电压调整至规定的电压。且,根据上述结构,可以减少流过上述电 阻的电流,从而可以减少被上述电阻消耗的电能损耗。
上述的分压装置,也可以包含稳压二极管等稳压元件。
根据上述结构,由于容性负载中的损失以及能量释放等,当从容 性负载回收静电能后,能量储存元件的电荷量即使不能恢复至初始值 (提供静电能前的值)时,也可以通过稳压元件将能量储存元件的端 子电压准确地调整到规定的电压。其结果,可以向容性负载提供极稳 定的电压,从而能够进行稳定的反复操作。
包含上述稳压元件的分压装置,包含串联连接于电源和地线之间 的多个稳压元件,并在这些稳压元件与电源或地线之间补插电阻为好。
根据上述结构,即使是稳压元件的设定电压的合值与电源电压不 一致时,也可以通过电阻吸收电压的不一致,能以任意的电压进行稳 定的反复操作。
包含上述稳压元件的分压装置,也可以具备并联连接于电源和地 线之间的第1分压器以及第2分压器,而第1分压器以及第2分压器 又分别地、包含稳压元件,第1分压器中,在稳压元件与电源之间补 插了上拉电阻的同时,第2分压器中,在稳压元件与地线之间补插了 下拉电阻。
根据上述结构,,即使是稳压元件的设定电压的总和与电源电压不 一致时,也可以通过上拉电阻以及下拉电阻来吸收电压的不一致,能 以任意的电压进行稳定的反复操作。
在包含第1分压器以及第2分压器的分压装置中第1分压器所含 的稳压元件数、与第2分压器所含的稳压元件数之差,以1个以下为 好。
根据上述结构,可以进一步提高能量储存元件的端子电压的稳定 性,从而能够进行稳定的反复操作。
已具备包含上述稳压元件的分压装置的结构中,在稳压元件与能 量储存元件之间,补插限流电阻为好。
根据上述结构,通过限流电阻,吸收从容性负载急剧流出流入的 电流,同时限制流入稳压元件的电流,从而可以减轻稳压元件的负担。
此外,全部的能量储存元件的一端,连接在电源或地线为好。
根据上述结构,把能量储存元件一个一个地分开,从而可以防止 干扰,因此当有电流自容性负载向特定的能量储存元件流出流入时, 其能量储存元件的电压变化不影响其他的能量储存元件。因此,可以 进一步提高能量储存元件的端子电压的稳定性,从而能进行稳定的反 复操作。
此外,本发明的容性负载驱动电路,还具备控制从上述电源提供 至能量储存元件的静电能的切换部;而上述切换部,只在容性负载进 行充电前的规定期间内,使得从上述电源向能量储存元件提供静电能 为好。
根据上述结构,只在规定期间内从电源向能量储存元件提供静电 能,因此与经时从电源向能量储存元件提供静电能时相比,可以减少 容性负载驱动电路的电能损耗,特别是,在具备包含串联连接于电源 的多个电阻的分压装置时,可以减少在电阻中的电能损耗。
此外,本发明的容性负载驱动电路,也可以还具备通过切换内部 的连接状态从而选择性地向一部分的容性负载进行充电或放电的选择 装置。
根据上述结构,选择装置对一部分的容性负载选择性地进行充电 或放电,因此可以以不同的时序驱动多个容性负载。
此外,在进一步具备上述选择装置的结构中,单独设置用于向容 性负载提供分配到多个能量储存元件的静电能的能量提供线路、以及 用于从多个能量储存元件回收静电能的能量回收线路,而上述选择装 置,分别设置于能量提供线路以及能量回收线路为好。
根据上述结构,通过单独设置能量提供线路(充电路径)以及能 量回收线路,能够同时进行对一部分的容性负载的充电、以及对其他 容性负载的放电。由此,当以不同的时序驱动多个容性负载时,可以 增加单位时间内容性负载的工作次数。因此,可以使容性负载以高速 进行工作。
此外,在单独设置了上述能量提供线路以及能量回收线路的结构 中,还具备用于对能量提供线路以及能量回收线路的电流进行整流的 整流装置为好。
根据上述结构,通过切换装置的ON/OFF操作的延迟等,可以防 止短路电流流过,破损电路的现象。
上述容性负载驱动电路,可以应用于为以液滴状喷出墨水的喷墨 头而配备的用于给墨水加压的压电元件。
根据上述结构,一般,电能损耗变大、导电率变高、容量变大, 对于在向负载进行充放电时以高反复频率驱动的喷墨头的压电元件, 能够进行高效的能量回收、再利用,因此可获得大大降低电能损耗的 效果。
本发明的喷墨打印机(图像形成装置),如上所述,是具备通过压 电元件给墨施加压,使墨水以液滴状喷出的喷墨头、以及驱动上述喷 墨头的压电元件的驱动电路的喷墨打印机(图像形成装置),而上述驱 动电路为,上述的任一种结构的容性负载驱动电路。
根据上述结构,从多个能量储存元件依次向压电元件提供静电能, 而上述的多个能量储存元件又依次从压电元件回收静电能,因此能够 进行高效的能量回收、再利用。因此,上述结构,具有提供降低了电 能损耗的喷墨打印机(图像形成装置)的效果。
本发明的容性负载驱动方法,如上所述,包括:将静电能分割为 多个能量储存元件进行储存的储存步骤;通过从上述多个能量储存元 件依次向容性负载提供静电能,对容性负载进行充电的充电步骤;使 容性负载进行放电,从容性负载依次把静电能回收至上述的多个能量 储存元件的回收步骤。
根据上述方法,从多个能量储存元件依次向容性负载提供静电能, 而又从容性负载把静电能回收至上述的多个能量储存元件,因此具有 能以高效进行能量回收、再利用的效果。
本发明的容性负载驱动方法为,如上所述,用于向容性负载进行 充放电,包括:准备具有非0的第1初始电位的第1能量储存元件、 第2能量储存元件、接地电位、以及与电源提供的第1初始电位同极 性且绝对值小于第1初始电位的电位、或与电源提供的第1初始电位 极性相反的电位作为基准电位赋予的基准电位端子的步骤;在对第1 能量储存元件赋予第1初始电位的同时,对第2能量储存元件赋予与 第1初始电位同极性且绝对值大于第1初始电位的第2初始电位的初 始电位赋予步骤;通过将容性负载选择性地与基准电位端子连接后, 再选择性地与第1能量储存元件连接,改变容性负载的端子电压,使 之接近第1初始电位的第1充电步骤;然后通过将容性负载选择性地 与第2能量储存元件连接,增大容性负载的端子电压的绝对值的第2 充电步骤;以及然后通过在将容性负载选择性地与第1能量储存元件 连接减少容性负载的端子电压的绝对值的同时,使第1能量储存元件 的储存静电能再生至大致等同于进行第1充电步骤前的值的放电步骤。
本发明的容性负载驱动方法为,如上所述,用于向容性负载进行 充放电,包括:准备从电源赋予电源电位的电源端子、第1能量储存 元件以及第3能量储存元件的步骤;在对第1能量储存元件赋予与电 源电位同极性且绝对值小于电源的第1初始电位的同时,对第3能量 储存元件赋予与第1初始电位同极性且绝对值小于电源的第1初始电 位的电位、接地电位、或与第1初始电位极性相反的电位的第3初始 电位的初始电位赋予步骤;通过将容性负载选择性地与第3能量储存 元件连接后,再选择性地与第1能量储存元件连接,改变容性负载的 端子电压,使之接近第1初始电位的第1充电步骤;然后通过将容性 负载选择性地与电源端子连接,增大容性负载的端子电压的绝对值的 第2充电步骤;然后通过在将容性负载选择性地与第1能量储存元件 连接,减少容性负载的端子电压的绝对值的同时,使第1能量储存元 件的储存静电能再生至大致等同于进行第1充电步骤前的值的放电步 骤。
本发明的容性负载驱动方法为,如上所述,用于向容性负载进行 充放电,包括:准备第1能量储存元件、第2能量储存元件、以及第3 能量储存元件的步骤;对第1能量储存元件赋予非0的第1初始电位, 而对第2能量储存元件赋予绝对值大于第1能量储存元件的初始电位 的第2初始电位,对第3能量储存元件赋予与第1初始电位同极性且 绝对值小于第1初始电位的电位、接地电位、或与第1初始电位极性 相反的电位的第3初始电位的初始电位赋予步骤;通过将容性负载选 择性地与第3能量储存元件连接后,再选择性地与第1能量储存元件 连接,改变容性负载的端子电压,使之接近第1初始电位的第1充电 步骤;然后通过将容性负载选择性地与第2能量储存元件连接,增大 容性负载的端子电压的绝对值的第2充电步骤;然后通过在将容性负 载选择性地与第1能量储存元件连接,减少容性负载的端子电压的绝 对值的同时,使第1能量储存元件的储存静电能再生至大致等同于进 行第1充电步骤前的值的放电步骤。
本发明的容性负载驱动方法为,如上所述,用于向容性负载进行 充放电,包括:准备从电源赋予电源电位的电源端子、以不同于电源 提供的电源电位的基准电源电位、或接地电位作为基准电位赋予的基 准电位端子、以及多个第1能量储存元件的配置步骤;对于上述的多 个第1能量储存元件,在基准电位和电源电位之间,赋予互不相同的 初始电位的初始电位赋予步骤;通过将基准电位端子与容性负载连接 后,再将第1能量储存元件从其初始电位接近基准电位的一方起依次 与容性负载连接,使容性负载的端子电压变化到接近于第1初始电位 的第1步骤;然后通过将容性负载选择性地与电源端子连接,从而增 大容性负载的端子电压的绝对值的第2步骤;然后通过将第1能量储 存元件从其初始电位接近电源电位的一方起依次与容性负载连接,从 而减少容性负载的端子电压的绝对值,同时将第1能量储存元件的储 存静电能再生至大致等同于进行第1充电步骤前的值的第3步骤的方 法。
根据上述的各种方法,可以将充电时从能量储存元件流向容性负 载的能量、与放电时从容性负载流向能量储存元件的能量相抵消,从 而可以减少能量损失。其结果,可以减少电能损耗。
本发明的装置,如上所述,容性负载驱动电路,具备:从电源赋 予电源电位的电源端子;与电源提供的电源电位不同的基准电源电位、 或接地电位作为基准电位赋予的基准电位端子;赋予了基准电位与电 源电位之间的初始电位的能量储存元件;用于将基准电位端子、能量 储存元件、以及电源端子选择性地与容性负载连接的切换装置;而上 述切换装置,可以进行:通过将基准电位端子与容性负载连接后,再 将能量储存元件与容性负载连接的第1充电步骤;然后将容性负载选 择性地与电源端子连接的第2充电步骤;然后将能量储存元件与容性 负载连接的放电步骤,如果设能量储存元件的将电容量成分为Cs、容 性负载的静电容量为Cd、能量储存元件的连接的持续时间为Ts、包含 切换装置的、能量储存元件对容性负载的充放电路径的电阻值为R,
当Ts/(R·Cd)<2.5时
  Cd/Cs≤0.164{Ts/(R·Cd)}0.2198
            当Ts/(R·Cd)≥2.5时
              Cd/Cs≤0.2
成立。
此外,本发明的装置,如上所述,容性负载驱动电路,具备:从 电源赋予电源电位的电源端子;与电源提供的电源电位不同的基准电 源电位、或接地电位作为基准电位赋予的基准电位端子;赋予了基准 电位与电源电位之间的互不相同的初始电位的多个能量储存元件;用 于将基准电位端子、多个能量储存元件、以及电源端子选择性地与容 性负载连接的切换装置;而上述切换装置,可以进行:将基准电位端 子与容性负载连接后,再将各能量储存元件自其初始电位接近基准电 位的一方起依次与容性负载连接的第1充电步骤;然后将容性负载选 择性地与电源端子连接的第2充电步骤;然后将各能量储存元件自其 初始电位接近电源电位的一方起依次与容性负载连接的放电步骤,如 果设能量储存元件的静电容量成分为Cs、容性负载的静电容量为Cd、 能量储存元件的连接的持续时间为Ts、包含切换装置的、能量储存元 件对容性负载的充放电路径的电阻值为R,
当Ts/(R·Cd)<2.5时
Cd/Cs≤0.164{Ts/(R·Cd)}0.2198
          当Ts/(R·Cd)≥2.5时
            Cd/Cs≤0.2
成立。
根据上述结构,在减少容性负载的端子电压的绝对值使容性负载 进行放电时,可以将第1能量储存元件的储存静电能,再生至大致等 同于向容性负载提供能量前的状态。因此,在表观上第1能量储存元 件不消耗能量,从而能以高效进行电能再生。
进而,根据上述的各结构,在第1~第3步骤中,容性负载的电 压,达到最终达到电压(第1充电步骤持续无限时间时,容性负载的 电压达到的最终电压)的90%。由此,从能量储存元件流向容性负载 的电荷导致的能量储存元件的电压变化变小,脉冲发生时的电能再生 率变大,从而可以进一步降低电能损耗。且,由发生1次脉冲引起的 能量储存元件的电压变化变小,因此,可以在不对此电压变化进行校 正的情况下进行下一次的脉冲发生。
在发明的详细说明中举出的具体的实施状态或实施例,也都是为 了更明确地说明本发明的技术内容,因此不应被限定在这些具体例而 狭义地进行解释,可以在本发明的精神和下面将描述的权利要求的范 围内,变换成各种形式来实施。
工业上的应用前景
根据本发明,如上所述,可以提供一种用于驱动能够减少电能损 耗的容性负载的容性负载驱动电路以及容性负载驱动方法、及使用这 些的装置。
因此,本发明可以适当的应用在将作为容性负载的压电元件或静 电驱动电极等用于墨水的喷出的图像形成装置、等离子显示的放电电 极、或液晶显示的驱动电路等所具备的,用于驱动容性负载的容性负 载驱动电路以及容性负载驱动方法、以及、使用这些的图像形成装置、 显示装置、电压脉冲发生装置、直流-交流逆变器等装置中。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈