首页 / 专利库 / 环境工程 / 生态系统 / 多层的封闭生态系统温室

多层的封闭生态系统温室

阅读:895发布:2020-05-11

专利汇可以提供多层的封闭生态系统温室专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 温室 ,其具有透光的屏障和楼板表面。屏障和楼板连接在一起以在温室内限定用于 植物 栽培的围护空间。屏障包括内部层和外部层,内部层界定围护空间。内部层和外部层不透气以基本上防止空气通过内部层进入围护空间,外部层间隔设置在内部层上方以限 定位 于内部层和外部层之间的空气通道。空气通道与外部层底部的至少一个进气口和外部层顶部的出气口 流体 连通。空气通道内的空气被加热时被动地从至少一个进气口流至出气口。,下面是多层的封闭生态系统温室专利的具体信息内容。

1.一种温室,包括:透光屏障和楼板表面,所述屏障和楼板表面连接在一起以在所述温室内限定用于植物栽培的围护空间,所述屏障包括内部层和外部层,所述内部层界定所述围护空间,所述内部层和所述外部层不透气以基本上防止空气通过所述内部层进入所述围护空间,所述外部层间隔设置在所述内部层上方以限定位于所述内部层和所述外部层之间的空气通道,所述空气通道与处于所述外部层的底部的至少一个进气口和处于所述外部层的顶部的出气口流体连通,所述空气通道内的空气在被加热时被动地从所述至少一个进气口流至所述出气口。
2.根据权利要求1所述的温室,其特征在于,所述透光屏障包括由至少一个透光墙壁部分支撑的至少一个透光屋顶部分,所述至少一个透光屋顶部分相对于所述楼板表面倾斜。
3.根据权利要求2所述的温室,其他在于,所述至少一个透光屋顶部分包括在一顶端部分处会合的第一屋顶部分和第二屋顶部分,所述第一屋顶部分具有面向南方的朝向,所述第二屋顶部分具有面向北方的朝向。
4.根据权利要求3所述的温室,其特征在于,所述第一屋顶部分的长度大于所述第二屋顶部分的长度。
5.根据权利要求3或4所述的温室,其特征在于,所述外部层的出气口布置在所述顶端部分内,并包括由间隔的所述第一屋顶部分的外部层和所述第二屋顶部分的外部层限定的出口通道。
6.根据权利要求5所述的温室,其特征在于,所述出口通道包括设置在其中的至少一个翼型结构,所述翼型结构具有与在所述出口通道中的空气接合的翼型表面。
7.根据权利要求1所述的温室,其特征在于,所述透光屏障形成从所述楼板表面延伸的穹顶,所述至少一个进气口包括设置在所述穹顶底部的环形开口,并且所述出气口具有处于所述穹顶的顶端的圆形开口。
8.根据权利要求7所述的温室,其特征在于,还包括出口塔,所述出口塔连接至所述穹顶并且具有塔入口和塔出口,所述塔入口与所述穹顶的顶端的所述圆形开口流体连通。
9.根据权利要求8所述的温室,其特征在于,还包括从所述内部层向上延伸穿过所述穹顶的顶端的圆形开口并进入所述塔入口的周向导流主体。
10.根据权利要求8或9所述的温室,其特征在于,还包括至少一个发电涡轮机,该至少一个发电涡轮机布置在所述出口塔中、处于所述塔入口和所述塔出口之间。
11.根据权利要求1到10中任意一项所述的温室,其特征在于,还包括位于所述楼板表面的下方的散热器,所述散热器在工作中至少从所述空气通道内的空气吸收热量,并且所述散热器在工作中将吸收的热量从所述楼板表面释放到所述空气通道中。
12.根据权利要求1到11中任意一项所述的温室,其特征在于,还包括通过所述出气口与离开温室的空气流体连通的热交换器,所述热交换器在工作时将来自所述空气的热量输送至另一流体。
13.根据权利要求1到12中任意一项所述的温室,其特征在于,所述外部层的所述出气口包括布置在所述外部层上的至少一个空气馈送管道,所述至少一个空气馈送管道具有接收来自温室外部的空气的馈送入口,以及布置在所述空气通道内的馈送出口。
14.根据权利要求1到13中任意一项所述的温室,其特征在于,还包括在所述围护空间内与所述楼板表面垂直间隔的多个平坦的植物支撑件。
15.根据权利要求14所述的温室,其特征在于,还包括布置在所述围护空间内的多个竖直的栽培塔,每个栽培塔布置在多个植物支撑件中的其中一个植物支撑件上。
16.根据权利要求14或15所述的温室,其特征在于,还包括布置在所述围护空间内的多个栽培箱,每个栽培箱布置在多个植物支撑件中的其中一个植物支撑件上。
17.根据权利要求1到16中任意一项所述的温室,其特征在于,所述空气通道内的空气被冷却后在所述空气通道内保持基本静止。
18.根据权利要求1到17中任意一项所述的温室,其特征在于,还包括地质聚合物混凝土基底,所述楼板表面布置在所述地质聚合物混凝土基底上。
19.根据权利要求1到18中任意一项所述的温室,其特征在于,所述内部层和所述外部层由选自聚甲基丙烯酸甲酯(PMMA)的透光材料制成。
20.一种温室,包括:双壳几何结构,所述双壳几何结构由透光的内壳和透光的外壳限定,所述内壳连接至楼板以形成用于植物栽培的气密性下方围护空间,所述下方围护空间没有连接至外部空气,所述外壳和所述内壳由空气间隙隔开,所述外壳和所述内壳都是不透气的,并且所述外壳和所述内壳限定了将空气约束在所述外壳和所述内壳之间的空气通道,所述空气通道与处于所述外壳的下部的至少一个底部进气口和处于所述外壳的顶部的至少一个上方出气口流体连通,所述空气通道内的空气形成从所述底部进气口到所述上方出气口的上升流,所述上升流由所述空气通道内的空气被加热时空气的对流产生,所述上升流向所述上方出气口输送加热过的空气。
21.根据权利要求20所述的温室,其特征在于,还包括被动保温机构,在该保温机构中,所述空气通道中的空气在没有被加热时保持停滞,并且该空气用作隔热层,减少从所述下方围护空间逸出的热量。
22.根据权利要求20或21所述的温室,其特征在于,所述几何结构包括相对于所述楼板倾斜的至少一个透光屋顶部分。
23.根据权利要求22所述的温室,其特征在于,所述至少一个透光屋顶部分包括在一顶端部分处会合的平坦的第一屋顶部分和平坦的第二屋顶部分,所述第一屋顶部分具有面向南方的朝向,所述第二屋顶部分具有面向北方的朝向。
24.根据权利要求23所述的温室,其特征在于,所述第一屋顶部分的长度大于所述第二屋顶部分的长度。
25.根据权利要求23或24所述的温室,其特征在于,所述外壳的所述出气口布置在所述顶端部分,并且包括由间隔开的所述第一屋顶部分的外部层和所述第二屋顶部分的外部层限定的出口通道。
26.根据权利要求25所述的温室,其特征在于,所述出口通道包括设置在其中的至少一个翼型结构,所述翼型结构具有与所述出口通道内的空气接合的翼型表面。
27.根据权利要求20所述的温室,其特征在于,所述几何结构是弯曲的,并且从所述楼板延伸,所述至少一个进气口包括布置在弯曲的几何结构的底部的环形开口,并且所述出气口具有处于弯曲的几何结构的顶端的圆形开口。
28.根据权利要求27所述的温室,其特征在于,还包括连接至弯曲的几何结构的出口塔,所述出口塔具有塔入口和塔出口,所述塔入口与处于弯曲的几何结构的顶端的所述圆形开口流体连通。
29.根据权利要求28所述的温室,其特征在于,还包括周向导流主体,该周向导流主体从所述内壳向上延伸,穿过处于弯曲的几何结构的顶端的所述圆形开口并进入所述塔入口。
30.根据权利要求28或29所述的温室,其特征在于,还包括至少一个发电涡轮机,该至少一个发电涡轮机布置在所述出口塔内、位于所述塔入口和所述塔出口之间。
31.根据权利要求20到30中任意一项所述的温室,其特征在于,还包括位于所述楼板下方的散热器,所述散热器在工作中至少从所述空气通道内的空气吸收热量,并且所述散热器在工作中将吸收的热量从所述楼板释放进所述空气通道中。
32.根据权利要求20到31中任意一项所述的温室,其特征在于,还包括通过所述出气口与离开温室的空气流体连通的热交换器,所述热交换器在工作时将来自所述空气的热量输送至另一流体。
33.根据权利要求20到32中任意一项所述的温室,其特征在于,所述外壳的所述出气口包括布置在所述外壳上的至少一个空气馈送管道,所述至少一个空气馈送管道具有接收来自温室外部的空气的馈送入口,以及布置在所述空气通道内的馈送出口。
34.根据权利要求20到33中任意一项所述的温室,其特征在于,还包括位于所述围护空间内、与所述楼板垂直间隔的多个平坦的植物支撑件。
35.根据权利要求34所述的温室,其特征在于,还包括布置在所述围护空间内的多个竖直的栽培塔,每个栽培塔布置在多个植物支撑件中的其中一个植物支撑件上。
36.根据权利要求34或35所述的温室,其特征在于,还包括布置在所述围护空间内的多个栽培箱,每个栽培箱布置在多个植物支撑件中的其中一个植物支撑件上。
37.根据权利要求20到36中任意一项所述的温室,其特征在于,所述空气通道内的空气被冷却后在所述空气通道内保持基本静止。
38.根据权利要求20到37中任意一项所述的温室,其特征在于,还包括地质聚合物混凝土基底,所述楼板布置在所述地质聚合物混凝土基底上。
39.根据权利要求20到38中任意一项所述的温室,其特征在于,所述内壳和所述外壳由选自聚甲基丙烯酸甲酯(PMMA)的透光材料制成。
40.根据权利要求20到29中任意一项所述的温室,其特征在于,所述双壳几何结构和所述楼板与多楼层建筑结合为一体。

说明书全文

多层的封闭生态系统温室

[0001] 相关申请的相互引用
[0002] 本申请要求2015年2月24日提交的第2882972号加拿大专利申请的优先权,其全部内容以引用的方式并入本文中。

技术领域

[0003] 本申请一般涉及用于植物栽培的结构物,更具体地,涉及温室。

背景技术

[0004] 温室通常具有一个或多个透明的墙壁屋顶,这些墙壁和屋顶允许太阳辐射穿透进入结构物中以便进行植物光合作用。如果没有花费大量能源,在温室内难以控制生长条件。当前使用的许多温室是开放式温室。因为在热天需要空气流通来从温室里移除热量,因此开放式温室是必需的。
[0005] 例如,当阳光明媚时,温室具有在其内部积聚大量热量的趋势。对于某些植物种类,需要移除多余热量从而为植物生长保持适宜温度。这通常通过从温室内部排放热量实现。在高温和高湿条件下,使用一个或多个扇,这些风扇消耗能源,并且容易出现机械故障。这种需要温室对大气开放的气候控制降低了控制温室的湿度和CO2平的能,并且将植物暴露给昆虫、细菌或在被污染的区域中的其他大气污染物。在寒冷的夜晚或者在北纬地区的冬季,这样的开放式温室还具有将热量泄漏至大气的趋势,这限制了植物生长。
[0006] 大多数的温室仅具有一个层次的植物,其通常接近设施的地面水平。为了实现所需的生产能力,这需要占用相对大量的空间来安装这样的温室。其他方法使用复杂机制来移动植物,以便将这些植物更好地暴露给自然光或人造光,或者将劳动力最小化。这些机制通常难以实现,并且在温室的使用期限内容易受到破坏。发明内容
[0007] 在一个方面,提供了一种温室,包括:透光的屏障和楼板表面,所述屏障和楼板连接在一起以在所述温室内限定用于植物栽培的围护空间,所述屏障包括内部层和外部层,所述内部层界定所述围护空间,所述内部层和所述外部层不透气以基本上防止空气通过所述内部层进入所述围护空间,所述外部层间隔设置在所述内部层上方以限定位于所述内部层和所述外部层之间的空气通道,所述空气通道与在所述外部层的底部中的至少一个进气口和在所述外部层的顶部中的出气口流体连通,所述空气通道内的空气在被加热时被动地从所述至少一个进气口流至所述出气口。
[0008] 在另一个方面,提供了一种控制温室的温度的方法,包括:当所述温室的内部层和外部层之间的空气在被太阳加热时,所述内部层和所述外部层之间的所述空气被动地循环,所述内部层界定所述温室用于植物栽培的围护空间,在所述内部层和所述外部层之间的所述空气的循环冷却所述围护空间;以及,当所述内部层和所述外部层之间的所述空气没有被太阳加热时,维持所述内部层和所述外部层之间的空气,所述静止的空气隔离所述围护空间。
[0009] 在还有一个方面,提供了一种温室,包括:双壳几何结构,其由透光的内壳和透光的外壳限定,所述内壳连接至楼板以形成用于植物栽培的气密下方围护空间,所述下方围护空间没有连接至外部空气,所述外壳和所述内壳由空气间隙隔开,所述外壳和所述内壳都是不透气的,并且所述外壳和所述内壳限定了将空气约束在所述外壳和所述内壳之间的空气通道,所述空气通道与处于所述外壳的下部的至少一个底部进气口和在所述外壳的顶部中的至少一个上方出气口流体连通,在所述空气通道内的空气形成从所述底部进气口到所述上方出气口的上升流,所述上升流由当所述空气通道内的空气被加热时空气的对流产生,所述上升流向所述上方出气口输送加热的空气。附图说明
[0010] 现在参照以下说明书附图:
[0011] 图1A为根据本发明的实施例的温室的示意截面图;
[0012] 图1B为图1A中的圆圈部分的放大图;
[0013] 图2A为展示了安装有栽培箱的底部楼板表面,以及安装有栽培塔的多级平台的图1A所示的温室的示意截面图;
[0014] 图2B为图2A所示的楼板表面和栽培箱的顶视图;
[0015] 图2C为图2A所示的多级平台和栽培塔的顶视图;
[0016] 图3为展示了局部截面的根据本发明的另一个实施例的温室的透视图;
[0017] 图4为图3的顶部的放大图;
[0018] 图5为展示了安装有多个栽培箱和多个栽培塔的多级楼板的图3所示的温室的透视图;
[0019] 图6为与建筑物相邻的根据本发明的实施例的温室的示意截面图。

具体实施方式

[0020] 图1A和1B展示了多层的温室10。温室10用于促进和提高在温室10中的植物的生长。如下面将更详细解释的,温室10允许植物放置在温室10内的不同垂直间隔。本发明公开的温室10还是“封闭式”温室10,其中,它具有没有直接暴露给温室10外部的空气的围护空间11。因此,这样的封闭式温室不会向或从周围空气失去或接收水分、热量、害虫和/或CO2,从而能够更好控制围护空间11内的条件以便植物栽培,其中,这样的植物栽培可以是单一栽培或者混合栽培。栽培植物所处的封闭的围护空间11是受控环境并且充满空气12。
[0021] 温室10具有透光屏障20和楼板表面30,透光屏障20和楼板表面30相互配合,和/或直接或间接地连接在一起以限定温室10的内部围护空间11。楼板表面30可以是为温室10及其应用的特点目的建造的底面或地面。可选地,楼板表面30可以是温室10所处的任意表面。
[0022] 透光的屏障20(或简称“屏障20”)限定了温室的外部的至少一部分。虽然如果需要可以将空气送或以其他方式提供到围护空间12中,但是屏障20形成防止温室10周围的空气通过屏障20透入围护空间11中的结构。因此,屏障20为温室10提供如上所述的“封闭”特性。术语“透光”指的是屏障20允许对植物栽培有利(例如,来自太阳辐射)的光的波长穿透屏障20并进入围护空间11。
[0023] 屏障20可以形成温室10的外部或外壳的任意部分,并且在很大程度上决定温室10的形状。例如,在所示的实施例中,温室10具有由屏障20的屋顶和墙壁部分限定的棚屋或房屋状形状。如下面将讨论的,只要太阳(或其他)辐射可以透入温室10中,温室10可以采用任意其他形状。因此,本实施例的温室10的尺寸可以随棚屋或房屋状形状的任意长度从相对小的矩形占用空间变化到大得多的占用空间。图1A的实施例展示了具有足够空间来安装两个中间楼板61的相对狭窄的温室。类似地,如下面所讨论的,通过增大(或按比例放大)围护空间11的宽度,高度将成比例地增大,并且允许安装任意数量的额外部层61或中间楼板,以便在地表箱或垂直塔中的植物栽培。例如,温室10的后墙可以毗邻现有的或新的建筑物,该建筑物在高度方向上具有许多楼板,相应地,封闭式温室10也将具有可用于植物栽培的许多楼板。如下面将更详细描述的,温室10越大,温室内使空气循环的被动自然对流的效率越高。
[0024] 屏障20包括内部层21和外部层22,内部层21和外部层22均不透气。内部层21界定和限定用于植物栽培的围护空间11的范围。外部层22暴露给温室10周围的空气。内部层21和外部层22可以由允许光透过并且基本上防止外部空气进入围护空间11中的任意合适的材料或媒介制成。这样的材料可以是刚性的或柔性的。它们包括但不限于聚酸酯薄膜或板。它们还可以包括聚甲基丙烯酸甲酯(PMMA),其通常称为丙烯酸或丙烯酸玻璃。这些材料的常见商品名称包括PlexiglasTM和AcryliteTM。内部层21和外部层22可以由单独的丙烯酸材料制成。例如,外部层22可以由AcryliteTM ALLTOP Clear制成,厚度为约16mm,而内部层21可以由AcryliteTM HeatStop Cool Blue制成,厚度为约8mm。
[0025] 外部层22在内部层21的上方,沿着每个层21、22的长度方向与内部层21间隔开来。内部层21和外部层22的结构限定了空气可以积聚和循环的容积体,其在文中被称为空气通道23。鉴于每个层21、22对空气的不可渗性质,在空气通道23中的空气12被限制在空气通道
23的范围内,并且防止通过内部层21进入围护空间11中。因此,内部层21和外部层22提供“双壳”结构。因此,可以理解的是屏障20的“双壳”结构可以防止在阳光明媚的日子热的空气进入温室10的围护空间11中,同时还为基部上停滞的空气的积聚提供地方,从而在阳光不充分或较冷的日子使围护空间11保温。因此,双壳结构既可以冷却围护空间11,又可以降低围护空间11的热量损失。
[0026] 继续参照图1A和1B,空气通道23在重叠的内部层21和外部层22之间延伸。空气通道23与朝向屏障20的底部安置的一个或多个进气口24,以及朝向屏障20的顶部安置的一个或多个出气口25流体连通。进气口24和出气口25是屏障20的外部层22中的通气孔、穿孔或其他孔隙。它们允许外部空气进入空气通道23,并且从空气通道23输送到温室10之外。每个进气口24均位于外部层22的底部22A。在所示的实施例中,底部22A朝着楼板表面30安置,但是与楼板表面30垂直间隔。类似地,每个出气口25均位于外部层22的顶部22B,在所示的实施例中,顶部22B是外部层22的最高部分。外部层22的底部22A和顶部22B的其他结构也在本发明的范围内。出气口24和进气口25中的一个或多个可以设置百叶来防止杂物、雨或进入空气通道23,和/或设置排水沟来收集从外部层22流下的雨和雪。此外,百叶门可以被打开从而允许空气自由流动以达到冷却的目的,或者被关闭从而将空气通道23中的空气12保持停滞以达到保温的目的。
[0027] 内部层21和外部层22的双壳结构允许温室10的围护空间11的被动冷却和保温。术语“被动”指的是无需使用机械系统(即,风扇、泵、加热器等),内部层21和外部层22阻止和/或限制热量进入围护空间11中,或者消散由于太阳辐射而已经积聚在围护空间11中的多余热量的能力,以及当外部环境更冷时帮助在围护空间11中保留热量的能力。
[0028] 在需要通过减少透入围护空间11中的热量,或者通过从围护空间11中移除热量而冷却围护空间11的炎热、阳光明媚的日子,被动冷却结构通常生效。限制在空气通道23中的空气12受太阳或其他热辐射的加热,和/或通过传导,经常达到比温室10外部的空气的温度更高的温度。在空气通道23中加热的空气12的密度降低,产生向上的自然对流。因为热空气12被限制在空气通道23中,它上升的趋势被约束,因此空气12被内部层21和外部层22引导至出气口25。热空气12的这种运动产生沿着流动方向F的向上空气流,其主要由在空气通道
23内部的热空气的密度降低,而在温室10外部的更冷的空气的相对较高密度所导致。接着,更低密度的空气自然在空气通道23内上升,从而在进气口24和出气口25之间引起向上的流动。空气12的这种循环将热量输送至一个或多个出气口25,并且还通过热传导从围护空间
11汲取热量以及通过内部层21汲取辐射,从而有助于冷却围护空间11。因此,即使不允许围护空间11与外部空气的通气,温室10的封闭的围护空间11也可以保持得更冷。
[0029] 在需要在围护空间11内保留热量的寒冷和/或阳光不充分的日子,被动保温结构通常生效。当没有阳光时,限制在空气通道23中的空气12的温度与在温室10外部的空气的温度大致相同。因此,几乎没有由进气口24和出气口25之间的对流产生的空气12的循环。此外,可以安装百叶门以部分地或完全地封闭进气口24,以防止空气流动,并且将空气12捕获在内部通道23的双壳结构之间,从而达到保温的目的。因此,空气通道23内的空气12基本上保持静止或停滞。鉴于空气相对强的保温性质,在空气通道23内的空气12形成围绕围护空间11的保温层,其限制和/或防止热量从围护空间11泄漏。因此,可以理解的是,在夜晚或者冷天,屏障20的双壳结构减少和/或防止热量离开围护空间11。因此,内部层21和外部层22的双壳结构以及空气通道23内的空气层组合在一起的效果是即使没有辅助加热系统,也能够抵御散热,并且有助于将内部围护空间11保持在所需温度。
[0030] 还可以理解的是,温室10的结构有助于实现植物栽培区域11的被动的、太阳驱动的冷却和保温。因为温室10相比通常使用机械冷却和/或加热系统的常规温室消耗更少的能量,所以温室10的能源效率得到提高。采用作为包含封闭的围护空间11的温室的静态结构和几何结构的一部分的被动的、太阳驱动的技术,温室10的冷却和加热能量负载被最小化。
[0031] 还可以理解的是,由屏障20的结构产生的冷却和保温效果可能通过增大空气通道23的容积而被放大。空气通道23的容积越大,越多的热空气12可能向出气口25移动,并且越多的停滞空气12能够使围护空间11隔热。如果需要的话,两个透明层21、22之间的空气通道
23可以与温度需要被控制的围护空间11的整体尺寸或空气容积成比例地放大。例如,对于相对较小的温室10,如图1A所示,空气通道23的尺寸可能开始于20厘米,并且对于十层或更多层的相对较大的多层温室,空气通道23的尺寸可以多达3米。因此,可以理解的是,在两个透明的并且气密的层21、22之间的空气通道23的尺寸有助于提供自然对流冷却效果的效率。此外,温室10可以具有改变空气通道23中的空气12的质量流的装置,如可变的百叶门,其可以被调节以改变通过进气口24的空气12的流量,从而根据太阳辐射水平、外部温度、围护空间11的下方内部所需的目标温度以及其他因素,实现最佳冷却效果。
[0032] 现在将更详细地描述温室10的各实施例的特征。
[0033] 在图1A和1B的实施例中,屏障20包括由一个或多个透光墙壁部分26A支撑的一个或多个透光屋顶部分26。屏障20具有第一屋顶部分26B和第二屋顶部分26C,第一屋顶部分26B和第二屋顶部分26C均相对于楼板表面30倾斜。更具体地,第一屋顶部分26B朝南,并且相对于楼板表面30倾斜约45度,以便将太阳光的穿透最大化。第二屋顶部分26C也相对于楼板表面30倾斜约45度角,但是其比第一屋顶部分26B更短,因为它朝北从而更少地暴露给太阳。墙壁部分26A相对于楼板表面30成约90度角。墙壁部分26设计为对于某一温室10占用空间或地面使用将围护空间11的容积最大化。漫射自然光穿透墙壁部分26A。光-不透明墙壁27可以为屏障20提供结构支撑,以及隔离。
[0034] 参照图1B,外部层22的出气口25布置在顶端部分28中。出气口25包括由第一屋顶部分26B和第二屋顶部分26C的间隔的外部层22限定的出口通道25A。出口通道25A包括一个或多个布置在其中的翼型结构25B。结构25B的表面25C有助于在出口通道25A的内部发生层流。翼型表面25C促进空气12从出口通道25A的流出,尤其和出口通道25A为笔直的墙壁相比时更是如此,因为在出口通道25A为笔直的墙壁的情况下将存在紊流,并且可能发生节流作用,这将大量减少到出气口25的空气流,并且随后大量减少空气流的冷却效果。表面25C还减少出口通道25A的横截面积。这在空气流上产生伯努利效应,随着空气流在两个翼型结构25B之间加速,它的压力将减少。因此,可以理解的是,“双翼型结构”可能作为空气泵,因为在空气出口通道25A的咽喉部的压力低于进气口24的压力。由于空气从高压向低压流动,因此与单独自然对流相比,存在冷却空气流的增加。
[0035] 继续参照图1B,在COANDA效应(其为流保持附着至凸面(如表面25C)的能力)的帮助下,出口通道25A可能有助于进一步提高冷却空气流的速度。本实施例通过以下方式实现COANDA效应:两个额外的空气馈送管道或进气口27A和27B位于外部层22的顶部。连接至这两个进气口27A、27B的是弯曲表面28A、28B,弯曲表面28A、28B为引导空气流从进气口27A、27B至略低于翼型表面25C的窄间隙29A、29B的一组进口导流叶片(IGV)。这种几何结构有助于提供进入次级进气口27A、27B的次级空气流,这种次级空气流由风(当该风足够强时)或由带有指向进气口27A、27B的槽的增压空气管自然地提供。这种次级空气流以相对较大的空气速度传达至窄间隙29A、29B。这种相对较高速度的流(相比于自然对流的速度)由于COANDA效应粘住翼型表面25C。这种高速流有助于将空气推入出口通道25A中,并且当与仅由太阳加热双壳屏障20之间的空气产生的自然对流引起的空气速度相比,可能增大在出口咽喉处30的净空气流。可以理解的是,由外壳之间的太阳热量产生的自然对流的增加、在双翼型出口结构的咽喉处产生压降的伯努利效应、以及由COANDA流产生的倍数效应造成的高速流有助于在用于植物生长的围护空间11下方维持凉爽的环境。此外,如后面解释的,这个实施例通过这种几何优化的结构允许电力生产。
[0036] 参照图2A至2C,多层的温室10可能具有地质聚合物混凝土楼板表面和多个平台61。平台61为大致水平表面,支撑放置在其上进行栽培的植物的重量。平台61在垂直方向上彼此间隔,在围护空间11内形成楼板表面30,从而允许在“三维”空间中栽培植物。换言之,相较于植物通常仅在一个层上生长的常规温室,在围护空间11内存在处于不同垂直位置的多个平台61增加了温室10的生产能力。地面上的楼板表面30上可能设置有包含用于植物的根的土或基质的多个箱64,从而允许栽培各种根类蔬菜或其他类型植物。如图所示,该多个箱64高出楼板表面30以使得箱64的最顶层处于本来被浪费掉的高度处,从而便于进行植物栽培而不必弯腰。箱64的宽度被调整为,例如,1.2m宽,以至于从任意一侧都可以用手采摘到植物。可以在平台61上放置各种装置以促进植物栽培。在所示的实施例中,多个竖直的栽培塔62布置在围护空间内,以通过在“三维”空间中的向上生长进一步增加在围护空间11中的植物的数量。此外,平台61可选地可以由透明的增强玻璃材料(或任意其他透明材料)构建,从而允许更多光线透进围护空间11中。随着温室10的宽度W的增大,它的高度H还可以增大,以允许安装额外的平台61。在这样的结构中,每个平台61的宽度还可能成比例地增大。
温室的长度L可以是任意尺寸。
[0037] 参照图3,温室100具有透光的屏障120,该屏障120形成穹顶120A。穹顶120A是从楼板表面130延伸的圆形结构。在本实施例中,进气口124包括设置在穹顶120A的底部并且覆盖它的整个周向的环形开口。图3为与上面所解释的被动的、太阳驱动的机构不同的处于穹顶型结构的实施例。穹顶120A允许在单独容量中构建大得多的多层温室100。可以理解的是,建筑形状不一定必须是穹顶,可以是任意几何结构,如圆锥、圆台、棱锥等。本实施例允许大型工业规模的多层温室100直接建立在城镇上或城镇周边,而无需具有相同生成能力的常规温室所需的大量占地面积。
[0038] 图3所示的穹顶型的建筑具有内部层121和外部层122,从而提供上述“双壳”结构或几何结构。因此可以理解的是,屏障120的“双壳”几何结构可以在阳光明媚的日子防止热空气进入温室的围护空间111中,并且通过两个透明外壳121、1222之间的自然对流使温室冷却下来,同时在阳光不充足或较冷的日子还为积聚基本停滞的空气提供地方,从而使围护空间111隔热。因此,双壳结构同时有助于冷却围护空间111,并且减少围护空间111的热损失。如前所述,还将可以理解的是,由屏障120的结构造成的冷却和围护效果可能通过增大空气通道123的容积而放大。鉴于围护空间111的大容积,图3所示的“双壳”结构可以具有数米厚的空气间隙。
[0039] 图3所示的温室100具有出口塔140,图4展示了该出口塔140的一个例子。出口塔140大约安装在穹顶120A的顶点。通过内部透明层121和外部透明层122之间的空气通道,出口125与位于穹顶120A的底部的圆周环形进气口124流体连通。这里所示的圆锥状结构141的导流主体安装在内部层121的顶部,引导来自空气通道123的空气流进入出口通道125A。
出口塔140的沙漏形状提供了减少和/或防止发生湍流的翼型表面125C,从而防止流的堵塞。.柱状的翼型表面125C减少了出口通道125A的面积。这在空气流上产生伯努利效应,随着空气流在翼型出口通道125内的加速,空气流的压力减少。因此,可以理解的是,由于在出口通道125A的咽喉处的压力低于在进气口124的底部的压力,因此翼型结构可以用作空气泵。由于空气从高压流向低压,相较于单独的自然对流,可能增大被动冷却空气流。
[0040] 参照图4,出口塔140被配置为借助如上所述的COANDA效应进一步增大冷却空气流的速度。COANDA效应由将空气馈送进环形进口导流叶片(IGV)128产生的柱状通道中的次级环形进气口127实现。空气12通过薄环形间隙129加速,接着于COANDA效应空气流粘附至翼型表面125C。由于空气粘性和空气流在翼型表面125C上方产生的压力减少,因此在流F所发生的出口通道125A中的空气流速度与由太阳加热双壳屏障120之间的空气所产生的自然对流的速度相比明显增大。可以理解的是,由自然对流的增加、伯努利效应、以及COANDA流产生的相对高速的流有助于在用于植物生长的围护空间11中维持凉爽的环境。
[0041] 如上所述,可能在这个优化的结构中产生电力。例如,在最大空气流F速度所发生的出口通道125A的咽喉处安装第一风力涡轮机144A。因此,通过风力涡轮机144A可以将空气流的动能转换为电力。
[0042] 还可以在出口塔140的顶部安装环形空气流扩散器145。离开塔顶部142的空气流F2在扩散器145的内部产生吸力效应,该吸力效应有助于通过扩散器环形进气口146从外部吸取额外的空气。这增加了循环进入扩散器145的空气流F2的质量。在那时,空气流F2速度与在出口通道125A中的空气流F的速度相比更慢。然而,大得多的面积的扩散器145可以在扩散器145的咽喉处接收第二风力涡轮机144B。在出口塔140的顶部放置扩散器145可以增大由这个出口塔140结构产生的电力。还可以运行仅安装有采用风力涡轮机144A产生电力的出口塔140,而没有安装扩散器145和风力涡轮机144B的温室100。
[0043] 在出口塔140中可以放置的另一个装置是热交换器。热交换器可以与离开温室100的空气12流体连通。在热交换器的运行过程中,从空气通道123接收到的热空气12的热量被传递至热交换器中的主要流体,从而加热主要流体。被加热的主要流体可以用于各种目的。例如,在主要流体为液态水等液体的情况下,加热的液体可以被管道网络传输至在楼表面
130下方的隔热的蓄水池,其中,水-水热交换器将热量传递至蓄水池,以便后续使用。热量还可以直接传递至位于进气口124下方的环形沙床150(参见图3)。在管道中加热的液体可以直接对安装有多个管道的沙床150进行加热。接着,沙床150将热量传递至位于沙床上方的空气通道123。沙床150因而形成散热器,其是采用来自空气12的废热(或任意工业过程抛弃掉的热)的能量转换装置,并且有助于两个层121、122之间的对流空气流。在较冷的夜晚或者阳光不充分的时候,可以减少以这种方式获得的废热,从而在围护空间11中保持足够暖和的温度。
[0044] 温室100的主要楼板表面130可以是地质聚合物混凝土基底的一部分。这样的混凝土基底可以增加楼板表面130和/或支撑温室100的结构的使用寿命。地质聚合物混凝土与通常使用的酸盐混凝土相比具有改善的特性,因为地质聚合物混凝土不透水,并且随时间退化相对较小。即使暴露在温室等高湿度环境下,地质聚合物混凝土也将抗退化。相比于常规硅酸盐混凝土,用于产生地质聚合物混凝土的地质聚合物混凝土的制造产生少得多的CO2。这有助于温室100的LEED认证。
[0045] 如图5所示,根据建筑的整体高度,多层温室100可能还包括多个地质聚合物混凝土层160。地质聚合物混凝土层160为基本水平表面,支撑放置在其上进行栽培的植物的重量。地质聚合物混凝土层160在垂直方向上相互间隔,在围护空间111中形成楼板表面130,从而允许在“三维”空间中栽培植物。换言之,换言之,相较于植物通常仅在一个层上生长的常规温室,在围护空间111内存在处于不同垂直位置的多个楼板160增加了温室100的生产能力。每个楼板160可能设置有包含用于植物的根的土或基质的多个箱64,从而允许栽培各种根类蔬菜或其他类型植物。例如,位于围护空间111较低位置的栽培箱164可以用于栽培根类蔬菜,而靠近围护空间111的顶部的栽培箱164可以用于栽培热带水果和蔬菜。所示的多个箱164高出楼板表面130或者位于楼板160上方以使得箱164的最顶层处于本来被浪费掉的高度处,从而便于进行植物栽培而不必弯腰。箱164的宽度被调整为,例如,1.2m宽,以至于从任意一侧都可以用手采摘到植物。可以在平台61上放置各种装置以促进植物栽培。在所示的实施例中,多个竖直的栽培塔62布置在围护空间内,以通过在“三维”空间中的向上生长进一步增加在围护空间11中的植物的数量。此外,平台61可选地可以由透明的增强玻璃材料(或任意其他透明材料)构建,从而允许更多光线透进围护空间11中。随着温室10的宽度W的增大,它的高度H还可以增大,以允许安装额外的平台61。在这样的结构中,每个平台61的宽度还可能成比例地增大。温室的长度L可以是任意尺寸。由上面的最高楼板160限定的热带区域是次级封闭的空气体积,因为顶部楼板160沿着其周向接触内部层121并且被内部层121密封,从而允许在那个区域有不同的或更高的温度,以便热带植物栽培。
[0046] 参照图5,多个平台161连接至每个楼板160的外围。平台161朝着内部透明层121径向向外延伸,并且沿着楼板160的外圆周成角度地间隔开来。对于每个垂直相邻的楼板160,平台161是异相的,或者成角度地偏移。在所示的实施例中,平台161成角度地间隔约40度,并且与垂直相邻的平台161成角度地偏移或异相约40度。这使得光线能够透进围护空间111的较低的层。
[0047] 在平台161上可以放置各种装置来促进植物栽培。在所示的实施例中,在围护空间111内布置有多个竖直的栽培塔162。多个栽培塔162由每个平台161支撑。更高的塔162(例如,2m高)可以放置在较低层楼板160上,并且可以升高至略低于内部层121,而更矮的塔(例如,1.2m高)可以放置在较高层楼板160上,并且也可以升高至略低于内部层121。此外,平台
161可以可选择地由透明的增强玻璃材料(或任意其他透明材料)构建,从而允许更多光线透进围护空间11中。
[0048] 可以理解的是,这里公开的温室10、100是任意所需尺寸或形状的多层温室10、100,其允许对封闭的生态系统温室10、100进行被动太阳冷却和加热/保温。此外,展示了总共10个楼板160的图3和展示了总共5个楼板160的图5仅用于解释和说明,楼板160的数量不限于此,唯一的限制是当暴露于重力荷载和风荷载时整个温室10、100的结构完整性。因此温室10、100可以是垂直一体化的、工业规模的、多层的封闭的生态系统温室10、100。这样的温室10、100与常规温室相比减少了冷却和加热所需的能量总量,并且减少了较重的机械系统的存在。因此温室10、100的围护空间11、111的全部容积可以用于植物栽培,从而提供“三维的”温室10、100。
[0049] 内部的楼板160和平台161的布置让围护空间111内部的空气团可以自由移动。这种布置设计为允许自然通气有助于输送湿气和CO2贯穿温室围护空间111,并且创建像低速微风缓慢吹向植物的叶子的自然生态系统。这有助于防止真菌的形成,因为与植物的叶子接触的湿气在各处传送和移动。这也降低了在常规温室中通常需要能量驱动风扇从而在围护空间11、111内产生通风而对能量的需求。此外,在封闭的空气112中可以存在高浓度的CO2,并且高浓度的CO2可以与叶子和果实接触,有利于光合作用,并且加快植物的生长。
[0050] 因此,这里公开的温室10、100可以避免使用需要明显构建和安装成本的机械装置,这些装置会因为它们在使用期限内的活动件失灵而发生故障。因为结构中的活动件的最小化,温室10、100还减少了设计的物理复杂性。一旦构建了内部的几何楼板结构,其可以用作组装双透明层的支撑件。因此可以理解的是,温室10、100双壳屏障20、120可以被做成重量相对较轻,从而避免承载常规的结构温室的重量所需的昂贵的屋顶结构强化。这增加了温室10、100的多功能性。
[0051] 相较于向周围空气开放的常规温室,围护空间11、111的封闭的容积还有助于减少耗水量。这使得从植物蒸发的水分能够被压缩并且在温室10、100内重新使用。这允许温室10、110安装在干旱区域,因为它们可以使用有限的水量。由于可以控制CO2的浓度,实际上,没有CO2通过通风流失至外部空气所以在围护空间11、111的封闭环境中CO2的浓度增大,因此在这个封闭环境中还可以提高栽培生产力。该封闭环境还防止不受欢迎的虫害或空气中的污染物进入封闭的生态系统围护空间11、111。
[0052] 参照图6,这里公开的温室10、100还可以用于大型建筑,例如高层公寓楼或办公楼110。图6的实施例是具有五十层楼的建筑的例子,该建筑以45度角位于温室100的北侧。这使得太阳辐射能够被温室100捕获,该温室100具有多个楼板160。楼板160的数量不限于所示的结构。这些大型建筑,或者其一部分,可以位于双壳栅20、120的内部(或与一侧相邻)。
在这样的结构中,温室10、100和办公或公寓楼将同时受益于太阳被动空气调节、电力生产和增强的亲生命性。这个用于生活空间和植物栽培的组合结合的实施例将在城市环境中创建有利的生活空间。
[0053] 以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈