首页 / 专利库 / 物理 / 波长 / 一种医用465nm、532nm双波长光纤输出激光器

一种医用465nm、532nm双波长光纤输出激光器

阅读:569发布:2022-12-28

专利汇可以提供一种医用465nm、532nm双波长光纤输出激光器专利检索,专利查询,专利分析的服务。并且一种医用465nm、532nm双 波长 光纤输出 激光器 ,在532nm激光输出光纤尾段设置532nm分束光纤圈,引一路532nm经532nm激光输出端输出,设置465nm四波混频周期极化铌酸锂激光 谐振腔 , 信号 光465nm、闲频光1500nm、 泵 浦光I 1064nm与泵浦光II 532nm进入465nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,使信号光465nm发生、增益,信号光465nm经465nm聚焦耦合输出镜耦合到465nm输出光纤,输出465nm激光输出,最后输出465nm、532nm双波长激光输出。,下面是一种医用465nm、532nm双波长光纤输出激光器专利的具体信息内容。

1.一种医用465nm、532nm双波长光纤输出激光器,其特征为,设置465nm四波混频周期极化铌酸锂激光谐振腔,设置532nm分束光纤圈,设置信号光465nm、闲频光1500nm、浦光I 1064nm与泵浦光II 532nm发生四波混频的周期极化铌酸锂激光谐振腔的结构,在465nm四波混频周期极化铌酸锂激光谐振腔输出端设置465nm聚焦耦合输出镜耦合接入465nm输出光纤,闲频光1500nm、泵浦光I 1064nm与泵浦光II 532nm与来源于三波长参量耦合传输光纤及三波长参量耦合器,在532nm输出光纤的尾段设置532nm分束光纤圈,设置532nm分束光纤圈的532nm激光输出端。

说明书全文

一种医用465nm、532nm双波长光纤输出激光器

[0001] 技术领域:
[0002] 本实用新型涉及激光器与应用技术领域。背景技术:
[0003] 465nm、532nm双波长激光,是用于医用光谱检测、激光源、物化分析等应用的激光,它可作为医用光纤传465nm、532nm双波长感器的分析检测等应用光源,它还用于医用光通讯等激光与光电子领域;光纤激光器作为第三代激光技术的代表,具有玻璃光纤制造成本低与光纤的可饶性、玻璃材料具有极低的体积面积比,散热快、损耗低与转换效率较高等优点,应用范围不断扩大。实用新型内容:
[0004] 一种医用465nm、532nm双波长光纤输出激光器,在532nm激光输出光纤尾段设置532nm分束光纤圈,引一路532nm经532nm激光输出端输出,设置465nm四波混频周期极化铌酸锂激光谐振腔信号光465nm、闲频光1500nm、浦光I1064nm与泵浦光II 532nm进入
465nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,使信号光465nm发生、增益,信号光465nm经465nm聚焦耦合输出镜耦合到465nm输出光纤,输出465nm激光输出,最后输出465nm、532nm双波长激光输出。
[0005] 方案一、465nmmmm四波长光纤激光器结构。
[0006] 一种医用465nm、532nm双波长光纤输出激光器,设置465nm四波混频周期极化铌酸锂激光谐振腔,设置465nm四波混频周期极化铌酸锂激光谐振腔,从其输入端依次设置三波长输入镜465nm四波混频周期极化铌酸锂激光晶体、465nm输出镜、465nm聚焦耦合输出镜、465nm输出光纤,在532nm输出光纤的尾段设置532nm分束光纤圈,设置532nm分束光纤圈的532nm激光输出端,设置信号光465nm、闲频光1500nm、泵浦光I 1064nm与泵浦光II 532nm发生四波混频的周期极化铌酸锂激光谐振腔的结构,闲频光1500nm、泵浦光I1064nm与泵浦光II 532nm与来源于三波长参量耦合器,将1064nm输出光纤、532nm输出光纤与1500nm输出光纤耦合接入三波长参量耦合器,最后输出465nm波长激光。
[0007] 方案二、设置532nm分束光纤圈
[0008] 在532nm输出光纤的尾段设置532nm分束光纤圈,设置532nm分束光纤圈的532nm激光输出端。
[0009] 方案三、设置1500nm周期极化铌酸锂激光参量振荡谐振腔
[0010] 设置1500nm周期极化铌酸锂激光参量振荡谐振腔,从其输入端起依次设置:三级光纤输入镜、1064nm参量振荡基频激光晶体、参量振荡输入镜、1500nm周期极化铌酸锂激光晶体、1500nm输出镜28与输出端的1500nm聚焦耦合输出镜,由此构成1500nm周期极化铌酸锂激光参量振荡谐振腔.
[0011] 方案四、设置532nm倍频谐振腔
[0012] 设置532nm倍频谐振腔,从其输入端起依次设置:二级输入镜、1064nm基频激光晶体、532nm倍频晶体、532nm输出镜21与输出端的532nm聚焦耦合输出镜,由此构成532nm倍频谐振腔。
[0013] 方案五、设置1064nm谐振腔
[0014] 设置1064nm谐振腔,设置1064nm谐振腔,从其输入端起依次设置:一级输入镜、1064nm激光晶体、1064nm输出镜11与输出端的1064nm聚焦耦合输出镜,由此构成1064nm谐振腔。
[0015] 方案六、设置三级光纤结构
[0016] 设置三级光纤结构,三级光纤结构由一级光纤圈、二级光纤圈与三级光纤圈连接一体而成,一级光纤圈通过808nm泵浦耦合器连接在半导体模上,半导体模块由半导体模块电源供电,上述全部光学元件都安装在光学轨道及光机具上,在光学轨道及光机具上设置扇3。
[0017] 方案五、工作过程
[0018] 半导体模块电源供电给半导体模块供电,半导体模块发射808nm激光经808nm泵浦耦合器耦合进入一级光纤圈,从而进入三级光纤结构的二级光纤圈与三级光纤圈,808nm激光在三级光纤结构中得到增益,从由三级光纤圈引出三级光纤输出端,输入808nm激光进入1500nm周期极化铌酸锂激光参量振荡谐振腔,经1500nm周期极化铌酸锂激光参量振荡谐振腔的1064nm参量振荡基频激光晶体生成的1064nm激光去泵浦光学参量振荡生成1500nm激光,经1500nm聚焦耦合输出镜耦合到1500nm输出光纤中,由其输入1500nm激光到三波长参量耦合器中;从由二级光纤圈引出二级光纤输出端,输入808nm激光进入532nm倍频谐振腔,经532nm倍频谐振腔的1064nm基频激光晶体生成1064nm基频经532nm倍频谐振腔发生倍频输出532nm激光,经532nm聚焦耦合输出镜耦合到 532nm输出光纤中,由其输入532nm激光到三波长参量耦合器中;从由一级光纤圈引出一级光纤输出端,输入808nm激光进入1064nm谐振腔,1064nm谐振腔生成1064nm基频激光,经1064nm聚焦耦合输出镜耦合到1064nm输出光纤中,由其输入1064nm激光到三波长参量耦合器中;从而,1500nm激光、1064nm激光与532nm激光经三波长参量耦合器耦合进入465nm四波混频周期极化铌酸锂激光谐振腔,信号光465nm、闲频光1500nm、泵浦光I 1064nm与泵浦光II 532nm发生四波混频效应,使信号光465nm发生、增益,信号光465nm经465nm聚焦耦合输出镜耦合到
465nm输出光纤,输出465nm激光输出,在532nm输出光纤的尾段设置的532nm分束光纤圈分束输出532nm激光,经输出端输出532nm。
[0019] 本实用新型的核心内容:
[0020] 一种医用465nm、532nm双波长光纤输出激光器,设置465nm四波混频周期极化铌酸锂激光谐振腔,设置532nm分束光纤圈,设置信号光465nm、闲频光1500nm、泵浦光I1064nm与泵浦光II 532nm发生四波混频的周期极化铌酸锂激光谐振腔的结构,在465nm四波混频周期极化铌酸锂激光谐振腔输出端设置465nm聚焦耦合输出镜耦合接入465nm输出光纤,闲频光1500nm、泵浦光I 1064nm与泵浦光II 532nm与来源于三波长参量耦合传输光纤及三波长参量耦合器,在532nm输出光纤的尾段设置532nm分束光纤圈,设置532nm分束光纤圈的532nm激光输出端。
[0021] 在532nm激光输出光纤尾段设置532nm分束光纤圈,引一路532nm经532nm激光输出端输出,信号光465nm、闲频光1500nm、泵浦光I 1064nm与泵浦光II532nm进入465nm四波混频周期极化铌酸锂激光谐振腔,发生四波混频效应,使信号光465nm发生、增益,信号光465nm经465nm聚焦耦合输出镜耦合到465nm输出光纤,输出465nm激光输出,形成465nm、532nm双波长光纤输出。
附图说明:
[0022] 附图为本专利的结构图,附图其中为:1、光学轨道及光机具,2、半导体模块,3、风扇,4、808nm泵浦耦合器,5、半导体模块电源,6、一级光纤圈,7、一级光纤输出端,8、一级光纤耦合器,9、一级输入镜,10、1064nm激光晶 体,11、1064nm输出镜,12、聚焦耦合输出镜,13、1064nm输出光纤,14、1064nm谐振腔,15、二级光纤圈,16、二级光纤输出端,17、二级光纤耦合器,18、532nm聚焦耦合输出镜,19、532nm输出光纤,20、532nm倍频晶体,21、532nm输出镜,22、1064nm基频激光晶体,23、二级输入镜,24、532nm倍频谐振腔,25、三级光纤圈,
26、1500nm输出光纤,27、1500nm聚焦耦合输出镜,28、1500nm输出镜,29、1500nm周期极化铌酸锂激光晶体,30、参量振荡输入镜,31、1064nm参量振荡基频激光晶体,32、三级光纤输入镜,33、三波长参量耦合器,34、三级光纤耦合器,35、1500nm周期极化铌酸锂激光参量振荡谐振腔,36、三级光纤输出端,37、三波长参量耦合传输光纤,38、465nm四波混频周期极化铌酸锂激光谐振腔,39、三波长输入镜,40、465nm四波混频周期极化铌酸锂激光晶体,
41、465nm输出镜,42、465nm聚焦耦合输出镜,43、465nm输出光纤,44、465nm激光输出,45、
532nm激光输出端,46、532nm分束光纤圈,47、三级光纤结构。
具体实施方式:
[0023] 设置465nm四波混频周期极化铌酸锂激光谐振腔38,设置532nm分束光纤圈46,设置信号光465nm、闲频光1500nm、泵浦光I 1064nm与泵浦光II 532nm发生四波混频的周期极化铌酸锂激光谐振腔38的结构,在465nm四波混频周期极化铌酸锂激光谐振腔38输出端设置465nm聚焦耦合输出镜42耦合接入465nm输出光纤43,在532nm输出光纤26的尾段设置532nm分束光纤圈46,设置532nm分束光纤圈46的532nm激光输出端45,闲频光1500nm、泵浦光I 1064nm与泵浦光II 532nm与来源于三波长参量耦合传输光纤37,三波长参量耦合传输光纤37的前面设置三波长参量耦合器33,将1064nm输出光纤13、532nm输出光纤19与1500nm输出光纤26耦合接入三波长参量耦合器33,设置1500nm周期极化铌酸锂激光参量振荡谐振腔35,1500nm周期极化铌酸锂激光参量振荡谐振腔35通过其输出端的1500nm聚焦耦合输出镜27接入到1500nm输出光纤26中,1500nm周期极化铌酸锂激光参量振荡谐振腔35的输入端通过三级光纤耦合器34接在三级光纤输出端36上,三级光纤输出端36由三级光纤结构47的三级光纤圈25引出;设置532nm倍频谐振腔24,532nm倍频谐振腔24通过其输出端的532nm聚焦耦合输出镜18接入到532nm输出光纤19中,
532nm倍频谐振腔 24通过其输入端的二级光纤耦合器17接在二级光纤输出端16上,二级光纤输出端16从三级光纤结构47的二级光纤圈15上引出;设置1064nm谐振腔14,1064nm谐振腔14的输出端通过1064nm聚焦耦合输出镜12接入到1064nm输出光纤13中,1064nm谐振腔14通过其输入端的一级光纤耦合器8接在一级光纤输出端7上,一级光纤输出端7由三级光纤结构47的一级光纤圈6引出;设置1500nm周期极化铌酸锂激光参量振荡谐振腔35,从其输入端起依次设置:三级光纤输入镜32、1064nm参量振荡基频激光晶体31、参量振荡输入镜30、1500nm周期极化铌酸锂激光晶体29、1500nm输出镜28与输出端的1500nm聚焦耦合输出镜,由此构成1500nm周期极化铌酸锂激光参量振荡谐振腔35;设置532nm倍频谐振腔24,从其输入端起依次设置:二级输入镜23、1064nm基频激光晶体22、532nm倍频晶体20、532nm输出镜21与输出端的532nm聚焦耦合输出镜18,由此构成532nm倍频谐振腔24;设置1064nm谐振腔14,从其输入端起依次设置:一级输入镜9、1064nm激光晶体10、
1064nm输出镜11与输出端的1064nm聚焦耦合输出镜12,由此构成1064nm谐振腔14,设置三级光纤结构47,三级光纤结构47由一级光纤圈6、二级光纤圈15与三级光纤圈25连接一体而成,一级光纤圈6通过808nm泵浦耦合器4连接在半导体模块2上,半导体模块2由半导体模块电源5供电,上述全部光学元件都安装在光学轨道及光机具1上,在光学轨道及光机具1上设置风扇3。
[0024] 工作过程:
[0025] 半导体模块电源5供电给半导体模块2供电,半导体模块2发射808nm激光经808nm泵浦耦合器4耦合进入一级光纤圈6,从而进入三级光纤结构47的二级光纤圈15与三级光纤圈25,808nm激光在三级光纤结构47中得到增益,从由三级光纤圈25引出三级光纤输出端36,输入808nm激光进入1500nm周期极化铌酸锂激光参量振荡谐振腔35,经
1500nm周期极化铌酸锂激光参量振荡谐振腔35的1064nm参量振荡基频激光晶体31生成的1064nm激光去泵浦光学参量振荡生成1500nm激光,经1500nm聚焦耦合输出镜27耦合到1500nm输出光纤26中,由其输入1500nm激光到三波长参量耦合器33中;从由二级光纤圈15引出二级光纤输出端16,输入808nm激光进入532nm倍频谐振腔24,经532nm倍频谐振腔24的1064nm基频激光晶体22生成1064nm基频经532nm倍频谐振 腔24发生倍频输出532nm激光,经532nm聚焦耦合输出镜18耦合到532nm输出光纤19中,由其输入532nm激光到三波长参量耦合器33中;从由一级光纤圈6引出一级光纤输出端7,输入808nm激光进入1064nm谐振腔14,1064nm谐振腔14生成1064nm基频激光,经1064nm聚焦耦合输出镜12耦合到1064nm输出光纤13中,由其输入1064nm激光到三波长参量耦合器33中;
从而,1500nm激光、1064nm激光与532nm激光经三波长参量耦合器33耦合进入465nm四波混频周期极化铌酸锂激光谐振腔38,信号光465nm、闲频光1500nm、泵浦光I 1064nm与泵浦光II 532nm发生四波混频效应,使信号光465nm发生、增益,信号光465nm经465nm聚焦耦合输出镜42与465nm输出光纤43输出465nm激光输出44,在532nm输出光纤26的尾段设置的532nm分束光纤圈46分束输出532nm激光,经输出端45输出532nm。
相关专利内容
标题 发布/更新时间 阅读量
波长转换装置 2020-05-12 999
一种波长测量仪 2020-05-12 383
波长转换系统 2020-05-13 78
波长路由器 2020-05-11 281
波长转换器 2020-05-11 722
波长转换器 2020-05-12 875
全光波长转换器 2020-05-13 175
多波长光源 2020-05-12 599
波长监视器 2020-05-11 92
波长转换装置 2020-05-12 108
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈