首页 / 专利库 / 电脑零配件 / 量子比特 / 来自微像素显示器的偏振光发射及其制造方法

来自微像素显示器的偏振光发射及其制造方法

阅读:530发布:2021-03-14

专利汇可以提供来自微像素显示器的偏振光发射及其制造方法专利检索,专利查询,专利分析的服务。并且一种用于通过利用用于 电子 发射显示设备内的发光结构 半导体 材料的非极性、半极性或应变c平面晶面来实现堆叠多色发射显示设备中发射的可见光或其他光的选择性偏振态的方法和装置。,下面是来自微像素显示器的偏振光发射及其制造方法专利的具体信息内容。

1.一种多色电子发射显示设备,包括多色偏振发光像素的二维阵列,其中每个多色发光像素包括:
多个发光结构,其由非极性或半极性III族氮化物材料系统制成,每个发光结构用于发射不同颜色,与将每个多色像素与多色像素阵列内的相邻多色像素电分离和光学分离的垂直侧壁的栅格垂直地堆叠;
多个垂直波导,其光学耦合到发光结构,以从发光结构堆叠的第一表面垂直发射由发光结构生成的偏振光;
所述发光结构堆叠通过与所述发光结构堆叠的第一表面相对的第二表面堆叠到数字半导体结构上;以及
数字半导体结构中的多个数字半导体电路,每个数字半导体电路通过嵌入在垂直侧壁内的垂直互连电耦合到多色发光结构,以分别控制每个多色发光结构的开/关状态。
2.根据权利要求1所述的多色电子发射显示设备,其中所述数字半导体结构被电耦合以从外部源接收包含每个像素的每种颜色的脉冲宽度调制(PWM)位的控制信号和像素阵列位字段,以单独控制每个多色发光结构的开/关状态。
3.根据权利要求1所述的多色电子发射显示设备,其中所述数字半导体结构被电耦合以接收光调制视频比特流,并且还包括为所述多色微像素阵列生成PWM位字段以分别控制每个多色发光结构的开/关状态所需的逻辑功能。
4.一种多色电子发射显示设备,包括:
多个半导体层,每个都堆叠在一起;
每层配置用于发射不同颜色的光并包括发光结构的二维阵列;以及
其中所述层中的至少一个由非极性或半极性III族氮化物材料系统制成,具有沿极性或半极性平面的外延生长方向,由此从发光结构发射偏振光。
5.根据权利要求4所述的设备,其中所述设备结合到并电耦合到基半导体互补金属化物(Si-CMOS)结构,其被配置成独立地控制所述多个发光结构的开关状态。
6.根据权利要求4所述的设备,其中所述层中的至少一个由使用(100)LiAlO2衬底材料以非极性或半极性取向生长的半导体材料制成。
7.根据权利要求4所述的设备,其中所述层中的至少一个由使用r平面Al2O3衬底材料以非极性或半极性取向生长的半导体材料制成。
8.根据权利要求4所述的设备,其中所述层中的至少一个由使用m平面Al2O3衬底材料以非极性或半极性取向生长的半导体材料制成。
9.根据权利要求4所述的设备,其中所述层中的至少一个由使用SiC衬底材料的六方多晶型以非极性或半极性取向生长的半导体材料制成。
10.根据权利要求4所述的设备,其中所述层中的至少一个由使用尖晶石((100),(110),MgAl2O4)平面衬底材料以非极性或半极性取向生长的半导体材料制成。
11.根据权利要求4所述的设备,其中所述层中的至少一个由使用包括空切的(001)Si衬底材料以非极性或半极性取向生长的半导体材料制成。
12.根据权利要求4所述的设备,其中所述层中的至少一个由使用包括七(7)度的空切的(001)Si衬底材料以非极性或半极性取向生长的半导体材料制成。
13.根据权利要求4所述的设备,其中所述层中的至少一个由使用GaN衬底材料的体m平面,a平面或半极性平面以非极性或半极性取向生长的半导体材料制成。
14.一种多色电子发射显示设备,包括:
多个半导体层,每个都堆叠在一起;
每层配置用于发射不同颜色的光,并且每层包括发光像素结构的二维阵列;以及其中所述层中的至少一个是由在衬底上生长的非c平面取向III氮化物材料系统制成,该衬底包括c平面GaN的横向外延过度生长的一个或多个刻面侧壁,由此根据发射光中所诱发的光学偏振各向异性从发光结构发射偏振光。
15.一种多色电子发射显示设备,包括:
多个半导体层,每个都堆叠在一起;
每层配置用于发射不同颜色的光,并且每层包括发光结构的二维阵列;以及其中所述层中的至少一个是由外延层的c平面取向GaN材料系统制成,其中在c平面GaN中诱发各向异性应变,由此从发光结构发射的光中的光学偏振由于在至少一个GaN外延层上的压缩或拉伸应变而发生。
16.根据权利要求15所述的设备,其中通过将应变引入至少一个GaN外延层中而在所述c平面GaN中诱发各向异性应变。
17.根据权利要求16所述的设备,其中通过在A平面蓝宝石上生长GaN外延层而在c平面GaN中诱发各向异性应变。
18.根据权利要求16所述的设备,其中通过使用富Al的AlN/AlxGa1-xN量子阱或AlxGa1-xN应变补偿层在c平面GaN中诱发各向异性应变。
19.根据权利要求16所述的设备,其中通过在c平面GaN上生长的纳米结构在所述c平面GaN中诱发各向异性应变。
20.根据权利要求19所述的设备,其中所述纳米结构包括光子晶体,金属纳米颗粒,椭圆形纳米棒或纳米光栅中的至少一种。

说明书全文

来自微像素显示器的偏振光发射及其制造方法

[0001] 相关申请的交叉引用本申请要求2016年12月1日提交的美国临时专利申请号 62/429,033的权益。

背景技术

[0002] 1. 技术领域本发明涉及诸如LED和激光二极管结构的固态光发射器。更具体地,本发明涉及由III族氮化物材料制成的固态发光结构,其利用III族氮化物材料独特的晶体学性质,由此从发光结构发射偏振光。
[0003] 2. 现有技术固态光发射器处于当今商用电子显示系统的最前沿。许多显示系统利用光偏振的性质,以便在显示元件上的“开”和“关”像素之间获得增加的对比度。非偏振光的使用要求这种显示系统包括多个偏振器和偏振光学设备,这使它们更大,更复杂,能量效率更低并且成本更高。III-氮化物的材料系统提供了一种通过选择材料中有利于某些偏振态的晶面来在晶体学上定制来自III族氮化物材料的发射光的偏振态的方式。这进而允许用最小量的发光工程制造固态发光系统,这固有地使系统在功耗和设计方面更有效。
[0004] 某些市售LED利用III族氮化物材料系统。AlGaInN材料系统(其大带隙的范围从深紫外到近红外发射波长)因其输出覆盖整个可见电磁波谱,因此是有引人注目的用于电子显示器的系统。与现有显示技术一起使用的大多数GaN LED生长在纤锌矿GaN的极性(0001)c平面上。然而,GaN的非基底平面提供了与传统的c平面GaN有区别的优点和不同的光学性质。不期望的是,由于用于c平面GaN的多量子阱内部的偏振相关电场,量子限制的斯塔克效应(QCSE)导致较低的能量复合跃迁,并且峰值发射波长的特征蓝移被观察为电流密度增加(T. Takeuchi,S. Sota,M. Katsuragawa,M. Komori,H. Takeuchi,H. Amano 和 I. Akasaki,“Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells”日本应用物理学报36,382-385行(1997))。c平面增长的另一个不期望后果是在较高电流密度下发生的效率下降(Y. C. Shen,G. O. Mueller,S. Watanabe,N. F. Gardner,A. Munkholm和M. R. Krames,“Auger recombination in InGaN measured by photoluminescence”,应用物理快报,91,141101 (2007))。
[0005] 在2000年,由P. Waltereit,O. Brandt,A. Trampert,H. T. Grahn,J. Menniger,M. Ramsteiner,M. Reiche 和 K. H. Ploog的“Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes”,自然406, 865 (2000)报道了在GaN的m平面上首批高质量非极性生长材料之一。GaN的非极性平面与c平面形成90°,以及半极性平面形成0°和90°之间的中间角。半极性平面也是具有非零h,k或i索引以及在Miller-Bravis索引惯例中的非零/索引的那些平面。图1中示出了六方GaN晶体材料的各种晶面,包括极性,非极性和半极性平面。
[0006] 与GaN中的基底c平面不同,非极性平面和半极性平面示出不相等的光子发射,其取决于电矢量的方向,即:垂直 和平行 于c轴的光的强度是不相等的。使用S. L Chuang和CS Chang的“k-p method for strained wurtzite semiconductors”,物理评论B,54,2491-2504 (1996),他们得到了包括应变的纤锌矿半导体的有效质量哈密顿量,J. B. Jeon,B. C. Lee,Yu. M. Sirencko,K. W. Kim和M. A. Littlejohn,“Strain effects on optical gain in wurtzite GaN”应用物理学报,82,386-391 (1997)能够为纤锌矿GaN的光学增益的各向异性奠定理论基础,并且表明这种各向异性是由各向异性价带引起的。
他们在数学上说明了使用取自针对该价带的完全6 x 6哈密顿量的平均动量矩阵元素,价带因数必然有助于各向异性,因为它们是不相等的。GaN的价带主要由N 2 p态组成,在波矢k = 0( 点)的布里渊区中心,具有原子px和py特征的价带是简并的(degenerate),并且pz位于较低的能量,因此将价带分成两个(称为晶场分裂, ),而未考虑自旋 - 轨道相互作用。自旋 - 轨道相互作用导致具有px和py特征的状态不再是简并的,并且形成用于c平面取向的重孔(HH)和光孔(LH)带。导带极小值附近的能带特性不会受到这种类型的分裂的影响,因为那里的状态主要由在所有方向上是对称的N和Ga s轨道特征组成。
[0007] c平面(在xy平面中取得)中的价带的波函数(基态)由S. L Chuang 和C. S. Chang在“k-p method for strained wurtzite semiconductors”物理评论B,54,2491-2504 (1996)中定义为:
从上式可以清楚地看出,HH和LH带是( )的混合并且在具有各向同性双轴应变
的c平面取向中(其中应变分量εxx = εyy),不存在光学偏振各向异性。然而,对于非极性和半极性晶体取向,应变不再是各向同性的。以m平面为示例,K.Domen,K.Horino,A.Kuramata和T.Tanahashi的“Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN”,应用物理快报,71, 1996-1998 (1997)已经示出了GaN中的晶体场的足够强以固定的沿c轴的p功能的轴线。c平面取向中的原始混合状态不再被维持,并且现在状态变为类似于 和类似于 ,S. L Chuang和C. S. Chang,“k-p method for strained wurtzite semiconductors”,物理评论B,54,2491-2504 (1996)。
InGaN / GaN阱的生长(例如在具有压缩,双轴,各向异性的m平面上)在z方向上应变能量(c轴, 状态,其将被称为Ev3),其现在被提高到高于 状态,Ev2。该 状态Ev1也从增加的应变中升高,但它已经高于其他两个状态,因此它保持其作为最顶层能量价带的相对位置以及 状态由于沿m轴的拉伸应变而降低。在图2中图示出该论证的示意图。
[0008] 当GaN的生长沿c轴(z方向)引导时,电场分量(Ex和Ey)将始终垂直于c轴,并且随着电子以辐射方式跃迁到价带,它们的偏振态中不存在不同,并且因此发射的光均匀地非偏振。然而,当GaN的生长被沿着非极性平面或半极性平面(再次以m平面为示例)引导时,电场分量Ez现在平行于c轴,而Ey垂直于c轴并且针对 的辐射跃迁概率较高,并且与 相比更喜欢Ev(1 状态),针对 的辐射跃迁概率较低并且更喜欢Ev(3 状态)。因此,现在可以在光发射中获得两种不同的偏振态。为了在物理上量化样品中的偏振量,它的偏振率ρ被定义为:这里 是具有与c轴垂直(平行)的偏振的光的强度,并且确定显示技术中对比度
的最大值的极限。由于量子限制导致的pz价带状态的混合,偏振程度将总是偏离一致(B. Rau,P. Waltereit,O. Brandt,M. Ramsteiner,KH Ploog,J. Puls和F. Henneberger,“In-plane polarization anisotropy of the spontaneous emission of M-plane GaN/(Al,Ga)N quantum wells”,应用物理快报,77,3343-3345(2000))。关于这种效应的更彻底的讨论可见于Y. Zhao,R. M. Farrell,Y.-R. Wu和J. Speck,“Valence band states and polarized optical emission from nonpolar and semipolar III-nitride quantum well optoelectronic devices”日本应用物理学报,53,100206 (2014)。
[0009] 在21世纪初显示技术的快速发展已导致了不同的显示器产品广泛商业化。最流行的显示系统之一是液晶显示器(“LCD”)。常见类型的LCD是扭曲向列液晶显示器。它通过具有两个电极表面来起作用,这两个电极表面提供均匀的边界条件,但两个优选的取向方向相对于彼此旋转90°。在没有电场的情况下,实现了跨越设备厚度的均匀扭曲的向列相区域。当提供垂直于薄液膜的电场时,液晶分子的介电各向异性使它们转向并与场方向对准。当场关闭时,分子恢复到其原始状态。
[0010] 通过利用两个电极表面附近的光学偏振器的反射光实现LCD设备中的图像对比度。底部LCD衬底在下侧成镜像,以获得高反射率。非偏振光通过设备顶部进入,并平行于上取向方向偏振。如果电极处于“关闭”状态,则光行进通过设备,并且当它们扭转90°时,偏振遵循液晶分子的取向。接下来,光通过底部偏振器到达反射表面,通过底部偏振器反弹,再次通过液晶分子反转取向并且不受顶部偏振器的阻碍而通过。因此,这种“关闭”状态对于观看者来说是明亮的,因为他们看到了首先进入设备的环境光。对于“开”状态,光再次进入顶部偏振器,但现在电极被激活并且液晶分子垂直于衬底对准。因此,不会发生偏振方向的旋转,因此没有光通过底部偏振器而被反射回观看者。在这种情况下,“开”状态对于观察者来说看起来是暗的。这种“关闭”和“开启”状态为显示器产生可接受的图像对比度。
[0011] 三种领先的小形状因数电子显示器结构以一种或另一种形式利用反射技术;移动到开/关位置的可切换反射镜(美国专利5,083,857)和带扫描反射镜的激光束转向(美国专利6,245,590)各自需要将某种类型的光源集成到其MEMS设备中;上的液晶(“LCoS”)包含CMOS反射层(美国专利7,396,130和美国专利公开号2004/0125283)各自需要用于完整系统的偏振光源;和有源矩阵OLED和LED;虽然具有较低的复杂性,但仍然受益于额外的偏振器元件以消除由反射引起的重影(美国专利5,952,789和9,159,700)。
[0012] 许多现有技术的显示设备利用附加的偏振元件以产生用于在显示器中使用的偏振光。在从设备的有源区域发射光之后转换光的电场的多余物体是常见的解决方案。与本发明有关的应用的示例包括但不限于外部偏振层,使用或不使用相位板的独立偏振分离膜,周期性光栅结构和偏振分束器等(美国专利8,125,579,6,960,010,8,767,145,7,781,962,7,325,957,7,854,514和美国专利公开号2005/0088084)。
[0013] 具体来说,美国专利公开号 2008/0054283使用多个金属纳米线作为偏振控制层,其在结构上生长为附加的半导体层。一个现有技术示例WO 2012140257利用半导体芯片(该半导体芯片通过结合晶格结构发射偏振光)以选择性地增强所需的辐射分量,从而选择发射哪种偏振态。尽管如此,这仍然是放置在半导体芯片上以便发生偏振光发射的附加元件,并且上述现有技术没有提及如何将偏振技术实际结合到显示产品中。
[0014] 没有识别出描述了通过利用半导体材料的各种晶面为了微LED显示目的而实现选择性偏振态的系统方法的现有技术。
[0015] 在美国专利7,623,560,7,767,479,7,829,902,8,049,231,8,243,770,8,098,265,8,567,960中公开了一种新型发射成像器,这些专利中的每个专利通过引用全部并入本文,并且是能够有效地产生电磁辐射可见光谱的微半导体发射显示设备。尽管所公开的发射成像器的使用可以容易地应用于一般的固态照明,但是已经实现了这种设备的显示应用。该发射“量子光子成像器”(QPI)发射显示设备从III族氮化物半导体设备的有源区发射光子并将发射的光传播到自由空间。“QPI”是Ostendo技术有限公司(本发明的受让人)的注册商标。除了QPI成像器(其中每个像素从不同颜色的固态LED或激光发射器的堆叠发射光),还已知从不同颜色的固态LED或激光发射器发射光的成像器,所述不同颜色的固态LED或激光发射器与服务单个像素的多个固态LED或激光发射器并排布置。本发明的这种设备将通常称为发射显示设备。此外,本发明还可用于为诸如DLP和LCOS的许多类型的空间光调制器(SLM,微显示器)创建光源,并且此外也可以用作LCD的背光源。
附图说明
[0016] 在下述描述中,相同的附图标记用于相同的要素(即使是在不同附图中)。提供说明书中定义的事项(例如详细的结构和元件)以帮助全面理解示例性实施例。然而,可以在没有那些具体定义的事项的情况下实践本发明。并且,因为公知功能或构造将使本发明由于非必需细节而变得晦涩难懂,所以不对本领域中的公知功能或构造进行详细描述。为了理解本发明以及为了明白如何可以在实践中实现本发明,现在将仅作为非限制性示例参考附图来描述本发明的一些实施例。
[0017] 图1描绘了GaN晶体结构中的各种晶面。
[0018] 图2图示了用于GaN的六方晶体的坐标系,其中z轴垂直于c平面,y轴垂直于m平面,并且x轴垂直于a平面,以及在Г点处三个价带针对m平面的相对位置,其中Ev2具有最低能量(不是Ev3)。
[0019] 图3A-3B图示了包括现有技术的量子光子成像器发射显示设备的发射表面的多色像素的视图,示出了来自c平面或者 方向的光发射。
[0020] 图4A-4C图示了包括本发明的量子光子成像器发射显示设备的发射表面的多色像素的视图,示出了来自非极性m平面或者图4C中的 方向的光发射。
[0021] 图5A-5D图示了用于本发明的偏振光发射量子光子成像器发射显示设备的各种多色像素接触垫,以及示出X,Y和公共接触的本发明优选实施例的横截面。
[0022] 图6图示了本发明的偏振光发射量子光子成像器发射显示设备的功能框图

具体实施方式

[0023] 上述QPI发射显示设备仅是发射微尺度像素阵列的一个示例,在下面描述的示例性实施例中涉及美国专利7,623,560,7,767,479,7,829,902,8,049,231,8,243,770,8,098,265,8,567,960。然而,应该理解,所图示的QPI发射显示设备仅仅是可以在本发明中使用和由本发明制造的发光设备类型的示例,其中一些发光设备类型已经在前面阐述过。因此,在下面的描述中,对QPI发射显示设备的引用应被理解为出于在所公开的实施例中的特定性的目的,而不是对本发明美国专利7,623,560的任何限制。
[0024] 图3A和图3B示出了现有技术QPI发射显示设备或QPI成像器的横截面和发光表面作为c平面,并且图4A-4C示出了作为本发明优选实施例中的m平面的侧视图和发光表面。本发明使得诸如QPI发射显示设备或QPI成像器等发射显示设备能够发射光子,或者发射非偏振光或者发射线偏振光。
[0025] 图4A-4C作为示例而不是以限制的方式示出了本发明的优选实施例,并且图示了QPI发射显示设备像素结构,其包括多个固态发光层的堆叠,所述多个固态发光层的堆叠包括在硅基半导体互补金属化物(Si-CMOS)结构的顶部上的发光结构,该Si-CMOS结构包括用于独立控制像素结构的多个固态发光层中的每一个的开关状态的电路。QPI发射显示设备像素的表面尺寸通常为微尺度,像素间距范围为1微米至5微米或更大。QPI发射显示设备本身可以包括这种像素的一维或二维阵列,在形成QPI发射显示设备微像素阵列的行和列的数量方面实现用户期望的像素分辨率
[0026] 本发明满足了显示领域中对光源的需要,该光源可以被定制为发射各种状态的偏振可见光发射。轻的重量,小形状因数以及低功耗是制造商在为消费者市场设计显示系统时所认识到的关键考虑因素,特别是对于人类可穿戴设备而言。诸如眼镜,护目镜,腕带,手表或医疗设备监视器(仅举几例)之类的项目都可以从偏振光显示器中受益,这样的显示器无缝集成到产品中,并且不会对最终用户的应用造成破坏。为此,本发明允许将偏振光源集成到QPI发射显示设备中,而不需要不期望地增大显示系统或者对于相同数量的输出光子来说需要更高功率输入的外来硬件
[0027] 在本发明的优选实施例中,提供了一种多色电子发射显示设备,其包括多色偏振发光像素结构的二维阵列,其中每个多色发光像素包括由非极性或半极性III族氮化物材料系统制成的多个发光结构。发光结构可以被各自配置用于发射不同颜色的光,并且每个都与格将每个多色像素与多色像素阵列内的相邻多色像素电分离和光学分离的垂直侧壁的栅格垂直地堆叠。多个垂直波导,其光学耦合到发光结构,以从发光结构堆叠的第一表面垂直发射由发光结构生成的偏振光。发光结构堆叠被堆叠在与发光结构堆叠的第一表面相对的第二表面上的数字半导体结构上。在数字半导体结构中提供多个数字半导体电路,每个数字半导体电路电耦合以使用在数字半导体结构(例如,用于连接到外部世界,可以这么说)的侧面上的电通孔或电镀互连从数字半导体结构的外围或从数字半导体结构的底部接收控制信号。数字半导体结构中的多个数字半导体电路通过嵌入在垂直侧壁内的垂直互连电耦合到多色发光结构,以分别控制每个多色发光结构的开/关状态。
[0028] 现有技术的QPI发射显示设备是独立的发射显示器,其不需要额外的光学元件。在这种设备中加入多色光子元件层,在这种特定情况下,是发射非偏振的彩色光的GaN或其他III-V或II-VI半导体材料。像素控制逻辑的主干是数字半导体结构,其已经结合在一起以形成QPI发射显示设备系统。它可以包括数字驱动逻辑电路,其向堆叠的光子半导体结构提供功率和控制信号。本发明通过结合引入用于各种应用的本征偏振光发射能的部件,扩展到美国专利7,623,560,7,767,479,7,829,902,8,049,231,8,243,770,8,098,265,8,567,960或中描述的QPI设备结构其他微LED半导体阵列。
[0029] QPI发射显示设备的光子结构由一个或多个单独的半导体材料层组成。在QPI发射显示设备的AlInGaN/GaN材料系统的情况下,通过诸如MBE,MOCVD或HVPE的生长技术在蓝宝石衬底上异质外延生长c平面。可以使用其他衬底材料,包括但不限于蓝宝石(Al2O3),SiC的六方多晶型物,GaAs,Si,尖晶石(MgAl2O4),无定形二氧化硅(SiO2),LiGaO2,LiAlO2和ZnO。最近,体(bulk)GaN衬底显示出光子设备的有希望的结果,但它们更高的价格和可访问性仍然是一个障碍(D. Ehrentraut,R. T. Pakalapati,D. S. Kamber,W. Jiang,D. W. Pocius,B. C. Downey,M. McLaurin和M. D  'Evelyn,“High quality, low cost ammonothermal bulk GaN substrates”日本应用物理学报,52,08JA01(2013)和W. Jie-Jun,W. Kun,Y. Tong-Jun和Z. Guo-Yi,“GaN substrate and GaN homo-epitaxy for LEDs: Progress and challenges”日本应用物理学报,24,066105(2015))然而可以被结合为衬底材料。所选择的衬底材料伴随有AlN或GaN的掺杂层,接着是n-GaN:Si,然后是固定数量的InGaN/GaN多量子阱(MQW),其具有取决于该层的所需的发射波长的各种铟浓度,然后是AlGaN电子阻挡层,以及最后是p-GaN:Mg。然后将该光子结构图案化为像素阵列,并添加接触以用于形成QPI发射显示设备。为了实现本发明,如下所述考虑QPI发射显示设备光子层(例如GaN/InGaN)的生长方向。
[0030] 用于生长GaN的衬底的取向(特别是原子位置和表面化学)影响在外延生长过程中将聚结的主晶面。从20世纪70年代中期开始,进行了研究,确定了GaN材料系统的各种衬底和取向的稳定生长平面和优选生长方向。大多数这些研究都集中在蓝宝石上,因为体Al2O3晶体很容易获得并且已经用于半导体外延(PA Larssen,“Crystallographic match in epitaxy between silicon and sapphire”,Acta Crystallographica,20,599(1966))。例如,c平面和a平面蓝宝石衬底产生光滑的c平面GaN和AlN(HM Manasevit,F. M. Erdmann和W. I. Simpson,“The use of metalorganics in the preparation of semiconductor materials: IV. The nitrides of aluminum and gallium”,电化学学会志,118,1864(1971))。已经坚定地确定Ga-面c平面纤锌矿GaN是用于该材料系统中的平面薄膜生长的优选生长刻面。然而,利用诸如(100)LiAlO(2 P. Waltereit,O. Brandt,A. Trampert,H. T. Grahn,J. Menniger,M.Ramsteiner,M.Reiche和KH Ploog,“Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes”自然 406,865(2000)),r平面Al2O(3 M. D. Craven, S.H. Lim, F. Wu, J. S. Speck,和 S. P. DenBaars,“Structural characterization of nonpolar (112 ̅0) a-plane GaN thin films grown on (11 ̅02) r-plane sapphire”应用物理快报,81,469(2002)”,6H-SiC(MD Craven,A. Chakraborty,B. Imer,F.Wu,S.Keller,U.K. Mishra,J.S. Speck,S.P. DenBaars,“Structural and electrical characterization of a-plane GaN grown on a-plane SiC”Physica Status Solidi (c) 0, 2132 (2003)),以及最近的当实现了具有到其c平面对应物的相当的输出功率的LED生长结构时体m平面和a平面GaN获得的牵引力(M. C. Schmidt, K. -C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S. P. DenBaars和 J. S. Speck,“High power and high external efficiency m-plane InGaN light emitting diodes”日本应用物理学报,46,L126(2007)。这种非极性和半极性薄膜和应用的示例在例如美国专利号8,728,938,9,443,727,8,629,065,8,673,074,9,023,673,
8,992,684,9,306,116,8,912,017,9,416,464,8,647,435和美国专利公开号2011/0188528 和 2014/0349427(其各自转让给申请人Ostendo技术有限公司(本申请的受让人),这些文献中每个文献的全部内容都通过引用结合于此)中被公开。
[0031] 本发明通过在有利于AlInGaN材料系统的非c平面取向的衬底上实现半导体材料的生长来增强光子层的光输出,例如在QPI发射显示设备中发现的光子层。本发明通过利用非基底平面,极性或半极性GaN解决了现有技术发射显示设备的随机偏振态性质的限制。为了在诸如QPI发射显示设备的偏振发射微LED显示器的制造中利用该方法,公开了一种新颖的像素化工艺,以解决由于不同晶体取向而存在的化学结构和表面键合分子,使得所公开的线性QPI发射显示设备中的偏振光源是对现有设备的颠覆性技术。本发明的QPI发射显示设备的所图示的(一个或多个)光子层以有益于非极性或半极性平面生长和形成为最终取向的方式生长。可用于非极性或半极性取向的生长的衬底包括但不限于(100)LiAlO2,r平面Al2O3,m平面Al2O3,SiC的六方多晶型,各种尖晶石((100),(110),MgAl2O4)平面,具有空切(miscut)(例如7°)的(001)Si衬底,GaN的体m平面,a平面或半极性平面。另外,c平面GaN的横向外延过度生长的刻面侧壁可以用作非c平面取向的衬底。这些各种衬底将在III族氮化物材料系统中产生非c平面取向并在发射光中引起光学偏振各向异性。
[0032] 本发明的另一个实施例是在GaN的c平面中引入各向异性应变。这也允许由于GaN外延层上的压缩或拉伸应变而发生光学偏振。
[0033] 多个固态发光层的堆叠内的每个层包括示例性QPI发射显示设备像素(参见图4A-4C)被设计用于发射不同的颜色波长,从而允许通过其Si-CMOS控制QPI像素以发射多种颜色的任何期望的组合;例如,红色(R),绿色(G)和蓝色(B),来自相同的像素孔径,以基于所选择的RGB发射波长的所选颜色坐标覆盖任何期望的色域
[0034] 图4A-4C中所图示的偏振光发射QPI发射显示设备结构的优选实施例的制造过程包括以下段落中描述的步骤。该过程开始于在半导体发光光子晶片的顶侧表面上形成QPI像素阵列,外延生长以从非极性m平面或者 方向发射光。该过程在本文中称为像素化,涉及使用半导体光刻和蚀刻工艺蚀刻宽度和深度约1微米的像素侧壁,以延伸通过半导体发光材料的异质结二极管结构。使用半导体沉积工艺将蚀刻的像素阵列侧壁用氧化硅或氮化硅薄层钝化,然后涂覆薄的反射金属(诸如例如(Al))层。然后,例如使用半导体金属沉积工艺,用诸如镍的金属填充像素侧壁。在偏振发射光子晶片的顶侧表面上处理像素化图案之后,在晶片上添加对准标记以在后续处理期间帮助对准蚀刻的像素图案。
[0035] 可以对多个偏振发射半导体发光光子晶片执行相同的顶侧表面像素化处理,每个光子晶片具有不同波长的偏振光发射,例如,465nm(B),525nm(G)和625nm(R))。然后,这三个顶侧表面处理的偏振发射半导体发光光子晶片可以以堆叠的方式键合在一起,如以下段落中所述,以形成偏振光发射RGB QPI发射显示设备。
[0036] 在偏振发射半导体发光光子晶片的顶侧表面被像素化之后,使用诸如电子束沉积的半导体金属沉积技术将图5A-5C中所图示的顶侧接触金属图案之一沉积在每个形成的像素阵列上。图5A中所图示的接触金属图案可以用于蓝色(B)偏振光发射光子晶片以及图5B中所图示的接触金属图案可用于绿色(G)和红色(R)偏振光发射光子晶片的顶侧。沉积的接触金属优选是薄金属堆叠,例如Ti/Al,其与B,G和R偏振发射光子晶片的氮化铟镓(InGaN)异质结二极管半导体发光结构形成欧姆接触。包括:图所示的蓝色(B)偏振光发射光子晶片和接触金属图案在沉积接触层之后,进一步处理B,G和R偏振光发射光子晶片的顶侧以形成穿过半导体外延层的像素侧壁,其包括蚀刻像素的侧壁,钝化,然后金属化和金属填充沉积。该步骤使像素的侧壁导电以及光学上阻挡并反射。像素的侧壁的这些特征还防止相邻像素之间的光学串扰,将所产生的光限制在所形成的像素反射侧壁腔内,并用作电互连通孔,以将电信号传导到像素的顶侧接触以及顶侧堆叠的光子层的像素的接触。
[0037] 在一个优选实施例中,为了制造图4A-4C中所图示的偏振光发射QPI发射显示设备结构,玻璃晶片(未示出)可以用作其上堆叠多层像素阵列结构的衬底,然后键合到Si-CMOS晶片的顶侧,该Si-CMOS晶片被处理以包括相同的像素接触图案作为堆叠在玻璃晶片上的多层像素阵列结构。
[0038] 在用于制造偏振光发射QPI发射显示设备结构的另一优选实施例中,Si-CMOS用作在其上堆叠多层像素阵列结构的衬底,然后像素化的多层晶片键合到玻璃覆盖晶片。在上述两个实施例的任一个中,处理步骤是类似的,并且前者将用作示例,而不是限制,以描述偏振光发射QPI显示器制造过程的剩余步骤。
[0039] 图5A-5C图示了用于偏振光发射QPI发射显示设备微像素的金属接触层的三种不同金属接触图案,其使用常规半导体和光刻以及金属沉积而沉积在像素化B,G和R光子晶片的顶侧上。当选择接触开口的直径、高度和间隔以形成用户定义的光波导以便提取从偏振光发射QPI像素发射的光时,图5A中所示的像素接触图案可以被用在像素化B光子晶片的顶侧上以生成准直(例如,±17°)到准朗伯(比如,±45°)像素的偏振光发射。图5B中所示的像素接触图案被用在像素化B光子晶片的顶侧上以从偏振光发射QPI像素生成朗伯发射。图5B中所示的像素接触图案还被用在像素化的G和R光子晶片上,以允许从偏振光发射QPI像素的结构的下层到上层的最大光透射。
[0040] 图4A中图示了偏振光发射QPI发射显示设备像素结构的又一优选实施例,其中首先处理玻璃盖晶片以图案化与偏振光发射QPI像素阵列图案匹配的像素尺寸微光学元件或微透镜的阵列。当具有像素大小的微光学微透镜元件的玻璃盖晶片用作在其上形成偏振光发射QPI多层堆叠的衬底时,除了调制像素阵列颜色和亮度之外,所得到的像素阵列还具有调制像素的发光方向的增加的能力;能够调制光场以进行直视和可穿戴近眼显示的能力。
[0041] 在B偏振光发射光子晶片顶侧被像素化并且其顶侧接触层被沉积之后,然后在并入或不并入像素尺寸的微光学微透镜元件的情况下使用半导体键合技术(诸如例如,熔融键合)将晶片键合到玻璃盖晶片。然后使用已知的半导体激光剥离(LLO)技术剥离外延生长蓝宝石晶片,并且将结构减薄以去除外延生长GaN缓冲,留下薄层(< 2微米),其包括封装在形成的像素的侧壁内的B半导体偏振发光异质结二极管结构。在像素化B偏振光发射光子晶片的背面暴露的情况下,使用半导体金属沉积技术将图5B中所图示的像素阵列背面接触图案沉积为薄金属堆叠,例如Ti/Al。
[0042] 这里,术语“处理中QPI晶片”用于指代经处理的多层堆叠晶片,其结合了堆叠起来直到那点该过程的多个层。在使用这样的术语时,处理中QPI晶片的顶侧因此(如所图示的)变成所键合的最后一层的背面。
[0043] 然后处理处理中QPI晶片的顶侧(其是像素化B光子层背面)以沉积键合中间层,该键合中间层包含与像素的阵列侧壁对准的电接触通孔。键合中间层是使用常规半导体沉积技术(诸如例如等离子体辅助化学气相沉积(PECVD))沉积的氧化硅或氮化硅的薄层。在沉积键合中间层之后,将处理中QPI晶片表面平坦化至足以与其他晶片的顶侧键合的表面平坦化平,以形成偏振光发射QPI发射显示设备的多层堆叠。
[0044] 然后处理处理中QPI晶片的顶侧(其将是具有添加的键合中间层的B层背面)以将其键合到G光子晶片顶侧。这是使用半导体键合工艺(诸如例如熔融键合)使用像素化G光子晶片与QPI处理中晶片的顶侧的对准键合来实现的。
[0045] 随着将像素化G光子晶片键合到处理中QPI晶片,通常使用半导体激光剥离(LLO)技术剥离G偏振光发射光子晶片的外延生长蓝宝石晶片,并且结构被减薄到去除外延生长GaN缓冲,只留下薄层(< 2微米),其包括封装在所形成的像素侧壁内的G半导体偏振发光异质结二极管结构。在像素化G光子晶片的背面暴露的情况下,使用半导体金属沉积技术将图5B的像素阵列背面接触图案沉积薄金属堆叠,例如Ti/Al。
[0046] 然后处理处理中NCP-QPI晶片的顶侧(其是像素化G光子层背面)以沉积键合中间层,该键合中间层包含与像素的阵列侧壁对准的电接触通孔。键合中间层是使用常规半导体沉积技术(诸如例如等离子体辅助化学气相沉积(PECVD))沉积的氧化硅或氮化硅的薄层。在沉积键合中间层之后,将处理中QPI晶片表面平坦化至足以与其他晶片的顶侧键合的表面平坦化水平,以形成偏振光发射QPI设备的多层堆叠。
[0047] 然后处理处理中QPI晶片的顶侧(其将是具有添加的键合中间层的G层背面)以将其键合到R光子晶片顶侧。这是使用半导体键合工艺(诸如例如熔融键合)使用像素化R光子晶片到QPI处理中晶片的顶侧的对准键合来实现的。
[0048] 将像素化的R光子晶片键合到处理中QPI晶片,然后通常使用半导体激光剥离(LLO)技术将R偏振光发射光子晶片的外延生长蓝宝石晶片剥离,并且结构被减薄到去除外延生长GaN缓冲,只留下薄层(< 2微米),其包括封装在所形成的像素侧壁内的R半导体偏振发光异质结二极管结构。在像素化的R光子晶片的背面暴露的情况下,使用半导体金属沉积技术将图5C的像素阵列背面接触图案沉积薄金属堆叠,例如Ti/Al。
[0049] 如图5C中所图示,QPI处理中晶片的顶侧每个像素具有三个接触通孔;中心接触通孔,其是像素的R光子层的独特接触,x侧壁接触通孔,其是像素的B光子层的独特接触,以及y侧壁接触通孔,其是像素的G光子层的独特接触。整个像素阵列的公共接触;即,添加在B,G和R光子层顶侧上的三个中间接触层形成为公共接触轨,其延伸到偏振光发射QPI管芯的外围边缘,在那里它们连接到一组公共接触通孔,从而在包括处理中QPI晶片的每个偏振光发射QPI管芯的外围边界处形成环。
[0050] 然后,处理中QPI晶片顶侧包括微尺度接触通孔的阵列,其中像素中心通孔是像素阵列的R光子层的独特接触,x侧壁接触通孔是像素阵列的B激发光子层的独特接触,y侧壁接触通孔是像素阵列的G发射光子层的独特接触,并且每个QPI管芯的外围边界处的微通孔环包括处理中QPI晶片,从而提供包括QPI多发光层堆叠的像素阵列的所有三个光子层的公共接触。
[0051] 如图5D中所图示,包括Si-CMOS晶片的每个QPI发射显示设备管芯的顶侧包括微通孔阵列,其具有与前一段中描述的处理中QPI晶片的微通孔阵列的图案匹配的图案。当Si-CMOS晶片使用半导体键合技术(诸如例如熔融键合)对准并键合到处理中QPI发射显示设备晶片时,键合界面微通孔阵列提供像素偏振多色偏振光发射QPI发射显示设备的多个光子层的阵列的独特接触之间的电接触以及包括QPI发射显示设备晶片的每个管芯的外围边界处的公共接触环。
[0052] 先前提到,在GaN的c平面中引入各向异性应变允许由于GaN外延层上的压缩或拉伸应变而发生光学偏振。特别地,如果所述层中的至少一个由外延层的c平面取向GaN材料系统制造,其中在c平面GaN中诱发各向异性应变,则来自发光结构的发射光中的光学偏振发生,这是由于在至少一个GaN外延层(应变分量 )上的压缩或拉伸应变)。实现这种影响的一种方式是有意地将应变引入GaN层。在A平面蓝宝石上生长GaN导致这种应变以及富Al的AlN/AlxGa1-xN量子阱或AlxGa1-xN应变补偿层。在这种情况下,富Al的量子阱,应变补偿层将是偏振光发射结构的整体层。在c平面上生长的纳米结构是实现偏振发射的另一种方式。示例包括光子晶体,金属纳米颗粒,椭圆形纳米棒和纳米光栅。同样,在椭圆形纳米棒和纳米光栅的情况下,面内应变不对称性归因于偏振光的产生。
[0053] 图6图示了多色偏振光发射QPI发射显示设备的功能框图。图6示出了由QPI发射显示设备的Si-COMS的控制逻辑驱动的QPI发射显示设备的多色微像素阵列。图6还示出了具有两个可能接口的QPI Si-CMOS控制逻辑的两个可能的实施例。在第一实施例(上面的(A))中,QPI Si-CMOS控制逻辑的功能仅包括多色、微像素阵列驱动器和QPI发射显示设备,在这种情况下将接收控制信号和像素阵列位字段,其包含来自外部源的每个像素的每种颜色的脉冲宽度调制(PWM)位。在第二实施例(上面的(B))中,QPI Si-CMOS控制逻辑的功能可以另外包括为多色微像素阵列生成PWM位字段所需的逻辑功能。
[0054] 在第二实施例中,QPI Si-CMOS控制逻辑通过其接口接收包含光调制视频输入和相关控制数据的串行比特流。在偏振多色发射QPI发射显示设备的该实施例中,Si-CMOS控制逻辑接收的光调制视频比特流由颜色和亮度控制块处理,用于去伽线性化,色域变换,白点调整和跨微像素阵列的颜色和亮度均匀性校正。然后将颜色和亮度控制块的比特流输出转换为PWM位字段,然后计时到QPI Si-CMOS内合并在一起的像素驱动器阵列中。实际上,偏振光发射QPI发射显示设备的QPI Si-CMOS控制逻辑的后一实施例不需要外部视频流处理支持,并且利用诸如低压差分信号(LVDS)接口等的标准高速接口来操作。QPI Si-CMOS的后一实施例为偏振光发射QPI应用实现了更低的功耗和更小的体积方面。在任一实施例中,与外部世界的连接可以是例如如本文已经描述的。
[0055] 所描述的偏振光发射QPI发射显示设备的主要优点之一是其低功耗,其通过多种因素实现:(1)其光子层的高内部量子效率(IQE);(2)来自其发射多层的直接偏振多色光发射的高量子产率(QY)转换效率;(3)通过NPC-QPI像素光学腔的光限制作用的其VB激发光的提高的光学孔径转换效率;(4)通过由像素的BPF层和反射侧壁和接触形成的光学子腔的光限制作用的其VB激发光的提高的转换效率;以及;(5)像素的BPF层的光谱成形动作以匹配HVS明视响应。
[0056] 所描述的偏振光发射QPI发射显示设备的低功耗使其在需要小体积方面和低功耗下的更高亮度的显示应用(例如用于虚拟和增强现实(AR/VR)应用的近眼显示器)中非常有效。在本公开的多个实施例的前述描述中选择的波长(仅列出的原色)是出于示例目的,并且遵循本发明的相同方法的这些波长的其他选择也在本发明的范围内。此外,发射微尺度像素与所描述的偏振光发射QPI发射显示设备的低功耗相结合使其在通常需要微尺度像素间距、小体积方面和低功耗下的较高亮度加上需要定向调制的微像素的光场显示应用中非常有效。当然,这两种显示应用的结合;即,光场近眼AR/VR显示器基本上由于本发明的偏振光发射QPI发射显示设备的小体积、高亮度、光场调制和低功耗能力而受益。
[0057] 应注意,在本发明的偏振QPI发射显示设备结构的前述描述中使用的发射波长值是本发明方法的示例性说明。发光结构领域的技术人员将认识到如何使用本发明的公开方法来创建具有使用不同光波长组的偏振光发射的发射微像素空间光调制器,以生成不同的发射波长组。本领域技术人员将认识到如何使用由像素的反射侧壁、反射接触和具有不同设计参数的电互连侧壁产生的偏振光发射QPI发射显示设备结构像素的光学限制的所公开的方法来产生发射偏振光的多色微像素阵列设备。
[0058] 还应注意,偏振光发射QPI发射显示设备的非极性和半极性晶体取向实现了在半导体发光材料的InGaN/GaN异质结二极管结构的外延生长中的更高的铟摄取率。这种更高的铟摄取率使得能够在琥珀色(615nm)至红色(625nm)范围内发射偏振长波长光,具有优异的IQE和饱和特性,并且制造具有覆盖可见光谱的整个范围的多色发射的高效偏振光发射QPI发射显示设备。这是本公开中描述的偏振光发射QPI发射显示设备的重要优点,因为由于铟在高摄取率下的偏析(segregation)故使用极性晶体取向实现类似结果是已知的挑战。
[0059] 还应注意,本公开中描述的用于制造发射多色偏振光发射QPI显示结构的方法可以与用于制造美国专利7,623,560,7,767,479,7,829,902,8,049,231,8,243,770,8,098,265,8,567,960中描述的非偏振光发射QPI发射显示设备的方法组合,使得能够制造多色发射QPI发射显示设备,其在跨可见光谱的不同发射波长下具有偏振和非偏振光发射。这种光调制能力使得新类型的显示器能够受益于从发射微像素阵列在跨可见光光谱的不同发射波长处发射的偏振和非偏振光发射两者。
[0060] 同样重要的是要注意,用于制造本公开中描述的偏振光发射QPI发射显示设备的方法可以容易地用来通过执行所描述的制造工艺仅使用一个具有期望发射波长的光子晶片来产生具有单波长发射的偏振光发射QPI发射显示设备。
[0061] 本领域的技术人员将容易理解的是,在不偏离在所附权利要求中限定的以及由所附权利要求限定的本发明的范围的情况下,可以向本发明的实施例应用各种修改和改变。应当理解的是,本发明的前述示例仅是说明性的,并且在不偏离本发明的精神或本质特性的情况下,可以以其他具体形式来体现本发明。因此,所公开的实施例不应当在任何意义上被视为是限制性的。本发明的范围由所附权利要求而不是前述描述来指示,并且落入权利要求的等同方式的含义和范围内的所有变化意图被包含于权利要求中。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈