首页 / 专利库 / 物理 / 磁滞回线 / 一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法

一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法

阅读:77发布:2020-05-19

专利汇可以提供一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于改进的Jiles-Atherton模型的动态 磁滞 回线 的预测方法。所述的动态磁滞回线预测方法包括如下步骤:通过实验获得的若干组动态磁滞回线的曲线,利用现有的动态Jiles-Atherton模型获得对应 频率 下的动态磁滞回线的曲线,获得本发明改进后附加损耗 磁场 强度Hexcess计算公式的参数,改进现有Jiles-Atherton模型中有效磁场强度中附加损耗磁场强度Hexcess。本发明的有益之处在于能够预测更准确的任意频率下的动态磁滞回线,改进原有动态Jiles-Atherton模型预测动态磁滞回线的误差随频率增大而增大的缺点,对 铁 磁材料铁磁特性的预测提供了更为准确的方法,适用于制造电磁式互感器等涉及非线性铁磁材料瞬态分析的场合。,下面是一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法专利的具体信息内容。

1.一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法,其特征在于包括如下步骤:
1)通过环形芯结构的叠片或者爱泼斯坦方圈测量若干组不同频率下材料的B-H曲线与铁芯损耗;
2)利用步骤1)中得到的铁芯损耗和某一频率下的B-H曲线,用差分进化算法得到现有Jiles-Atherton模型的参数;在步骤1)实验选取的频率下,根据现有Jiles-Atherton模型预测B-H曲线;模型预测的B-H曲线与实验得到的相同频率下的B-H曲线通过做差查找得到对应频率下的最大误差H1与b,其中b为对应频率下磁感应强度随时间变化率 的最大值;
利用线性回归方法将不同频率下的最大误差H1与b拟合成直线,得斜率k;
3)根据如下公式计算附加损耗磁场强度Hexcess(t):
其中:σ为所测铁磁材料的电导率;
G为一个无量纲系数,大小为0.1356;
S为所测铁磁材料的横截面面积;
H0为额外损耗的系数;
b为磁感应强度随时间变化率 的最大值;
λ为方向参数,当 λ为+1;当 λ为-1;
4)计算总磁场强度Htota;
Htotal=Hhyst(B)+Heddy+Hexcess,其中Heddy为描述瞬态涡流场的磁场强度,Hhyst(B)为磁滞磁场强度。
2.根据权利要求1所述的基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法,其特征在于步骤2)中所述的某一频率下的B-H曲线是指步骤1)所测得的频率最低的B-H曲线。
3.一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法,其特征在于包括如下步骤:
1)通过环形铁芯结构的硅钢叠片或者爱泼斯坦方圈测量材料在两组不同频率下的B-H曲线;
2)利用步骤1)中得到较低频率下的B-H曲线,用差分进化算法得到现有Jiles-Atherton模型的参数;在步骤1)实验选取的频率下,根据现有Jiles-Atherton模型预测另一频率下的B-H曲线,与实验得到的该频率下的B-H曲线通过做差查找得到最大误差H1;
3)根据如下公式计算附加损耗磁场强度Hexcess(t):
其中:σ为所测铁磁材料的电导率;
G为一个无量纲系数,大小为0.1356;
S为所测铁磁材料的横截面面积;
H0为额外损耗的系数;
b为磁感应强度随时间变化率 的最大值;
λ为方向参数,当 λ为+1;当 λ为-1;
4)计算总磁场强度Htota;
Htotal=Hhyst(B)+Heddy+Hexcess,其中Heddy为描述瞬态涡流场的磁场强度,Hhyst(B)为磁滞磁场强度。

说明书全文

一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测

方法

技术领域

[0001] 本发明涉及磁滞回线预测领域,特别是涉及一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法

背景技术

[0002] 磁材料的动态磁滞回线是指其在交变磁场磁化下,所得到的B-H关系曲线。描述磁滞现象的理论模型有Preisach(典型如专利CN201410468498.4)、Jiles-Atherton模型(典型如专利CN201710884764.5)等,其中Jiles-Atherton模型因其参数较少、实现方便而被广泛应用在铁磁材料的磁滞建模与仿真中,该模型具有清晰的物理意义,能够真实地描述B-H的非线性关系,通过求解Jiles-Atherton模型方程便能够得到较为准确的B-H曲线。其中Jiles-Atherton模型因其参数较少、实现方便而被广泛应用在铁磁材料的磁滞建模与仿真中,在低频条件下,该模型能够通过求解得到较为准确的B-H曲线,但是在高频条件下,Jiles-Atherton模型的预测B-H曲线误差很大,而且整定参数的算法比较麻烦。所以本发明对Jiles-Atherton模型进行了改良,使其能够更加准确地预测任意频率下的B-H曲线。

发明内容

[0003] 本发明主要解决的技术问题是Jiles-Atherton模型在动态磁滞回线的预测中误差较随频率增大而增大的问题,在高频情况下预测的B-H曲线误差十分明显。
[0004] 为解决上述技术问题,本发明采用的一个技术方案是:
[0005] 一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法,包括如下步骤:
[0006] 1)通过环形铁芯结构的叠片或者爱泼斯坦方圈测量若干组不同频率下材料的B-H曲线与铁芯损耗;
[0007] 2)利用步骤1)中得到的铁芯损耗和某一频率下的B-H曲线,用差分进化算法得到现有Jiles-Atherton模型的参数;在步骤1)实验选取的频率下,根据现有Jiles-Atherton模型预测B-H曲线;模型预测的B-H曲线与实验得到的相同频率下的B-H曲线通过做差查找得到对应频率下的最大误差H1与b,其中b为对应频率下磁感应强度随时间变化率 的最大值;利用线性回归方法将不同频率下的最大误差H1与b拟合成直线,得斜率k;
[0008] 3)根据如下公式计算附加损耗磁场强度Hexcess(t):
[0009]
[0010] 其中:σ为所测铁磁材料的电导率;
[0011] G为一个无量纲系数,大小为0.1356;
[0012] S为所测铁磁材料的横截面面积;
[0013] H0为额外损耗的系数;
[0014] b为磁感应强度随时间变化率 的最大值;
[0015] λ为方向参数,当 λ为+1;当 λ为-1;
[0016] 4)计算总磁场强度Htota;
[0017] Htotal=Hhyst(B)+Heddy+Hexcess,其中Heddy为描述瞬态涡流场的磁场强度,Hhyst(B)为磁滞磁场强度。
[0018] 优选的,步骤2)中所述的某一频率下的B-H曲线是指步骤1)所测得的频率最低的B-H曲线。
[0019] 本发明还公开了一种基于改进的Jiles-Atherton模型的动态磁滞回线的预测方法,包括如下步骤:
[0020] 1)通过环形铁芯结构的硅钢叠片或者爱泼斯坦方圈测量材料在两组不同频率下的B-H曲线;
[0021] 2)利用步骤1)中得到较低频率下的B-H曲线,用差分进化算法得到现有Jiles-Atherton模型的参数;在步骤1)实验选取的频率下,根据现有Jiles-Atherton模型预测另一频率下的B-H曲线,与实验得到的该频率下的B-H曲线通过做差查找得到最大误差H1;
[0022] 3)根据如下公式计算附加损耗磁场强度Hexcess(t):
[0023]
[0024] 其中:σ为所测铁磁材料的电导率;
[0025] G为一个无量纲系数,大小为0.1356;
[0026] S为所测铁磁材料的横截面面积;
[0027] H0为额外损耗的系数;
[0028] b为磁感应强度随时间变化率 的最大值;
[0029] λ为方向参数,当 λ为+1;当 λ为-1;
[0030] 4)计算总磁场强度Htota;
[0031] Htotal=Hhyst(B)+Heddy+Hexcess,其中Heddy为描述瞬态涡流场的磁场强度,Hhyst(B)为磁滞磁场强度。
[0032] 本发明的有益效果是:
[0033] 1、Hexcess(t)更准确
[0034] 2、可根据若干组低频下的铁芯损耗和动态磁滞回线预测任意频率下的B-H曲线。
[0035] 3、预测的高频B-H曲线比原模型准确度更高,误差更小(更接近材料实际的动态B-H曲线)。附图说明
[0036] 图1计算改进Jiles-Atherton模型的参数及预测B-H曲线的流程图
[0037] 图2为实施例的线性拟合结果图;
[0038] 图3. 500Hz、0.95T下预测的B-H曲线与实验B-H曲线的对比图;
[0039] 图4. 0.85T下改进Jiles-Atherton模型预测的B-H曲线与实验B-H曲线的对比图。

具体实施方式

[0040] 下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
[0041] 下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
[0042] 本发明实施例如下
[0043] 1)采用50WW800材料,通过环形铁芯结构的硅钢叠片或者爱泼斯坦方圈测量材料在幅值为0.95T,频率分别为50Hz、100Hz、150Hz、…、450Hz、500Hz下的B-H曲线,并得到铁芯损耗;
[0044] 2)利用步骤1)中得到的铁芯损耗和50Hz下的B-H曲线,用差分进化算法得到现有Jiles-Atherton模型的参数;在步骤1)实验选取的频率下,根据现有Jiles-Atherton模型预测B-H曲线;模型预测的B-H曲线与实验得到的相同频率下的B-H曲线通过做差查找得到对应频率下的最大误差H1与b,其中b为对应频率下磁感应强度随时间变化率 的最大值;利用线性回归方法将不同频率下的最大误差H1与b拟合成直线,得斜率k=0.0226;线性拟合结果如图2所示,
[0045] 3)根据如下公式计算附加损耗磁场强度Hexcess(t):
[0046]
[0047] 其中:σ为所测铁磁材料的电导率;
[0048] G为一个无量纲系数,大小为0.1356;
[0049] S为所测铁磁材料的横截面面积;
[0050] H0为额外损耗的系数;
[0051] b为磁感应强度随时间变化率 的最大值;
[0052] λ为方向参数,当 λ为+1;当 λ为-1;
[0053] 4)计算总磁场强度Htota;
[0054] Htotal=Hhyst(B)+Heddy+Hexcess,其中Heddy为描述瞬态涡流场的磁场强度,Hhyst(B)为磁滞磁场强度。
[0055] 在500Hz下,分别用现有JA模型和本方法预测B-H曲线,其结果如图3所示,图3说明了原始Jiles-Atherton模型预测B-H曲线精度较低而改进的Jiles-Atherton模型预测精度较高。
[0056] 0.85T下,用本方法预测50Hz、100Hz、150Hz下的B-H曲线与实验值进行比较,结果如图4所示,图4说明了在不同频率下本方法预测出的B-H曲线与实验值接近,具有较高精确度。
[0057] 以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈