首页 / 专利库 / 物理 / 比热 / 内部增强结构复合材料以及相关的制造方法

内部增强结构复合材料以及相关的制造方法

阅读:350发布:2022-03-14

专利汇可以提供内部增强结构复合材料以及相关的制造方法专利检索,专利查询,专利分析的服务。并且本文公开了内部增强结构 复合材料 、这种复合材料的合适用途,以及相关的制造方法。在一个 实施例 中,制造增强结构组件的方法包括形成前体和剥落所述前体,所述前体具有包含多个晶格层的 晶体结构 。作为结果,所述多个晶格层的相邻对之间的距离被扩展。所述方法也包括使用表面 支撑 材料围绕剥落前体中的各个晶格层的周边的至少一部分包覆剥落前体。,下面是内部增强结构复合材料以及相关的制造方法专利的具体信息内容。

1.一种制备增强结构组件的方法,其包括:
形成前体,所述前体具有包含多个晶格层的晶体结构
在所述多个晶格层的至少一些之间植入间隙剥落剂;
在剥落温度下使用所述植入的间隙剥落剂剥落所述前体,由此形成增强结构组件;以及
基于增强结构组件的目标材料性质,控制剥落剂浓度、剥落温度和剥落周期中的至少一个;
其中:
所述形成前体包括:
形成石墨晶体,所述石墨晶体具有多个原子层,且所述石墨晶体具有带有纵轴线的通常圆柱体的形状;
沿着所述纵轴线通过所述石墨晶体的中心区域钻孔;
将针通过所述石墨晶体的中心区域插入所述孔中;且
所述剥落所述前体包括经由所述插入的针加热所述石墨晶体。
2.一种制备增强结构组件的方法,其包括:
形成前体,所述前体具有包含多个晶格层的晶体结构;
在所述多个晶格层的至少一些之间植入间隙剥落剂;
在剥落温度下使用所述植入的间隙剥落剂剥落所述前体,由此形成增强结构组件;以及
基于增强结构组件的目标材料性质,控制剥落剂浓度、剥落温度和剥落周期中的至少一个;
其中:
所述形成前体包括:
形成石墨晶体,所述石墨晶体具有多个碳原子层,所述石墨晶体具有带有纵轴线的通常圆柱体的形状;
沿着所述纵轴线通过所述石墨晶体的中心区域钻孔;
将针通过所述石墨晶体的中心区域插入所述孔中;且
所述剥落所述前体包括经由所述插入的针加热所述石墨晶体,并在加热过程中支撑堆叠构造的所述碳原子层。
3.一种制备增强结构组件的方法,其包括:
形成前体,所述前体具有包含多个晶格层的晶体结构;
在所述多个晶格层的至少一些之间植入间隙剥落剂;
在剥落温度下使用所述植入的间隙剥落剂剥落所述前体,由此形成增强结构组件;以及
基于增强结构组件的目标材料性质,控制剥落剂浓度、剥落温度和剥落周期中的至少一个;
其中:
所述形成前体包括形成石墨晶体,所述石墨晶体具有沿着纵轴线排列的多个碳原子层;且
所述剥落所述前体包括基于目标剥落百分比剥落不同的碳原子层。
4.一种制备增强结构组件的方法,其包括:
形成前体,所述前体具有包含多个晶格层的晶体结构;
在所述多个晶格层的至少一些之间植入间隙剥落剂;
在剥落温度下使用所述植入的间隙剥落剂剥落所述前体,由此形成增强结构组件;以及
基于增强结构组件的目标材料性质,控制剥落剂浓度、剥落温度和剥落周期中的至少一个;
其中:
所述形成前体包括形成石墨晶体,所述石墨晶体具有沿着纵轴线排列的多个碳原子层;且
所述剥落所述前体包括基于目标剥落百分比剥落每隔一个碳原子层。
5.一种制备增强结构组件的方法,其包括:
形成前体,所述前体具有包含多个晶格层的晶体结构;
在所述多个晶格层的至少一些之间植入间隙剥落剂;
在剥落温度下使用所述植入的间隙剥落剂剥落所述前体,由此形成增强结构组件;以及
基于增强结构组件的目标材料性质,控制剥落剂浓度、剥落温度和剥落周期中的至少一个;
其中:
所述形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;
将相邻层之间的距离扩展为大于0.335nm;且
基于增强结构组件的目标密度压制成型所述前体,所述前体具有沿着纵轴线的扩展距离。
6.一种制备增强结构组件的方法,其包括:
形成前体,所述前体具有包含多个晶格层的晶体结构;
在所述多个晶格层的至少一些之间植入间隙剥落剂;
在剥落温度下使用所述植入的间隙剥落剂剥落所述前体,由此形成增强结构组件;以及
基于增强结构组件的目标材料性质,控制剥落剂浓度、剥落温度和剥落周期中的至少一个;
其中:
所述形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;
将相邻层之间的距离扩展为大于0.335nm;且
所述控制剥落剂浓度、剥落温度和剥落周期中的至少一种包括基于石墨晶体中的相邻层之间的目标间隔距离而调节剥落剂浓度、剥落温度和剥落周期中的至少一种。
7.根据权利要求1至6中的任一项所述的方法,其中:
形成前体包括:
如下分解甲烷和/或其他
CH4+热量--->C+2H2
CxHy+热量-->XC+0.5YH2
以形成石墨晶体,所述石墨晶体具有多个通常平面的碳原子层,每一层具有六方构造的多个碳原子,且原子间距为0.142nm,相邻层之间的距离为0.335nm;
植入所述间隙剥落剂包括:
在80℃至100℃下在搅动下将所述石墨晶体浸入铬酸、硝酸、氯酸硫酸中的至少一种中8小时;
使用去离子洗涤浸入的石墨晶体,由此在相邻的碳原子层之间植入作为间隙剥落剂的水分子;
剥落所述前体包括:
在惰性气氛下在900℃的剥落温度下加热经洗涤的石墨晶体;
从所述石墨晶体去除作为蒸汽的水分子;
从所述惰性气氛持续清除经去除的水蒸气;和
将相邻层之间的距离扩展为大于0.335nm;
控制剥落剂浓度、剥落温度和剥落周期中的至少一种包括基于增强结构复合材料的目标密度、拉伸强度、压缩强度、剪切强度、屈服强度、脆性、比热、导热性而控制剥落剂浓度、剥落温度和剥落周期中的至少一种。
8.根据权利要求1至6中的任一项所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层彼此分隔一定距离;
剥落所述前体包括:
在惰性气氛下在900℃的剥落温度下加热经洗涤的石墨晶体;且
扩展相邻碳原子层之间的距离。
9.根据权利要求1至6中的任一项所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层彼此分隔一定距离;且
剥落所述前体包括将相邻碳原子层之间的距离扩展为大于0.335nm。
10.根据权利要求1至6中的任一项所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层彼此分隔一定距离;且
剥落所述前体包括:
在惰性气氛下在900℃的剥落温度下加热经洗涤的石墨晶体;
从所述石墨晶体去除作为蒸汽的水分子;
从所述惰性气氛持续清除经去除的水蒸气;和
将相邻层之间的距离扩展为大于0.335nm。
11.一种制备增强结构组件的方法,其包括:
形成前体,所述前体具有包含多个晶格层的晶体结构;
在所述多个晶格层的至少一些之间植入间隙剥落剂;
在剥落温度下使用所述植入的间隙剥落剂剥落所述前体;以及
围绕剥落前体中的多个晶格层的周边的至少一部分形成表面支撑材料。
12.根据权利要求11所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;且
形成表面支撑材料包括使用粘合剂将玻璃纤维附接至多个晶格层的周边的至少一部分上。
13.根据权利要求11所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;且
形成表面支撑材料包括将石墨膜的一个或多个层附接至多个晶格层的周边的至少一部分上。
14.根据权利要求11所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;且
形成表面支撑材料包括将粘结涂布的热解石墨膜的一个或多个层附接至多个晶格层的周边的至少一部分上。
15.根据权利要求11所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;
形成表面支撑材料包括将粘结涂布的热解石墨膜的一个或多个层附接至多个晶格层的周边的至少一部分上;且
所述方法还包括使用类金刚石碳、钎缝金属和钎缝金属合金中的至少一种涂布一个或多个石墨膜。
16.根据权利要求11所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;
形成表面支撑材料包括将粘结涂布的热解石墨膜的一个或多个层附接至多个晶格层的周边的至少一部分上;且
所述方法还包括使用类金刚石碳和钎缝金属材料中的至少一种涂布一个或多个石墨膜,所述钎缝金属材料包括、镍、钴和中的至少一种。
17.根据权利要求11所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;且
形成表面支撑材料包括将经涂布的石墨膜扩散结合至所形成的前体。
18.根据权利要求11所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;
形成表面支撑材料包括将粘结涂布的热解石墨膜的一个或多个层附接至多个晶格层的周边的至少一部分上;
所述方法还包括使用类金刚石碳涂布一个或多个石墨膜;且
所述方法还包括将类金刚石碳重排为石墨。
19.根据权利要求11所述的方法,其中:
形成前体包括形成石墨晶体,所述石墨晶体具有多个碳原子层,所述层沿着纵轴线排列,并彼此分隔一定距离;
形成表面支撑材料包括将粘结涂布的热解石墨膜的一个或多个层附接至多个晶格层的周边的至少一部分上;
所述方法还包括使用前体气体经由化学气相沉积用类金刚石碳涂布一个或多个石墨膜;且
所述方法还包括调节所述前体气体的化学,并用、氟、氢、磷和中的至少一种掺杂所述类金刚石碳。
20.一种制备增强结构组件的方法,其包括:
形成前体,所述前体具有包含多个晶格层的晶体结构;
剥落所述前体,由此扩展多个晶格层的相邻对之间的距离;以及
使用表面支撑材料围绕剥落前体中的各个晶格层的周边的至少一部分包覆剥落前体。
21.根据权利要求20所述的方法,其中包覆剥落前体包括使用粘合剂将玻璃纤维附接至多个晶格层的周边的至少一部分上。
22.根据权利要求20所述的方法,其中包覆剥落前体包括将石墨膜的一个或多个层包覆至多个晶格层的周边的至少一部分上。
23.根据权利要求20所述的方法,其中包覆剥落前体包括经由扩散结合将石墨膜的一个或多个层包覆至多个晶格层的周边的至少一部分上。
24.一种增强结构组件,其包括:
多个晶格层,所述晶格层各自具有六方排列的多个碳原子,所述晶格层的相邻对分隔大于0.335nm的距离;以及
表面支撑材料,所述表面支撑材料围绕各个晶格层的周边的至少一部分,且所述表面支撑材料包括一个或多个石墨膜。
25.根据权利要求24所述的增强结构组件,其中所述多个晶格层沿着纵轴线排列,且其中所述增强结构组件还包括沿着所述纵轴线延伸的孔。
26.根据权利要求24所述的增强结构组件,其中:
所述多个晶格层沿着纵轴线排列;
所述增强结构组件还包括沿着所述纵轴线延伸的孔;且
所述增强结构组件在所述孔中还包括加压流体
27.根据权利要求24所述的增强结构组件,其中:
所述多个晶格层沿着纵轴线排列;
所述增强结构组件还包括沿着所述纵轴线延伸的孔;且
所述增强结构组件还包括:
在所述增强结构组件的第一端处的扩口结构;
围绕与所述第一端相对的第二端处的增强结构组件的外表面的至少一个同心环;以及在所述增强结构组件的内表面上的低摩擦涂层,所述低摩擦涂层包含聚酰亚胺、PEEK和PTFE中的至少一个。

说明书全文

内部增强结构复合材料以及相关的制造方法

[0001] 相关申请的交叉引用
[0002] 本申请要求如下专利申请的优先权和权益:2010年2月13日提交的名称为FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE的美国临时申请No.61/304,403;2010年2月17日提交的名称为ELECTROLYTIC CELL AND METHOD OF USE THEREOF的美国专利申请No.12/707,651;2010年2月17日提交的名称为ELECTROLYTIC CELL AND METHOD OF USE THEREOF的PCT申请No.PCT/US10/24497;2010年2月17日提交的名称为APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS的美国专利申请No.12/707,653;2010年2月17日提交的名称为APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS的PCT申请No.PCT/US10/24498;2010年2月17日提交的名称为APPARATUS AND METHOD FOR GAS CAPTURE DURING ELECTROLYSIS的美国专利申请No.12/707,656;2010年2月17日提交的名称为APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS的PCT申请No.PCT/US10/24499;以及2009年8月27日提交的名称为ELECTROLYZER AND ENERGY INDEPENDENCE TECHNOLOGIES的美国临时专利申请No.61/237,476。这些申请的每一个以全文引用的方式并入。

技术领域

[0003] 本发明涉及内部增强结构复合材料、这种复合材料的合适用途,以及相关的制造方法。

背景技术

[0004] 在整个人类历史中,存在对强固、耐久和质轻的建筑材料的持续推动。然而,这种材料难以获得。例如,非常强固且耐久,但较重。在另一方面,木材相对轻质且耐久,但不是很强固。已被考虑的其他材料包括、玻璃、混凝土聚合物
[0005] 前述问题的一个解决方法是将轻质且耐久,但不是很强固的材料进行结构增强。例如,美国专利No.3,404,061公开了一种石墨材料,其具有压缩在一起的膨胀粒子而无粘合材料。然而,这种石墨材料不足够强固,且品质非常多变。在另一例子中,美国专利No.3,935,354公开了一种强固的致密-碳复合材料。然而,该碳-碳复合材料的缺点在于其生产需要设备和能量的大投资,且生产具有每质量碳所需结果的低产率。因此,增强复合结构材料的数个改进可能是所需的。
附图说明
[0006] 图1为示出一种制造根据所述技术的实施例的增强结构复合材料的方法的流程图
[0007] 图2A-2C为经历图1中的方法的某些阶段的前体的透视图。
[0008] 图3为配置成制造根据所述技术的实施例的增强结构复合材料的反应器的横截面图。
[0009] 图4A和4B为一种伸长结构的透视图,所述伸长结构掺入了根据所述技术的实施例的增强结构复合材料的实施例。
[0010] 图5A和5B为一种球拍的透视图,所述球拍掺入了根据所述技术的实施例的增强结构复合材料的实施例。
[0011] 图6为一种容器的横截面图,所述压力容器掺入了根据所述技术的实施例的增强结构复合材料的实施例。
[0012] 图7为图6中的压力容器的另一横截面图。
[0013] 图8为一种燃料喷射器的横截面图,所述燃料喷射器掺入了根据所述技术的实施例的增强结构复合材料的实施例。
[0014] 图9为一种管的横截面图,所述管阀掺入了根据所述技术的实施例的增强结构复合材料的实施例。
[0015] 图10为在根据所述技术的实施例的内开(inward open)应用中的管阀的横截面图。

具体实施方式

[0016] 本申请以全文引用方式并入如下申请的主题:2004年11月9日提交的名称为MULTIFUEL STORAGE,METERING AND IGNITION SYSTEM的美国 临时专利申 请No.60/626,021(代理人案卷号69545-8013US)和2009年2月17日提交的名称为FULL SPECTRUM ENERGY的美国临时专利申请No.61/153,253(代理人案卷号69545-8001US)。本申请也以全文引用的方式并入同时于2010年8月16日提交的如下美国专利申请的每一个的主题,所述美国专利申请的名称如下:METHODS AND APPARATUSES FOR DETECTION OF PROPERTIES OF FLUID CONVEYANCE SYSTEMS(代 理 人 案 卷 号 69545-8003US);
COMPREHENSIVE COST MODELING OF AUTOGENOUS SYSTEMS AND PROCESSES FOR THE PRODUCTION OF ENERGY,MATERIAL RESOURCES AND NUTRIENT REGIMES(代 理 人 案 卷号69545-8025US);ELECTROLYTIC CELL AND METHOD OF USE THEREOF(代理人案卷号
69545-8026US);SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED PRODUCTION OF RENEWABLE ENERGY,MATERIALS RESOURCES,AND NUTRIENT REGIMES(代理 人 案 卷号 69545-8040US);SYSTEMS AND METHODS FOR SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE ENERGY(代理人案卷号 69545-8041US);SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE MATERIAL RESOURCES(代理人案卷号69545-8042US);
METHOD AND SYSTEM FOR INCREASING THE EFFICIENCY OF SUPPLEMENTED OCEAN THERMAL ENERGY CONVERSION(SOTEC)(代理人案卷号69545-8044US);GAS HYDRATE CONVERSION SYSTEM FOR HARVESTING HYDROCARBON HYDRATE DEPOSITS(代理人案卷号69545-8045US);
APPARATUSES AND METHODS FOR STORING AND/OR FILTERING A SUBSTANCE(代理人案卷号
69545-8046US);ENERGY SYSTEM FOR DWELLING SUPPORT(代理人案卷号69545-8047US);和ENERGY CONVERSION ASSEMBLIES AND ASSOCIATED METHODS OF USE AND MANUFACTURE(代理人案卷号69545-8048US)。
[0017] 如下描述了内部增强结构复合材料的各种实施例、这种复合材料的合适用途,以及制造方法。本文所用的术语“剥落”通常指从关闭或折叠状态展开或打开粒子聚集体(例如分子层)的行为或操作。本领域技术人员也将了解所述技术可具有另外的实施例,且可在没有参照图1-10如下描述的实施例的若干细节下实施所述技术。
[0018] 图1为示出一种制造根据所述技术的实施例的增强结构复合材料的方法的流程图。在如下讨论中,使用石墨作为用于制造增强结构复合材料的例子。相关领域技术人员将了解如下讨论的方法的实施例也可适用于六方氮化(BN)和/或具有通常类似的晶体结构的其他材料。
[0019] 如图1所示,所述方法的初始阶段包括形成前体结构部件(方框1)。在一个实施例中,形成前体结构部件可包括通过如下分解甲烷和/或其他而形成单晶前体:
[0020] CH4+热量--->C+2H2
[0021] CxHy+热量-->XC+0.5YH2
[0022] 在其他实施例中,所述单晶前体可经由石墨转化和/或其他合适的技术而制得。
[0023] 不被理论所限制,据信用于前述反应的吸热热量需求为轻质石蜡(例如甲烷)的大约18至20Kcal/mol。所需的热量可由相同或类似的烃的燃烧提供。在某些实施例中,加热过程可通过来自合适的能量转化过程的废热进行补充。所产生的碳材料(例如石墨)的能含量很低。因此,相比于制备工字钢梁和桁架,需要更少的能量以制得具有更大强度和刚度的结构。
[0024] 在某些实施例中,所述前体可为具有合适横截面形状和长度的直圆柱体。例如,所述前体可包括圆柱体石墨晶体,其具有限定晶体横截面的多个基(或a-b)面,和沿着圆柱体的旋转轴线的c轴线,如参照图2A-2C如下更详细地讨论。在其他实施例中,所述前体也可包括方形、三形、矩形、六边形、八边形、椭圆形,和/或基于特定设计标准的不规则形状的横截面。在另外的实施例中,所述前体的横截面可具有圆角以降低应力梯级(stress riser)。适用于形成所述前体的数个实施例在如上并入的共同待审的申请中公开。
[0025] 本发明人已观察到,相比于其他材料,根据前述方法所形成的前体可具有优异的材料性质。例如,所述前体可在高温下具有高强度。所述前体可在高达约650℃的空气中耐化。所述前体可在室温下在基面中在任何方向上提供通常类似于(Cu)的导热性。所述前体也可沿着c轴线具有类似于陶瓷的导热性。热膨胀在基面中可较低,但在高温下(例如2200℃)沿着c轴线可变大(例如大接近12倍)。所述前体可在基面中具有高拉伸强度,但沿着c轴线可具有低拉伸强度。据信在基面中的键强度为约150-170Kcal/g原子。据信在基面之间沿着c轴线的范德华键能为约1.3至1.6Kcal/g原子。作为结果,可迫使基面分开以引起前体中的晶体结构的解理。
[0026] 在某些实施例中,形成前体结构复合材料也可包括基于目标结构构造和/或维度机械加工所形成的前体。例如,在一个实施例中,所述前体可被加工至接近净精准尺寸,并被研磨以产生所需的平滑度和饰面(finish)。在其他实施例中,所述前体可被铣削、切割、成形、细化、脱脂和/或机械改变。
[0027] 所述方法的随后阶段可包括制备用于剥落的前体(方框2)。在一个实施例中,所述前体可经受化学调节和随后的合。例如,可在约80℃至100℃下在搅动下将前体浸入合适的氧化介质(例如铬酸、硝酸、氯酸硫酸和/或它们的组合)中一段时间(例如8小时)。在某些实施例中,也可在更高温度下(例如约150℃至180℃)将所述前体加压(例如在10个大气压下或更高)。然后可在蒸馏水或去离子水中洗涤所述前体,以去除氧化介质并水合所述前体。在其他实施例中,可使所述前体经受水合和/或其他合适的操作以植入间隙分子而不进行化学调节。在另外的实施例中,所述方法也可包括中和氧化介质和/或其他合适的操作。在另外的实施例中,可省略制备用于剥落的前体的阶段。
[0028] 据信石墨晶体(至少α形式)具有层状结构。在每一层(或基面)中,碳原子以六方晶格排列,原子间距为0.142nm。所述六方晶格的相邻层分隔0.335nm的距离。据信通过用前述氧化介质处理石墨晶体,基面可被扩展,且小分子(例如水、氢、氧、氮、氩、、磷、硼、氟、金属等)可被“夹在”所述六方晶格的层之间。具有“夹入”分子的石墨晶体通常称为插层石墨。
[0029] 如图1所示,所述方法的另一阶段可包括基于目标密度和/或强度剥落所述前体以形成增强结构复合材料(方框3)。在一个实施例中,可在惰性气氛中在剥落高温(例如900℃)下的炉中快速加热所制得的前体,并从前体持续去除排放物(例如水蒸气)。
[0030] 据信前体的快速均匀加热可至少由石墨晶体的基面中的高导热性而得以促进。基面中的高导热性允许水和/或其他间隙分子的快速加热。作为结果,水和/或其他间隙分子(总称为剥落剂)突然膨胀、蒸发和/或体积增大,并由此引起基面沿着c轴线显著扩展(例如约100至300倍)。因此,所述前体可大大扩展以形成增强结构复合材料,所述增强结构复合材料具有低密度和在扩展基面中的小的残余应力。在某些实施例中,所述前体可包括中心孔,并可将针和/或其他支撑结构插入所述中心孔中,以在剥落操作过程中协助保持基面堆叠。所述针和/或其他支撑结构也可在剥落操作过程中用作中心热源,以用于改进向前体的热传递。在其他实施例中,所述前体可经由射频辐射电阻加热和/或其他合适的加热技术进行剥落。
[0031] 在某些实施例中,剥落操作可包括基于增强结构复合材料的目标密度、比热、导热性、结构和其他性质而剥落每隔一个基面,剥落每隔二个基面,剥落每隔三个基面等。例如,在一个实施例中,通过调节剥落剂的浓度,可获得平均目标剥落百分比(例如50%、33.3%、25%和/或其他合适的百分比值)。在其他实施例中,剥落操作也可包括基于增强结构复合材料的目标性质而调节剥落温度、剥落持续时间和/或其他合适的操作参数中的至少一个。
[0032] 在其他实施例中,剥落操作也可包括基于增强结构复合材料的目标密度和/或其他性质而将所述前体冷却至所需加工温度(例如600℃),并经由沿着c轴线的压制成型而闭合扩展晶体。取决于增强结构复合材料的目标强度,所得增强结构复合材料可具有约0.08g/cc或更小的密度,或可具有高达约2.00g/cc或更大的密度。通常,据信密度越高,增强结构复合材料的拉伸强度和压缩强度越大。在另外的实施例中,可提供炉夹具和/或具有止挡(stop)的中心针,以限制初始扩展程度并在剥落操作过程中直接产生所需的密度。
[0033] 在形成增强结构复合材料之后,所述方法可任选地包括后处理所形成的增强结构复合材料(方框4)。在某些实施例中,所形成的增强结构复合材料可安装有热交换器套管、轴向增强棒和/或其他合适的部件。数个例子在美国专利申请No.08/921,134和No.09/370431中描述,所述申请的公开内容以全文引用的方式并入本文。
[0034] 在其他实施例中,可通过在增强结构复合材料上形成表面支撑材料而将所形成的增强结构复合材料稳定化。所述表面支撑材料可基于特定应用结果(如压力安全壳(containment))、截面模量/所得桁架重量的最大化、载荷分布和冲击力的吸收、向基面之间的体积内外的热传递,和/或其他合适的结果而进行选择。
[0035] 在一个实施例中,所述表面支撑材料可包括由环氧树脂和/或其他合适的粘合剂涂布的玻璃纤维碳纤维。这种表面支撑材料可沿着c轴线或在增强结构复合材料的c轴线的60°内层叠,以用于稳定间隔开的基面。在另一实施例中,所述表面支撑材料可包括石墨膜的一个或多个层(例如厚度为约5-50μm的粘结涂布的热解石墨膜)。由于热解石墨膜在所有方向上具有高强度,因此所得复合材料结构可具有低粘结剂含量和低表面膜各向异性
[0036] 石墨膜可具有各种表面性能。例如,当需要高强度、高温度和/或高传热性能时,石墨膜可由类金刚石碳、合适的钎缝金属或金属合金(例如铜、镍、钴、铝或它们的组合)涂布。然后可将经涂布的增强结构复合材料进行热处理,以将增强结构复合材料扩散结合或钎焊结合至石墨膜。扩散结合提供石墨膜彼此之间的高完整性,以及增强结构复合材料与石墨膜之间的良好传热和载荷转移。
[0037] 在其中石墨膜包括类金刚石碳涂层的实施例中,将经涂布的增强结构复合材料进行热处理可包括在热处理过程中将类金刚石碳重排为石墨。作为结果,类金刚石碳涂层可用于将石墨膜的短条带结合至具有目标长度的长条带。在热处理过程中由类金刚石碳自发重排为石墨也可提供用于将表面支撑材料扩散结合至增强结构复合材料的活化能。
[0038] 可使用前体气体经由化学气相沉积和/或其他合适的技术将类金刚石碳涂布至石墨膜上。前体气体的化学可调节为用氧、氟、氢、磷、硅和/或其他合适的掺杂剂掺杂类金刚石涂层。作为结果,可基于最终产品的目标物理和电性质控制扩散结合过程。在其他实施例中,可经由直接离子束源沉积形成类金刚石涂层。在另外的实施例中,可使用合适的有机或陶瓷闭孔泡沫或硬化塑料将增强结构复合材料的外表面绝缘。在前述实施例的至少一些中,当增强结构复合材料在真空下同时表面支撑材料在压力下时,表面支撑材料可在增强结构复合材料上形成。
[0039] 图2A-2C为经历图1中的方法的某些阶段的前体5的透视图。如图2A所示,前体5包括沿着c轴线延伸的多个基面6(分别各自标记为第一、第二和第三基面6a、6b和6c)。
基面6通常彼此平行。相邻的基面6a、6b和6c具有第一间距D1(例如0.142nm)。为了说明的目的,在图2A-2C中示出各自具有圆形形状的三个基面6a、6b和6c。在其他实施例中,前体5可包括任何合适数目的基面。
[0040] 如图2B所示,在经历使用任选的在前化学调节进行水合之后,前体5可包括“夹在”相邻基面6之间的多个剥落剂7。如上所讨论,剥落剂7可包括水、氢、氧、氮、氩、硅、磷、硼、氟、金属和/或它们的组合。在某些实施例中,可通过调节水合时间、化学调节周期、化学调节组成和/或前体制备操作的其他合适的操作参数中的至少一个来控制剥落剂7的浓度和/或组成。
[0041] 如图2C所示,在剥落操作之后,剥落剂7膨胀,并任选地从前体5中的间隙空间中去除。剥落剂7的膨胀导致基面6具有大于第一间距D1的第二间距D2。在某些实施例中,第二间距D2可比第一间距D1大300倍、200倍或100倍。在其他实施例中,第二间距D2可与第一间距D1具有其他关系。如上文参照图1所讨论,可基于增强结构复合材料的目标密度、拉伸强度、压缩强度、剪切强度、屈服强度、脆性、比热、导热性、结构和其他性质来调节相邻基面6之间的间距。
[0042] 图3为配置成制造根据所述技术的实施例的增强结构复合材料的反应器100的横截面图。如图3所示,反应器100可包括陶瓷支架104、电阻管106和两个冷却盘110(为了清晰,仅在图3中示出一个冷却盘110)。尽管在图3中仅显示特定的部件,在其他实施例中,反应器100可包括其他合适的机械和/或电组件。
[0043] 如图3所示,电阻管106可包括配置成接收前体102和支架104的第一端106a。电阻管106也可包括联接至冷却盘110的第二端106b。合适的电阻管材料包括碳、多晶石墨、二硅化钼、碳化硅、单晶石墨,和/或具有足够的抗热震性并能够持续加热至约1,000℃的合适材料的其他材料。在某些实施例中,可通过围绕电阻管106设置反射材料的箔和/或通过用高温陶瓷羊毛包覆电阻管106而使电阻管106热绝缘。
[0044] 电阻管106也包括导体108(例如铜、铝等)。可通过使水或其他合适的冷却剂经过冷却盘110中的端口120和通道122而冷却导体108。可由O型环112和114密封水或其他合适的冷却剂。可通过冷却盘110中的端口116将保护气氛提供至电阻管106的内部,所述保护气氛可为真空或保护气体(例如二氧化碳、氩气和/或其他惰性气体)。可通过冲洗保护气体和/或通过去除至真空而去除在前体102的剥落过程中排出的剥落剂。保护气氛可通过经端口124注入二氧化碳、氩气和/或其他惰性气体而在电阻管106的外部提供,并通过围绕顶盘和底盘110包覆的通常非渗透性的绝缘膜128(例如结合的陶瓷毡)而被保持在适当的位置,以及通过在冷却盘110上的至少一个周向夹具(未显示)而被保持在适当的位置。
[0045] 在一个实施例中,可使用三个或任何其他所需数量的高温超合金螺栓117(仅显示一个)将电阻管106保持在冷却盘110之间。螺栓117可与绝缘体118电绝缘。可通过合适的电缆螺母垫圈弹簧垫圈(未显示)附接传递交流电或直流电的电缆。匹配螺纹126允许电缆螺母上紧,以确保电缆与导体108之间的低电阻接触。反应器100也可包括弹簧垫圈130(显示一个),以适应电阻管106的热膨胀和收缩。可将弹簧垫圈130置于绝缘体118和冷却盘110上。
[0046] 在操作中,可将前体102(例如通常类似于图2A中的前体5)安装在支架104上,并一起插入电阻管106的内孔中(如假想线所示)。然后通过如下方式加热电阻管106:将电流从接近电阻管106的第二端106b的导体108经过电阻管106传至接近电阻管106的第一端106a的另一导体108(未显示)。
[0047] 参照图1-2C如上讨论的增强结构复合材料的数个实施例可在广泛的技术领域中具有应用。例如,增强结构复合材料的数个实施例可用于构建用于交通应用的桁架组件。相比于常规材料(如铝合金、钢和常规复合材料),这种桁架组件可具有更低整备重量、更长寿命和改进的安全性。在另一实例中,增强结构复合材料的数个实施例可用于构建飞机机翼、方向襟翼、扰流器、短舱部件、乘客座组件、内部面板和/或其他飞机组件。由于高疲劳寿命和高耐久强度,因此这种飞机部件重量更轻、更强固,且持久更长。类似地,增强结构复合材料的数个实施例也可用于几乎所有的运输系统(从滚轴溜至轨道列车),以生产更刚性、更高强度、更低重量和更长寿命的部件。使用增强结构复合材料的数个实施例构建的装置的数个具体实例参照图4A-10如下讨论。
[0048] 图4A和4B为一种伸长结构的透视图,所述伸长结构掺入了根据所述技术的实施例的增强结构复合材料的实施例。在一个实施例中,伸长结构10可为撑杆。在其他实施例中,伸长结构10可为滑杖、远足杆、高尔夫球棒、护胫、护面罩、头盔、球棒、鞋和/或任何其他合适的结构。如图4A所示,在某些实施例中,伸长结构10包括增强结构复合材料12和附接于其上的表面膜14。
[0049] 在其他实施例中,如图4B所示,伸长结构10也可包括端口18和在增强结构复合材料12中的任选的内腔(未显示)。在使用中,所述伸长结构的刚度可通过加压由增强结构复合材料12和附接的表面膜14形成的内部空间而进行调节。装料口18允许基于目标刚度增加或减少内部压力。在另外的实施例中,伸长结构10的挠性、强度和/或其他特性也可通过调节增强结构复合材料的基面6(图2A-2C)之间的间距而进行控制。极限强度以及在基面6的所有方向上提供强度的能力提供了安全系数,同时允许基于局部条件和/或其他合适的参数精确调节伸长结构10的特性。
[0050] 图5A和5B为一种球拍20的透视图,所述球拍20掺入了根据所述技术的实施例的增强结构复合材料的实施例。在一个实施例中,球拍20可为网球拍。在其他实施例中,球拍20可为羽毛球拍和/或其他合适类型的球拍。如图5A所示,球拍20包括附接头部23和/或与头部23一体形成的柄21,它们中的至少一个可由如上讨论的增强结构复合材料22的数个实施例构建。在某些实施例中,纤维24(例如经环氧树脂涂布)可用于稳定增强结构复合材料22。作为结果,柄21和/或头部23可具有用于张紧弦26的高截面模量。在其他实施例中,如图5B所示,柄21可包括与装载口34流体连通的内部空间25。在使用过程中,可使用流体(例如空气)加压球拍20的柄21,以通过增加复合材料的周长和每根弦
26横贯的距离而张紧弦26。
[0051] 图6为一种压力容器80的横截面图,所述压力容器80掺入了根据所述技术的实施例的增强结构复合材料的实施例。图7为图6中的压力容器80的另一横截面图。如图6所示,压力容器80包括增强结构复合材料87,以及钻孔通过所述增强结构复合材料87以容纳具有射孔86的合适的多孔管或金属丝布78的中心孔81。增强结构复合材料87可包括沿着内孔81纵向延伸的多个基面88。在剥落过程中,多孔管或金属丝布78可使基面88保持在适当位置,提供对压力容器80的纵向增强,并通过射孔86使流体循环进出基面88。
压力容器80也可包括具有间隔的配件82和84,所述间隔设计为允许晶体剥落至所需的基面间距。另外的传热和/或流体输送可由管(未显示)提供,所述管在压力容器80中基本上垂直于基面88通过。
[0052] 在剥落之后,基面88的外周边可使用粘合剂或扩散钎焊配方(未显示)涂布,并被包在合适的低渗透性膜90内。剥落基面88可由此形成对膜90的高强度径向增强。合适的粘合剂可包括热固性组合物(例如环氧树脂、树脂、三聚氰胺甲醛树脂、有机硅和加成型聚酰亚胺)、含有硅氧烷的组合物、热塑性塑料(例如芳族聚酯、不饱和聚酯和聚醚酰亚胺)。基面88的外周边也可被涂布以用于扩散结合(例如类金刚石材料)。用于膜90的合适材料包括石墨箔、拉深或旋压成形(spin formed)、铝、不锈钢电铸镍,和/或其他合适的材料。膜90也可包括复合材料膜,所述复合材料膜具有聚对苯二甲酸乙二醇酯、乙烯三氟氯乙烯、聚偏二氟乙烯和聚烯烃的金属化薄膜。合适的金属化材料包括铁、铝、钛、铬、镍或它们的合金。在另外的实施例中,碳沉积物也可用于将基面88结合至膜90,所述碳沉积物包括描述于“Dual Ion Beam Deposition of Carbon Films with Diamond Like Properties”(NASA TM-83743)中的那些,其公开内容以全文引用的方式并入本文。
[0053] 在某些实施例中,可通过在膜90上引入散热器92来控制向/从压力容器80的传热。如图7所示,散热器92可包括由绝缘膜94覆盖的波状散热片,以形成具有入口89a和出口89b(图6)的通道96的蜂窝。传热流体可通过通道96进行循环。合适的传热流体可包括氢气、空气、水、发动机废气和其他传热。例如,在某些实施例中,当燃料气体作为吸收的单层以及作为单层之间的“捕获”气体被装入储存器中时,可将经过滤的环境温度空气循环通过通道96以从基面88去除热量。术语“捕获”通常指已进入剥落基面88上的单层之间的空间,传递能量至基面88,并因此具有降低的蒸汽压的气体。
[0054] 适用于绝缘膜94的材料包括可被发泡、层压、增强或不增强的热塑性和热固性化合物。在某些实施例中,散热器92可经由扩散结合或冶金结合在膜90的圆柱形部分上形成,并在膜90的端部的一部分上延续。在其他实施例中,散热器92可具有其他构造。
[0055] 在某些实施例中,可通过在膜90上施用高强度粗纱、纱和/或纤维而纵向增强基面88。在具有散热器92的实施例中,可将轴向增强粗纱98施用至散热器92的波状表面上,从而允许散热器92的波状表面用作抵靠在膜90上的载荷分布器,并同时避免妨碍膜90与散热器92之间的热交换。合适的高强度增强纱和缆线可由硼、氮化硼、碳、石墨、玻璃、碳化硅、耐火金属和/或陶瓷纤维制成。环氧树脂、聚酰胺清漆和/或其他合适的粘附和基质树脂可适于用作纱和缆线上的粘附涂层。
[0056] 图8为一种燃料喷射器400的横截面图,所述燃料喷射器400掺入了根据所述技术的实施例的增强结构复合材料的实施例。燃料喷射器400的数个实施例克服了许多现代柴油机的困难问题,现代柴油机将柴油燃料喷射器端口的尺寸局限至直径约8.4mm(0.33”)。如图8所示,燃料喷射器400包括固定点火导体404(例如Liz线束或导电杆)。在某些实施例中,可将缆线组406(例如纤维光缆)设置于点火导体404中以监测燃烧活动。
[0057] 缆线组406可与固定共轴管408绝缘。在一个实施例中,绝缘管408可由如上并入的共同待审的申请所公开的陶瓷绝缘体构建。在其他实施例中,绝缘管408可由其他合适的材料构建,所述材料可在高达约1000°F的温度下容纳80KV DC或AC。在另外的实施例中,绝缘管408也可用作低摩擦中心轴轴承面,其用于引导管阀410以及共轴柱塞414的单向运动。柱塞414为正常关闭的,以迫使管阀410在抵靠阀座412的扩口区域处保持在闭合位置。这样,形成外开阀
[0058] 在操作中,施加至固定端424的点火电压被传导至点火导体404,以产生电离燃料的等离子体放电气浪,当所述电离燃料被注入燃烧室428时其被迅速加速。等离子体产生点火导体404包括中心固定电极406,其中等离子体可通过针状部件(例如尖头螺纹440)和端口内孔402的内径而启动。不同于使用高频率AC以消除等离子体腐蚀(在如上并入的共同待审的申请中所公开),可使用薄电极内衬403以保护内孔402。
[0059] 在某些实施例中,为了降低惯性、获得高强度和刚性,和高疲劳耐久强度的目的,管阀410可包括增强结构复合材料。例如,图9为管阀410的横截面图,其显示为图9中的管阀600,所述管阀600掺入了根据所述技术的实施例的增强结构复合材料的实施例。如图9所示,相对较低密度的间隔石墨结构芯602提供了所需几何。芯602可在一端包括阀座614,并在第二端包括结合至表面606的外部的一个或多个设备(provision),如同心管608和/或610。芯602也可包括在管状弹性体(例如氟硅氧烷)的内表面上形成的合适的低摩擦涂层604(例如聚酰亚胺、PEEK、聚对二甲苯H或PTFE共聚物)。可将所述弹性体施用至用于内开阀操作的扩口阀表面612。可将高强度材料(如石墨长丝增强的聚酰亚胺或具有热固性粘合剂的石墨带)施用至外表面606。
[0060] 参照图8和9,对于外开阀操作,可将具有整合(conforming)形状的弹性体密封件(例如氟硅氧烷、全氟弹性体,或其他氟化弹性体)施用至阀密封件614。一个或多个设备(如同心管608和/或610)在诸如432和/或430的位置结合至表面606的外部,从而用于允许柱塞414施加单向力以将阀410快速推出阀座412,并在压缩弹簧432将柱塞414返回至常闭位置时关闭管阀410。
[0061] 可按所需递送燃料流,包括从配件442经过或围绕用于操作柱塞414的系统(如压电或螺线管绕组426),然后经过端口444以进入同心流道446。流道446可通过长导程螺旋422在合适的陶瓷或聚合物绝缘体418与绝缘体管408之间支撑和间隔,所述长导程螺旋422由例如PTFE或PEEK单丝构建。
[0062] 当通过柱塞414打开管阀410时,燃料流向燃烧室428,并被部分或基本上电离。在末端424的电离电压、高电压缆线组件436和绝缘体438可在针状部件(例如螺纹440)之间产生高电压以引发电离。当在等离子体中产生多得多的离子时,电离随后快速传播。然后离子可向外行进以推动燃料经过界面至燃烧室而进入剩余空气。因此,可实现或多或少的绝热分层充气燃烧的绝缘。
[0063] 如图10所示,当响应冲击同心部件610的柱塞620而需要燃料输送时,内开管阀500系统包括芯组件600,所述芯组件600提供来自阀座618的开口密封件612。在柱塞620通过运动经过单向距离D1而获得动能之后,将同心部件610结合至管表面606以将张力施加至打开阀500。当柱塞620进一步运动远离固定永久磁铁622D2的距离时,管阀500移动至来自阀座618的开口密封件612(D2-D1)。陶瓷640提供高电压安全壳并支撑陶瓷管408’。
合适的金属合金盖642将陶瓷端盖640保持在适当位置。
[0064] 至少管阀500的管状部分616可由轻质但强固的石墨结构芯616构建,所述石墨结构芯616通过碳-碳层增强。芯616的结构可通常类似于图4A中的伸长结构10。所述碳-碳层可由碳给体(例如石油沥青,或热塑性塑料,如聚烯烃或PAN)的合适前体施用而制得。在产生碳-碳层630的所需厚度之后,端部632可上螺纹以提供对屏蔽盖634的合适附接。射频屏蔽和保护650可通过碳-碳外层630提供。另外的保护可通过具有合适的合金(如镍合金)的电表面636建立,所述电镀表面636可通过合适的钎焊合金组合物而被钎焊至螺纹部分640。
[0065] 在大发动机中,拥挤的进气和排气阀机构机制要求在端口402(图8)与阀操纵器组件426和414(图8)之间12”至36”的间隔距离。管420(图8)和外壳460(图8)可被制得为在内径和外径上具有碳-碳层的低密度间隔石墨结构芯。这种部件可通过螺纹或通过使用合适的合金钎焊而结合。
[0066] 如上讨论的燃料喷射器400的数个实施例可用于配置成燃烧氢特性燃料(例如)或具有低能量密度的其他燃料(例如一氧化碳和氢气)(其能量密度可比柴油少3000倍)的发动机中。例如,当运输液体甲烷、丙烷、氨、甲醇和/或其他商品的远洋油轮的发动机配备有燃料喷射器400的数个实施例时,其可节省操作成本。在一个实施例中,可如下使用来自发动机的废热重整运载的商品:
[0067] 2NH3--->3H2+N2
[0068] CH3OH--->CO+H2
[0069] 这可通过如下实现:将推进发动机(包括热力发动机,如压缩点火柴油型发动机,各种旋转式内燃机燃气轮机)转化为操作可通过吸热反应由这种商品重排的燃料,其中使用由这种热力发动机排出的热量以驱动这种反应。在其他实施例中,燃料喷射器400的数个实施例也可用于电厂、化工厂,和/或具有产热发动机的其他合适的地点。
[0070] 使用由发动机排出的热量的热-化学再生提供了有吸引力的燃料节省,因为相比于氢特性燃料的原料,产生的氢特性燃料产出多15至30%的能量。另外,燃料喷射器400的实施例允许氢特性燃料比柴油或船用燃料燃烧快高达12倍,由此大大改进了发动机效率并消除了发动机废气中的微粒。
[0071] 根据前述,应了解为了说明的目的在本文描述了所述技术的具体实施例,但在不偏离本发明下可进行各种修改。除了其他实施例的元件之外或代替其他实施例的元件,一个实施例的许多元件可与其他实施例组合。因此,除了通过所附权利要求书限制本发明之外,本发明不受限制。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈