首页 / 专利库 / 引擎 / 热机 / 内燃机 / 四冲程发动机 / 排气冲程 / 内燃机的排气净化装置

内燃机的排气净化装置

阅读:252发布:2021-01-27

专利汇可以提供内燃机的排气净化装置专利检索,专利查询,专利分析的服务。并且在 内燃机 中,在内燃机排气通路内配置有具有 氧 化功能的排气 净化 催化剂(13),在排气净化催化剂(13)上游的内燃机排气通路内配置有小型氧化催化剂(14)和用于对小型氧化催化剂(14)供给 燃料 的燃料供给 阀 (15)。使排气净化催化剂(13)活化时,利用自燃料供给阀(15)供给的燃料使小型氧化催化剂(14)发热,使排气净化催化剂(13)进一步升温时,增加自燃料供给阀(15)供给的燃料量,使重整燃料自小型氧化催化剂(14)排出。,下面是内燃机的排气净化装置专利的具体信息内容。

1.一种内燃机的排气净化装置,在内燃机排气通路内配置有具有化功能的排气净化催化剂,
在该排气净化催化剂上游的内燃机排气通路内配置有小型氧化催化剂和用于对该小型氧化催化剂供给燃料的燃料供给,所述小型氧化催化剂比所述排气净化催化剂体积小,且流入排气净化催化剂的废气的一部分流通所述小型氧化催化剂,
在利用由自所述燃料供给阀供给的燃料在小型氧化催化剂内产生的氧化反应热而使排气净化催化剂升温时,自燃料供给阀供给小型氧化催化剂发热所必需的第一个量的燃料;
在利用小型氧化催化剂重整自所述燃料供给阀供给的燃料、并利用自小型氧化催化剂流出的重整燃料而使排气净化催化剂升温时,或者在排气净化催化剂内进行排气净化处理时,自燃料供给阀供给比所述第一个量多的燃料。
2.如权利要求1所述的内燃机的排气净化装置,其中,所述第一个量为抑制重整燃料自小型氧化催化剂流出并使小型氧化催化剂发热所必需的量,自燃料供给阀供给比所述第一个量多的燃料时,使重整燃料自小型氧化催化剂的流出量增大。
3.如权利要求1所述的内燃机的排气净化装置,其中,在排气净化催化剂未活化时或者排气净化催化剂自活化状态变为非活化状态时而应活化排气净化催化剂时,供给所述第一个量的燃料,由此使小型氧化催化剂发热。
4.如权利要求3所述的内燃机的排气净化装置,其中,在应活化排气净化催化剂时而小型氧化催化剂未活化时,在小型氧化催化剂活化后开始供给所述的第一个量的燃料。
5.如权利要求4所述的内燃机的排气净化装置,其中,在应活化排气净化催化剂时而小型氧化催化剂未活化时,使自燃烧室排出的废气温度上升,直到小型氧化催化剂活化为止。
6.如权利要求1所述的内燃机的排气净化装置,其中,在应升温排气净化催化剂时而排气净化催化剂未活化时,在通过使小型氧化催化剂发热而活化排气净化催化剂之后,开始自燃料供给阀供给比第一个量多的第二个量的燃料。
7.如权利要求1所述的内燃机的排气净化装置,其中,在应升温排气净化催化剂时而排气净化催化剂已活化时,如果小型氧化催化剂已活化,则立即开始自燃料供给阀供给比所述第一个量多的第二个量的燃料,如果小型氧化催化剂未活化,则在小型氧化催化剂活化后开始自燃料供给阀供给比所述的第一个量多的第二个量的燃料。
8.如权利要求1所述的内燃机的排气净化装置,其中,在利用自小型氧化催化剂流出的重整燃料而使排气净化催化剂升温时、或者在排气净化催化剂内进行排气净化处理时,使自燃烧室排出的废气的温度上升,或者使自燃烧室排出的未燃HC的量增大。
9.如权利要求8所述的内燃机的排气净化装置,其中,在使自燃烧室排出的废气的温度上升时,在小型氧化催化剂的温度达到预先设定的容许温度时,使自燃料供给阀的燃料供给量减少,并且使自燃烧室排出的废气的温度进一步上升。
10.如权利要求8所述的内燃机的排气净化装置,其中,通过延迟向燃烧室内喷射的燃料的喷射正时,而使自燃烧室排出的废气的温度上升。
11.如权利要求8所述的内燃机的排气净化装置,其中,在使自燃烧室排出的未燃HC的量增大时,在小型氧化催化剂的温度达到预先设定的容许温度时,使自燃料供给阀的燃料供给量减少,并且使自燃烧室排出的未燃HC的量进一步增大。
12.如权利要求8所述的内燃机的排气净化装置,其中,通过在膨胀冲程的后半程或者排气冲程中向燃烧室内供给追加的燃料,使自燃烧室排出的未燃HC的量增大。
13.如权利要求1所述的内燃机的排气净化装置,其中,自所述燃料供给阀向小型氧化催化剂供给燃料时,使供给燃料的一部分不流入小型氧化催化剂,而是通过小型氧化催化剂的侧方而流入排气净化催化剂。
14.如权利要求13所述的内燃机的排气净化装置,其中,自所述燃料供给阀朝向小型氧化催化剂的上游侧端面喷射燃料,在包括该上游侧端面的平面内的自燃料供给阀的喷射燃料喷雾区域,比该上游侧端面的区域广。
15.如权利要求13所述的内燃机的排气净化装置,其中,在小型氧化催化剂的中心部,形成有沿废气的流动方向延展的燃料流通用贯穿孔。
16.如权利要求1所述的内燃机的排气净化装置,其中,在内燃机运转中持续地自所述燃料喷射阀间歇性地喷射燃料。
17.如权利要求16所述的内燃机的排气净化装置,其中,防止排气净化催化剂的热劣化所必需量的燃料,除了实行自燃料供给阀的燃料喷射作用时以外,从内燃机刚刚启动直至内燃机停止为止,被持续地自燃料喷射阀间歇性地喷射。
18.如权利要求16所述的内燃机的排气净化装置,其中,在内燃机运转中持续地自燃料喷射阀间歇性地喷射的燃料的量,为防止排气净化催化剂的热劣化、且防止燃料供给阀的喷嘴口堵塞所必需的量。
19.如权利要求1所述的内燃机的排气净化装置,其中,排气净化催化剂包括氧化催化剂,并且在排气净化催化剂下游的内燃机排气通路内配置有用于捕集废气中的颗粒的颗粒过滤器,在为了再生颗粒过滤器而使颗粒过滤器升温时,自燃料供给阀供给比所述第一个量多的第二个量的燃料。
20.如权利要求1所述的内燃机的排气净化装置,其中,排气净化催化剂由NOx吸留催化剂构成,该NOx吸留催化剂在流入的废气的空燃比为稀时吸留废气中含有的NOx,当流入的废气的空燃比变为浓时放出吸留的NOx,在为了自NOx吸留催化剂放出NOx而使废气的空燃比为浓时,自燃料供给阀供给与所述第一个量相比每单位时间内的供给量多的第三个量的燃料。
21.如权利要求1所述的内燃机的排气净化装置,其中,在使NOx吸留催化剂升温到SOx放出温度时,自燃料供给阀供给比所述第一个量多的第二个量的燃料,在为了自NOx吸留催化剂放出SOx而将NOx吸留催化剂的温度维持为SOx放出温度、且使废气的空燃比为浓时,自燃料供给阀供给与所述第二个量相比每单位时间内的供给量多的第四个量的燃料。
22.如权利要求1所述的内燃机的排气净化装置,其中,在排气净化催化剂下游的内燃机排气通路内,配置有在存在的情况下能够还原废气中的NOx的NOx选择性还原催化剂和用于对NOx选择性还原催化剂提供尿素溶液的尿素水溶液供给阀,在应活化NOx选择性还原催化剂时,自燃料供给阀供给所述第一个量的燃料和比所述第一个量的燃料多的第二个量的燃料中的任一者。
23.如权利要求1所述的内燃机的排气净化装置,其中,所述小型氧化催化剂具有比朝向排气净化催化剂的废气的整个流路截面小的截面,并且形成沿废气的流向延展的筒状。
24.如权利要求23所述的内燃机的排气净化装置,其中,所述小型氧化催化剂配置在朝向排气净化催化剂的废气所流通的排气管内的中央。
25.如权利要求23所述的内燃机的排气净化装置,其中,所述小型氧化催化剂配置在朝向排气净化催化剂的废气所流通的排气管内的周边部。
26.如权利要求23所述的内燃机的排气净化装置,其中,朝向排气净化催化剂的废气的流通路径由一对流通路径形成,在所述一对流通路径中的一个流通路径内配置有所述小型氧化催化剂。
27.如权利要求23所述的内燃机的排气净化装置,其中,自燃料供给阀朝向小型氧化催化剂的上游侧端面喷射燃料。
28.如权利要求23所述的内燃机的排气净化装置,其中,在小型氧化催化剂的上游侧端面上,形成有自该上游侧端面的边缘部向上游延展的燃料引导部,自燃料供给阀朝向该燃料引导部喷射燃料。
29.如权利要求1所述的内燃机的排气净化装置,其中,在排气净化催化剂上游的内燃机排气通路内配置有在朝向排气净化催化剂的废气的整个流路截面延展的氧化催化剂、并且自燃料供给阀对所述氧化催化剂的上游侧端面的一部分区域内供给燃料,供给有燃料的一部分区域内的所述氧化催化剂部分构成所述小型氧化催化剂。

说明书全文

内燃机的排气净化装置

技术领域

[0001] 本发明涉及一种内燃机的排气净化装置。

背景技术

[0002] 已知一种内燃机,其在内燃机排气通路内配置了NOx吸留催化剂,该NOx吸留催化剂在流入的废气的空燃比为稀时吸留废气中含有的NOx,当流入的废气的空燃比变为浓时,则放出吸留的NOx;在NOx吸留催化剂上游的排气通路内配置具有比排气通路的截面小的截面的小型燃料重整催化剂,使自内燃机排出的废气的一部分在燃料重整催化剂内流通,在应该从NOx吸留催化剂放出NOx时,朝向燃料重整催化剂上游侧端面喷射燃料。(参考例如日本特开2005-127257号公报)
[0003] 该内燃机内,在应该自NOx吸留催化剂放出NOx时喷射的燃料在燃料重整催化剂内被重整,经重整后的燃料、例如含有H2、CO的还原能高的燃料被送入NOx吸留催化剂。结果为良好地还原自NOx吸留催化剂放出的NOx。
[0004] 然而即使如上所述将重整后的燃料送入NOx吸留催化剂,在NOx吸留催化剂没有活化的情况下,在NOx吸留催化剂中也不发生还原反应,此时产生问题为,送入NOx吸留催化剂的重整燃料直接穿过NOx吸留催化剂而排出到大气中。为了防止产生这样的问题,有必要根据燃料重整催化剂、NOx吸留催化剂的状态,实行符合目的的向燃料重整催化剂供给燃料的控制。

发明内容

[0005] 本发明的目的为提供一种供给符合目的的量的燃料的内燃机排气净化装置。
[0006] 根据本发明,提供一种内燃机的排气净化装置,其中,在内燃机排气通路内配置有具有化功能的排气净化催化剂,在排气净化催化剂上游的内燃机排气通路内配置有小型氧化催化剂和用于向该小型氧化催化剂供给燃料的燃料供给,该小型氧化催化剂体积比排气净化催化剂小且流入排气净化催化剂的废气的一部分流通该小型氧化催化剂;在利用由自该燃料供给阀供给的燃料在小型氧化催化剂上发生的氧化反应热而使排气净化催化剂升温时,自燃料供给阀供给小型氧化催化剂发热所必需的第一个量的燃料;在利用小型氧化催化剂重整自该燃料供给阀供给的燃料、并利用从小型氧化催化剂流出的重整燃料而使排气净化催化剂升温时,或者在排气净化催化剂内进行排气净化处理时,从燃料供给阀供给比上述第一个量多的燃料。附图说明
[0007] 图1是压燃式内燃机的整体图。
[0008] 图2是图1的小型氧化催化剂周围的放大图。
[0009] 图3是用于说明NOx吸放作用的图。
[0010] 图4是表示自燃料供给阀的第一个量QA的燃料的供给控制的时序图。
[0011] 图5是表示自燃料供给阀的第一个量QA的燃料的供给控制的时序图。
[0012] 图6是表示自燃料供给阀的第二个量QB的燃料的供给控制的时序图。
[0013] 图7是表示自燃料供给阀的第二个量QB的燃料的供给控制的时序图。
[0014] 图8是表示自燃料供给阀的第二个量QB的燃料的供给控制的时序图。
[0015] 图9是表示自燃料供给阀的第二个量QB的燃料的供给控制的时序图。
[0016] 图10是表示自燃料供给阀的第三个量QN的燃料的供给控制的时序图。
[0017] 图11是表示自燃料供给阀的第四个量QS的燃料的供给控制的时序图。
[0018] 图12是表示燃料供给量QA、QB、QN、QS的映射图的图。
[0019] 图13是表示催化剂的活化控制的时序图。
[0020] 图14是用于实行催化剂的活化控制的流程图
[0021] 图15是表示NOx放出控制和颗粒过滤器的升温控制的时序图。
[0022] 图16是表示NOx放出控制和SOx放出控制的时序图。
[0023] 图17是表示吸留NOx量NOXA以及吸留SOx量SOXZ的映射图的图
[0024] 图18是用于实行排气净化处理的流程图。
[0025] 图19是表示小型氧化催化剂周围的放大图的图。
[0026] 图20是表示追加燃料的喷射正时的图。
[0027] 图21是表示延迟量θR以及追加的燃料量QPB、QPN、QPS的映射图的图。
[0028] 图22是用于进行升温控制的流程图。
[0029] 图23是用于进行升温控制的流程图。
[0030] 图24是用于进行为了放出NOx的浓处理的流程图。
[0031] 图25是用于进行为了放出SOx的浓处理的流程图。
[0032] 图26是小型氧化催化剂周围的放大图。
[0033] 图27是表示小型氧化催化剂的变形例的图。
[0034] 图28是表示排气净化的基本控制的时序图。
[0035] 图29是用于实行排气净化的基本控制的流程图。
[0036] 图30是表示烟浓度等的图。
[0037] 图31是表示各种变形例的图。
[0038] 图32是表示各种变形例的图。
[0039] 图33是表示各种变形例的图。

具体实施方式

[0040] 图1表示压燃式内燃机的整体图。
[0041] 参考图1,1表示内燃机主体,2表示各气缸燃烧室,3表示各燃烧室2内各个用于喷射燃料的电子控制式燃料喷射阀,4表示进气歧管,5表示排气歧管进气歧管4通过进气导管6连接到排气涡轮增压器7的压缩机7a的出口,压缩机7a的入口通过吸入空气量检测器8连接到空气净化器9。在进气歧管6内配置了通过步进电机驱动的节流阀10,进一步在进气导管6周围配置了用于冷却进气导管6内流动的吸入空气的冷却装置11。图1所示的实施例内,在冷却装置11内引入内燃机冷却,通过内燃机冷却水冷却吸入空气。
[0042] 另一方面,排气歧管5连接于排气涡轮增压器7的排气涡轮7b的入口,排气涡轮7b的出口通过排气管12连接于有氧化功能的排气净化催化剂13。在该排气净化催化剂13上游的内燃机排气通路内、也就是排气管12内配置了体积小于排气净化催化剂13且流入排气净化催化剂13的废气的一部分所流通的小型氧化催化剂14,在该小型氧化催化剂14上游的内燃机排气通路内、也就是排气管12内配置了用于向小型氧化催化剂14供给燃料的燃料供给阀15。
[0043] 在图1表示的实施例中,所述的排气净化催化剂13包括氧化催化剂,在排气净化催化剂13下游的、也就是氧化催化剂13下游的内燃机排气通路内配置了用于捕集废气中的颗粒的颗粒过滤器16。另外,在图1表示的实施例中,在颗粒过滤器16下游的内燃机排气通路内配置了NOx吸留催化剂17。
[0044] 排气歧管5和进气歧管4通过废气再循环(以下称为EGR)通路18互相连接,在EGR通路18内配置了电子控制式EGR控制阀19。另外,在EGR通路18周围配置了用于冷却EGR通路18内流动的EGR气体的冷却装置20。在图1表示的实施例中,在冷却装置20内引入内燃机冷却水,通过内燃机冷却水冷却EGR气体。另一方面,各燃料喷射阀3通过燃料供给管21连接到共轨22,该共轨22通过电子控制式的吐出量可变的燃料23连接到燃料罐24。储藏在燃料罐24内的燃料利用燃料泵23供给到共轨22内,供给到共轨22内的燃料通过各燃料供给管21供给到燃料喷射阀3。
[0045] 电子控制单元30由数字计算器构成,具备利用双向总线31互相连接的ROM(只读存储器)32、RAM(随机读写存储器)33、CPU(微处理器)34、输入端口35以及输出端口36。在小型氧化催化剂14的下游配置了用于检测小型氧化催化剂14的温度的温度传感器25,在颗粒过滤器16的下游配置了用于检测排气净化催化剂13和颗粒过滤器16的温度的温度传感器26,在NOx吸留催化剂17的下游配置了用于检测NOx吸留催化剂17的温度的温度传感器27,这些温度传感器25、26、27的输出信号通过对应的AD转换器37输入到输入端口35。
[0046] 另外,在颗粒过滤器16上安装了用于检测颗粒过滤器16的前后压差的压差传感器28,该压差传感器28以及吸入空气量检测器8的输出信号通过各自对应的AD转换器37输入到输入端口35。在加速踏板40上连接了产生与加速踏板40的踩下量成比例的输出电压的负荷传感器41,负荷传感器41的输出电压通过对应的AD转换器37输入到输入端口35。进而,在输入端口35上连接了曲轴每旋转例如15°即产生输出脉冲的曲轴传感器42。另一方面,输出端口36通过对应的驱动电路38连接到燃料喷射阀3、节流阀10的驱动用步进电极、EGR控制阀19以及燃料泵23。
[0047] 图2(A)是表示图1的小型氧化催化剂14周围的放大图,图2(B)是表示图2(A)内沿B-B线来看的截面图。图2(A)、(B)内所示的实施例内,小型氧化催化剂14具有由金属薄平板和金属薄波形板的层叠结构形成的基体,在该基体的表面形成了由例如氧化构成的催化剂载体层,并且在该催化剂载体上担载了铂Pt、铑Rd、钯Pd之类的贵金属催化剂。此外,该基体还能够由堇青石形成。
[0048] 自图2(A)、(B)可知,此小型氧化催化剂14具有比朝向排气净化催化剂13、也就是氧化催化剂13的废气的整个流路截面小的截面,也就是具有比排气管12的截面小的截面,并且在排气管12内的中央处形成沿废气的流向延展的筒状。此外,在图2(A)、(B)所示的实施例内,小型氧化催化剂14配置于圆筒状外框14a内,该圆筒状外框14a通过多个支柱29被支撑于排气管12内。
[0049] 氧化催化剂13由担载了例如铂Pt之类的贵金属的整体式催化剂形成。与此相对,在图1所示的实施例内颗粒过滤器16上没有担载贵金属催化剂。然而,颗粒过滤器16上也可以担载铂Pt之类的贵金属催化剂,在此情况下也可以省略氧化催化剂13。
[0050] 另一方面,图1内所示的NOx吸留催化剂17也在其基体上担载了例如由氧化铝制成的催化剂载体,图3图解性地表示了该催化剂载体45的表面部分的截面。如图3所示,在载体45的表面上分散地担载了贵金属催化剂46,进一步在催化剂载体45的表面上形成了NOx吸收剂47的层。
[0051] 在如图3所示的例中,作为贵金属催化剂46,使用了例如铂Pt,作为构成NOx吸收剂47的成分,使用选自例如K、钠Na、铯Cs之类的金属,钡Ba、Ca之类的碱土类,镧La、钇Y之类的稀土类中的至少一种。
[0052] 供给至内燃机进气通路、燃烧室2以及NOx吸留催化剂17上游的排气通路内的空气和燃料()的比称为废气的空燃比,则NOx吸收剂47在废气的空燃比为稀时吸留NOx,在废气中氧浓度低时放出吸留的NOx,如此进行NOx的吸放作用。
[0053] 即,采用使用钡Ba作为构成NOx吸收剂47的成分的情况做为例子来说明,废气空燃比稀时,也就是说废气中氧浓度高时,废气中含有的NO如图3所示那样在铂Pt46上被氧-化成为NO2,接着被吸收到NOx吸收剂47内与酸钡BaCO3结合,同时以硝酸根离子NO3 的形式在NOx吸收剂47内扩散。这样NOx吸留于NOx吸收剂47内。只要废气中的氧气浓度高,在铂Pt46的表面上就生成NO2,NOx吸收剂47的NOx吸收能力只要未饱和,NO2就被吸收-
于NOx吸收剂47内,生成硝酸根离子NO3。
[0054] 与此相对,废气的空燃比为浓或者为理论空燃比时,由于废气中的氧气浓度低,因- -此反应向逆方向(NO3->NO2)进行,如此NOx吸收剂47内的硝酸根离子NO3 以NO2的形式自NOx吸收剂47放出。接着放出的NOx利用废气中含有的未燃HC、CO被还原。
[0055] 像这样在废气空燃比为稀时、即在稀空燃比下进行燃烧时,废气中的NOx吸留于NOx吸收剂47内。然而如果在稀空燃比下的燃烧继续进行,则在此期间NOx吸收剂47的NOx吸收能力达到饱和,如此就不能利用NOx吸收剂47吸收NOx。因此,在根据本发明的实施例中,在NOx吸收剂47的吸收能力饱和前,自燃料供给阀15供给燃料,从而使废气的空燃比暂时为浓,由此使NOx从NOx吸收剂47放出。
[0056] 然而,废气中含有SOx、也就是SO2,如果该SO2流入NOx吸留催化剂17,则该SO2能在铂Pt46上氧化为SO3。接着该SO3被吸收到NOx吸收剂47内并与碳酸钡BaCO3结合,同2-
时以硫酸根离子SO4 的形式在NOx吸收剂47内扩散,生成稳定的硫酸盐BaSO4。然而因为NOx吸收剂47具有强碱性,因此该硫酸盐BaSO4稳定而难以分解,仅仅通过使废气空燃比为浓,BaSO4不会分解而保持原样残留。因此在NOx吸收剂47内随着时间流逝硫酸盐BaSO4增多,如此随着时间流逝NOx吸收剂47能够吸收的NOx的量变低。也就是说,NOx吸留催化剂
17产生硫中毒。
[0057] 然而在此情况下,在使NOx吸留催化剂17的温度上升到600℃以上的SOx放出温度的状态下,使流入NOx吸留催化剂17内的废气空燃比为浓时,SOx自NOx吸收剂47中放出。因此,本发明中在NOx吸留催化剂17产生硫中毒时,利用自燃料供给阀15供给燃料,从而使NOx吸留催化剂17的温度上升到SOx放出温度,使流入NOx吸留催化剂17的废气的空燃比为浓,自NOx吸留催化剂17放出SOx。
[0058] 在图2所示实施例中,燃料供给阀15的喷嘴口配置于排气管12的截面的中央,由该喷嘴口朝向小型氧化催化剂14的上游侧端面喷射燃料F、也就是轻油F。在此时,小型氧化催化剂14如果被活化,则燃料在小型氧化催化剂14内被氧化,利用此时产生的氧化反应热使小型氧化催化剂14升温。
[0059] 由于小型氧化催化剂14内流路阻力大,因此小型氧化催化剂14内流过的废气量很少。而且,一旦小型氧化催化剂14内产生氧化反应,由于在小型氧化催化剂14内气体膨胀,因而流过小型氧化催化剂14内的废气量进一步减少,另外如果利用氧化反应使气体温度上升,则气体的粘性变高,因而流过小型氧化催化剂14内的废气量进一步减少。因此,小型氧化催化剂14内的废气流速与流过排气管12内的废气流速相比慢很多。
[0060] 像这样,由于小型氧化催化剂14内的废气的流速慢,因而小型氧化催化剂14内的氧化反应变得活跃,而且由于小型氧化催化剂14的体积小,小型氧化催化剂14的温度急速地上升到相当高的温度。而且,一旦小型氧化催化剂14的温度变高,燃料中碳原子数目多的烃分解而生成碳原子数少且反应性高的烃。也就是说重整为反应性高的燃料。因此,一旦对小型氧化催化剂14供给燃料,小型氧化催化剂14一方面构成急速发热的急速发热器,另一方面构成了排出经重整的燃料的重整燃料排出器。
[0061] 然而,例如氧化催化剂13未活化时,若自小型氧化催化剂14排出重整的燃料,则产生以下问题:该重整燃料在氧化催化剂13内未被氧化,直接通过氧化催化剂13,如此重整燃料排出到大气中。另外,在小型氧化催化剂14未活化时,在自燃料供给阀15供给燃料的情况下,也产生燃料排出至大气中的问题。
[0062] 在根据本发明的第1实施例内,实行不产生上述问题的符合目的的最适合的燃料供给控制,逐一参考以下图4到图11,对在根据本发明的第一实施例内实行的燃料供给控制依次进行说明。此外,图4到图11表示了自燃料供给阀15的燃料喷射量Q、小型氧化催化剂14的温度TA以及排气净化催化剂13的温度TB的变化,在图4到图11内,时刻t0表示为了升温等的任意某个目的而发出应自燃料供给阀15开始喷射燃料的指令的时间。另外,图4到图11表示小型氧化催化剂14以及排气净化催化剂13两者均于200℃时活化的情况作为例子。
[0063] 首先,初步针对图4和图5进行说明,这些图4和图5表示利用小型氧化催化剂14产生的氧化反应热来活化排气净化催化剂13的情况。此外,在图4和图5的表示排气净化催化剂13的温度TB变化的线图内,虚线表示在像内燃机启动时那样排气净化催化剂13还未活化时,在时刻t0处为了活化排气净化催化剂13而发出燃料喷射指令的情况;实线表示在时刻t0处,在排气净化催化剂13自活化状态变为非活化状态时,为了活化排气净化催化剂13而发出燃料喷射指令的情况。
[0064] 由小型氧化催化剂14的温度TA可知,图4表示在时刻t0处小型氧化催化剂14未活化的情况。小型氧化催化剂14未活化时,即使自燃料供给阀15喷射燃料,这些喷射的燃料在小型氧化催化剂14内也不发生氧化反应,而直接通过小型氧化催化剂14排出到大气中。因此,在此情况下如图4所示,在小型氧化催化剂14活化后开始自燃料供给阀15喷射燃料。
[0065] 自燃料供给阀15开始喷射燃料时,该喷射燃料在小型氧化催化剂14内被氧化,此时利用小型氧化催化剂14中产生的氧化反应热来升温排气净化催化剂13。此时由于排气净化催化剂13为非活性状态,因而如果此时重整燃料自小型氧化催化剂14排出,则该重整燃料直接通过排气净化催化剂13而排出到大气中。
[0066] 因此,此时自燃料供给阀15供给小型氧化催化剂14发热所必需的第一个量QA的燃料。在此情况下,实际上,难以使重整燃料完全不从小型氧化催化剂14排出。因此,在本发明内,该第一个量QA为抑制自小型氧化催化剂14流出重整燃料、并且小型氧化催化剂14发热所必需的量。
[0067] 即,在图4所示的例子内,在排气净化催化剂13未活化时或者排气净化催化剂13自活化状态变为非活化状态时而应活化排气净化催化剂13时,自燃料供给阀15供给第一个量QA的燃料,在此情况下小型氧化催化剂14未活化时,在小型氧化催化剂14活化后开始供给第一个量QA的燃料。
[0068] 另一方面,图5表示在时刻t0处小型氧化催化剂14已活化的情况。在此情况下,如图5所示,在到达时刻t0时,立即开始自燃料供给阀15供给第一个量QA的燃料。此外,在图4和图5所示的任一情况下,均自燃料供给阀15间歇性地以脉冲状供给燃料,排气净化催化剂13一活化即停止燃料的供给。
[0069] 图6到图9表示将自燃料供给阀15供给的燃料利用小型氧化催化剂14重整、并利用自小型氧化催化剂14流出的重整燃料来使排气净化催化剂13升温时的燃料的供给控制;在此时,自燃料供给阀15间歇性地喷射比第一个量QA多的第二个量QB的燃料。
[0070] 例如为了燃烧颗粒过滤器16上堆积的颗粒,有必要使颗粒过滤器16的温度上升到600℃以上左右;另外在自NOx吸留催化剂17放出SOx的情况下,也有必要使NOx吸留催化剂17的温度上升到600℃以上的SOx放出温度。在此情况下,自小型氧化催化剂14排出大量的重整燃料,使该重整燃料在排气净化催化剂13内氧化,利用此时产生的氧化反应热,升温燃烧颗粒过滤器16或者NOx吸留催化剂17。
[0071] 为了自小型氧化催化剂14排出大量的重整燃料,也就是为了与第一个量QA时相比使自小型氧化催化剂14流出的重整燃料的量增大,必须增大自燃料供给阀15的燃料喷射量,因此此时喷射的第二个量QB比第一个量QA大大增加。燃料喷射量增大时,小型氧化催化剂14的温度与第一个量QA时相比进一步变高,因而也利用小型氧化催化剂14的氧化反应热升温排气净化催化剂13,另外由于排气净化催化剂13变高温后进一步促进燃料的重整,因而进一步促进排气净化催化剂13中的燃料的氧化反应。因此,排气净化催化剂13急速升温。
[0072] 图6以及图7表示排气净化催化剂13已活化时使排气净化催化剂13升温的情况。应说明的是,在此情况下,图6以及图7中的时刻t0表示发出应升温排气净化催化剂13的指令的时刻。
[0073] 图6表示在时刻t0处小型氧化催化剂14未活化的情况。在此情况下如果小型氧化催化剂14活化,则开始供给第二个量QB的燃料。与此相对,图7表示在时刻t0处小型氧化催化剂14已活化的情况。在此情况下立即开始供给第二个量QB的燃料。
[0074] 图8及图9表示在排气净化催化剂13未活化时在时刻t0处发出应升温排气净化催化剂13的指令的情况。在此情况下,如图8及图9所示,通过供给第一个量QA而使小型氧化催化剂14发热,由此在排气净化催化剂13活化后开始供给第二个量QB的燃料。然而,如图8所示,在时刻t0处小型氧化催化剂14未活化时,等待小型氧化催化剂14活化后再开始供给第一个量QA的燃料。
[0075] 如图6到图9所示开始供给第二个量QB的燃料,则排气净化催化剂13的温度TB急速上升,排气净化催化剂13的温度TB一达到目标温度,即停止供给第二个量QB的燃料。
[0076] 图10表示为了自NOx吸留催化剂17放出NOx而使流入NOx吸留催化剂17的废气的空燃比为浓的情况。在此时,自燃料供给阀15供给与第一个量QA以及第二个量QB相比每单位时间的供给量多的第三个量QN的燃料。应说明的是,该第三个量QN的燃料供给与图6到图9内所示的第二个量QB的燃料供给一样,在小型氧化催化剂14以及排气净化催化剂13均已活化时实行。
[0077] 另一方面,如上所述使NOx吸留催化剂17升温到SOx放出温度时,供给比第一个量QA多的第二个量QB的燃料,图11表示NOx吸留催化剂17的温度上升到SOx放出温度后,为了自NOx吸留催化剂17放出SOx而将NOx吸留催化剂17维持在SOx放出温度、并且使流入NOx吸留催化剂17的废气的空燃比为浓的情况。在此情况下,自燃料供给阀15间歇性地供给与第二个量QB相比每单位时间的供给量多的第四个量QS的燃料,直到SOx放出处理完成为止。
[0078] 此外,在根据本发明的实施例中,第一个量QA、第二个量QB、第三个量QN以及第四个量QS如图12的(A)到(D)所示那样,作为内燃机的要求扭矩TQ以及内燃机转速N的函数、以映射图的形式预先存储于ROM32内。
[0079] 图13表示了内燃机启动时催化剂活化控制的一个例子。该图13也以小型氧化催化剂14的活化温度TXa为200℃、排气净化催化剂13的活化温度TXb为200℃的情况为例而示出。最后,图13还表示了流入排气净化催化剂13的废气的空燃比A/F的变化。
[0080] 在图13所示的例子内,在内燃机启动时而小型氧化催化剂14未活化时,实行使废气温度上升的排气升温控制,直到小型氧化催化剂14活化为止,一旦小型氧化催化剂14活化,则自燃料供给阀15供给第一个量QA的燃料,直到排气净化催化剂13活化为止。该排气升温控制利用例如延迟向燃烧室2内喷射燃料的时间来实行。
[0081] 该排气升温控制在内燃机运转中在排气净化催化剂13由活化状态变为非活化状态时也实行。即,在根据本发明的实施例内,在应活化排气净化催化剂13而小型氧化催化剂14未活化时,实行使自燃烧室2排出的废气的温度上升的排气升温控制,直至小型氧化催化剂14活化为止。应说明的是,该排气升温控制虽然优选进行,但不是必须进行。
[0082] 图14表示催化剂的活性控制的程序。该程序通过每隔一定时间的插入而进行。
[0083] 参考图14,首先开始在步骤50内判断排气净化催化剂13的温度TB是否高于图13所示的TXb,也就是判断排气净化催化剂13是否已活化。排气净化催化剂13未活化时,进入步骤51,判断小型氧化催化剂14的温度TA是否高于图13所示的TXa,也就是判断小型氧化催化剂14是否已活化。小型氧化催化剂14未活化时进入步骤52,开始排气升温控制。
[0084] 接着,在步骤51内判断小型氧化催化剂14已活化时,进入步骤53,开始自燃料供给阀15喷射第一个量QA的燃料。接着在步骤54内,停止排气升温控制。另一方面,在步骤50内判断排气净化催化剂13已活化时,进入步骤55,停止喷射第一个量Q的燃料。接着进入步骤54。
[0085] 接下来,参考图15到图18的同时针对排气净化处理进行说明。
[0086] 在根据本发明的实施例内,NOx吸留催化剂17内每单位时间所吸留的NOx量NOXA作为要求扭矩TQ以及内燃机转速N的函数、以图17(A)所示的映射图的形式预先存储于ROM32内,利用累计计算该NOx量NOXA而算出NOx吸留催化剂17内吸留的NOx量∑NOX。在根据本发明的实施例内,如图15所示,该NOx量∑NOX每达到容许值NX,就自燃料供给阀15供给第三个量QN的燃料。在此时流入NOx吸留催化剂17的废气的空燃比A/F暂时为浓,由此自NOx吸留催化剂17放出NOx。
[0087] 另一方面,废气中含有的颗粒、也就是颗粒状物质在颗粒过滤器16上被捕集,依次被氧化。然而被捕集的颗粒状物质的量一旦多于被氧化的颗粒状物质的量,颗粒状物质就在颗粒过滤器16上逐渐堆积,在此情况下,颗粒状物质的堆积量增大会招致内燃机输出功率降低。因此在颗粒状物质的堆积量增大时必须除去堆积的颗粒状物质。在此情况下,若在空气过剩下使颗粒过滤器16的温度升高到600℃左右,则堆积的颗粒状物质被氧化而除去。
[0088] 因此,在根据本发明的实施例内,在颗粒过滤器16上堆积的颗粒状物质的量超过容许值时,在废气空燃比为稀的情况下,使颗粒过滤器16的温度升高,由此氧化除去堆积的颗粒状物质。具体而言,在根据本发明的实施例内,在利用压差传感器28检测的颗粒过滤器16的前后压差ΔP如图15所示超过容许值PX时,判断为堆积颗粒状物质的量超过了容许量,此时自燃料供给阀15喷射第二个量QB的燃料。结果为,在流入颗粒过滤器16的废气的空燃比维持为稀的同时颗粒过滤器16的温度T升高。此外,若颗粒过滤器16的温度T变高,则由于从NOx吸留催化剂17放出NOx,因而捕获的NOx量∑NOX减少。
[0089] 另一方面,如上所述,要想自NOx吸留催化剂17放出SOx,必须使NOx吸留催化剂17的温度上升到SOx放出温度、并且使送入NOx吸留催化剂17的废气的空燃比为浓。因此,在根据本发明的实施例内,如图16所示在NOx吸留催化剂17内吸留的SOx量∑SOX达到容许值SX时,自燃料供给阀15喷射出第二个量QN的燃料,由此NOx吸留催化剂17的温度TC上升到NOx放出温度TXs。接着自燃料供给阀15喷射第四个量QS的燃料,由此NOx吸留催化剂17的温度TC维持为SOx放出温度TXs、并且流入NOx吸留催化剂17的废气的空燃比为浓。
[0090] 应说明的是,单位时间在NOx吸留催化剂17内所吸留的SOx量SOXZ作为要求扭矩TQ以及内燃机转速N的函数、以图17(B)所示的映射图的形式预先存储于ROM32内,通过累计计算该SOx量SOXZ来算出吸留SOx量∑SOX。
[0091] 图18表示了排气净化处理程序。该程序也通过每隔一定时间的插入而实行。
[0092] 参考图18,首先开始在步骤60内由图17(A)所示的映射图算出每单位时间吸留的NOx量NOXA。接着在步骤61内该NOXA被加合计算为NOx吸留催化剂17内所吸留的NOx量∑NOX。接着在步骤62内判断吸留NOx量∑NOX是否超过容许值NX,当∑NOX>NX时,进入步骤63,实行将送入NOx吸留催化剂的废气的空燃比暂时由稀切换为浓的浓处理,也就是实行自燃料供给阀15喷射第三个量QN的燃料的处理,∑NOX被清零。
[0093] 接着在步骤64内,利用压差传感器28检测颗粒过滤器16的前后压差ΔP。接着在步骤65内,判断压差ΔP是否超过了容许值PX,ΔP>PX时进入步骤66,实行颗粒过滤器16的升温控制。该升温控制通过在维持流入颗粒过滤器16的废气的空燃比为稀的同时自燃料供给阀15供给第二个量QB的燃料来实行。
[0094] 接着在步骤67内,由图17(B)所示的映射图算出单位时间吸留的SOx量SOXZ。接着在步骤68内该SOXZ加合计算为NOx吸留催化剂17内所吸留的SOx量∑SOX。接着在步骤69内判断吸留SOx量∑SOX是否超过容许值SX,当∑SOX>SX时,进入步骤70,实行使NOx吸留催化剂17的温度TC升高到SOx放出温度TXs的升温控制,也就是实行自燃料供给阀15供给第二个量QB的燃料的控制。接着,在步骤71内实行将送入NOx吸留催化剂17的废气的空燃比维持为浓的浓处理,也就是实行自燃料供给阀15喷射第四个量Q的燃料的处理,∑SOX被清零。
[0095] 接下来对根据本发明的第2实施例进行说明。
[0096] 如上所示自燃料喷射阀15喷射的第二个量QB比第一个量QA多很多,因此一旦自燃料喷射阀15供给第二个量QB的燃料,排气净化催化剂13急速升温。然而在此情况下,根据排气净化催化剂13的大小,有排气净化催化剂13的温度上升不到600℃以上的目标温度的情况。因此在该2实施例内,在此情况下,使自燃烧室2排出的废气温度提高、或者使自燃料室2排出并按图19的箭头E所示流入排气净化催化剂13的未燃HC的量增大。
[0097] 也就是说,一旦自燃烧室2排出的废气温度上升,排气净化催化剂13的温度就上升,这样就能够使排气净化催化剂13的温度上升到作为目标的温度。在此情况下,在该第二实施例内,例如利用延迟自燃料喷射阀3向燃烧室2内喷射的燃料的喷射正时,使自燃烧室2排出的废气温度上升。此时,燃料喷射正时的延迟量θR作为要求扭矩TQ以及内燃机转速N的函数、以图21(A)所示的映射图的形式预先存储于ROM32内。
[0098] 然而像这样使自燃烧室2排出的废气温度上升时,一旦小型氧化催化剂14的温度变得极高,小型氧化催化剂14会产生热劣化。因此在该第2实施例内,在使自燃烧室2排出的废气温度上升时,当小型氧化催化剂14的温度达到预先设定的容许温度时、也就是说有了产生热劣化的危险性时,减少自燃料供给阀15的燃料供给量,同时进一步提高自燃烧室2排出的废气温度。
[0099] 像这样通过在减少自燃料供给阀15的燃料供给量的同时使自燃烧室2排出的废气温度进一步上升,从而能够使排气净化催化剂13的温度上升到达目标温度、并且能够阻止小型氧化催化剂14的热劣化。
[0100] 另一方面,一旦自燃烧室2排出的未燃HC的量增大,通过在排气净化催化剂13内产生的这些未燃HC的氧化反应热,排气净化催化剂13温度上升,如此能够使排气净化催化剂13的温度上升到作为目标的温度。在此情况下,在该第2实施例内,在膨胀冲程的后半程或者排气冲程中、也就是在图20内虚线J所表示的期间中,自燃料喷射阀3向燃烧室2内供给追加的燃料,从而增大自燃烧室2排出的未燃HC的量。
[0101] 此外,在图20内,BDC表示排气下止点,TDC表示进气上止点,EX表示排气阀的开阀期间。在图20的虚线J所表示的期间中,喷射的追加的燃料量QPB作为要求扭矩TQ以及内燃机转速N的函数、以图21(B)所示的映射图的形式预先存储于ROM32内。
[0102] 然而,像这样增大自燃烧室2排出的未燃HC的量时,在小型氧化催化剂14的温度变得极高的情况下,小型氧化催化剂14也会产生热劣化。因此,在该第2实施例内,在自燃烧室2排出的未燃HC的量增大时,在小型氧化催化剂14的温度达到预先设定的容许温度时、也就是说如上所述有了产生热劣化的危险性时,在减少自燃料供给阀15的燃料供给量的同时进一步增大自燃烧室2排出的未燃HC的量。
[0103] 像这样通过在减少自燃料供给阀15的燃料供给量的同时进一步增大自燃烧室2排出的未燃HC的量,从而能够使排气净化催化剂13的温度上升到达目标温度、并且能够阻止小型氧化催化剂14的热劣化。
[0104] 在该第2实施例内,在如图6到图9所示供给第二个量QB的燃料期间,自燃烧室2排出的废气温度上升、或者自燃烧室2排出的未燃HC的量增大。结果是排气净化催化剂
13的温度TB急速上升。接着,一旦排气净化催化剂13的温度TB达到了目标温度,停止供给第二个量QB的燃料。
[0105] 另外,在该第2实施例内,在应利用自小型氧化催化剂14流出的重整燃料而自NOx吸留催化剂17放出NOx时,也就是说在利用自小型氧化催化剂14流出的重整燃料而在排气净化催化剂13中进行排气净化处理时,自燃烧室2排出的未燃HC的量也增大。自燃烧室2排出的未燃HC的量一旦增大,废气中含有的氧用于氧化这些未燃HC,因此废气空燃比的稀的程度降低。
[0106] 若废气空燃比稀的程度变低,则即使在自小型氧化催化剂14流出的重整燃料量没有那么多的情况下,流入NOx吸留催化剂17的废气的空燃比也变为浓,如此能够自NOx吸留催化剂17很好地放出NOx。此外,在此时为了增大未燃HC的排出量而在图2的虚线J所表示的期间中喷射的追加燃料QPN,作为要求扭矩TQ以及内燃机转速N的函数、以图21(C)所示的映射图的形式预先存储于ROM32内。
[0107] 进一步,在此第2实施例内,在像这样应利用自小型氧化催化剂14流出的重整燃料而自NOx吸留催化剂17放出SOx时,也就是说利用自小型氧化催化剂14流出的重整燃料而在排气净化催化剂13内进行排气净化处理时,自燃烧室2排出的未燃HC的量也增大。一旦自燃烧室2排出的未燃HC的量增大,如前所述废气空燃比的稀的程度降低。
[0108] 若废气空燃比稀的程度变低,则即使在自小型氧化催化剂14流出的重整燃料量没有那么多的情况下,流入NOx吸留催化剂17的废气的空燃比也变为浓,如此能够自NOx吸留催化剂17很好地放出SOx。应说明的是,在此时为了增大未燃HC的排出量而在图20的虚线J所表示的期间中喷射的追加燃料QPS,作为要求扭矩TQ以及内燃机转速N的函数、以图21(D)所示的映射图的形式预先存储于ROM32内。
[0109] 在该第2实施例内,也使用了图18内所示的排气净化处理程序。应说明的是,图22表示在图18的步骤66以及步骤70内实行的升温控制的一实施例。
[0110] 参考图22,首先,开始在步骤80内算出自燃料供给阀15喷射的第二喷射燃料量QB,接着在步骤81内算出燃料喷射阀3的燃料喷射正时的延迟量θR。接下来在步骤82内判断小型氧化催化剂14的温度TA是否高于预先设定的容许温度TAX。在TA≤TAX时跳到步骤85。
[0111] 在步骤85内,在算出的延迟量θR的基础上实行自燃料喷射阀3的燃料喷射,此时废气温度上升。接着在步骤86内,在算出的喷射燃料量QB的基础上实行自燃料供给阀15的燃料喷射。另一方面,在步骤82内判定为TA>TAX时,进入步骤83,自喷射燃料量QB减去预先设定的量ΔQB。接着在步骤84内对喷射正时的延迟量θR加上预先设定的延迟量ΔθR,接着进入步骤85。因此此时自燃料供给阀15的喷射量减少,废气温度进一步提高。
[0112] 图23表示在图18的步骤66以及步骤70内实行的升温控制的另外的实施例。
[0113] 参考图23,首先,开始在步骤90内计算出自燃料供给阀15喷射的第二喷射燃料量QB,接着在步骤91内算出自燃料喷射阀3喷射的追加燃料量QPB。接着在步骤92内,判定小型氧化催化剂14的温度TA是否高于预先设定的容许温度TAX。在TA≤TAX时跳到步骤95。
[0114] 在步骤95内,在算出的追加燃料量QPB的基础上实行自燃料喷射阀3的燃料喷射,此时未燃HC的排出量增大。接着在步骤96内,在算出的喷射燃料量QB的基础上实行自燃料供给阀15的燃料喷射。另一方面,在步骤92内判定为TA>TAX时,进入步骤93,自喷射燃料量QB减去预先设定的量ΔQB。接着在步骤94内对追加的喷射量QPB加上预先设定的量ΔQPB,接着进入步骤95。因此此时自燃料供给阀15的喷射量减少,自燃烧室2排出的HC的量增大。
[0115] 图24表示在图18的步骤63内实行的浓控制的一个实施例。
[0116] 参考图24,首先,开始在步骤100内计算出自燃料供给阀15喷射的第三喷射燃料量QN,接着在步骤101内算出自燃料喷射阀3喷射的追加燃料量QPN。接着在步骤102内,判定小型氧化催化剂14的温度TA是否高于预先设定的容许温度TAX。在TA≤TAX时跳到步骤105。
[0117] 在步骤105内,在算出的追加燃料量QPN的基础上实行自燃料喷射阀3的燃料喷射,此时未燃HC的排出量增大。接着在步骤106内,在算出的喷射燃料量QN的基础上实行自燃料供给阀15的燃料喷射。另一方面,在步骤102内判定为TA>TAX时,进入步骤103,自喷射燃料量QN减去预先设定的量ΔQN。接着在步骤104内对追加喷射量QPN加上预先设定的量ΔQPN,接着进入步骤105。因此此时自燃料供给阀15的喷射量减少,自燃烧室2排出的HC的量增大。
[0118] 图25表示在图18的步骤71内实行的浓控制的一个实施例。
[0119] 参考图25,首先,开始在步骤110内计算出自燃料供给阀15喷射的第四喷射燃料量QS,接着在步骤111内算出自燃料喷射阀3喷射的追加燃料量QPS。接着在步骤112内,判定小型氧化催化剂14的温度TA是否高于预先设定的容许温度TAX。在TA≤TAX时跳到步骤115。
[0120] 在步骤115内,在算出的追加燃料量QPS的基础上实行自燃料喷射阀3的燃料喷射,此时未燃HC的排出量增大。接着在步骤116内,在算出的喷射燃料量QS的基础上实行自燃料供给阀15的燃料喷射。另一方面,在步骤112内判定为TA>TAX时,进入步骤113,自喷射燃料量QS减去预先设定的量ΔQS。接着在步骤114内,对追加喷射量QPS加上预先设定的量ΔQPS,接着进入步骤115。因此此时自燃料供给阀15的喷射量减少,自燃烧室2排出的HC的量增大。
[0121] 如上所述在第2实施例内利用自小型氧化催化剂14流出的重整燃料来使排气净化催化剂13升温时,通过使自燃烧室2排出的废气温度升高,能够很好地使排气净化催化剂13升温;在利用自小型氧化催化剂14流出的重整燃料在排气净化催化剂13中进行排气净化处理时,通过增大自燃烧室2排出的未燃HC的量,能够在排气净化催化剂13中很好地进行排气净化处理。
[0122] 接下来,对根据本发明的第3实施例进行说明。
[0123] 在如上所述使排气净化催化剂13升温时、或者在排气净化催化剂13内进行排气净化处理时,利用小型氧化催化剂14而重整的燃料被送入排气净化催化剂13。然而,利用小型氧化催化剂14而重整的燃料一旦被送入排气净化催化剂13,则在排气净化催化剂13的入口部分、也就是排气净化催化剂13的上游侧端部发生剧烈的重整燃料的氧化反应。其结果是,由于产生了极大量的氧化反应热,因而产生排气净化催化剂13的上游侧端部热劣化的问题。
[0124] 这里,在该第3实施例内,自燃料供给阀15向小型氧化催化剂14供给燃料时,供给燃料的一部分如图26内箭头E所示那样并非流入小型氧化催化剂14而是通过小型氧化催化剂14的侧方并流入排气净化催化剂13。自燃料供给阀15的供给燃料、也就是轻油的一部分一旦像这样流入排气净化催化剂13,则轻油中含有的重质燃料就会附着在排气净化催化剂13的上游侧端部,排气净化催化剂13上担载的贵金属催化剂等被这些重质燃料覆盖
[0125] 其结果是,排气净化催化剂13的上游侧端部的活性降低,因此排气净化催化剂13的上游侧端部的氧化反应被抑制,如此能够阻止排气净化催化剂13的上游侧端部热劣化。附着在排气净化催化剂13的上游侧端部的重质燃料在排气净化催化剂13的温度上升时蒸发而流往排气净化催化剂13内的下游侧,在此期间被氧化。
[0126] 在图26内所示的实施例内,为了实现自燃料喷射阀15喷射的燃料F的一部分如箭头E所示在小型氧化催化剂14的侧方流通,包括小型氧化催化剂14的上游侧端面的平面内的自燃料供给阀15的喷射燃料喷雾区域比该上游侧端面的区域广。也就是说,喷射燃料喷雾区域扩展到小型氧化催化剂14的上游侧端面的半径方向外方。如此,燃料喷雾的边缘部分朝着排气净化装置13而流过小型氧化催化剂14的周围。
[0127] 此外,即使使全部喷射燃料与小型氧化催化剂14的上游侧端面相碰撞,有时由于碰撞时的反射,也有相当量的燃料飞散到小型氧化催化剂14的侧方。在这样的情况下,可以以全部喷射燃料朝向小型氧化催化剂14的上游侧端面的方式自燃料喷射阀15进行燃料喷射。
[0128] 图27表示小型氧化催化剂的变形例。图27(B)表示沿图27(A)的B-B截面来看的截面图。在图27(A)、(B)内表示的变形例中,在小型氧化催化剂14的中心部位形成了沿废气流动方向延展的燃料流通用贯穿孔48,朝向小型氧化催化剂14的上游侧端面自燃料供给阀15喷射燃料。因此在本变形例内,喷射燃料F的一部分如箭头E所示通过贯穿孔48被送入排气净化催化剂13。
[0129] 接下来针对用于防止排气净化催化剂13的热劣化的另外实施例进行说明。
[0130] 在该实施例内,为了防止排气净化催化剂13的热劣化,在内燃机运转中持续地自燃料喷射阀15间歇性地喷射燃料。在此情况下,即使自燃料喷射阀15朝向小型氧化催化剂14喷射燃料,由于喷射燃料扩散,喷射燃料、也就是轻油的一部分也不流入小型氧化催化剂14,而是通过小型氧化催化剂14的侧方而流入排气净化催化剂13。一旦自燃料供给阀15喷射的燃料、也就是轻油的一部分像这样流入排气净化催化剂13,会在排气净化催化剂13的上游侧端部上附着轻油中含有的重质燃料,排气净化催化剂13上担载的贵金属催化剂等被这些重质燃料覆盖。
[0131] 其结果是,如上所述,排气净化催化剂13的上游侧端部的活性降低,因而排气净化催化剂13的上游侧端部的氧化反应被抑制,如此能够阻止排气净化催化剂13的上游侧端部热劣化。附着在排气净化催化剂13的上游侧端部上的重质燃料在排气净化催化剂13的温度上升时蒸发而流往排气净化催化剂13内的下游侧,在此期间被氧化。
[0132] 然而,用于防止排气净化催化剂13的热劣化的排气净化催化剂13的上游侧端部的氧化反应的抑制作用必须在内燃机运转中一直持续进行,因此在本发明中,防止排气净化催化剂13的热劣化所必需量的燃料Q0,除了实行自燃料供给阀15的燃料喷射作用时以外,从内燃机刚刚启动直至内燃机停止为止,被持续地自燃料喷射阀15间歇性地喷射。
[0133] 图28表示内燃机启动后排气净化的基本控制的一个例子。该图28也以小型氧化催化剂14的活化温度TXa为200、排气净化催化剂13的活化温度TXb为200的情况作为例子来表示。此外,图28还表示流入排气净化催化剂13的废气的空燃比A/F的变化。
[0134] 在图28所示的例子内,在内燃机启动时而小型氧化催化剂14未活化时,实行使废气温度上升的排气升温控制,直至小型氧化催化剂14活化为止,小型氧化催化剂14一旦活化,则自燃料供给阀15供给第一个量QA的燃料,直至排气净化催化剂13活化为止。
[0135] 该图28表示防止排气净化催化剂13的热劣化所必需量Q0的燃料的供给时机。自图28可知,燃料Q0的供给在内燃机启动后立即实行。另外,在图28所示的例子内,燃料Q0的供给每隔一定时间t0进行,该燃料量Q0比第一个量QA少。
[0136] 图29表示排气净化的基本控制。该程序通过每隔一定时间的插入进行。
[0137] 参考图29,首先,开始在步骤120内判断自燃料喷射阀15的燃料的喷射处理是否在进行,也就是判断前述的QA、QB、QN、QS的量的燃料的喷射处理是否在进行。在燃料的喷射处理在进行时,跳到步骤124,在没有进行时进入步骤121。在步骤121内,判断自燃料喷射阀15最后喷射燃料后,是否经过了一定时间t0。在最后进行燃料喷射后没有经过一定时间t0时,跳到步骤124,在经过了一定时间t0时进入步骤122。在步骤122内,算出防止排气净化催化剂13的热劣化所必需的燃料量Q0,接着在步骤123内进行该燃料的喷射处理。
[0138] 接着在步骤124内判断排气净化催化剂13的温度TB是否高于图28所示的TXb,也就是判断排气净化催化剂13是否已活化。在排气净化催化剂13未活化时,进入步骤125,判断小型氧化催化剂14的温度TA是否高于图28所示的TXa,也就是判断小型氧化催化剂14是否已活化。在小型氧化催化剂14未活化时,进入步骤126,开始排气升温控制。
[0139] 接着,一旦在步骤125内判断为小型氧化催化剂14已活化,则进入步骤127,开始自燃料供给阀15喷射第一个量QA的燃料。接着在步骤128内,停止排气升温控制。另一方面,在步骤124内判断为排气净化催化剂13已活化时,进入步骤129,停止喷射第一个量Q的燃料。接着进入步骤128。
[0140] 另一方面,为了防止排气净化催化剂13的热劣化而自燃料喷射阀15间歇性地喷射燃料Q0,则同时也能够防止燃料喷射阀15的堵塞。接着针对该堵塞进行简单说明,图30(A)表示了自内燃机的废气的烟浓度SMi(SM1<SM2<…<SMi<…),如图30(B)所示,烟浓度SM越高则向喷嘴口的沉积量越大。沉积量增大则容易发生堵塞。
[0141] 因此在考虑到堵塞的情况下,沉积量达到一定以上时,也就是烟浓度的累计值达到一定值以上时,自燃料喷射阀15喷射燃料Q0。另外,废气温度Te变高时,为了利用喷射燃料的冷却作用来防止喷嘴口过热,喷射量Q0如图30(C)所示,随着排气温度Te的升高而增大。以考虑到堵塞的量Q0以及时机进行燃料喷射,也能够防止排气净化催化剂13的热劣化,因此在此情况下,在内燃机运转中持续地自燃料喷射阀15间歇性地喷射燃料的量Q0为防止排气净化催化剂13的热劣化且防止燃料供给阀15的喷嘴口堵塞所必需的量。
[0142] 接下来边参考图31和图32边依次说明与燃料供给阀15的配置,或者小型氧化催化剂14的配置或形状相关的各种变形例。
[0143] 首先,自图31(A)开始说明,该图31(A)所示的变形例内,燃料供给阀15的喷嘴口以不直接暴露于高温的废气流内的方式配置在排气管12的内壁面上所形成的凹部内。
[0144] 另外,在图31(B)所示的变形例内,在小型氧化催化剂14的上游侧端面上,形成自上游侧端面的边缘部分向上游延展的槽状的燃料引导部14b,自燃料供给阀15向燃料引导部14b喷射燃料。另一方面,在图31(C)所示的变形例内,小型氧化催化剂14配置在排气管12内的周边部。
[0145] 另外,在图32(A)以及32(B)所示的变形例内,在排气净化催化剂13上游的内燃机排气通路内配置有在朝向排气净化催化剂13的废气的整个流路截面延展的、也就是在排气管12的整个横截面延展的氧化催化剂14c、并且自燃料供给阀15对氧化催化剂14c的上游侧端面的一部分区域内供给燃料,供给有燃料的一部分区域内的氧化催化剂部分14,构成在本发明内所述的小型氧化催化剂。
[0146] 此外,在图32(A)所示的变形例内,小型氧化催化剂14形成于排气管12内的中央,在图32(B)所示的变形例内,小型氧化催化剂14形成于排气管12内的周边部。在图32(A)以及32(B)所示的变形例内,也利用基于自燃料供给阀15喷射的燃料F的氧化所产生的氧化反应热,而使小型氧化催化剂14升温,但此时小型氧化催化剂14周围的氧化催化剂14c部分也升温,如此在这些变形例内,在该氧化催化剂14c部分内也进行废气的净化作用。
[0147] 在图32(c)所示的变形例内,朝向排气净化催化剂13的排气管12内的废气的流通路径由一对分开的流通路径12a和12b形成,在该对流通路径12a和12b中的一个流通路径12a内配置了小型氧化催化剂14。自燃料供给阀15向小型氧化催化剂14的上游侧端面喷射燃料。在该变形例内,如果自排气净化催化剂13来看,也在上游侧的排气流通路的横截面内的一部分区域里配置了小型氧化催化剂14。
[0148] 图33表示排气净化处理系统的各种变形例。但是,在所有变形例中,在具有氧化功能的排气净化催化剂13的上游配置有小型氧化催化剂14和燃料供给阀15是不变的。
[0149] 在图33(A)所示的变形例内,和图1所示的实施例一样,排气净化催化剂13包括氧化催化剂。然而在该变形例内,在紧邻氧化催化剂13的下游处配置了NOx吸留催化剂17,在NOx吸留催化剂17的下游配置了氧化催化剂80和颗粒过滤器16。进而,在氧化催化剂80的上游配置了另一个燃料供给阀81。
[0150] 另一方面,在图33(B)所示的变形例内,排气氧化催化剂13由NOx吸留催化剂构成。在该NOx吸留催化剂13的下游与图33(A)一样配置了燃料供给阀81,氧化催化剂80以及颗粒过滤器16。在如图33(A)、(B)所示的实施例内,在再生颗粒过滤器16时,仅自燃料供给阀81、或者除燃料供给阀15外还自燃料供给阀81供给燃料。
[0151] 在图33(C)所示的变形例内,与图1所示的实施例一样,排气净化催化剂13包括氧化催化剂,在紧邻氧化催化剂13的下游处配置了颗粒过滤器16。然而在该变形例内,在排气净化催化剂13以及颗粒过滤器16下游的内燃机排气通路内,配置了在存在的情况下能够还原废气中的NOx的NOx选择性还原催化剂82和用于对NOx选择性还原催化剂82提供尿素水溶液的尿素水溶液供给阀83。自尿素水溶液供给阀83供给还原废气中含有的NOx所必需量的尿素水溶液,废气中的NOx在NOx选择性还原催化剂82内利用自尿素水溶液生成的氨被还原。
[0152] 在该变形例内,在应活化NOx选择性还原催化剂82时,如图4或者图5内所示自燃料供给阀15供给第一个量QA的燃料、或者自图6到图9所示供给第二个量QB的燃料。也就是供给第一个量QA的燃料和第二个量QB的燃料中的任一者或两者。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈