首页 / 专利库 / 飞机类型 / 航天器 / 3D打印原料及其应用

3D打印原料及其应用

阅读:670发布:2022-09-16

专利汇可以提供3D打印原料及其应用专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种悬浮液,其包含占所述悬浮液的总重量的50-95%(w/w)的至少一种陶瓷材料和/或金属材料和/或聚合材料和/或固体含 碳 材料;以及至少占所述悬浮液的总重量的5%(w/w)的一种或多种 脂肪酸 或其衍 生物 。另外,本发明还涉及这种悬浮液在3D打印方法中的用途。,下面是3D打印原料及其应用专利的具体信息内容。

1.一种用于3D打印或挤出三维(3D)物体的方法,所述方法包括:
a)提供悬浮液,其包括
占所述悬浮液的总重量的50-95%(w/w)的至少一种陶瓷材料;和/或金属材料和/或聚
合物材料和/或固体含材料,例如石墨;以及
占至少所述悬浮液的总重量的5%(w/w)的一种或多种脂肪酸或其衍生物
b)使用所述悬浮液作为原料进行3D打印或挤出所需物体;以及
c)任选地,通过选自烧结合、涂覆、熔化、渗透和/或交联3D打印或挤出材料的方法
固化打印或挤出材料。
2.根据权利要求1所述的方法,其中所述金属材料选自、锌、、金、钯、铂、、锑、铋、铅、镍、钴、、锰、铬、、钽、钨、钕、锂、钠、锇、铱、、钍、钚、钇、锆、铌、钼、铑、镉、铪、铼、汞、镓、铟、铊、镧、铈、镨、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、、镁、锶、钡、锗、砷、砹及其合金和氢化物。
3.根据权利要求1所述的方法,其中所述陶瓷材料选自TCP(磷酸三钙)、MCP(磷酸一
钙)、DCP(磷酸二钙)、磷酸四钙、羟磷灰石、α-TCP、β-TCP、化钛(二氧化钛)、氧化铝(三氧化二铝)、氧化锆(二氧化锆)、氧化钇(三氧化二钇)、氧化钇稳定的氧化锆、氧化铟、氧化铟锡、氮化、碳化、碳化硼、碳化钨、氧化铍、沸石、氧化铈(二氧化铈)、二硅化钨、硅化钠、硅化铂、氮化锆、氮化钨、氮化钒、氮化钽、氮化铌、硼化硅、粘土、泥土、土壤水泥、波特兰水泥、二氧化硅、钛酸钡、锆酸铅钛、氧化锌、铌酸钾、铌酸锂、钨酸钠、玻璃、地质聚合物氯化钠硝酸钠、硝酸钾、氯化钾、氯化镁、氯化钙、硝酸钙、硝酸镁、氧化锶、磷酸锶、硫酸钙、硫酸钡、碳酸钙、碳酸钠、氟化钠及其混合物。
4.根据权利要求1所述的方法,其中所述聚合物材料选自聚乳酸(PLA)、聚己内酯
(PCL)、聚乙醇酸(PGA)、聚苯乙烯(PS)、聚乙烯(PE)、聚丙烯(PP)、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚(1,4-苯硫醚)(PPS)、聚(2,6-二甲基-1,4-苯醚)(PPO)、聚酰胺(PA)、聚对苯二甲酸丁二醇酯(PBT)、聚醚醚(PEEK)、聚醚酮(PEK)、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)、聚甲(POM)、聚砜(PSU)、聚酯(PU)、聚丁二烯(PB)、聚四氟乙烯(PTFE)、聚氟乙烯(PVF)、聚偏二氟乙烯(PVDF)、聚三氟氯乙烯(PCTFE)、全氟烷氧基聚合物(PFA)、氟化乙烯-丙烯(FEP)、聚乙烯四氟乙烯(ETFE)、聚乙烯三氟氯乙烯(ECTFE)、聚乙二醇(PEG)、聚羟基链烷酸酯(PHA)、聚羟基戊酸酯(PHV)、聚羟基丁酸酯(PHB)、液晶聚合物、聚丙烯酸酯、聚缩醛、聚酰胺酰亚胺(PAI)、聚丁烯(PB)、聚氯乙烯(PVC)、丙烯腈丁二烯苯乙烯(ABS)、聚苯砜(PPSU)、聚甲基戊烷(PMP)、藻酸盐、壳多糖、壳聚糖、丙烯酸、透明质酸、淀粉、直链淀粉、支链淀粉、果胶、葡聚糖、支链淀粉、阿拉伯树胶、黄原胶、支链淀粉、纤维素、多糖、蛋白质、核酸、橡胶、硅酮及其共聚物。
5.根据前述权利要求中任意一项所述的方法,其中所述一种或多种材料的粒度为1nm-
1mm的范围,例如低于500μm,低于354μm,低于250μm,低于149μm,低于105μm,低于74μm,低于
44μm,低于10μm,低于1μm,低于500nm或例如低于100nm,优选低于10μm。
6.根据前述权利要求中任意一项所述的方法,其包含占所述悬浮液的总重量的60-
95%(w/w)范围内的至少一种金属或陶瓷材料,例如60-95%,例如70-95%,例如80-95%,例如85-95%,例如90-95%,例如80-85%,例如80-84%,例如80-83%,例如80-82%,例如
81-85%,例如82-85%,或例如83-85%。
7.根据前述权利要求中任意一项所述的方法,其中所述一种或多种脂肪酸或其衍生物
包含至少一个酸基,所述酸基选自与至少一个C5-C30连接的羧酸,膦酸和磺酸基。
8.根据权利要求7所述的方法,其中所述烃为饱和或不饱和脂族烃基或芳族烃基或其
混合物。
9.根据权利要求7-8中任意一项所述的方法,其中所述脂肪酸包含至少一种羧酸且所
述烃为饱和或不饱和的C5-C30脂族烃基。
10.根据权利要求1-9中任意一项所述的方法,其中所述脂肪酸或其衍生物是式(I)的
化合物:
其中,
R是饱和或不饱和的C5-C30脂族烃基,
Z选自碳(C),S(O)和P(OH)。
11.根据权利要求10所述的方法,其中Z是碳(C)。
12.根据权利要求9-11中任意一项所述的方法,其中所述饱和或不饱和的C5-C30脂族烃
基是无支链的。
13.根据权利要求9-11中任意一项所述的方法,其中所述饱和或不饱和的C5-C30脂族烃
基是支链的。
14.根据权利要求9-11中任意一项所述的方法,其中所述饱和或不饱和的脂族烃基为
C6-C30脂族烃基,例如C7-C30,C8-C30,C9-C30,C10-C30,C10-C25,C10-C20脂族烃基。
15.根据前述权利要求中任意一项所述的方法,其中所述一种或多种脂肪酸选自辛酸、
癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、花生酸、山萮酸、木蜡酸、蜡酸、肉豆蔻脑酸、棕榈油酸、顺-6-十六碳烯酸、油酸、反油酸、异油酸、亚油酸、反式亚油酸、α-亚麻酸、花生四烯酸、二十碳五烯酸、芥酸和二十二碳六烯酸,优选硬脂酸。
16.根据前述权利要求中任意一项所述的方法,其中所述悬浮液包含总悬浮液重量的
5-50%范围内的脂肪酸,例如在10-50%范围内,例如在10-40%范围内,例如10-30%,例如
12-30%,例如15-30%,例如15-20%,例如15-18%或例如15-17%。
17.根据前述权利要求中任意一项所述的方法,其包含80-85%(w/w)的陶瓷材料和15-
20%(w/w)的游离脂肪酸的混合物,例如80-85%(w/w)的TCP和15-20%(w/w)的油酸的混合
物;或80-85%(w/w)的TCP和15-20%(w/w)的亚油酸的混合物;或80-85%(w/w)的TCP和15-
20%(w/w)的硬脂酸的混合物。
18.根据前述权利要求中任意一项所述的方法,其中所述悬浮液包含小于1%重量的
水,优选该悬浮液是无水的。
19.根据前述权利要求中任意一项所述的悬浮液,其中所述悬浮液是非顿体或
Bingham塑性体。
20.根据前述权利要求中任一项所述的方法,其中所述陶瓷,聚合物和/或金属和/或固
体含碳材料是生物相容的。
21.根据前述权利要求中任意一项所述的方法,其中所述陶瓷,聚合物和/或金属和/或
固体含碳材料是可生物降解的。
22.根据权利要求21所述的方法,其中所述生物可降解材料选自磷酸钙、硫酸钙、PCL、
PLA、PGA、PHB、PHV、PHA或其共聚物以及镁和/或铁和/或钙的合金。
23.根据前述权利要求中任意一项所述的方法,其中所述脂肪酸在室温下的蒸气压不
超过17.5mmHg。
24.根据前述权利要求中任意一项所述的方法,包括两种或更多种金属材料和/或两种
或更多种陶瓷材料和/或两种或更多种聚合物材料。
25.根据前述权利要求中任意一项所述的方法,其中所述液相包含完全或部分水解
甘油三酯,并且所述液相可含有一种或多种含或不含甘油的脂肪酸。
26.根据前述权利要求中任意一项所述的方法,还包含水、聚合物、乳化剂、溶剂、粘合
剂、交联剂、表面活性剂粘度调节剂、抗氧化剂、抗微生物化合物、分散剂、增塑剂、絮凝剂、聚羧酸盐、多元酸、多、发色团、颜料、肥皂、甘油、磷脂、烷烃、醇、醚、醛、酮、酯、胺和硫醇、磷酸盐硫酸盐、磺酸和超增塑剂中的一种或多种。
27.根据权利要求1所述的方法,其中所述含碳材料选自石墨、石墨烯、碳纳米管、碳的
其他同素异形体、葡萄糖蔗糖柠檬酸草酸、青霉素、四环素、其他抗生素、止痛剂、镇痛剂、维生素、类固醇、激素、化学疗法、其他药物和药剂及其混合物,以及来自人,动物,细胞培养物或任何其他活生物体的复杂天然组合物,例如骨基质,脱水骨基质和脱细胞骨基质。
28.根据前述权利要求中任意一项所述的方法,其中所述3D打印可通过一个或多个喷
嘴进行,其中每个喷嘴的孔口的面积在10μm2至2000μm2的范围内,例如50-2000μm2,例如50-
1000μm2,例如50-500μm2。
29.根据前述权利要求中任意一项所述的方法,其中所述烧结是通过将整个物体加热
至150℃至3000℃的温度范围内,例如在250至350℃的范围内,例如在300至400℃的范围
内,例如在400至500℃的范围内,例如在600至700℃的范围内,例如在900至1000℃的范围内,例如在1000至1200℃的范围内,例如在1200至1400℃的范围内,例如在1400至1700℃的范围内,或者例如在1700至2500℃的范围内。
30.根据前述权利要求中任意一项所述的方法,其中所述烧结过程在大气压或部分
真空下进行。
31.根据前述权利要求中任意一项所述的方法,其中所述烧结过程发生在大气中。
32.根据前述权利要求中任意一项所述的方法,其中所述方法发生在包含超过80%的
氩和/或氮的空气中。
33.根据前述权利要求中任意一项所述的方法,其中所述物体是医学植入物,诸如骨或
牙科植入物。
34.根据前述权利要求中任意一项所述的方法,其中所述3D打印或挤出的三维物体具
有至少1cm3的体积,例如至少10cm3,例如在1-1000cm3的范围内或例如1-100cm3的体积。
35.根据前述权利要求中任意一项所述的方法,其中所述3D打印或挤出的三维物体包
括金属并且选自整体项目、医疗装置的零件或部件、医用植入物、电子装置、电力电子装置、机器人、机械、涡轮机、管、配件、装甲、武器系统、汽车、摩托车、自行车、飞机、航天器船舶、潜艇、石油平台、采矿设备、涡轮机、海上设施、装甲车辆、坦克、多相化学催化剂、发动机、坦克、集装箱、钻井设备、建筑物发电厂、艺术品、珠宝、家居用品和玩具。
36.根据前述权利要求中任意一项所述的方法,其中所述3D打印或挤出的三维物体包
括陶瓷并且选自整体物品、医疗装置的部件或部件、医用植入物、牙齿或骨替代材料隔热、电绝缘、隔音、装甲、武器系统、耐火材料、发动机、发电厂、电子、涡轮机、风车、非均相化学催化剂、建筑物、桥梁、道路、水坝基础设施、艺术和陶器。三维物体包括陶瓷并且选自整体项目、医疗装置的零件或部件、医用植入物、牙齿或骨替代材料、热绝缘材料、电绝缘材料、声学绝缘材料、装甲钢、武器系统、耐火材料、发动机、发电厂、电子设备、涡轮机、风力涡轮机、多相化学催化剂、建筑物、桥梁、道路、水坝、基础设施、艺术品和陶器。
37.根据前述权利要求中任意一项所述的方法,其中步骤b)是在10-30℃的温度范围内
进行的,例如15-25℃,或在30-100℃的温度范围内进行,例如40-80℃,例如50-70℃,或者例如60-70℃。
38.一种悬浮液在3D打印或挤出方法中的用途,所述悬浮液包括
占所述悬浮液的总重量的50-95%(w/w)的至少一种陶瓷材料;和/或金属材料和/或聚
合物材料和/或含碳材料,例如石墨;以及
至少占所述悬浮液的总重量的5%(w/w)的一种或多种脂肪酸或其衍生物。
39.根据权利要求38所述的用途,所述3D打印方法选自robocasting、油墨直写、喷墨打
印、喷胶粘粉成型、选择性热烧结、选择性激光烧结选择性激光熔化立体光刻、长丝打印、颗粒打印、材料打印、自由成型制造、快速成型和机械手臂沉积。
40.根据权利要求38-39中任意一项的用途,其中所述用途适合于在10-30℃温度范围
内进行,例如15-25℃或30-100℃的温度范围内,例如40-80℃,例如50-70℃,或者例如60-
70℃。
41.通过根据权利要求1-37中任意一项所述的方法获得/可获得的3D打印或挤出的三
维物体。
42.一种负载有悬浮液的3D打印机,包括
-占所述悬浮液的总重量的50-95%(w/w)的至少一种陶瓷材料;和/或金属材料和/或
聚合材料;以及
-占至少所述悬浮液的总重量的5%(w/w)的一种或多种脂肪酸或其衍生物。

说明书全文

3D打印原料及其应用

技术领域

[0001] 本发明涉及3D打印机挤出机的原料。特别地,本发明涉及原料在3D打印和挤出方法中的用途。

背景技术

[0002] 增材制造,俗称3D打印或自由制造,已经成为许多工业领域中广泛用于制备虚拟设计的产品原型和物理表示的技术。由于该技术实现了定制产品的分散和快速生产,其还
具有革新生产的潜。这是由于与传统制造方法如铸造,成型和机械加工相比,所需的设
备,材料和工具的投资成本和空间要求较低。然而,大多数3D打印机能够打印的材料数量有限,严重限制了使用3D打印生产最终产品的潜力。最常见的3D打印机,如依赖长丝熔融沉
积,立体光刻或喷墨技术的打印机,只能打印有限数量的聚合物材料。某些3D打印机,如使用激光或电子固化粉末的打印机,除了聚合物之外,还能够打印金属和陶瓷材料。但通常情况下,这些打印机价格昂贵,一次只能打印一种材料,并且对潜在危险的电源和容易受损的部件,如镜子和镜头有所依赖。因此,需要其他增材的制造方法,这种方法可以打印各种材料,在打印中结合多种材料,并使用廉价,安全和简单的机器。
[0003] Robocasting,也被称为油墨直写,是源于20世纪90年代后期的一种不同的增材制造技术。它依赖于通过喷嘴将油墨挤出到载物台上。然后,按照可编程的g代码指令,所述喷嘴或载物台或两者沿X,Y和Z方向移动,使得只在特定位置挤出油墨。通过在图层上放置图层,可以建立3D对象。然后可以通过烧结对最终物体进行后处理,即烧结/蒸发剩余的液体和有机物质并且合并单个颗粒。也可以使用其它后处理方法。
[0004] 油墨存在有很多种,但是作为颗粒悬浮液或浆液的油墨特别有趣,因为使用这种油墨可以实现高固体负载。当颗粒油墨沉积并且通过例如蒸发或燃烧来移除溶剂,只有固
体成分留下空隙,液体成分导致最终物体的多孔性和/或收缩。多孔性削弱了最终物体的某些物理性质,如机械强度,因此在许多应用中是不被希望的。
[0005] 遗憾的是,因为更多的颗粒彼此接触而导致摩擦增加,更高的固体负载导致悬浮液具有更高的粘度。当对颗粒悬浮液施加压力时,首先将所有未结合的液体压出,留下固体颗粒。
[0006] 另一些油墨依赖于挥发性有机化合物(VOCs),其在沉积凝胶后蒸发,许多此类的VOCs现在被认为对人体健康有害。
[0007] 另一些油墨是基的。水可以与所述颗粒反应,也可以催化与所述胶体的反应或溶解可能与所述颗粒反应的物质或气体。
[0008] 其他油墨包含非生物相容性的化合物。由这种油墨制成的物体必须被处理,例如,通过脱脂/烧结,然后才可用于医疗。
[0009] 常见的打印后处理是烧结过程,在此过程中,油墨中的有机成分燃尽,仅留下颗粒成分。在反应性空气中烧结化学改变了大多数金属和一些陶瓷,并可能导致不希望得到的材料,大气中的可能例如将金属氧化成金属氧化物。烧结这些材料通常需要复杂且昂贵
的烧结炉,其能够在腔室中施加保护和/或还原气体或真空
[0010] 另外,对于烧结废气控制不好的一些应用,含有有机杂原子如氮,硫和磷的有毒气体的产生可能会出问题。
[0011] 因此,本领域需要改进3D打印方法中的原料/油墨。

发明内容

[0012] 本发明人已经完成了用于3D打印方法的原料/油墨。根据本发明的原料可具有几个优点:
[0013] -3D打印设备所需较低的挤出压力和/或较小的喷嘴横截面;
[0014] -可改进颗粒成分的润滑度,从而降低颗粒间摩擦,降低悬浮液的粘度并允许在较低的挤出压力和较小的喷嘴下使用较高的固体负载;
[0015] -与颗粒的结合更好,从而避免了在施加压力时液体从颗粒悬浮液中被压出,留下干燥且不可打印的粉末;
[0016] -可以无水。水可能带来问题,因为它是化学反应的良好介质,例如金属颗粒的氧化和陶瓷颗粒的水合和固化;
[0017] -可以不含挥发性有机化合物(VOCs);
[0018] -油墨可以在烧结过程中产生保护气体和/或还原气体,从而避免昂贵的烧结设备;以及/或者
[0019] -液相可能只含有氢,和氧;
[0020] -液相在室温下可以为固体,但在升高的温度下为液体。这使得悬浮液在加热时被打印,并且在例如室温下沉积之后固化。
[0021] -原料可能只含有生物相容性化合物和/或在人体内正常存在的化合物。许多常见的油墨都依赖于非生物相容性化合物,这些化合物必须在物体使用前被烧掉,当用于医疗
用途时,我们的油墨可无需改变而被使用,并且液相仍适当的处于液态或固化状态。
[0022] 总之,本发明涉及一种悬浮液,其包含所述悬浮液(w/w)的总重量的50-95%的至少一种(悬浮的)金属材料和/或(悬浮的)陶瓷材料和/或(悬浮的)聚合物材料和/或(悬浮
的)含碳材料;以及至少为总悬浮液重量的3%(优选至少5%)的一种或多种脂肪酸或其衍
生物,优选具有多于8个碳原子的脂肪酸。另外,本发明涉及在3D打印方法中使用这种悬浮液。
[0023] 因此,本发明的目的涉及提供用于3D打印的改进的原料。
[0024] 特别地,本发明的目的是提供一种解决现有技术的上述问题的用于3D打印的原料。
[0025] 因此,本发明的一个方面涉及一种悬浮液,其包含:
[0026] -所述悬浮液(w/w)的总重量的50-95%的至少一种(悬浮的)金属材料和/或(悬浮的)陶瓷材料和/或(悬浮的)聚合物材料和/或(悬浮的)含碳材料;以及
[0027] -至少为总悬浮液重量的3%的一种或多种脂肪酸或其衍生物,优选饱和脂肪酸,优选至少4%,以及更优选至少5%的重量。
[0028] 本发明的另一方面涉及根据本发明的悬浮液在3D打印或挤出方法中的用途。
[0029] 本发明的又一方面是提供一种用于3D打印或挤出三维(3D)物体的方法,所述方法包括
[0030] a)提供根据本发明的悬浮液;
[0031] b)使用悬浮液作为原料进行3D打印或挤出物体;以及
[0032] c)任选地,固化打印或挤出的材料,例如,通过选自烧结,水合,涂覆,熔化,渗透,冷冻,结晶,沉淀和/或交联3D打印或挤出材料的方法。
[0033] 本发明的另一方面是提供通过根据本发明的方法获得/可获得的3D打印的或挤出的三维物体。
[0034] 本发明的另一方面涉及负载有根据本发明的悬浮液的3D打印机。
[0035] 本发明还涉及不同的例如包含如下定义的悬浮液的设备。附图说明
[0036] 图1示出了使用两种不同的油墨组合物打印的β-磷酸(TCP)的扫描电子显微镜(SEM)照片:
[0037] (1)包含1.25g羟乙基纤维素(HEC),15g H2O和15g TCP
[0038] (2)包含5g油酸和25g磷酸三钙。
[0039] 示出了非烧结和烧结(1050℃,2h)样品,以及用1×或2×聚己内酯涂覆的烧结样品。
[0040] 图2示出了使用两种不同油墨组合物打印的β-磷酸三钙(TCP)的压缩试验结果:
[0041] (1)包含1.25g羟乙基纤维素(HEC),15g H2O和15g TCP
[0042] (2)包含5g油酸和25g TCP。
[0043] 用1×或2×或不用聚己酸内酯涂覆。
[0044] 图3示出了在用水基的和脂肪酸基的胶体油墨打印的结构上培养间质干细胞的结果。将200000个细胞植入在平均重56mg的TCP片上,并在维持或成骨培养基中培养15天,然后使用荧光显微镜拍照或使用CellTiter测定法评估生存力。
[0045] 图4示出了TCP/亚油酸和TCP/油酸油墨的照片。A)打印中的TCP/亚油酸;B)烧结后的TCP/亚油酸;C)打印中的TCP/油酸;以及D)烧结后的TCP/油酸。
[0046] 图5示出了使用3D打印机的沉积/油酸油墨的照片。
[0047] 图6示出了扫描电子显微镜图像。成像了下列样品:使用前的TCP粉末(a),×25和×1000放大倍数下的烧结TCP植入物(b和c),×25放大倍数下的维持培养基中细胞培养2+
25天后的细胞植入TCP植入物(d),×30和×500放大倍数下的成骨培养基中细胞培养2+25
天后的细胞植入TCP植入物(e和f)。
[0048] 图7示出了立体的(8cm2)TCP植入物的压缩测试。记录两阶段烧结(400℃和1100℃,N=3)和单阶段烧结植入物(1100℃,N=4)压缩测试的应变-应力曲线(上图),显示的是在给定变形下来自每个组的植入物的平均应力值。在压缩测试之前获取从其顶部和侧面观
察的烧结植入物的代表性照片(分别为左下图和右下图),在每个图像的左侧观察两阶段烧
结植入物。
[0049] 图8示出了烧结方法的特征。收集烧结植入物(顶部),非烧结植入物(中上),TCP粉末(中下),硬脂酸粉末(底部)的拉曼光谱(上图)。拍摄TCP粉末(左上),硬脂酸(左下),非烧结植入物(中左),400℃下保持加热1小时的植入物(中右)以及完全烧结的植入物(右)的照片(下图)。
[0050] 图9示出了在第1,2和2+7天在植入物的孔中生长的细胞的倒置显微镜照片。
[0051] 图10示出了与第0天(N=4)相比,在第2+7天(N=4)的细胞滴度和性磷酸酶活性(ALP)以及在第2+25天的矿化的变化。
[0052] 图11示出了在第2+7天,植入物上的胶原蛋白蛋白质染色(N=4,较暗的颜色相当于更多的胶原蛋白和蛋白质)(顶部)。染色后在第2+7天和第2+25天从植入物中提取染
色剂(N=4)并通过吸光度分光光度法(N=4)定量。MM和OM表示维持培养基和成骨培养基。
[0053] 图12示出了在24小时(顶部)和48小时(底部)粘附至未烧结的3D打印的硬脂酸/TCP的间质干细胞的倒置荧光显微镜图像。
[0054] 图13示出了小鼠皮下植入8周后SA/TCP植入物的组织学染色。顶部:烧结(左)和非烧结(右)的H&E染色剂。中间:烧结(左)和非烧结(右)的天狼星红染色剂。下图:烧结(左)和非烧结(右)的极化天狼星红染色剂。
[0055] 图14示出了3D打印的硬脂酸/石墨(左上)和硬脂酸/(右上)。使用3D打印的石墨制成的简单电路(左下)以及使用万用表测定3D打印的直线的电导率(下图)。
[0056] 图15示出了通过3D打印的电极所记录的ECG信号。A)常规电极;B)硬脂酸银;C)银烧结;D)石墨硬脂酸;E)Blackmiagic导电丝;和F)橡胶
[0057] 图16示出了用硬脂酸/(顶部)和硬脂酸/铜(底部)制成的3D打印品。
[0058] 图17示出了使用胶枪沉积的硬脂酸/TCP。
[0059] 下面将更详细地描述本发明。

具体实施方式

[0060] 悬浮液
[0061] 如上所述,本发明特别涉及在3D打印或挤出方法中具有优越性能的悬浮液。因此,本发明的一方面涉及一种悬浮液,其包含:
[0062] -所述悬浮液(w/w)的总重量的50-95%的至少一种金属材料和/或陶瓷材料和/或聚合物材料和/或固体含碳材料;以及
[0063] -至少为总悬浮液重量的3%的一种或多种脂肪酸或其衍生物,优选饱和脂肪酸,优选至少4%,甚至更优选至少5%的重量。
[0064] 当然要理解的是,至少一种金属材料和/或陶瓷材料和/或聚合物材料和/或含碳材料悬浮在悬浮液中。因此,这些材料是悬浮液中的固体。
[0065] 如在例如实施例1中显示的那样,在例如包括陶瓷的3D打印方法期间,其它液体不能在悬浮液中支持相同水平的固体。实施例3显示了包含金属例如铜的组合物的相同效果。
因此,在更具体的实施方案中,悬浮液用作3D打印机或挤出机的原料。在本文中,术语“原料”和“油墨”可以互换使用。这些术语涉及3D打印方法中使用的材料,即正在打印的材料。
[0066] 脂肪酸
[0067] 在本文中,脂肪酸或其衍生物应被理解为与一种或多种疏水性连接的一种或多种游离羧酸、磺酸或膦酸,所述疏水性烃是脂族或芳族或可能是其混合物。存在大量的天然脂肪酸,其通常是与饱和或不饱和烷基连接的羧酸,其可以是无支链的(即直链)或支链的。
也可以使用其他合成的或天然的两亲化合物,其可以包括与例如芳族和/或环状脂族基团
连接的酸。
[0068] 在本发明的一个实施方案中,所述术语“脂肪酸”包括游离脂肪酸。游离脂肪酸通常来源于甘油三酯或磷脂。当它们不与其他分子结合时,它们被称为“游离”脂肪酸。
[0069] 在另一个实施方案中,所述一种或多种脂肪酸或其衍生物包含至少一个酸基,其选自与至少一个C5-C30烃连接的羧酸,膦酸和磺酸基。
[0070] 在另外一个实施方案中,所述烃基是饱和或不饱和脂族烃基或芳族烃基或其混合物。
[0071] 在进一步的实施方案中,所述脂肪酸包含至少一种羧酸并且所述烃基是饱和或不饱和的C5-C30脂族烃基。
[0072] 在另外进一步的一个实施方案中,所述脂肪酸或其衍生物是式(I)的化合物:
[0073]
[0074] 其中,
[0075] R是饱和或不饱和的C5-C30脂族烃基,
[0076] Z选自碳(C),S(O)和P(OH)。
[0077] 在一个优选的实施方案中,Z是碳(C)。在另一个优选实施方案中,所述饱和或不饱和的C5-C30脂族烃基是无支链的。
[0078] 在另外一个实施方案中,所述饱和或不饱和的C5-C30脂族烃基是支链的。在另外进一步的一个实施方案中,所述饱和或不饱和的脂族烃基为C6-C30脂族烃基,例如C7-C30、C8-C30、C9-C30、C10-C30、C10-C25、C10-C20脂族烃基。
[0079] 材料
[0080] 在本发明的一个实施方案中,所述术语“材料”涉及固体材料或材料的粉末。当然要理解的是,悬浮液的材料主要以悬浮形式存在于悬浮液中。悬浮液中的材料也具有粒径的形式,例如通过具有1nm-1mm范围的粒径,以使其主要保持在悬浮液中。精确的粒径可能因材料而有所不同。
[0081] 金属材料
[0082] 当涉及金属材料的打印时,不同的金属可能形成悬浮液的一部分。因此,在一个实施方案中,所述金属材料选自铜、锌、、银、金、钯、铂、、锑、铋、铅、镍、钴、、锰、铬、、钽、钨、钕、锂、钠、锇、铱、、钍、钚、钇、锆、铌、钼、铑、镉、铪、铼、汞、镓、铟、铊、镧、铈、镨、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、、钙、镁、锶、钡、锗、砷、砹及其合金和氢化物。在实施例3中打印铜,实施例6中打印银,实施例7中打印铜和钢。
[0083] 陶瓷材料的打印
[0084] 在本文中,“陶瓷材料”是由金属和非金属的化合物制成的无机非金属材料。当涉及陶瓷材料的打印时,不同的陶瓷可能形成悬浮液的一部分。因此,在一个实施方案中,所述陶瓷材料选自由TCP(磷酸三钙)、MCP(磷酸一钙)、DCP(磷酸二钙)、磷酸四钙、羟磷灰石、α-TCP、β-TCP、氧化钛(二氧化钛)、氧化铝(三氧化二铝)、氧化锆(二氧化锆)、氧化钇(三氧化二钇)、氧化钇稳定的氧化锆、氧化铟、氧化铟锡、氮化、碳化、碳化硼、碳化钨、氧化铍、沸石、氧化铈(二氧化铈)、二硅化钨、硅化钠、硅化铂、氮化锆、氮化钨、氮化钒、氮化钽、氮化铌、硼化硅、粘土、泥土、土壤水泥、波特兰水泥、二氧化硅、钛酸钡、锆酸铅钛、氧化锌、铌酸钾、铌酸锂、钨酸钠、玻璃、地质聚合物氯化钠硝酸钠、硝酸钾、氯化钾、氯化镁、氯化钙、硝酸钙、硝酸镁、氧化锶、磷酸锶、硫酸钙、硫酸钡、碳酸钙、碳酸钠、氟化钠及其混合物。根据本发明,实施例1和2中,不同的陶瓷在悬浮液中打印。
[0085] 聚合物材料的打印
[0086] 当涉及聚合物材料的打印时,不同的聚合物可能形成悬浮液的一部分。因此,在一个实施方案中,所述聚合物材料选自聚乳酸(PLA)、聚己内酯(PCL)、聚乙醇酸(PGA)、聚苯乙烯(PS)、聚乙烯(PE)、聚丙烯(PP)、聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚(1,4-苯硫醚)(PPS)、聚(2,6-二甲基-1,4-苯醚)(PPO)、聚酰胺(PA)、聚对苯二甲酸丁二醇酯(PBT)、聚醚醚(PEEK)、聚醚酮(PEK)、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)、聚甲(POM)、聚砜(PSU)、聚酯(PU)、聚丁二烯(PB)、聚四氟乙烯(PTFE)、聚氟乙烯(PVF)、聚偏二氟乙烯(PVDF)、聚三氟氯乙烯(PCTFE)、全氟烷氧基聚合物(PFA)、氟化乙烯-丙烯(FEP)、聚乙烯四氟乙烯(ETFE)、聚乙烯三氟氯乙烯(ECTFE)、聚乙二醇(PEG)、聚羟基链烷酸酯(PHA)、聚羟基戊酸酯(PHV)、聚羟基丁酸酯(PHB)、液晶聚合物、聚丙烯酸酯、聚缩醛、聚酰胺酰亚胺(PAI)、聚丁烯(PB)、聚氯乙烯(PVC)、丙烯腈丁二烯苯乙烯(ABS)、聚苯砜(PPSU)、聚甲基戊烷(PMP)、藻酸盐、壳多糖、壳聚糖、丙烯酸、透明质酸、淀粉、直链淀粉、支链淀粉、果胶、葡聚糖、支链淀粉、阿拉伯树胶、黄原胶、支链淀粉、纤维素、弹性蛋白、胶原蛋白、明胶、纤连蛋白、丝、多糖、蛋白质、核酸、橡胶、硅酮及其共聚物。
[0087] 含碳材料的打印
[0088] 当涉及含碳材料的打印时,不同的分子可能形成悬浮液的一部分。因此,在一个实施方案中,所述含碳材料选自:石墨、石墨烯、碳纳米管、碳的其他同素异形体、葡萄糖蔗糖柠檬酸草酸、青霉素、四环素、其他抗生素、止痛剂、镇痛药、维生素、类固醇、激素、化学疗法、其他药物和药剂及其混合物,以及来自人、动物、细胞培养物或任何其他活生物体的复杂天然组合物,例如骨基质、脱水骨基质和脱细胞骨基质。实施例6显示了石墨的打印。
[0089] 一种或多种材料的粒径可以有所不同。因此,在一个实施方案中,一种或多种材料的粒径在1nm-1mm的范围内,例如低于500μm,低于354μm,低于250μm,低于149μm,低于105μm,低于74μm,低于44μm,低于10μm,低于1μm,低于500nm或低于100nm,优选低于10μm。众所周知,粒径也可以通过用于确定颗粒上限的筛目尺寸来确定。例如,筛网200对应于74μm的界限。在该示例中,已经测试了尺寸从0.5微米到约44微米的材料。
[0090] 不受理论的束缚,人们相信低于10μm的颗粒将最好地工作(因此是优选实施方案)。或者,优选具有1-10微米范围的颗粒和100nm~1微米范围的颗粒的颗粒混合物(另一
优选实施方案)。这种粒径的混合物给出了理论上最好的堆叠,并且可能导致打印材料有更高的密度
[0091] 所述金属和/或陶瓷材料的量也可以被进一步限定。因此,在一个实施方案中,所述悬浮液包含所述悬浮液(w/w)的总重量的60-95%范围内的至少一种金属或陶瓷材料(或
聚合物),例如60-95%,例如70-95%,例如77-95%,例如80-95%,例如85-95%,例如90-
95%,例如80-85%,例如80-84%,例如80-83%,例如80-82%,例如81-85,例如82-85%,或例如83-85%。如实施例部分所示,可以针对不同的材料确定最佳浓度。
[0092] 不同的脂肪酸可形成本发明的一部分。因此,在一个实施方案中,所述一种或多种脂肪酸选自辛酸、癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、花生酸、山萮酸、木蜡酸、蜡酸、肉豆蔻脑酸、棕榈油酸、顺-6-十六碳烯酸、油酸、反油酸、异油酸、亚油酸、反式亚油酸、α-亚麻酸、花生四烯酸、二十碳五烯酸、芥酸和二十二碳六烯酸。在实施例部分中,不同的脂肪酸已被证实符合本发明。
[0093] 类似地,也可以优化脂肪酸的浓度。因此,在一个实施方案中,所述悬浮液包含占总悬浮液重量的5-50%范围内的脂肪酸,例如在4-50%范围内,例如在5-50%范围内,例如在10-50%范围内,例如在10-40%范围内,例如10-30%,例如12-30%,例如15-30%,例如15-20%,例如15-18%或例如15-17%。
[0094] 陶瓷和脂肪酸的组合也可以被优化。因此,在一个实施方案中,所述悬浮液包含80-85%(w/w)的陶瓷材料和15-20%(w/w)的(游离)脂肪酸的混合物,例如80-85%(w/w)的
TCP和15-20%(w/w)的油酸的混合物;或80-85%(w/w)的TCP和15-20%(w/w)的亚油酸的混
合物;或80-85%(w/w)的TCP和15-20%(w/w)的硬脂酸的混合物。
[0095] 在另一个实施方案中,所述悬浮液包含70-90%(w/w)的陶瓷材料和10-30%(w/w)的(游离)脂肪酸的混合物,例如70-90%(w/w)的TCP和10-30%(w/w)的油酸的混合物;或
70-90%(w/w)的TCP和10-30%(w/w)的亚油酸的混合物;或70-90%(w/w)的TCP和10-30%
(w/w)的硬脂酸的混合物。这种组合物的例子可以在例如实施例2中找到。
[0096] 在另一个实施方案中,所述悬浮液包含70-92%(w/w)的金属材料和8-30%(w/w)的(游离)脂肪酸的混合物,例如70-92%(w/w)的铜和8-30%(w/w)的油酸的混合物;或70-
92%(w/w)的铜和/或银与8-30%(w/w)的亚油酸的混合物;或70-92%(w/w)的钢和8-30%
(w/w)的硬脂酸的混合物。这种组合物的例子可以在例如实施例3、实施例6和实施7中找到。
[0097] 在另一个实施方案中,所述悬浮液包含50-80%(w/w)的含碳材料和20-50%(w/w)的(游离)脂肪酸的混合物,例如50-80%(w/w)的石墨或石墨烯粉末与20-50%(w/w)的(游
离)脂肪酸的混合物;或50-80%(w/w)的石墨和20-50%(w/w)的硬脂酸的混合物。这种组合物的例子可以在例如实施例6中找到。
[0098] 以下列出了可用于根据本发明的方法和用途的优选组合物的示例。
[0099] 80-95%的TCP与20-5%的脂肪酸的熔点高于37℃。这种组合物可以在打印后(所得材料)在有或没有预先烧结的情况下被用作骨或牙科植入物。
[0100] 80-95%的羟基磷灰石与20-5%的脂肪酸的熔点高于37℃。这种组合物可以在打印后(所得材料)在有或没有预先烧结的情况下被用作骨或牙科植入物。
[0101] 80-95%的双相TCP/羟基磷灰石与20-5%的脂肪酸的熔点高于37℃。这种组合物可以在打印后(所得材料)在有或没有预先烧结的情况下被用作骨或牙科植入物。
[0102] 80-95%的TCP和MCP的化学计量粉末混合物与20-5%的脂肪酸的熔点高于37℃。这种组合物可以在打印后(所得材料)在有或没有预先烧结或粘合的情况下用作骨或牙科
植入物。
[0103] 80-95%的磷酸四钙和磷酸二钙的化学计量粉末混合物与20-5%的脂肪酸的熔点高于37℃。这种组合物可以在打印后(所得材料)在有或没有预先烧结或粘合的情况下用作
骨或牙科植入物。
[0104] 在上面列举的优选的实施方案中,可加入一种或多种蛋白质或碳水化合物细胞外基质组分或其衍生物,以改善机械强度和/或细胞粘附和/或组织形成。这可能是胶原蛋白,明胶,透明质酸,弹性蛋白或纤连蛋白。
[0105] 此外,在上述优选的实施方案中,可以加入一种或多种组分以改善磷酸钙与细胞外基质组分之间的结合。这可以是骨桥蛋白,骨涎蛋白或者骨酸性糖蛋白-75。
[0106] 在一个实施方案中,根据本发明制备的材料可以由溶解在人体中并且在溶解后留下水凝胶以及被用作产生软组织的植入物的悬浮液制成,软组织如软骨,肌,韧带,脉管系统,皮肤,脂肪组织或神经组织或内部器官的组分。其可以是包含5-30%的脂肪酸和
0.1%-95%的可形成水凝胶的固体颗粒的悬浮液,其可以是细胞外基质组分或其衍生物,
例如胶原蛋白和明胶。例如悬浮液中也可以加入1-94.9%的含碳分子以帮助溶解,这可以
是碳水化合物,氨基酸或其它可溶解在人体内的有机化合物。
[0107] 在另一个实施方案中,3D打印或挤出的材料被用作非烧结植入物,并且在3D打印或挤出之前,期间或之后添加两亲物组分来涂覆材料以使其更亲水。例如可以是短链或中
链游离脂肪酸或具有疏水侧链的氨基酸。
[0108] 在另一个实施方案中,在3D打印之前或之后添加一种或多种药物。例如可以是天然蛋白质如BMP、PDGF、HGF、IGF、NGF、BDNF、GDNF、VEGF、LIF或胰岛素、其也可以是质粒DNA、病毒DNA、病毒RNA、小干扰RNA(siRNA)、微RNA(miRNA)、信使RNA(mRNA)、基于核酸编辑系统的CRISPR、维生素如维生素D、维生素C、维生素A、维生素E或维生素K、合成药如地塞米松或H8、抗癌药如多柔比星、抗炎药和/或镇痛药如NSAID药或抗生素如青霉素、四环素、喹诺酮、大环内酯、头孢菌素、碳青霉烯、氨基糖苷或糖-或脂肽。
[0109] 在另一个实施方案中,所述固体颗粒是药物,并且所得材料被用作可植入的药物贮存库以控制药物释放动力学。在类似的实施方案中,固体颗粒是药物,它们与赋形剂和/或碳水化合物和/或药物缓释系统混合,并且所得材料被用作可植入的药物贮存库以控制
药物释放动力学。
[0110] 在又一个实施方案中,所述悬浮液是一种或多种金属、一种或多种陶瓷粉末、和一种脂肪酸的混合物,其目的是产生金属陶瓷或金属基质复合材料。例如混合物可以在钙盐和/或二氧化硅和/或氧化铝与铜和/或铜合金和/或钢之间。
[0111] 在一个实施方案中,所述悬浮液包含脂肪酸和一种或多种导电材料,例如银,铜,石墨,石墨烯或碳纳米管。这种组合物可以用于形成导电和/或抗静电和/或电磁屏蔽和/或传感器和/或电极物体。
[0112] 在又一个实施方案中,所述悬浮液包含不饱和脂肪酸,其中不饱和脂肪酸的双键或三键在3D打印或挤出期间或之后与其他组分交联或反应,目的是机械稳定打印的物体。
[0113] 在更具体的实施方案中,所述悬浮液由金属和/或陶瓷和/或聚合物材料和脂肪酸组成。在另一个实施方案中,所述悬浮液不含橡皮泥和/或造型粘土。
[0114] 在另一个实施方案中,根据本发明的所述悬浮液包含至少80%的固体材料和5-20%的脂肪酸,优选至少80%的固体材料,其中剩余物为至少50%的脂肪酸,如75%的脂肪酸,如90%的脂肪酸,如或者为99%的脂肪酸,或者其余为100%的脂肪酸。
[0115] 在某些情况下,可能优选的是所述悬浮液不含或基本不含水。因此,在一个实施方案中,所述悬浮液包含小于1%重量的水,优选该悬浮液是无水的。
[0116] 所述悬浮液也可以是非顿的。因此,在一个实施方案中,所述悬浮液是非牛顿体或宾汉塑性体。
[0117] 对于医疗设备而言,当然重要的是身体可相容所产生的材料。因此,在一个实施方案中,所述陶瓷、聚合物和/或金属是生物相容的。在另一个实施方案中,所述陶瓷,聚合物和/或金属是可生物降解的。在另一个实施方案中,生物可降解材料选自磷酸钙、硫酸钙、PCL、PLA、PGA、PHB、PHV、PHA或其共聚物以及镁和/或铁和/或钙的合金。实施例5显示了使用TCP的小鼠的生物相容性测试。
[0118] 为避免蒸发,在室温(25℃),脂肪酸的蒸气压不太高可能是有益的。因此,在一个实施方案中,所述脂肪酸在室温下的蒸气压不超过17.5mmHg。
[0119] 当然要理解的是,所述悬浮液可以包含多于一种的固体材料。因此,在一个实施方案中,所述悬浮液包含两种或更多种金属材料和/或两种或更多种陶瓷材料和/或两种或更多种聚合材料或其混合物。
[0120] 所述(游离)脂肪酸可以以不同的方式产生。因此,在一个实施方案中,所述悬浮液包含完全或部分水解的甘油三酯和/或磷脂,其中所述悬浮液可以含有一种或多种含或不含甘油或甘油共轭化合物的脂肪酸。
[0121] 所述悬浮液还可以包含其他成分。因此,在一个实施方案中,所述悬浮液还包含水、聚合物、乳化剂、溶剂、粘合剂、交联剂、表面活性剂、粘度调节剂、抗氧化剂、抗微生物化合物、分散剂、增塑剂、絮凝剂、聚羧酸盐、多元酸、多碱、发色团、颜料、肥皂、甘油、磷脂、烷烃、醇、醚、醛、酮、酯、胺和硫醇、磷酸盐硫酸盐、磺酸和超增塑剂中的一种或多种。
[0122] 悬浮液的用途
[0123] 如上所述以及在实施例部分中,根据本发明的悬浮液尤其适用于3D打印过程。因此,本发明的一个方面涉及根据本发明的悬浮液在3D打印或挤出方法中的用途,优选3D打
印的方法。换而言之,在另一方面,本发明涉及根据本发明的悬浮液作为原料,油墨,沉积材料或挤出材料用于3D打印机或挤出机的用途。
[0124] 另一方面,本发明涉及悬浮液在3D打印或挤出方法的用途,所述悬浮液包括:
[0125] 所述悬浮液(w/w)的总重量的50-95%的至少一种陶瓷材料;和/或金属材料和/或聚合物材料和/或含碳材料,例如石墨;以及
[0126] 至少为所述悬浮液(w/w)的总重量的5%的一种或多种脂肪酸或其衍生物。
[0127] 另外如上所述,根据本发明的悬浮液在例如3D打印的方法中有几个优点。因此,在一个实施方案中,其用途是为了避免在打印或挤出之前和/或期间和/或之后原料/油墨的沉淀和/或胶结。在另一个实施方案中,其用途是为了避免烧结期间金属材料的氧化,条件是该悬浮液包含金属材料。在另一个实施方案中,其用途是为了在印后加工之前改善物体
的公差,形态和形状保持性及其机械强度。这是通过将悬浮液在高于其一种或多种组成脂
肪酸的熔点的温度下打印到具有低于其一种或多种构成脂肪酸的熔点的温度的载物台或
物体上以使其达到沉积后冻结并变硬。在另一个实施方案中,其用途是增加3D打印或挤出
物体的拉伸强度和/或挠曲强度和/或抗压强度和/或剪切强度。如实施例1所示,可以用根
据本发明的所述悬浮液来打印特定高含量的固体材料。如此高的含量增加了打印材料的强
度。在另一个实施方案中,所述悬浮液用于增加3D打印或挤出材料的密度。在又一个实施例中,所述悬浮液用于增加3D打印或挤出材料的生物相容性。
[0128] 实施例1提供的数据表明,用根据本发明的所述悬浮液打印的材料具有高生物相容性。因此,在一个实施方案中,所述悬浮液用于增加3D打印或挤出材料的生物相容性。
[0129] 3D打印方法可以从不同的技术中选择。因此,在一个实施方案中,3D打印方法选自robocasting、油墨直写、喷墨打印、喷胶粘粉成型、选择性热烧结、选择性激光烧结选择性激光熔化、立体光刻、长丝打印、颗粒打印、材料打印、自由成型制造、快速成型和机械手臂沉积。
[0130] 3D打印或挤出三维(3D)物体的方法
[0131] 本发明还涉及使用根据本发明的悬浮液制造3D物体的方法。因此,本发明的一个方面涉及3D打印或挤出三维(3D)物体的方法,该方法包括
[0132] a)提供根据本发明的悬浮液;
[0133] b)使用悬浮液作为原料进行3D打印或挤出物体;以及
[0134] c)任选地,固化打印或挤出的材料,例如,通过选自烧结、水合、涂覆、熔化、渗透、冷冻、结晶、沉淀和/或交联3D打印或挤出材料的方法。
[0135] 在另一方面,本发明涉及一种用于3D打印或挤出三维(3D)物体的方法,该方法包括:
[0136] a)提供悬浮液,其包括
[0137] ·所述悬浮液(w/w)的总重量的50-95%的至少一种陶瓷材料;和/或金属材料和/或聚合物材料和/或含碳材料,例如石墨;以及
[0138] ·至少为所述悬浮液(w/w)的总重量的5%的一种或多种脂肪酸或其衍生物。
[0139] b)使用所述悬浮液作为原料进行3D打印或挤出所需物体;以及
[0140] c)任选地,通过选自烧结,水合,涂覆,熔化,渗透和/或交联3D打印或挤出材料的方法固化打印或挤出材料。优选包括烧结步骤。
[0141] 如实施例1所示,与其他3D打印材料相比,用脂肪酸基悬浮液制造的所述3D打印物体具有更好的性能,例如具有更高的抗压强度和更好的生物相容性。应该理解的是,所述打印物体可以是包含几种(不同)打印材料的复合材料。这些复合材料可以通过从不同的打印
喷嘴同时打印或通过分步程序而产生,分步程序有或没有例如烧结的中间固化步骤。
[0142] 所述打印机/挤出机的喷嘴尺寸可以决定物体能够被制造的有多精确。因此,在一个实施方案中,所述3D打印可通过一个或多个喷嘴进行,其中每个喷嘴的孔口的面积在10μm2至2000μm2的范围内,例如50-2000μm2,例如50-1000μm2,例如50-500μm2。
[0143] 根据材料的不同,可能会在不同温度下烧结生成的物体。因此,在另一个实施方案中,所述烧结是通过将整个物体加热至150至3000℃的温度范围内,例如在250至350℃的范围内,例如在300至400℃的范围内,例如在400至500℃的范围内,例如在600至700℃的范围内,例如在900至1000℃的范围内,例如在1000至1200℃的范围内,例如在1200至1400℃的范围内,例如在1400至1700℃的范围内,或者例如在1700至2500℃的范围内。
[0144] 在另一个不同的实施方案中,所述烧结方法分两步进行,第一步是碳化脂肪酸,且第二步是氧化碳并烧结颗粒。例如所述烧结方法在硬脂酸和TCP的情况下,可以是在400℃下1小时,和在1100℃下2小时。
[0145] 在另一个实施方案中,所述烧结方法在大气压力或部分真空下进行。在大气压下操作的烧结炉更简单且更便宜,而在部分真空下操作的烧结炉可以减少3d打印物体的氧化
并有利于通过蒸发或升华去除脂肪酸。
[0146] 在进一步的一个实施方案中,烧结方法发生在大气中。在大气中操作的烧结炉更简单,更便宜。
[0147] 在另一个实施方案中,烧结方法发生在包含超过80%的氩和/或氮的空气中。在保护性气体中操作的烧结炉可以减少3D打印物体的氧化。
[0148] 打印物体也可能具有相当大的尺寸。因此,在进一步的一个实施方案中,3D打印或挤出的三维物体具有至少1cm3的体积,例如至少10cm3,例如在1-1000cm3的范围内或例如1-100cm3的体积。
[0149] 生成的物体可能用于医疗目的。因此,在一个实施方案中,该物体是医学植入物,例如骨或牙科植入物。实施例4描述了骨植入物的打印。
[0150] 包含金属的打印物体可能与某些工业领域特别相关。因此,在一个实施方案中,所述3D打印或挤出的三维物体包括金属并且选自整体项目、医疗装置的零件或部件、医用植入物、电子装置、电力电子装置、机器人、机械、涡轮机、管、配件、装甲钢、武器系统、汽车、摩托车、自行车、飞机、航天器船舶、潜艇、石油平台、采矿设备、涡轮机、海上设施、装甲车辆、坦克、多相化学催化剂、发动机、坦克、集装箱、钻井设备、建筑物发电厂、艺术品、珠宝、家居用品和玩具。
[0151] 包含陶瓷的打印物体也可能与某些工业领域特别相关。因此,在一个实施方案中,所述3D打印或挤出的三维物体包括陶瓷并且选自整体项目、医疗装置的零件或部件、医用植入物、牙齿或骨替代材料、热绝缘材料、电绝缘材料、声学绝缘材料、装甲钢、武器系统、耐火材料、发动机、发电厂、电子设备、涡轮机、风力涡轮机、多相化学催化剂、建筑物、桥梁、道路、水坝基础设施、艺术品和陶器。
[0152] 打印期间的温度也可能有所不同。因此,在另一个实施方案中,步骤b)是在10-30℃的温度范围内进行的,例如15-25℃,或在30-100℃的温度范围内进行,例如40-80℃,例如50-70℃,或者例如60-70℃。
[0153] 应该理解的是,所述温度涉及在3d打印或挤出之前和/或期间悬浮液的温度,并且在刚沉积之后,例如在载物台或平台上的温度可以更低,相同或更高。
[0154] 所述低于30℃的温度可能与脂肪酸(或整个悬浮液)在该温度范围内为液体有关。另一方面,如果使用悬浮液,那么温度在30-100℃的范围内可能与其相关,所述悬浮液在该温度范围内能够熔融。如果将此类材料打印到冷却环境中,那么在打印挤出后材料会固化。
熔融温度在30-100℃温度范围内的脂肪酸的实例是癸酸(羊脂酸)、十二酸(月桂酸)、十四
酸(肉豆蔻酸)、十六酸(棕榈酸)、十八酸(硬脂酸)、二十酸(花生酸)、二十二酸(山嵛酸)、二十四酸(木蜡酸)。
[0155] 通过该方法获得的/可获得的三维物体
[0156] 在另一方面,本发明涉及通过根据本发明的方法获得的/可获得的3D打印或挤出的三维物体。
[0157] 本发明的其他方面
[0158] 本发明可以由不同的产品组合来定义。
[0159] 另一方面,本发明涉及负载有根据本发明的悬浮液的3D打印机。应该理解的是,3D打印机负载有悬浮液使得可以3D打印悬浮液。因此,悬浮液被负载为原料。
[0160] 在另一方面,本发明涉及一套设备,其包含
[0161] -3D打印机;以及
[0162] -根据本发明的悬浮液。
[0163] 在又一方面,本发明涉及一套设备,其包含:
[0164] -3D打印机;以及
[0165] -使用根据本发明的悬浮液作为原料来打印3D物体的说明书
[0166] 另一方面,本发明涉及一套设备,其包含
[0167] -根据本发明的悬浮液;以及
[0168] -使用悬浮液作为原料来打印3D物体的说明书。
[0169] 此外一方面涉及一套设备,其包含
[0170] -根据本发明的一种或多种脂肪酸;以及
[0171] -使用一种或多种脂肪酸来制备根据本发明的悬浮液以用作3D打印机或挤出机的原料的说明书。
[0172] 应该理解的是,所述脂肪酸涉及形成根据本发明的悬浮液的一部分的脂肪酸。
[0173] 在一个实施方案中,该设备还包含一种或多种本发明所定义的材料。
[0174] 另一方面,本发明涉及一套设备,其包含
[0175] -根据本发明的一种或多种材料;以及
[0176] -使用一种或多种材料来制备根据本发明的悬浮液以用作3D打印机或挤出机中的原料的说明书。
[0177] 应该理解的是,材料或粉末涉及形成根据本发明的悬浮液的一部分的材料/粉末。
[0178] 在一个实施方案中,该设备还包含一种或多种根据本发明的脂肪酸。
[0179] 在一个实施方案中,本发明涉及3D打印但未烧结的物体作为医疗植入物的用途,其中所述脂肪酸作为生物相容性和可再吸收的组分。根据本发明的悬浮液与其他可打印材
料相比也是有利的,因为悬浮液可以不含非生物相容和/或不可吸收的材料,例如石蜡、烷烃、蜡、矿物油、凡士林、聚丙烯、聚乙烯以及在人体中不经历或有限的降解和/或再吸收的聚合物。因此,在一个实施方案中,悬浮液不包含选自石蜡、烷烃、蜡、矿物油、凡士林、聚丙烯、聚乙烯以及在人体中不经历或有限的降解和/或再吸收的聚合物的组分。
[0180] 因此,根据本发明的悬浮液在一个实施方案中可以仅由(包括)硬脂酸和磷酸三钙组成,其既是生物相容材料又是可再吸收材料
[0181] 在另一个实施方案中,本发明涉及一种或多种脂肪酸与一种或多种固体组分的挤出混合物作为可注射或另外可植入的医疗空隙填充剂,粘接剂,胶水,骨接合剂或组织胶的用途。
[0182] 在另一个实施方案中,本发明涉及这样的用途,其中所述悬浮液还包含一种或多种亲水性聚合物组分,例如胶原蛋白,明胶,弹性蛋白或透明质酸,当其与脂肪酸组合时可形成支架,水凝胶和/或脂肪酸离开混合物时的细胞外基质。
[0183] 在另一个实施方案中,本发明涉及所述悬浮液的用途,它以这样的方式构成,即当脂肪酸离开混合物时其形成粘接剂。例如通过将不同的钙和/或磷酸盐和/或磷酸如磷酸三钙与磷酸一钙结合。
[0184] 在另一个实施方案中,所述悬浮液还包含一种或多种药物,药剂或其他生物活性化合物,目的是将其从植入物释放到局部环境和/或体循环中。在类似的实施方案中,本发明涉及所述3D打印的植入物作为可植入药物释放和/或药物储存器系统的用途。
[0185] 在另一方面,本发明涉及用作通过如粉碎研磨脂肪酸与固体粉末的混合物制成的固化悬浮粉末的悬浮液的3D打印。这种悬浮粉末可以沉积在可加热的表面上,在那里它
可以被熔化和熔融。所述悬浮粉末也可以作为连续层被放置在构建区域上,该连续层用热,激光或电子束处理以选择性地烧结或熔化悬浮粉末从而使其以类似于选择性加热烧结/熔
化或选择性激光烧结/熔化的方式使其熔融。
[0186] 应该注意的是,本发明的一个方面的本文中描述的实施方案和特征也适用于本发明的其他方面。
[0187] 在本申请中引用的所有专利和非专利参考文献通过引用整体并入本文。
[0188] 现在将在下面的非限制性实施例中进一步详细描述本发明。
[0189] 实施例
[0190] 实施例1-陶瓷材料的打印
[0191] 使用磷酸三钙(TCP)作为固体材料,配制下列油墨/原料:
[0192]编号 1 2 3 4 5 6 7 8 9
M(TCP)/g 12.5 12.5 12.5 18 15 15 15 15 15
M(HEC)/g 1.25 1.25 0.5 1.25 0.5 2.5 2 1.5 1.25
M(H2O)/g 12.5 25 15 15 15 15 15 15 15
[0193] HEC:羟乙基纤维素
[0194] TCP:所使用的TCP具有1-5微米范围内的平均粒度。
[0195] 10.15g(75%w/w)TCP和5g葵花油(25%w/w)
[0196] 11.15g(75%w/w)TCP和5g甘油(25%w/w)
[0197] 12.15g(75%w/w)TCP和5g羊毛脂(25%w/w)
[0198] 13.15g(75%w/w)TCP和5g鳕鱼油(25%w/w)
[0199] 14.15g(75%w/w)TCP和5g油酸(25%w/w)
[0200] 15.20g(80%w/w)TCP和5g油酸(20%w/w)
[0201] 16.25g(8.3.3%w/w)TCP和5g油酸(16.7%w/w)
[0202] 在每种情况下,使用具有19:1齿轮减速和1mm喷嘴的EMO-25分配器的Hyrel系统30M 3D打印机将油墨打印成矩形机械测试样本(100mm×20mm×5mm)。水性打印品在强制循
空气干燥器中在200℃下脱水过夜。然后将所有打印品在1050℃下烧结2小时。再将一些
样品浸入聚己内酯中,然后浸入15%的聚己内酯的丙酮溶液中,直至鼓泡停止,然后风干。
遇到了一些问题;油墨1-9如果在烧结之前没有风干,则会变为中空的,其中油墨9是具有最高固体负载的最佳可打印凝胶。油墨10在我们的手中表现良好,但是不能打印,因为一旦施加压力油就通过喷嘴压出,在分配器中只留下固体颗粒。油墨11没有形成可打印的油墨。油墨12形成可打印的凝胶,但在烧结过程中羊毛脂熔化并变成液体而破坏样品。油墨13在打
印和烧结过程中表现良好,我们怀疑这是因为鳕鱼油具有高含量的“游离”脂肪酸。油墨14-
16在打印和烧结过程中均表现良好。
[0203] 总之,使用“游离”脂肪酸,可以使3D打印原料具有更高的固体含量,如TCP。
[0204] 使用扫描电子显微镜观察用油墨9和16(具有最高固体负载量的可打印和可烧结凝胶)制成的成品样品(图1)。可以看出,烧结样品很好地合并了胶体颗粒。聚己内酯涂层在涂层样品中是明显的。一些样品(N=5)也使用Instron机械测试装置测试了抗压强度(图
2)。显然,用油墨16打印的物体比用油墨9制成的物体更强,未涂覆的油墨16物体比油墨9物体强3.13倍。用于细胞测试的样品在0.25M的NaOH中浸蚀24小时,在0.25M的HCl中浸蚀30分钟,用H2O洗涤4次,用77%V/V的乙醇洗涤2次,然后空气干燥并在非粘附96孔板上的200uL MEM培养基中植入200.000个端粒酶无限增殖的绿色荧光蛋白表达的人间质干细胞(p68)。
培养基在24小时后更换为维持培养基或成骨培养基并且此后每周更换两次。15天后,使用
荧光显微镜观察细胞并使用细胞仪评估生存力(图3)。所述细胞生长并良好地附着到所有
测试的植入物上,但生存力测试(N=6)显示,与油墨9基的植入物相比,在油墨16基的植入物上的细胞数多达其4倍。
[0205] 用聚己内酯涂覆一次的油墨16基的植入物比用聚己内酯涂覆一次的油墨9基植入物多1.8倍的生存力。
[0206] 因此看起来用TCP与脂肪酸基悬浮液的3d打印具有比与水基悬浮液的3d打印更高的生物相容性。
[0207] 实施例2-液相的测试
[0208] 配制下列油墨/原料,并使用具有19:1齿轮减速和1mm喷嘴的EMO-25分配器的Hyrel系统30M 3D打印机获得以下打印结果:
[0209] 1.26g(83.9%w/w)TCP+5g(16.1%w/w)亚油酸:打印良好
[0210] 2.25g(83.3%w/w)TCP+5g(16.7%w/w)油酸:打印良好
[0211] 3.21g TCP+5g油醇:不可打印,液相耗尽
[0212] 4.23g TCP+5g油醇:不可打印,液相耗尽
[0213] 5.25g(83.3%w/w)TCP+5g(16.7%w/w)油醇:不可打印,液相耗尽
[0214] 6.26g TCP+5g油醇:不可打印,液相耗尽
[0215] 7.20g TCP+5g油酸甲酯:不可打印,在压力下变硬
[0216] 8.22g TCP+5g油酸甲酯:不可打印,在压力下变硬
[0217] 9.23g TCP+5g油酸甲酯:不可打印,在压力下变硬
[0218] 10.25g(83.3%w/w)TCP+5g(16.7%w/w)油酸甲酯:不可打印,在压力下变硬
[0219] 11.35g TCP+15g H2O:喷嘴滴水,不可均匀打印
[0220] 12.15g TCP+15g H2O+1.25g HEC(如实施例1中的油墨9):可打印
[0221] 13.25g(83.3%w/w)TCP+5g(16.7%w/w)硬脂酸:加热时可打印,室温下为固体。
[0222] 14.25g(78.1%)TCP+7g(21.9%)亚麻酸:可打印。
[0223] 15.27g(81.8%)TCP+6g(18.2%)辛酸:可打印。
[0224] 材料被打印成直径2厘米和高度2厘米的圆柱体。将样品1-15打印到干燥的平台上,然后在1100℃下烧结2小时。所使用的TCP具有1-5微米范围内的平均粒度。
[0225] 不受理论束缚,这些结果表明:
[0226] -酸性基团对打印方法至关重要,因为基于油醇和油酸甲酯的不可打印的组合表明它甚至不能被醇或酯基取代。
[0227] -可以使用天然长链脂肪酸如油酸和亚油酸,天然短链脂肪酸如辛酸以及合成的非线性脂肪酸如环烷酸。表明其基本特征是酸性基团和疏水性烃。
[0228] 总之,可以使用根据本发明的原料悬浮液来3D打印陶瓷。
[0229] 实施例3-用油酸作为液相打印铜的试验
[0230] 使用具有19:1齿轮减速和1mm喷嘴的EMO-25分配器的Hyrel系统30M 3D打印机配制并打印以下铜/油酸油墨:
[0231] 1. 27g(84.3%w/w)铜+5g(15.6%w/w)油酸:打印良好,见图5。
[0232] 打印的铜的粒度小于75微米。
[0233] 总之,可以使用根据本发明的原料悬浮液来3D打印金属。
[0234] 实施例4-打印骨植入物
[0235] 将硬质酸(5g)和TCP(25g)(平均粒度在1-5微米范围内)3d打印成多孔板,从而制成较小的多孔植入物。将植入物烧结并植入100.000(eGFP+)或200.000(eGFP-)端粒酶无限
增殖的人间质干细胞。培养2天后,将一些细胞在成骨培养基中培养。通过扫描电子显微镜(图6),机械测试(图7),拉曼光谱和照片(图8),显微镜(图9),微型计算机断层扫描以及活力和碱性磷酸酶分泌的测定(图10)以及胶原蛋白和蛋白质的沉积(图11)来表征烧结方法
和所得植入物。
[0236] 扫描电子显微镜显示粉末被成功烧结以熔融TCP颗粒并且细胞粘附到TCP表面上。机械测试表明,由于脂肪酸在烧结之前可以被碳化,所以植入物可以很好地被烧结,烧结导致多孔植入物达到11.6MPa(SD:2.1MPa)的压缩强度。
[0237] 拉曼光谱显示,在3D打印和烧结之前,烧结的TCP与TCP粉末在化学上是相同的,因此在加工方法中发生变化。显微镜显示间质干细胞在TCP植入物上粘附并生长。微型计算机断层扫描以及生存力和碱性磷酸酶的分泌测定表明,细胞在植入物上保持活力,并且它们可以分泌碱性磷酸酶并进一步使植入物矿化。胶原蛋白和蛋白质沉积测定显示细胞可以将
胶原蛋白和蛋白质基质沉积到植入物上。另外还发现当将干细胞植入到未烧结的SA/TCP植
入物中时,它们附着团(图12)。48小时后,这些细胞迁移到未烧结的植入物表面上,并在
48小时时获得与烧结TCP上的干细胞的无法区分的单细胞形态。
[0238] 总之,可以打印和烧结机械强度高,与起始材料化学性质相同的骨支架,以支持细胞生长和体外形成新骨。
[0239] 实施例5.烧结和非烧结植入物的体内试验。
[0240] 用研钵和研棒将烧结的支架(与实施例4相同)和未烧结的支架粉碎成不均匀的颗粒,将40mg粉末材料置于1mL的末端已被切断的注射器中,注射器开口用花塞住,注射器高压灭菌至120℃。注射器保持干燥,直到术前不久被加入200μL盐水溶液。来自每个注射器的粉末位于NOD-SCID小鼠背部的皮下袋中。每只小鼠携带4个植入袋,每个植入袋具有相同的植入物。
[0241] 监测小鼠的体重和外观8周,没有发现明显的体重减轻,并且其外观没有改变。然后将小鼠安乐死,并对植入物进行组织学评估(图13)。据观察,小鼠看起来很好,表现正常,并且在植入8周期间没有体重减轻。H&E染色显示,植入物完全被细胞化,植入颗粒上和植入颗粒之间都存在细胞,植入物内血管的存在证明了血管化的发生。天狼星红染色显示胶原
蛋白沉积在整个植入体中,并且在偏振光下观察时,很明显胶原在许多地方是组织化的。
[0242] 总之,植入物具有高生物相容性,支持细胞生长,血管化和体内新骨形成。
[0243] 实施例6.导电材料的3D打印
[0244] 将硬脂酸与银粉(5g SA:40g银)或石墨粉(20g SA:25g石墨)混合,这些混合物被沉积为简单电路,如矩形电极(20mm×30mm×2mm)或直线(长20mm,宽2mm)(图14)。
[0245] 打印的银粉具有0.5微米至2微米范围内的粒度。
[0246] 一些银样品在400℃下烧结1小时,在700℃下烧结2小时。3D打印的电路用串联放置的两个LED进行测试,并用通过电路的电流点亮。使用具有标准铜线和商业导电3D可打印的长丝的万用表作为对照,在直线上测量电导率。通过3D打印的电极或标准电极来收集ECG信号,并使用由ADInstruments提供的Powerlab 26T单元和labchart软件来记录(图15)。
[0247] 总之,导电材料可以被3D打印并且可以在非烧结植入物中实现导电性。这些材料的两种用途可以用于电路或传感器。
[0248] 实施例7.用硬脂酸对金属进行3D打印。
[0249] 将硬脂酸与铜(5g SA:50g铜)或钢(15g SA:100g钢)混合,加热并沉积到表面以形成物体(图16)。
[0250] 所使用的铜(SPHERICAL,APS 10MICRON)具有约10微米的平均粒度。
[0251] 所使用的钢是316-L型(网325)。因此,颗粒的大小等于或小于44毫米。
[0252] 总之,将金属粉末与硬脂酸混合使其能够加热沉积并随后使SA/金属混合物固化。
[0253] 实施例8.使用胶枪沉积硬脂酸和TCP。
[0254] 将硬脂酸与TCP(平均粒度为1-5微米)(5g:25g)混合并浇铸成棒。将它们放入标准胶枪中并用手使其沉积在表面上(图17)。
[0255] 总之,根据本发明的悬浮液不一定必须是被用来3D打印的,而是可以从其他装置被挤出或沉积。例如,可以作为可注射水泥或空隙填料而具有价值。
相关专利内容
标题 发布/更新时间 阅读量
具有开放侧面的航天器 2020-05-14 420
航天器的推进器 2020-05-12 261
一种航天器 2020-05-11 571
航天器激光电池 2020-05-12 198
航天器 2020-05-11 242
航天器 2020-05-11 1007
蹬力航天器 2020-05-11 451
柔性舱及航天器 2020-05-12 722
航天器 2020-05-12 310
飞碟航天器 2020-05-12 344
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈