首页 / 专利库 / 物理 / 激发三重态 / 组合物及其溶液、有机发光器件及形成方法、以及三重态接收低聚物或聚合物的用途

组合物及其溶液、有机发光器件及形成方法、以及三重态接收低聚物或聚合物的用途

阅读:850发布:2020-05-12

专利汇可以提供组合物及其溶液、有机发光器件及形成方法、以及三重态接收低聚物或聚合物的用途专利检索,专利查询,专利分析的服务。并且用于有机发光器件的组合物,该组合物具有 荧光 发射材料和三重态接收材料并符合以下 能量 方案:2xT1A≥S1A>S1E,或T1A+T1E≥S1A>S1E其中:T1A表示所述三重态接收材料的三重态激发状态能级;T1E表示所述发光材料的三重态激发状态能级;S1A表示所述三重态接收材料的单态激发状态能级;和S1E表示所述发光材料的单态激发状态能级;和其中所述组合物在激发时发射的光包括延迟荧光。,下面是组合物及其溶液、有机发光器件及形成方法、以及三重态接收低聚物或聚合物的用途专利的具体信息内容。

1.一种用于有机发光器件的组合物,包含荧光发射材料和与所述荧光发射材料物理混合的三重态接收低聚物或聚合物,所述三重态接收低聚物或聚合物包含式(IIb)的重复单元,
(TAU-间隔体)m
(IIb)
其中TAU是三重态接收单元,间隔体是共轭或非共轭的间隔体基团,且m至少是2,并且其中:
2 x T1A≥S1A>S1E,或T1A+T1E≥S1A>S1E
其中:
T1A表示所述三重态接收低聚物或聚合物的三重态激发状态能级;
T1E表示所述荧光发射材料的三重态激发状态能级;
S1A表示所述三重态接收低聚物或聚合物的单态激发状态能级;以及
S1E表示所述荧光发射材料的单态激发状态能级;
并且,其中所述组合物在激发时发射的光包括延迟荧光。
2.根据权利要求1的组合物,其中至少10%的所述组合物在激发时发射的光的发光强度是延迟荧光。
3.根据权利要求2的组合物,其中至少20%的所述组合物在激发时发射的光的发光强度是延迟荧光。
4.根据权利要求1的组合物,其中所述组合物的足以使所述组合物的发光强度从初始发光强度下降50%的时间的连续激发使得在所述组合物的初始激发后的延迟荧光的初始发射后的整个时间都发射延迟荧光。
5.根据权利要求1的组合物,其中:
kT1E-T1A≥kT1E-S0E
其中:
kT1E-T1A表示发光材料上的三重态激子到三重态接收材料的转移的速率常数;
kT1E-S0E表示发光材料上的三重态激子到发光材料的基态的衰变的速率常数。
6.根据权利要求1的组合物,其中:
kTTA>kTlA-SOA
其中
kTTA表示两个三重态接收材料上的两个三重态激子之间的、或三重态接收材料上的三重态激子和发光材料上的三重态激子之间的三重态-三重态湮灭的速率常数;和kTlA-SOA表示三重态接收材料上的三重态激子到三重态接收材料的基态的衰变的速率常数。
7.根据权利要求1的组合物,其中所述三重态接收低聚物或聚合物被一个或多个增溶基团取代。
8.根据权利要求7的组合物,其中所述增溶基团选自烷基和烷基。
9.根据权利要求1的组合物,其中所述荧光发射材料是发光聚合物。
10.根据权利要求9的组合物,其中所述发光聚合物包含芳胺重复单元。
11.根据权利要求10的组合物,其中所述芳胺重复单元是式(V)的单元:
1 2
其中Ar和Ar 是任选取代的芳基或杂芳基,n大于或等于1,并且R是H或取代基。
12.根据权利要求11的组合物,其中n为1或2。
13.根据权利要求9的组合物,其中所述发光聚合物包含芳基或杂芳基重复单元。
14.根据权利要求13的组合物,其中所述发光聚合物包含式(IV)的重复单元:
1 2 1 2
其中R和R 独立地为H或取代基,并且其中R 和R 可连接形成环。
15.根据权利要求1的组合物,其中所述三重态接收低聚物或聚合物以至少0.1mol%的量存在。
16.根据权利要求1的组合物,其中所述组合物的光致发光光发射峰波长范围在
400-500nm。
17.根据权利要求1的组合物,其中所述三重态接收低聚物或聚合物不包括二嵌苯。
18.一种溶液,包含溶剂和根据权利要求1的组合物。
19.有机发光器件,包含阳极阴极和在所述阳极和阴极之间的发光层,其中所述发光层包含根据权利要求1的组合物。
20.形成根据权利要求19的有机发光器件的方法,包括沉积根据权利要求18的溶液和蒸发溶剂的步骤。
21.具有式(IIb)的三重态接收低聚物或聚合物用于对由包含所述三重态接收低聚物或聚合物和荧光发射材料的物理混合物的组合物中的所述荧光发射材料产生的三重态激子的三重态-三重态湮灭引起的延迟荧光进行介导的用途:
(TAU-间隔体)m
(IIb)
其中TAU是三重态接收单元,间隔体是共轭或非共轭的间隔体基团,且m至少是2。

说明书全文

组合物及其溶液、有机发光器件及形成方法、以及三重态接

收低聚物或聚合物的用途

[0001] 本申请要求2010年6月25日提交的英国专利申请1010741.5,2010年6月25日提交的英国专利申请1010742.3,2010年6月25日提交的英国专利申请1010745.6,2010年6月25日提交的英国专利申请1010743.1和2011年1月31日提交的英国专利申请1101642.5的优先权。各前述形成优先权的申请的内容在此通过引用以它们的全部内容纳入本申请。
发明内容
[0002] 本发明涉及有机发光组合物,含有其的器件,和制造所述器件的方法。
[0003] 发明背景
[0004] 包含活性有机材料的电子器件对于用于如有机发光二极管、有机光伏器件、有机光传感器、有机晶体管和存储器阵列器件的器件来说吸引越来越多的注意。包含有机材料的器件提供诸如低重量、低功率消耗和灵活性的益处。此外,可溶有机材料的使用使得能够在器件制造中利用溶液加工,例如喷墨打印或旋涂
[0005] 典型的有机发光器件("OLED")在涂覆有透明阳极化铟("ITO")的玻璃或塑料基材上制造。至少一种电致发光有机材料的薄膜层设置在第一电极上。最后,阴极设置在该电致发光有机材料层上。电荷传输、电荷注入或电荷阻挡层可设置在阳极和电致发光层之间和/或阴极和电致发光层之间。
[0006] 运行中,空穴通过阳极注入器件,并且电子通过阴极注入器件。空穴和电子在有机电致发光层中结合以形成激子,然后激子发生衰变发出光。
[0007] 在WO90/13148中,有机发光材料是共轭聚合物如聚(亚苯基亚乙烯基)。在US4,539,507中,有机发光材料是被称为小分子材料的类别,如三(8-羟基喹啉)("Alq3")。这些通过单态激子的辐射衰变材料电致发光(荧光),然而,自旋统计使得至多75%的激子是三重态激子,其发生非辐射衰变,即量子效率可低达荧光OLED的25%-参见,例如,Chem.Phys.Lett.,1993,210,61,Nature(London),2001,409,494,Synth.Met.,2002,
125,55和其中的参考文献。
[0008] 已推测可具有相对长寿命三重态激发状态的三重态激子的存在会对OLED寿命不利,这是因为三重态-三重态或三重态-单态的相互作用(在OLED寿命的表述中,本文使用的"寿命"是指OLED在恒定电流下的照度从初始照度值下降50%经历的时间长度,并且在三重态激发状态寿命的表述中,本文使用的"寿命"是指三重态激子的半衰期)。US2007/145886披露了包含三重态猝灭材料的OLED,其通过使不期望的三重激发状态猝灭而不使通过荧光发射衰减的激发单态猝灭来防止或减少在激发态的分子之间三重态-三重态或三重态-单态的相互作用。
[0009] WO2005/043640披露了在有机发光器件中将二嵌苯衍生物与有机发光材料共混可以使器件寿命少量提高。然而,虽然较高的二萘嵌苯衍生物浓度使寿命的改进更大,但这导致在发射光谱中显著红移。
[0010] US2007/145886披露了包含防止或减少三重态-三重态或三重态-单态相互作用的三重态-猝灭材料的OLED。
[0011] US2005/095456披露了一种OLED,其具有发光层,发光层包含宿主材料,染料或颜料,和吸收极限的能级高于该染料或颜料的吸收极限的能级的添加剂。
[0012] 然而,US200/145886中所述的三重态激子的猝灭不可避免地表明,三重态激子的能量以非发光途径(例如热)损失。
[0013] 发明概述
[0014] 本发明的发明人认识到,可使三重态激子进行衰变的多种途径,从而减少或消除导致器件寿命缩短的衰变途径。特别是,这些途径中的一些可以进行辐射激子衰变,这与非辐射衰变途径相比可以提供更好的器件效益。
[0015] 在第一方面,本发明提供一种用于有机发光器件的组合物包含荧光发射材料和三重态接收材料,其中:
[0016] 2x T1A≥S1A>S1E,或T1A+T1E≥S1A>S1E
[0017] 其中:
[0018] T1A表示所述三重态接收材料的三重态激发状态能级;
[0019] T1E表示所述发光材料的三重态激发状态能级;
[0020] S1A表示所述三重态接收材料的单态激发状态能级;和
[0021] S1E表示所述发光材料的单态激发状态能级;
[0022] 以及,其中所述组合物在激发时发射的光包括延迟荧光。
[0023] 任选地,至少10%、任选地至少20%的所述组合物在激发时发射的光的发光强度是延迟荧光。
[0024] 任选地,所述组合物的足以使所述组合物的发光强度从初始发光强度下降50%的时间的连续激发使得在所述组合物的初始激发后的延迟荧光的初始发射后的整个时间都发射延迟荧光。
[0025] 任选地:
[0026] kT1E-T1A≥kT1E-S0E
[0027] 其中:
[0028] kT1E-T1A表示发光材料上的三重态激子到三重态接收材料的转移的速率常数;
[0029] kT1E-S0E表示发光材料上的三重态激子到发光材料的基态的衰变的速率常数。
[0030] 任选地:
[0031] kTTA>kTlA-SOA
[0032] 其中
[0033] kTTA表示两个三重态接收材料上的两个三重态激子之间的、或三重态接收材料上的三重态激子和发光材料上的三重态激子之间的三重态-三重态湮灭的速率常数;和[0034] kTlA-SOA表示三重态接收材料上的三重态激子到三重态接收材料的基态的衰变的速率常数。
[0035] 任选地,至少一些所述三重态接收材料包括式(II):
[0036] TAU-Sp-TAU
[0037] (II)
[0038] 其中TAU表示三重态接收材料,并且Sp表示间隔体基团。
[0039] 任选地,Sp包括亚芳基。
[0040] 任选地,至少一些所述三重态接收材料包括式(IIa):
[0041] TQ-Ar-TQ
[0042] (IIa)
[0043] 其中Ar表示任选取代的亚芳基。
[0044] 任选地,Ar选自:苯基、联苯基、三联苯基和芴。
[0045] 任选地,三重态接收材料与发光材料和所述组合物的其它一种或多种组分混合。
[0046] 任选地,三重态接收材料键接到发光材料,或键接到如存在的所述组合物的另一种组分。
[0047] 任选地,所述组合物包含空穴传输材料和电子传输材料至少,以及,其中三重态接收单元键接到所述空穴传输材料、所述电子传输材料和所述发光材料至少之一。
[0048] 任选地,三重态接收单元键接到所述发光材料。
[0049] 任选地,发光材料是发光聚合物并且所述三重态接收材料是所述发光聚合物的主链中的重复单元或所述发光聚合物的侧基或端基。
[0050] 任选地,该发光聚合物包含发光重复单元,和提供电子传输的重复单元和提供空穴传输的重复单元的至少之一,其中该三重态接收材料键接到该发光重复单元、该提供电子传输的重复单元和该提供空穴传输的重复单元的至少之一。
[0051] 任选地,所述三重态接收材料被一个或多个增溶基团取代。
[0052] 任选地,所述增溶基团选自烷基和烷氧基。
[0053] 任选地,所述发光材料是包含芳胺重复单元的发光聚合物。
[0054] 任选地,所述芳胺重复单元是式(V)的单元:
[0055]
[0056] 其中Ar1和Ar2是任选取代的芳基或杂芳基,n大于或等于1,优选1或2,并且R是H或取代基。
[0057] 任选地,所述聚合物包含芳基或杂芳基重复单元,任选地为式(IV)的重复单元:
[0058]
[0059] 其中R1和R2独立地为H或取代基,并且其中R1和R2可连接形成环。
[0060] 任选地,该三重态接收材料以至少0.1mol%的量存在。
[0061] 任选地,该组合物的光致发光的(photoluminescent)发光峰值波长范围在400-500nm。
[0062] 任选地,该三重态接收材料不包括二萘嵌苯。
[0063] 在第二方面,本发明提供了包含溶剂和根据第一方面的组合物的溶液。
[0064] 在第三方面,本发明提供了一种有机发光器件,其包含阳极、阴极和在该阳极和阴极之间的发光层,其中该发光层包含根据第一方面的组合物。
[0065] 在第四方面,本发明提供了形成根据第三方面的有机发光器件的方法,包括沉积根据第二方面的溶液和蒸发溶剂的步骤
[0066] 在第五方面,本发明提供了三重态接收材料用于对由包含所述三重态接收材料和荧光发射材料的组合物中的所述荧光发射材料产生的三重态激子的三重态-三重态湮灭引起的延迟荧光进行介导的用途。
[0067] 第五方面的组合物可任选地包括关于第一方面描述的任何特征。例如,所述三重态接收材料可与荧光发射材料物理混合或可以化学方式键接到荧光发射材料。任选地,该荧光发射材料是聚合物,并且该三重态接收材料提供为该聚合物的主链中的重复单元、从该聚合物的主链悬垂的侧基或聚合物端基。附图说明
[0068] 图1是现有技术三重态猝灭的示意说明;
[0069] 图2是根据本发明实施方式的第一三重态-三重态湮灭机理的示意说明;
[0070] 图3展示了根据本发明实施方式的第二三重态-三重态湮灭;和
[0071] 图4展示了根据本发明实施方式的有机发光器件。
[0072] 图5展示了根据本发明实施方式的器件的外部量子效率。
[0073] 图6展示了根据本发明实施方式的器件的准-cw电流引发的激发态吸收曲线。
[0074] 图7展示了根据本发明实施方式的器件关闭器件的时间分辨的电致发光。
[0075] 图8展示了根据本发明实施方式的器件的随时间和效率变化的器件发光衰减。
[0076] 图9展示了根据本发明实施方式的器件的延迟的发射。
[0077] 图10展示了由本发明的实施方式获得的延迟荧光。
[0078] 发明的详细说明
[0079] 图1展示了根据现有技术方案的能量转移机理。为了避免任何疑惑,本文的能级图,包括图1,未以任何比例绘制。图1展示了OLED的能量转移,该OLED提供有具有单态激发状态能级S1E和单态基态能级SOE的发光聚合物。具有能量S1E的单态激子通过发射荧光hν而衰变,由图1中S1E和SOE之间的实线箭头表示。三重态-三重态激子相互作用或三重态-单态激子相互作用可在发光聚合物上产生"超级激发"状态。不希望受任何理论束缚,据信,在发光材料上这些高能的"超级激发"状态的形成可能对该材料的使用寿命有害。而且,三重态-三重态相互作用可形成会进行辐射衰变的单态激子,这将增加到OLED的发光,但往往只在OLED驱动的开始时发生,并且快速衰退,使得OLED的初始发光急剧下降。然而,通过提供具有低于T1E的激发的三重态状态能级T1Q的三重态接收材料,可使三重态激子以非辐射猝灭转移到三重态猝灭体,T1E到SOE的辐射衰变的另一种方式,由图1中的虚线所示,即自旋禁戒过程。
[0080] 本实例的三重态猝灭材料选择为具有高于单态激发状态能级S1E的单态激发状态能级S1Q,从而显著地或完全防止单态激子从S1E转移到S1Q。虽然对于能级S1Q来说可能优选高于S1E,应领会,这对于发生三重态吸收来说不是必须的。优选地,S1Q的能量比S1E高至少kT,从而防止激子任何显著的反向转移(back-transfer)。类似地,T1E的能量优选高于T1Q至少kT。
[0081] 以这种方式猝灭不可避免地表明,在T1E形成的三重态激子的能量以辐射衰变方式损失。
[0082] 图2展示了根据本发明实施方式的OLED的第一能量转移机理,其中该OLED包含发光材料和三重态接收材料。该发光材料和三重态接收材料可为发光分子和三重态接收分子共混物形式的分开的单元。或者,三重态接收材料可键接到发光材料;例如,发光材料可包括包含发光重复单元和三重态接收重复单元的共轭的或非共轭的聚合物。
[0083] 根据本实施方式,由两个三重态接收单元之间的相互作用产生的三重态-三重态湮灭(TTA)得到具有至多2x T1A能量的三重态-三重态湮灭的单态激子,其中T1A表示三重态接收材料的三重态激发状态能级。在两个三重态接收单元的第一个上形成的单态激子具有能量高于S1A和S1E的能级SnA,因此它可转移到S1A,然后到S1E,由此光hν可作为延迟的荧光发射。在两个三重态接收单元的第二个上的三重态激子可衰变到基态T0A。
[0084] 最初,在T1E下形成的三重态激子转移到T1A。通过提供具有低于T1E的能级T1A的三重态接收材料,可发生从T1E到T1A的激子快速转移。这样的转移与图1中虚线所示的作为自旋禁戒过程的从T1E到S0E的三重态激子衰变相比相对更快。T1E和T1A之间的能隙优选大于kT,从而避免激子从T1A到T1E的反向转移。类似的,S1A和S1E之间的能隙优选大于kT,从而避免激子从S1E到S1A的反向转移。
[0085] 与三重态-三重态湮灭竞争的T1A上三重态激子的衰变途径是上述参考图1的到SOA的非辐射性(猝灭)途径。可采取多种措施以最大化TTA而不是衰变到S0A的概率,尤其是:
[0086] i)三重态吸收材料可选择为使得T1A上的三重态激子具有相对长的寿命τTA。相对长的寿命不仅意味着到SOA的衰变速率相对较慢,还意味着TTA的可能性相对较高。
[0087] ii)发光层中三重态吸收材料的浓度可以是相对较高的,例如大于1mol%,例如在0.1-10%或1-10mol%的范围。
[0088] iii)两种或更多种三重态接收材料可以紧密地提供,例如如以下参考式(II)的单元所述。
[0089] 各种这些措施可单独或组合使用。
[0090] 图3展示了本发明进一步的实施方案的第二能量转移机理。如以上关于图2所给出的,该发光材料和三重态接收材料可为发光分子和三重态接收分子共混物形式的分开的单元。或者,三重态接收材料可键接到发光材料;例如,发光材料可包括包含发光重复单元和三重态接收重复单元的共轭的或非共轭的聚合物。在一种实施方式中,发光材料是至少部分共轭的聚合物,即该聚合物的骨架中至少一些重复单元与相邻重复单元共轭。
[0091] 在这种情况下,三重态-三重态湮灭发生在位于三重态接收三重态接收材料上的能量T1A的三重态激子和位于发光材料上的能量T1E的三重态激子之间。应领会,这导致具有至多T1E+T1A能量的三重态-三重态湮灭的单态激子。这样的单态激子的能量高于S1E,因此它可转移其能量至S1A,光hν从那里作为延迟的荧光发射。
[0092] 在图2和3中,虽然对于能级S1A来说可优选大于S1E,应领会,这对于发生三重态吸收来说不是必须的。
[0093] 不希望受任何理论束缚,据信,避免在OLED驱动期间形成的发光材料上形成超级激发状态可改进器件寿命。此外,通过利用三重态接收材料发生TTA并产生稳定的延迟荧光,与其中延迟的荧光的强度可在初始OLED驱动后急剧下降的三重态激子被猝灭的器件(如图1所示)相比或与没有三重态接收单元的器件相比,可以改进效率。
[0094] 在图2和3中,TTA分别以吸收体单元-吸收体单元三重态湮灭和吸收体单元-发光体单元三重态湮灭机理进行了描述,然而,应领会,上述两种可在同一器件内发生,并且来自两种机理的每一种的延迟的荧光量将取决于诸如发光单元的浓度、三重态接收单元的浓度和发光单元和三重态接收单元上三重态激子的激发状态寿命的因素。可采用参考图2的上述措施以提高TTA的概率。
[0095] 三重态激子从发光材料到三重态接收材料的转移的速率常数可选择为使得大于三重态激子猝灭的速率常数。
[0096] 从本发明的发光组合物发射的光可包括如上所述的延迟的荧光,以及来自发光材料上空穴和电子的复合直接发出的荧光(“瞬发荧光”)。
[0097] 本领域技术人员将了解在从发光组合物发生的光中确定延迟的荧光存在的方法,例如通过测量在发光瞬发荧光后来自发光组合物的发光。
[0098] 时间分辨的电致发光光谱可在原型器件的关闭期间采集;关闭电流后,在与器件的RC时间常数类似的时间尺度上有照度的初始急剧衰减,然后是在几个微秒内衰减的EL中的残留信号。通常,OLED中慢的瞬时发光归因于来自深阱或界面电荷层的电荷复合或TTA(参见Kondakov,D.Y.Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives.J.Appl.Phys.102,114504-5(2007),Sinha,S.,Rothe,C,Guentner,R.,Scherf,U.&Monkman,A.P.Electrophosphorescence and Delayed Electroluminescence from Pristine Polyfluorene Thin Film Devices at Low Temperature.Physical Review Letters 90,127402(2003),和Sinha,S.,Monkman,A.P.,Guntner,R.&Scherf,U.Space-charge-mediated delayed electroluminescence from Polyfluorene thin films.Appl.Phys.Lett.82,4693-4695(2003))。
[0099] 为了区分两种机理,相同的瞬时电致发光痕迹通过在器件电流关闭100ns后施加10v反向偏压脉冲来测量,该脉冲将除去或至少显著地扰乱归因于照度衰减的任何束缚电荷。如果反向偏压脉冲后的EL的衰减与标准衰减形状相比未改变,则可以得出这样的结论,即束缚电荷的复合对残余照度信号不是显著的贡献因素,而是由于延迟的荧光 (Popovic,Z.D.&Aziz,H.Delayed electroluminescence in small-molecule-based organic light-emitting diodes:evidence for triplet-triplet annihilation and recombination-center-mediated light-generation mechanism.J.Appl.Phys.98,013510-5(2005))。
[0100] 三重态接收单元
[0101] 所使用的三重态接收单元可为与发光材料和发光组合物的任何其它组分(例如一种或多种电话传输材料(例如空穴传输材料和电子传输材料之一或两者))化学上没键接但物理上混合的化合物。或者,该三重态接收单元可直接或通过间隔体基团键接到、尤其是共价键接到发光材料或所述组合物的另一组分。
[0102] 在三重态接收单元与发光材料共混的情况下,该单元优选被增溶基团取代。示例的三重态接收化合物包括芳族或杂芳族化合物,其包含一个或多个单或多环、并任选地包含一个或多个烯基或炔基基团,例如聚芳族,如蒽类和蒽嵌蒽及其衍生物;单或二苯乙烯基芳基及其衍生物,如二苯乙烯基苯、二苯乙烯基联苯、茋、富烯、二苯并富烯、直链多烯(2-6烯烃),包括环状多烯,如环辛四烯。
[0103] 任何这些化合物可任选地被取代,例如被一个或多个增溶基团如烷基取代,并且可提供为较大结构的组分,例如作为聚合物的重复单元。
[0104] 具有适当的单态和三重态光物理性质的其它材料描述于Handbook ofPhotochemistry,第二版,Steven L Murov,Ian Carmichael和Gordon L Hug中,该文献的内容在此通过引用纳入,其中的各所述化合物可任选地被取代,例如被烷基基团取代。在一
2
种实施方式中,该三重态接收单元不含包含超过12个sp杂化原子的多环芳族烃单元。
[0105] 示例性蒽化合物包括以下:
[0106]
[0107] 其中Ak是烷基,尤其是支化的或直链C1-10烷基。特别优选的烷基基团是正丁基、叔丁基、正己基和正辛基。
[0108] 在发光材料是聚合物的情况下,三重态接收单元可以是与该发光聚合物物理混合的化合物,或者它可键接到发光组合物,或它可提供为聚合物主链中的重复单元、从聚合物主链悬垂的一种或多种侧基、或聚合物端基。
[0109] 三重态接收单元可通过使单体聚合键接到发光聚合物的主链,所述单体包含被至少两个可聚合基团(如能够参与金属催化的交叉偶合反应的离去基团)取代的三重态接收重复单元(应领会,包含多于两个离去基团的单体的聚合将在聚合物中产生支化点,如果离去基团中超过两个反应的话)。三重态接收单元的sp2碳原子上的离去基团的取代可用于该目的。示例的离去基团包括卤素和酸,或Suzuki或Yamamoto聚合反应中使用的酯基团,以下更详细说明。三重态接收单元可键接到下述发光聚合物的任何重复单元,例如键接到发光重复单元、电子传输重复单元和/或空穴传输重复单元。在一种实施方式中,该聚合物包含三重态接收重复单元和亚芳基共聚重复单元,例如下述式(IV)的重复单元。
[0110] 示例的重复单元包括以下:
[0111]
[0112] 其中*表示将重复单元连接到聚合物链中的连接点,Ak是烷基,尤其是支化的或直链C1-10烷基。特别优选的烷基基团是正丁基、叔丁基、正己基和正辛基。
[0113] 三重态接收单元可通过被一个可聚合基团(如离去基团能够参与金属催化的交叉偶和反应,如卤素或硼酸或酯)取代的化合物与该聚合物上的离去基团反应来提供为发光聚合物的侧基或端基。
[0114] 或者,侧基可如下所示通过提供其作为单体的取代基来加入发光聚合物:
[0115] PG-可聚合单元-PG
[0116] |
[0117] 三重态吸收单元
[0118] 其中PG表示可聚合基团,如上述离去基团,或可聚合双键。
[0119] 为了提高上述TTA和延迟的荧光的概率,多个三重态接收单元可以紧密相邻提供。例如,两个这样的单元可以以具有通式(II)的任选取代的单元提供:
[0120] TAU-间隔体-TAU
[0121] (II)
[0122] 其中"TAU"表示式(I)的三重态接收单元,并且间隔体是共轭或非共轭间隔体基团。间隔体基团将两个三重态接收TAU基团分开,并且优选分开它们的电子特性(例如HOMO和LUMO)。根据共轭和轨道重叠的确切特性,Sp可任选地包含一个或多个亚芳基或杂亚芳基基团,如取代的苯基、联苯或芴。或者,Sp可任选地包含非共轭连接基团,如烷基,或不在TAU基团之间提供共轭路径的另一分子连接。
[0123] 式(IIa)的单元可以是与发光材料物理混合的单独化合物,或者它可键接到该发光材料。在发光材料是聚合物的情况下,式(IIa)的单元可作为上述主链重复单元、侧基或端基键接:
[0124] TQ-Ar-TQ
[0125] (IIa)
[0126] 其中Ar表示任选取代的亚芳基。
[0127] 或者或另外地,三重态接收单元可为包含式(IIb)的重复单元的低聚物或聚合物,或该低聚物或聚合物的组分:
[0128] (TAU-间隔体)m
[0129] (IIb)
[0130] 其中m至少是2。
[0131] 虽然以上描述了三重态接收单元键接到发光聚合物,应领会,三重态接收单元可以相同方式键接到所述组合物的如存在的任何其它组分。例如,该组合物可包含一种或多种空穴传输材料和电子传输材料,在这种情况下,在三重态接收单元键接到发光材料之外或作为另一种方式,三重态接收单元可键接到这些单元之一或两者上。三重态接收单元的浓度相对于发光材料任选地为至少0.1mol%或至少1mol%,例如在0.1-10%或1-10mol%的范围。较高浓度的三重态接收材料提高TTA的概率。
[0132] 为了提高TTA的概率,停留在三重态接收材料上的激发状态三重态的寿命任选地为至少1微秒,任选地为至少10微秒,任选地为至少100微秒。三重态激子的寿命为其半衰期,这可通过闪光光解测量以测量单分子三重态寿命,如Handbook of Photochemistry,第二版,Steven L Murov,Ian Carmichael和Gordon L Hug和其中引用的文献中所述,该文献的内容在此通过引用纳入。
[0133] 应领会,不同于磷光掺杂剂,三重态接收材料不会为被吸收的三重态进行辐射衰变提供能量上有利的途径,结果,基本上没有被三重态接收材料吸收的三重态激子的能量从三重态接收材料以来自三重态接收材料的磷光发光的形式损失。
[0134] 单态和三重态激子的动学可用时间分辨的电致发光以及准连续波(quasi-cw)和时间分辨的激发态吸收来研究。发光材料上例如共轭发光聚合物的聚合物骨架上的三重态激子的密度可利用quasi-cw激发状态吸收来测量。
[0135] 激发状态吸收技术在其它地方有述(King,S.,Rothe,C.&Monkman,A.Triplet build in and decay of isolated polyspirobifluorene chains in di lute solution.J.Chem.Phys.121,10803-10808(2004),和Dhoot,A.S.,Ginger,D.S.,Beljonne,D.,Shuai,Z.&Greenham,N.C.Triplet formation and decay in conjugated polymer devices.Chemical Physics Letters 360,195-201(2002))。
[0136] 例如,聚芴的三重态状态已经由这些技术良好地表征,其中在780nm形成的强激发状态吸收特征峰属于三重态状态(King,S.,Rothe,C.&Monkman,A.Triplet build in and decay of isolated polyspirobifluorene chains in dilute solution.J.Chem.Phys.121,10803-10808(2004)和Rothe,C.,King,S.M.,Dias,F.&Monkman,A.P.Triplet exciton state and related phenomena in the beta-phase of poly(9,9-dioctyl)fluorene.Physical Review B 70,(2004))。因此,聚芴三重态数量(population)的探测可在780nm进行,并且本领域技术人员将理解如何基于其它材料的激发状态吸收特征调整该探测以用于这些发光材料。
[0137] 图4展示了根据本发明的一种实施方式的OLED的结构。该OLED包含透明玻璃或塑料基材1,阳极2,阴极4和设置在阳极2和阴极4之间的发光层3。另外的层可位于阳极2和阴极之间,如电荷传输、电荷注入或电荷阻挡层。
[0138] 发光材料
[0139] 用于层3的合适的发光聚合物包括小分子、聚合物和树枝状聚合物材料,和它们的组合。用于层3的合适的发光聚合物包括聚(亚芳基亚乙烯基),如聚(对亚苯基亚乙烯基)和聚亚芳基,如:聚芴,特别是2,7-连接的9,9二烷基聚芴或2,7-连接的9,9二芳基聚芴;聚螺芴,特别是2,7-连接的聚-9,9-螺芴;聚茚并芴,特别是2,7-连接的聚茚并芴;聚亚苯基,特别是烷基或烷氧基取代的聚-1,4-亚苯基。此类聚合物披露于,例如,Adv.Mater.2000 12(23)1737-1750和其中的文献中。
[0140] 发光聚合物可为包含发光重复单元的发光均聚物,或者它可为包含发光重复单元和另外的重复单元如空穴传输和/或电子传输重复单元的共聚物,如例如WO00/55927中所述。各重复单元可提供于聚合物的主链或侧链中。
[0141] 在根据本发明的器件中用作发光材料的聚合物优选包含选自亚芳基重复单元的重复单元,如例如Adv.Mater.2000 12(23)1737-1750和其中的文献中披露的。示例的第一重复单元包括:1,4-亚苯基重复单元,其披露于J.Appl.Phys.1996,79,934;芴重复单元,其披露于EP 0842208;茚并芴重复单元,其披露于例如Macromolecules 2000,33(6),2016-2020;和螺芴重复单元,其披露于例如EP 0707020。各个这些重复单元是任选取代的。取代基的实例包括增溶基团,如C1-20烷基或烷氧基;吸电子基团,如氟、硝基或氰基;和用于提高聚合物的玻璃化转变温度(Tg)的取代基。
[0142] 特别优选的聚合物包括任选取代的2,7-连接的芴,最优选式IV的重复单元:
[0143]
[0144] 其中R1和R2独立地为H或取代基,其中R1和R2可连接形成环。R1和R2优选地选自氢;任选取代的烷基,其中一个或多个不相邻的C原子可被O、S、N、C=O和-COO-替换;1 2
任选取代的芳基或杂芳基;和任选取代的芳基烷基或杂芳基烷基。更优选地,R和R 至少之一包括任选取代的烷基,例如C1-C20烷基或芳基基团。
[0145] 本文使用的"芳基"和"杂芳基"分别包括稠合的和非稠合的芳基和杂芳基基团。
[0146] 任选地,芴重复单元以至少50mol%的量存在。
[0147] 在R1或R2包括芳基或杂芳基的情况下,优选的芳基或杂芳基基团是苯基,优选的任选的取代基包括烷基基团,其中一个或多个不相邻的C原子可被O、S、N、C=O和-COO-替换。
[0148] 除取代基R1和R2之外,芴单元的任选的取代基优选地选自烷基(其中一个或多个不相邻的C原子可被O、S、N、C=O和-COO-替换),任选取代的芳基,任选取代的杂芳基,烷氧基,烷硫基,氟,氰基和芳基烷基。
[0149] 优选地,该聚合物包含上述亚芳基重复单元和芳胺重复单元,尤其是重复单元V:
[0150]
[0151] 其中Ar1和Ar2是任选取代的芳基或杂芳基基团,n大于或等于1,优选1或2,并且R为H或取代基,优选取代基。R优选为烷基或芳基或杂芳基,最优选芳基或杂芳基。式1单元中的任何芳基或杂芳基基团(包括R是芳基或杂芳基的情况)可被取代,并且在一
1 2
种实施方式中,Ar、Ar和R各自是任选取代的苯基。优选的取代基选自烷基(其中一个或多个不相邻的C原子可被O、S、N、C=O和-COO-替换),任选取代的芳基,任选取代的杂芳基,烷氧基,烷硫基,氟,氰基和芳基烷基。优选的取代基包括烷基和烷氧基基团。式1重复单元中的任何芳基或杂芳基基团可通过直接键或二价连接原子或基团连接。优选的二价连接原子和基团包括O、S;取代的N;和取代的C。
[0152] 特别优选的满足式1的单元包括式1-3的单元:
[0153]
[0154] 其中Ar1和Ar2定义如上;和Ar3是任选取代的芳基或杂芳基。如存在,Ar3的优选的取代基包括烷基和烷氧基基团。
[0155] 芳胺重复单元优选以至多30mol%,优选至多20mol%的量存在。在超过一种类型的式V重复单元使用的情况下,这些百分比适用于聚合物中存在的芳胺单元总数。式(V)的重复单元可提供一个或多个空穴传输官能度和发光官能度。
[0156] 所述聚合物可包含用于电荷传输或发光的杂亚芳基重复单元。
[0157] 与将三重态接收材料与发光材料物混合相比,将三重态接收单元键接到发光材料可获得更有效的三重态吸收,因为这样的键接可提供对于相应的混合体系来说不可能的分子内三重态接收途径。
[0158] 此外,键接还可能因为加工的原因而是有益的。例如,如果三重态接收单元的溶解性低,则将其键接到可溶性发光材料、特别是发光聚合物可使三重态接收单元由发光材料携带于溶液中,使利用溶液加工技术的器件制造成为可能。此外,如果三重态接收单元是相对来说挥发性的材料,如茋或其衍生物,则消除了在器件制造期间三重态接收材料蒸发的险。这在利用溶液加工方法形成的OLED的情况下特别成为问题,因为通过溶液沉积形成的发光层作为器件制造过程的一部分(例如,为了蒸发溶剂)典型地被加热,这提高了挥发性三重态接收单元蒸发的可能性。最后,将三重态接收单元键接到发光材料可防止在溶液加工的器件中可能对器件性能有害的相分离效应。
[0159] 当发光材料是包含发光重复单元和另外的重复单元(例如式(V)的发光胺重复单元和式(IV)的芴重复单元)的共轭聚合物时,三重态接收单元与聚合物主链的共轭(例如通过与芴重复单元共轭)可降低三重态接收单元的T1能级,由此提高从发射单元转移到三重态接收单元的三重态激子的能量有利性。这样的三重态接收单元T1能级的降低还可使三重态接收单元能够用于具有T1能级的发光材料,该T1能级对于使用没有这样共轭的三重态接收单元来说太低。
[0160] 制备共轭发光聚合物的优选方法包括"金属插入",其中金属络合物催化剂的金属原子被插入芳基或杂芳基基团与单体的离去基团之间。示例的金属插入方法是Suzuki聚合,其描述于例如WO00/53656和Yamamoto聚合,其描述于例如T.Yamamoto,"Electrically Conductive and Thermally Stableπ-Conjugated Poly(arylene)s Prepared by Organometallic Processes",Progress in Polymer Science 1993,17,1153-1205。在Yamamoto聚合的情况下,使用镍络合物催化剂;在Suzuki聚合的情况下,使用钯络合物催化剂。
[0161] 例如,在通过Yamamoto聚合合成直链聚合物中,使用具有两个反应性卤素基团的单体。类似的,根据Suzuki聚合方法,至少一个反应性基团是硼衍生物基团,如硼酸或硼酯,并且其它反应性基团是卤素。优选的卤素是氯、溴和碘,最优选溴。
[0162] 因此应领会,本申请中展示的重复单元可得自携带合适的离去基团的单体。类似的,端基或侧基可通过合适的离去基团的反应键接到聚合物。
[0163] Suzuki聚合可用于制备区域性规整(regioregular)、嵌段和无规共聚物。尤其是,均聚物或无规共聚物可在一个反应性基团是卤素和其它反应性基团是硼衍生物基团时制备。或者,嵌段或区域性规整(尤其是AB)共聚物可在第一单体的反应性基团都是硼和第二单体的反应性基团都是卤素时制备。
[0164] 作为卤化物的备选方案,能够参与金属插入的其它离去基团包括以下基团,甲苯磺酸酯(tosylate)、甲磺酸酯(mesylate)和三氟甲磺酸酯(triflate)。
[0165] 发光层3可由发光聚合物和三重态接收单元单独组成,单独地或可包含与一种或多种其它材料组合的这些材料。尤其是,发光聚合物可与空穴和/或电子传输材料共混,或者可共价键接到空穴和/或电子传输材料,这披露于例如WO99/48160。
[0166] 发光共聚物可包含发光区域,以及空穴传输区域和电子传输区域的至少之一,这披露于例如WO00/55927和US6353083。如果仅提供了空穴传输区域和电子传输区域之一,则电致发光区域还可提供空穴传输和电子传输官能度的另一种-例如,上述胺单元可提供空穴传输和发光官能度两者。包含发光重复单元以及空穴传输重复单元和电子传输重复单元之一或两者的发光共聚物可在聚合物主链中(如US6353083中那样)或在从聚合物骨架悬垂的聚合物侧链中提供所述单元。
[0167] 发光聚合物可发出任何颜色的光,条件是其相对于三重态接收单元的S1和T1能级如上所述,然而发光聚合物优选是发蓝光的聚合物,尤其是具有峰值波长范围在400-500nm,优选430-500nm光致发光的发光的材料。
[0168] 发光层3可以是图案化的或非图案化的。包含非图案化的层的器件可例如用于照明光源。白色发光器件特别适合该目的。包含图案化的层的器件可为,例如,有源矩阵显示器或无源矩阵显示器。在有源矩阵显示器的情况下,图案化的电致发光层典型地与图案化的阳极层和非图案化的阴极组合使用。在无源矩阵显示器的情况下,阳极层由阳极材料的平行带条形成,电致发光材料和阴极材料的平行带条垂直于阳极材料布置,其中电致发光材料和阴极材料的带条典型地通过光刻法形成的绝缘材料的带条("阴极分隔体")分离。
[0169] 空穴注射层
[0170] 导电性空穴注射层可由导电性有机或无机材料形成,其可提供于阳极2和电致发光层3之间以辅助从阳极到一层或多层半导电性聚合物的空穴注射。掺杂的有机空穴注射材料的实例包括任选取代的、掺杂的聚(亚乙基二氧基噻吩)(PEDT),尤其是用电荷平衡聚酸如披露于EP 0901176和EP 0947123的聚苯乙烯磺酸盐(PSS)、聚丙烯酸或氟化磺酸掺杂的PEDT,例如 聚苯胺,其披露于US 5723873和US 5798170;和任选取代的聚噻吩或聚(噻吩并噻吩)。导电性无机材料的实例包括过渡金属氧化物,如VOx、MoOx和RuOx,其披露于Journal of Phys ics D:Applied Physics(1996),29(11),2750-2753。
[0171] 电荷传输层
[0172] 空穴传输层可设置在阳极和电致发光层之间。类似地,电子传输层可设置在阴极和电致发光层之间。
[0173] 类似地,电子阻挡层可设置在阳极和电致发光层之间,空穴阻挡层可设置在阴极和电致发光层之间。传输和阻挡层可组合使用。根据其HOMO和LUMO能级,单一层可既传输空穴和电子之一,又阻挡空穴和电子的另一个。
[0174] 如存在,位于阳极2和电致发光层3之间的空穴传输层优选的HOMO能级小于或等于5.5eV,更优选大约4.8-5.5eV。HOMO能级可通过例如循环伏安法测量。
[0175] 如存在,位于电致发光层3和阴极4之间的电子传输层优选的LUMO能级为大约3-3.5eV。例如,厚度范围在0.2-2nm的一氧化二氧化硅的层或其它薄介电层设置在电致发光的层3和层4之间。
[0176] 用作电荷传输材料的聚合物可包含亚芳基单元,如式(IV)的芴单元和上述其它单元。
[0177] 空穴传输聚合物可包含芳胺重复单元,尤其是式(V)的重复单元,如上述式1-3的重复单元。该聚合物可为均聚物,或者它可为包含至多95mol%、优选至多70mol%的量的亚芳基重复单元的共聚物。在使用了多于一种类型的式(V)的重复单元的情况下,这些百分比适用于所述聚合物中存在的芳胺单元的总数。
[0178] 电荷传输单元可提供在聚合物主链或聚合物侧链中。
[0179] 阴极
[0180] 阴极4选自具有能将电子注射到电致发光层中的功函数的材料。影响阴极的选择的其它因素例如阴极和电致发光材料之间的反向相互作用。阴极可由单一材料如铝的层组成。
[0181] 或者,它可包含多种金属,例如低功函数材料和高功函数材料如和铝的双层,其披露于WO98/10621;元素钡,其披露于WO98/57381,Appl.Phys.Lett.2002.81(4),634和WO02/84759;或金属化合物,尤其是金属或碱土金属的氧化物或氟化物的薄层以辅助电子注射,例如氟化锂,其披露于WO00/48258;氟化钡,其披露于Appl.Phys.Lett.2001,79(5),2001;和氧化钡。为了提供进入器件的有效电子注射,阴极优选具有小于3.5eV,更优选小于3.2eV,最优选小于3eV的功函数。金属的功函数可以见于例如Michaelson,J.Appl.Phys.48(11),4729,1977。
[0182] 阴极可是不透明的或透明的。透明的阴极对于有源矩阵器件是特别有利的,因为在这样的器件中通过透明阳极的发光被位于发光像素下面的驱动电路至少部分地阻挡。透明阴极将包含足够薄而成为透明的电子注射材料的层。典型地,该层的侧面导电性将由于其是薄的而低。在这种情况下,电子注射材料的层与透明导电材料如氧化铟锡的较厚层组合使用。
[0183] 应领会,透明阴极器件无需具有透明阳极(当然,除非需要完全透明的器件),因此用于底部发光的器件的透明阳极可用反射性材料层如铝层替换或补充。透明阴极器件的实例披露于例如GB 2348316中。
[0184] 包封
[0185] 光学器件往往对湿气和氧气敏感。因此,基材优选具有防止湿气和氧气进入器件的良好的阻隔性质。基材通常为玻璃,然而可使用其它基材,尤其是需要器件的柔性时。例如,基材可包括塑料,如在US 6268695中,其中披露了具有交替的塑料和阻隔层的基材,或披露于EP 0949850的薄玻璃和塑料的层叠体。
[0186] 器件优选用包封材料(未示出)包封以防止湿气和氧气进入。合适的包封材料包括玻璃片材,具有合适的阻隔性质的膜,如二氧化硅、一氧化硅、氮化硅,或披露于例如WO01/81649中的聚合物和介电质的交替堆叠体,或披露于例如WO01/19142中的气密性容器。在透明阴极器件的情况下,透明包封层如一氧化硅或二氧化硅可沉积为微米级的厚度,但在一个优选的实施方式中,该层的厚度范围在20-300nm。用于吸收可能渗透穿过基材或包封材料的任何大气湿气和/或氧气的吸收材料(getter material)可设置在基材和包封材料之间。
[0187] 溶液加工
[0188] 发光层3可通过任何方法沉积,包括真空和由溶剂中的溶液沉积。在发光层包含聚亚芳基如聚芴的情况下,适于溶液沉积的溶剂包括单或多烷基苯,如甲苯和二甲苯。特别优选的溶液沉积技术包括打印和涂覆技术,优选旋涂和喷墨打印。
[0189] 旋涂特别适于其中电致发光材料的图案化不是必要的器件-例如用于照明应用或简单的单色断码显示器。
[0190] 喷墨打印特别适于高信息内容的显示器,尤其是全色显示器。器件可通过在第一电极和用于打印一种颜色(单色器件的情况)或多色(多色的情况,尤其是全色器件)的限定孔(defining well)上提供图案化的层来打印。图案化的层典型地是光刻胶被图案化以限定孔的层,其描述于例如EP 0880303。
[0191] 作为孔的备选方案,油墨可打印到图案化的层内限定的通道内。尤其是,光刻胶可被图案化以形成通道,不同于孔,通道在多个像素上延伸并且可在通道末端封闭或开放。
[0192] 其它溶液沉积技术包括浸涂辊筒印刷和丝网印刷。
[0193] 如果OLED的多层通过溶液加工形成,则本领域技术人员将了解防止相邻层互混的技术,例如通过使一层在后续层的沉积之前交联,或选择相邻层的材料使得形成这些层中第一层的材料不溶于用于沉积第二层的溶剂。
[0194] 组合物实施例1
[0195] 蒽化合物1根据以下合成方法制备,由市售蒽开始:
[0196]
[0197] 化合物1与包含式(V)的蒽重复单元和式(IV)的发光胺重复单元的聚合物共混。
[0198] 器件实施例1
[0199] 形成具有以下结构的器件:
[0200] ITO/HIL/HTL/EL/MF/Al
[0201] 其中ITO表示氧化铟锡阳极;HIL是35nm空穴注射层;HTL是15nm的式(IV)聚合物的空穴传输层;EL是70nm的含有与式(VI)三重态接收材料(DPVBi,1%摩尔比)共混的式(V)的发光聚合物的电致发光层;MF是金属氟化物;和MF/Al的双层形成器件的阴极。HIL、HTL和EL层通过旋涂或喷墨打印来自溶液的组合物和蒸发溶剂来沉积。
[0202]
[0203] DPVBi具有低于聚芴三重态能级的三重态能级(Chen,P.等人Appl.Phys.Lett.91:023505,2007;Schwartz,G.等人Appl.Phys.Lett.89:083509,2006)并具有与发光聚合物相当的单态能量(3.2eV),确保了发射性单态状态不受三重态接收材料影响。
[0204] 单态和三重态激子的动力学由时间分辨的电致发光、准-cw、和时间分辨的激发态吸收技术测量。聚芴三重态状态利用之前提到的780nm下的激发态吸收特征来检测,调制器件的电流,并用内建式放大器测量吸收。
[0205] 图5显示了没有添加(方)和添加了(菱形)三重态接收材料的器件实施例1的外部量子效率。三重态接收材料的存在没有改变器件的电致发光光谱。
[0206] 图6显示了没有添加(方块)和添加了(实心圆)三重态接收材料的器件实施例1的准-cw电流引发的激发态吸收曲线。这些曲线显示了聚合物骨架上三重态激子的密度。
还显示器件实施例1被驱动到一半的初始亮度(菱形)。
[0207] 图7a显示了在器件实施例1的关闭期间的时间分辨的电致发光。在初始RC衰减后,存在残余电致发光信号,其占归因于TTA的时间尺度为几个微妙的总初始电致发光的约30%。器件实施例1的电致发光关闭(空心方块)与时间分辨的瞬时三重态吸收(实心方块)及其平方(实心圆)比较。虚线具有相同斜率。还显示了当在器件电流切断(空心圆)250ns后将10V的反向偏压脉冲施加到器件200ns期间对电致发光关闭的影响,从而将TTA与束缚电荷的复合相区分。该图的数据表明,电致发光的残余衰减是由于导致发光性单态激子的双分子三重态-三重态湮灭反应(TTA)。
[0208] 图7b显示了未驱动器件(T100)和驱动到不同相对亮度的器件(例如,T90是驱动到起始亮度的90%)的电致发光关闭瞬间。插图中还显示了器件的归一化亮度衰减(实心方块)与TTA单态对器件效率的归一化贡献(空心圆)的比较。
[0209] 图8显示了对于标准器件(实线)和含三重态猝灭添加剂(虚线)的器件随时间-2的器件亮度衰减(上部)随时间的器件效率变化(下部)。各器件都由起始亮度5000cd m驱动。
[0210] 不希望受理论限制,器件电致发光的很大比例源自由三重态-三重态湮灭过程产生发光性单态激子。由驱动期间在聚合物膜中产生的缺陷位点带来的三重态激子的有效猝灭,这样的对器件效率的促进在器件寿命的早期丧失,并且对在高效率荧光OLED器件中常见的快速初始衰减有显著影响。器件的寿命利用三重态猝灭添加剂显著改进。利用这种途径,实现了在器件半衰期(T50)方面>3的改进和在初始衰减(T90)方面>5的改进。
[0211] 器件实施例2
[0212] 另一器件以与器件实施例1中所述基本相同地制备,除了三重态接收材料为9,10-二苯基蒽。图9a显示了不含三重态猝灭剂的器件的延迟的发光、骨架三重态密度和骨架三重态密度的平方。直线是对辨别的引导,表明延迟的发光与骨架三重态密度的平方成正比。图9b显示了含有作为三重态接收材料的9,10-二苯基蒽的器件的延迟的发光、三重态密度和三重态密度的平方。
[0213] 实施例3
[0214] 制备进一步的实例,其中三重态接收材料(蒽)以包含50mol%的蒽和芴单体的蒽-芴无规共聚物的形式提供于发光聚合物的骨架中。图10显示了利用该材料获得的延迟荧光。
[0215] 虽然本发明以就具体的示例性实施方式进行了描述,应领会,本文披露的特征的各种改型、改变和/或组合对于本领域技术人员来说都是明显的,不会背离以下权利要求中给出的本发明的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈