首页 / 专利库 / 引擎 / 热机 / 内燃机 / 火花点火发动机 / 火花点火式内燃发动机

火花点火式内燃发动机

阅读:31发布:2020-05-16

专利汇可以提供火花点火式内燃发动机专利检索,专利查询,专利分析的服务。并且一种火花点火式内燃 发动机 ,包括:能够改变机械压缩比的可变压缩比机构A;以及能够改变进气 门 或排气门的气门特性的可变气门机构B,所述可变气门机构以机械方式联接到所述可变压缩比机构,并且所述可变气门机构根据所述可变压缩比机构的压缩比改变操作量而受到控制。所述可变气门机构联接到所述可变压缩比机构而没有 电子 控制单元 的介入。因此,消除了包括作为介入单元的电子控制单元的控制系统的异常所引起的 活塞 和进气门之间的干涉的可能性。,下面是火花点火式内燃发动机专利的具体信息内容。

1.一种火花点火式内燃发动机,其特征在于包括:
可变压缩比机构,其改变机械压缩比;以及
可变气机构,其改变进气门(7)或排气门(9)的气门特性,
其中,所述可变气门机构以机械方式联接到所述可变压缩比机构,并且所述可变气门机构根据所述可变压缩比机构的压缩比改变操作量而受到控制,所述压缩比改变操作量是由所述可变压缩比机构执行以改变压缩比的操作量,
在所述可变气门机构中,根据所述可变压缩比机构的所述压缩比改变操作量来控制所述进气门或所述排气门的气门特性,
所述火花点火式内燃发动机进一步包括相位改变机构,所述相位角改变机构改变所述进气门或所述排气门的所述气门特性中与所述可变气门机构所改变的气门特性不同的气门特性,
所述相位角改变机构是以机械方式联接到所述可变压缩比机构和所述可变气门机构的正时相关机构。
2.如权利要求1所述的火花点火式内燃发动机,其中,所述可变气门机构包括连杆机构(100),并且通过所述连杆机构联接到所述可变压缩比机构。
3.如权利要求2所述的火花点火式内燃发动机,其中,所述可变压缩比机构包括用于改变所述机械压缩比的致动器,并且所述连杆机构联接到所述致动器。
4.如权利要求1或2所述的火花点火式内燃发动机,其中,所述可变压缩比机构通过使曲轴箱(1)和气缸盖(3)关于彼此相对地移动来改变所述机械压缩比,并且所述可变气门机构根据所述曲轴箱和所述气缸盖之间的相对位置关系而受到控制。
5.如权利要求1或2所述的火花点火式内燃发动机,其中,所述可变气门机构是改变所述进气门或所述排气门的作用角的作用角改变机构,并且所述作用角改变机构控制所述进气门或所述排气门的作用角,使得如果所述机械压缩比由所述可变压缩比机构变高则所述作用角变小。
6.如权利要求1或2所述的火花点火式内燃发动机,其中,所述可变气门机构是改变所述进气门或所述排气门的升程量的升程量改变机构,并且所述升程量改变机构控制所述进气门或所述排气门的升程量,使得如果所述机械压缩比由所述可变压缩比机构变高则所述升程量变小。
7.如权利要求1或2所述的火花点火式内燃发动机,其中,所述相位角改变机构是非联接式可变气门机构,不以机械方式联接到所述可变压缩比机构和所述可变气门机构。
8.如权利要求1或2所述的火花点火式内燃发动机,其中,如果发动机负载变小,则所述相位角改变机构提前所述进气门和所述排气门中至少所述进气门的相位角。
9.如权利要求1或2所述的火花点火式内燃发动机,其中,如果所述机械压缩比由所述可变压缩比机构变高,则所述相位角改变机构提前所述进气门和所述排气门中至少所述进气门的相位角。
10.如权利要求7所述的火花点火式内燃发动机,其中,如果当所述内燃发动机冷起动时所述机械压缩比由所述可变压缩比机构变高,则所述相位角改变机构延迟所述进气门和所述排气门中至少所述进气门的相位角。
11.如权利要求1或2所述的火花点火式内燃发动机,其中,在所述可变气门机构中,所述可变气门机构根据所述可变压缩比机构的所述压缩比改变操作量并根据除所述可变压缩比机构的所述压缩比改变操作量之外的发动机工作参数改变所述进气门或所述排气门的气门特性,所述进气门或所述排气门的所述气门特性的范围根据所述可变压缩比机构的所述压缩比改变操作量而受到控制,所述气门特性能够根据除所述可变压缩比机构的所述压缩比改变操作量之外的所述发动机工作参数在所述范围内改变。
12.如权利要求11所述的火花点火式内燃发动机,其中,所述可变气门机构是改变所述气门特性中所述进气门或所述排气门的作用角的作用角改变机构,并且所述作用角改变机构限制所述作用角能够在其中改变的所述作用角的范围,使得如果所述机械压缩比由所述可变压缩比机构变高则所述作用角的范围的上限值变小。
13.如权利要求11所述的火花点火式内燃发动机,其中,所述可变气门机构是改变所述气门特性中所述进气门或所述排气门的升程量的升程量改变机构,并且所述升程量改变机构限制所述升程量能够在其中改变的所述升程量的范围,使得如果所述机械压缩比由所述可变压缩比机构变高则所述升程量的范围的上限值变小。
14.如权利要求11所述的火花点火式内燃发动机,其中,所述相位角改变机构改变所述气门特性中所述进气门的相位角,
如果所述机械压缩比由所述可变压缩比机构变高,则所述相位角改变机构提前所述进气门的相位角并延迟所述相位角能够在其中改变的所述相位角的范围的提前侧极限角。
15.如权利要求1或2所述的火花点火式内燃发动机,其中,所述可变气门机构根据所述可变压缩比机构的所述压缩比改变操作量而受到控制,使得当活塞位于压缩上止点时所述活塞与所述进气门或所述排气门之间的距离基本恒定。

说明书全文

火花点火式内燃发动机

技术领域

[0001] 本发明涉及一种火花点火式内燃发动机。

背景技术

[0002] 在现有技术中有一种已知的火花点火式内燃发动机,其具有能够改变机械压缩比的可变压缩比机构和能够改变进气或排气门的气门特性的可变气门机构(例如日本专利申请公报No.2001-263099(JP-A-2001-263099))。
[0003] 在现有技术的可变压缩比机构中,通过减小在活塞位于压缩上止点处时测得的燃烧室体积来使机械压缩比升高。因此,当机械压缩比已经在可变压缩比机构的作用下升高时,在上止点处活塞和气缸盖之间的距离相对较短,使得在活塞和进气门之间可能产生干涉。
[0004] 因此,在日本专利申请公报No.2001-263099中,当机械压缩比升高时,可变气门机构受到控制从而延迟进气门的气门打开正时或者减小进气门的升程量。这样,即使在机械压缩比已经升高时,也能够抑制活塞和进气门之间的干涉。
[0005] 另外,在日本专利申请公报No.2001-263099中,可变压缩比机构和可变气门机构分别具有用于改变机构压缩比和气门特性的致动器,并且这些致动器彼此独立地连接到电子控制装置。即,可变压缩比机构和可变气门机构彼此独立地受电子控制装置的控制。 [0006] 但是,在可变压缩比机构和可变气门机构如上所述彼此独立地受控制的情况下,如果例如在检测可变气门机构的控制量的传感器中发生异常,则会发生不期望的事故,例如,发生这样的事故,即,虽然机械压缩比高,但是不延迟进气门的气门打开正时,使得活塞和进气门彼此干涉。即,在前述两个机构彼此独立地受控的情况下,如果在两个机构的 控制系统的任何一个中发生例如故障等问题,则活塞和进气门有可能彼此干涉。 发明内容
[0007] 本发明的目的是提供一种火花点火式内燃发动机,即使在可变压缩比机构或可变气门机构的电子控制系统中发生了异常,所述火花点火式内燃发动机也能够可靠地防止活塞与进气门或排气门之间的干涉。
[0008] 根据本发明的第一方面,一种火花点火式内燃发动机,其包括:改变机械压缩比的可变压缩比机构;以及改变进气门或排气门的气门特性的可变气门机构,所述可变气门机构以机械方式联接到所述可变压缩比机构,并且所述可变气门机构根据所述可变压缩比机构的压缩比改变操作量而受到控制。根据该第一方面,因为可变气门机构直接联接到可变压缩比机构而没有电子控制单元介入,所以能够避免活塞和进气门之间由于包括用作介入单元的电子控制单元的控制系统的异常所引起的干涉。在此,“以机械方式联接”意思是,例如,机构等通过连杆机构或油压彼此连接,并且连接在一起而没有例如电子控制单元等计算处理设备的介入。另外,“压缩比改变操作量”意思是由可变压缩比机构执行以改变压缩比的操作量。
[0009] 在基于第一方面的第二方面中,可变气门机构可以经由连杆机构联接到可变压缩比机构。在基于前述方面的第三方面中,可变压缩比机构可以包括用于改变机械压缩比的致动器,连杆机构可以联接到致动器。在基于前述方面的第四方面中,可变压缩比机构可以通过关于彼此相对地移动曲轴箱和气缸盖来改变机械压缩比,并且可变气门机构可以根据曲轴箱和气缸盖之间的相对位置关系而受到控制。
[0010] 在基于前述方面的第五方面中,在可变气门机构中,可以根据可变压缩比机构的压缩比改变操作量来控制进气门或排气门的气门特性。在基于前述方面的第六方面中,可变气门机构可以是改变所述进气门或所述排气门的作用的作用角改变机构,所述进气门或所述排气门的作用角可以被控制为使得如果所述机械压缩比受所述可变压缩比机构作用而变高则所述作用角变小。在基于前述方面的第七方面中,可变气门机构可以是改变进气门或排气门的升程量的升程量改变机构,并且所述进 气门或所述排气门的升程量可以被控制为使得如果所述机械压缩比由所述可变压缩比机构变高则所述升程量变小。 [0011] 在基于前述方面的第八方面中,火花点火式内燃发动机进一步可以包括非联接式可变气门机构,所述非联接式可变气门机构不以机械方式联接到所述可变压缩比机构,与所述可变气门机构相独立,并且非联接式可变气门机构可以改变进气门和排气门中至少一个的相位角,所述相位角是进气门或排气门的前述气门特性中与可变气门机构所改变的气门特性不同的气门特性。在基于前述方面的第九方面中,非联接式可变气门机构可以是改变进气门的相位角的相位角改变机构,并且如果发动机负载变小,则进气门的相位角可以被提前。在基于前述方面的第十方面中,可变气门机构可以是改变进气门的相位角的相位角改变机构,并且如果机构压缩比由可变压缩比机构变高,则进气门的相位角可以被控制到滞后侧。
[0012] 在基于前述方面的第十一方面中,在所述可变气门机构中,所述可变气门机构可以根据所述可变压缩比机构的所述压缩比改变操作量并根据除所述可变压缩比机构的所述压缩比改变操作量之外的发动机工作参数改变所述进气门或所述排气门的气门特性,所述进气门或所述排气门的所述气门特性的范围可以根据所述可变压缩比机构的所述压缩比改变操作量而受到控制,所述气门特性能够根据除所述可变压缩比机构的所述压缩比改变操作量之外的所述发动机工作参数在所述范围内改变。在基于前述方面的第十二方面中,可变气门机构可以改变前述气门特性中的进气门或排气门的操作角,并且如果所述机械压缩比由所述可变压缩比机构变高,则所述作用角能够在其中改变的所述作用角的范围的上限值会变小。在基于前述方面的第十三方面中,可变气门机构可以改变前述气门特性中的排气门或进气门的升程量,并且如果机械压缩比由可变压缩比机构变高,则升程量能够在其中改变的升程量的范围的上限值会变小。
[0013] 在基于前述方面的第十四方面中,可变气门机构可以改变前述气门特性中的进气门的相位角,并且如果机械压缩比由可变压缩比机构变高,则相位角能够在其中改变的相位角的范围的提前侧极限角会被延迟。在基于前述方面的第十五方面中,火花点火式内燃发动机可以进一步包括非联接式可变气门机构,所述非联接式可变气门机构不以机械方 式联接到可变压缩比机构,与可变气门机构相独立,并且非联接式可变气门机构可以改变前述气门特性中与可变气门机构所改变的气门特性不同的气门特性。在基于前述方面的第十六方面中,可变气门机构可以根据可变压缩比机构的压缩比改变操作量而受到控制,使得当活塞位于压缩上止点时活塞与进气门或排气门之间的距离基本恒定。 [0014] 根据本发明,能够可靠地防止活塞和进气门之间的干涉,即使在可变压缩比机构或可变气门机构的电子控制系统中发生异常的情况下也是如此。附图说明
[0015] 参照附图,根据优选实施方式的如下描述,本发明的前述和进一步的目的、特征和优点将非常显然,图中,相同的附图标记用来代表相同的元件,并且图中: [0016] 图1是火花点火式内燃发动机的总图;
[0017] 图2是可变压缩比机构的分解立体图;
[0018] 图3A和3B是内燃发动机的图解性侧视截面图;
[0019] 图4是示出本发明第一实施方式的可变气门机构的图;
[0020] 图5是示出进气门或排气门的作用角和升程量的图;
[0021] 图6示出发动机机体和连杆机构的图;
[0022] 图7A、7B和7C是图6中所示连杆机构的放大图;
[0023] 图8A和8B分别是示出与由连杆机构引起的位移相关的关系及机构压缩比和作用角之间的关系的图;
[0024] 图9A和9B是各自示出进气门和排气门的升程及活塞干涉线的变化的图; [0025] 图10是示出连杆机构的另一示例的图;
[0026] 图11A和11B是示出正时相关机构的图;
[0027] 图12是示出进气门和排气门的升程及活塞干涉线的改变的图; [0028] 图13是示出第三实施方式的可变气门机构的图;
[0029] 图14是示出进气门或排气门的相位角的图;
[0030] 图15A、15B和15C是示出在不同发动机工作区域中进气门和排气门的升程及活塞干涉线的改变的图;
[0031] 图16是示出工作区域的图;
[0032] 图17是示出本发明第四实施方式的相位角改变机构的图;
[0033] 图18A和18B是示出供给关断的图;
[0034] 图19是示出第五实施方式中作用角改变机构和连杆机构之间的联接形式的图; [0035] 图20是示出第五实施方式中作用角能够改变的范围的图;以及 [0036] 图21是示出第五实施方式的改型的图。

具体实施方式

[0037] 图1示出火花点火式内燃发动机的侧视截面图。图1示出曲轴箱1、气缸体2、气缸盖3、活塞4、燃烧室5、置于燃烧室5的最上部表面的中央部的火花塞6、进气门7、进气口8、排气门9以及排气口10。进气口8经由进气支管11连接到稳压罐12。每个进气支管11设置有燃料喷射阀13,燃料喷射阀13将燃料喷射到进气口8中相应的一个内。另外,燃料喷射阀13可以置于燃烧室5内,而不是安装在进气支管11上。
[0038] 稳压罐12经由进气导管14连接到废气涡轮增压器15的压缩机15a的出口孔。压缩机15a的进口孔例如经由进气量检测器16连接到空气滤清器17,所述进气量检测器16例如采用热丝。由致动器18所驱动的节气门19置于进气导管14内。
[0039] 另一方面,排气口10经由排气歧管20连接到废气涡轮增压器15的排气涡轮15b的进口孔。排气涡轮15b的出口孔经由排气管21连接到催化转化器22,所述催化转化器22包含有废气净化催化剂。在排气管21中设置有空燃比传感器23。
[0040] 在图1中所示的实施方式中,可变压缩比机构A设置在曲轴箱1和气缸体2之间的联接部处,所述可变压缩比机构A能够通过沿气缸轴线方向改变曲轴箱1和气缸体2的相对位置来改变在活塞4位于压缩上止 点(TDC)处时测得的燃烧室5的体积。此外,该实施方式还包括能够改变进气门7的气门特性的进气可变气门机构B以及能够改变排气门9的气门特性的排气可变气门机构C。
[0041] 电子控制单元30由数字计算机构成,并且具有双向总线31、ROM(只读存储器)32、RAM(随机存取存储器)33、CPU(微处理器)34、输入端口35和输出端口36。进气量检测器16的输出信号和空燃比传感器23的输出信号经由相应的AD转换器37被输入到输入端口
35。另外,负载传感器41连接到加速踏板40,并且所述负载传感器41产生正比于加速器踏板40的推压量的输出电压。负载传感器41的输出电压经由相应的AD转换器37输入到输入端口35。此外,曲轴转角传感器连接到输入端口35,曲轴每旋转例如30度则曲轴转角传感器42产生一次输出脉冲。另一方面,电子控制单元30的输出端口36经由相应的驱动电路38连接到火花塞6、燃料喷射阀13、节气门驱动致动器18以及可变压缩比机构A。 [0042] 图2是如图1中所示的可变压缩比机构A的分解立体图。图3A和3B图解性地示出了内燃发动机的侧视截面图。参照图2,气缸体2的两个侧壁中的每个的下部均具有多个凸出部50,这些凸出部50彼此隔开。每个凸出部50均具有凸轮插入孔51,凸轮插入孔51的截面是圆形的。另一方面,曲轴箱1的上壁表面具有多个凸出部52,这些凸出部52彼此隔开,并且装配在相应的凸出部50之间。每个凸出部52还具有凸轮插入孔53,凸轮插入孔
53的截面是圆形的。
[0043] 如图2中所示,设置有一对凸轮轴54、55。凸轮轴54、55中的每个都具有多个圆形凸轮56,每个圆形凸轮56均以可旋转方式插入到凸轮插入孔51中相应的一个内。即,圆形凸轮56在与凸轮插入孔51的位置相对应的位置处固定到凸轮轴54、55。每个圆形凸轮56均具有与凸轮轴54、55中相应的一个相同的旋转轴线。在凸轮轴54和55中,偏心轴57分别如由图3A和3B中阴影线所示的那样延伸。每个凸轮轴54、55的偏心轴57都偏离凸轮轴的旋转轴线偏心地设置。圆形凸轮58不同于圆形凸轮56,所述圆形凸轮58安装在偏心轴57上,从而能够偏心地旋转。如图2中所示,圆形凸轮58设置在圆形凸轮56之间,并且每个圆形凸轮58插入到凸轮插入孔53中相应的一个内。
[0044] 如果固定有圆形凸轮56的凸轮轴54、55从如图3A中所示的状态 开始沿着由图3A中的实线箭头所示的相反方向旋转,则偏心轴57向着更低的中间位置移动,使得圆形凸轮58如由图3A中的虚线箭头所示地在凸轮插入孔53内沿着与圆形凸轮56的旋转方向相反的旋转方向在凸轮插入孔53内旋转。因此,当偏心轴57移动到如图3B中所示的较低中间位置时,圆形凸轮58的中心轴线移动到偏心轴57下方的位置。
[0045] 如通过比较图3A和图3B可以看出,曲轴箱1和气缸体2的相对位置由圆形凸轮56的中心和圆形凸轮58的中心之间的距离决定,并且当圆形凸轮56的中心和圆形凸轮58的中心之间的距离变得更大时,气缸体2变得与曲轴箱1离得更远。由于气缸体2远离曲轴箱1,所以当活塞4位于压缩上止点时所测得的燃烧室5的体积增加。因而,能够通过旋转凸轮轴54、55来改变当活塞4位于压缩上止点处时所测得的燃烧室5的体积。 [0046] 如图2中所示,为了沿着彼此相反的方向旋转凸轮轴54、55,在驱动达59的旋转轴上安装有一对螺纹旋向相反的蜗轮61、62。与蜗轮61、62啮合齿轮63、64分别固定到凸轮轴54、55的端部。在此实施方式中,通过驱动马达59,能够在很宽的范围上改变当活塞4位于压缩上止点处时燃烧室5的体积。另外,如图1至3A和3B中所示的可变压缩比机构A仅是示意性的,在本发明中可以使用任何类型的可变压缩比机构。 [0047] 图4示出被设置为用于凸轮轴70的进气可变气门机构B,所述凸轮轴70用来驱动如图1中所示的进气门7。如图4中所示,此实施方式具有作为进气可变气门机构B的作用角改变机构B1,所述作用角改变机构B1置于凸轮轴70和进气门7的气门挺杆24之间,改变凸轮轴70的凸轮的作用角,并且将改变后的作用角传送到进气门7。另外,图4示出作用角改变机构B1的侧视截面图和平面图。
[0048] 下面将描述进气可变气门机构B的作用角改变机构B1。此作用角改变机构B1包括控制杆90、中间凸轮94和摆动凸轮96,所述控制杆90设置成平行于凸轮轴70,并且在如下所述的连杆机构100的作用下而沿控制杆90的轴线方向移动;中间凸轮94与凸轮轴70的凸轮92接合,并且以可滑动方式配合到形成在控制杆90上并且沿轴线方向延伸的花键93;摆动凸轮96与气门挺杆24接合以驱动进气门7,并且以可摆动方式配合到形成在控制杆90并且以螺旋方式延伸的花键95。凸轮 97形成在摆动凸轮96上。
[0049] 当凸轮轴70旋转时,中间凸轮94在凸轮92的作用下摆动通过一恒定角,因此摆动凸轮96也摆动通过所述恒定角。中间凸轮94和摆动凸轮96被支撑为沿控制杆90的轴线方向不能移动。因此,当控制杆90在连杆机构100的作用下沿轴线方向移动时,摆动凸轮96相对于中间凸轮94旋转。
[0050] 由于中间凸轮94和摆动凸轮96之间的相对旋转位置关系,在凸轮轴70的凸轮92一开始与中间凸轮94接合后摆动凸轮96的凸轮97就开始接合气门挺杆24的情况下,如图5中的a所示,进气门7的打开气门时间段(即作用角)及升程量变成最大。如果从摆动凸轮96在连杆机构100的作用下关于中间凸轮94沿图4中的箭头Y所示的方向发生相对旋转的这种状态开始,则凸轮轴70的凸轮92与中间凸轮94的接合一特定时间量之后,摆动凸轮96的凸轮97与气门挺杆24接合。在这种情况下,如图5中的b所示,进气门7的打开气门时间段及升程量变得比由a示出的情况下更小。
[0051] 如果摆动凸轮96关于中间凸轮94沿着图4中的箭头Y的方向进一步发生相对旋转,则进气门7的打开气门时间段和升程量变得更小,如由图5中的c所示。即,通过用连杆机构100改变中间凸轮94和摆动凸轮96之间的相对旋转位置,进气门7的打开气门时间段能够随意地改变为给定的持续时间。另外,在这种情况下,由于进气门7的打开气门时间段变得更短,所以进气门7的升程量变小。
[0052] 这样,能够通过作用角改变机构B1来改变进气门7的打开气门时间段(即作用角)和升程量。
[0053] 另外,如图1和4中所示的作用角改变机构B1仅是示意性的,在本发明中可以使用不同于如图1和4中所示的类型的任何各种类型的作用角改变机构。另外,排气可变气门机构C具有基本上与进气可变气门机构B相同的构造,并且能够改变排气门9的打开气门时间段(作用角)和升程量。
[0054] 图6和7A-7C示出了连杆机构100,其设置为用于控制可变气门机构B的作用角改变机构B1,即,用于沿轴线的方向移动控制杆90。如图6和7A-7C中所示,连杆机构100具有联接到曲轴箱1的静止侧构件101以及联接到气缸体2或气缸盖3(在本实施方式中为气缸盖3)的移动侧构件102。静止侧构件101基本上是直线形构件,并且其一端部固定到曲轴箱1,另一端部设置有销103。另一方面,移动侧构件102是具有两个支腿部102a、102b的“L”形构件。两个支腿部中的支腿部102a的远端设置有槽104,所述槽104沿支腿部的轴线方向延伸,并且另一支腿部102b的远端部联接到控制杆90。
[0055] 移动侧构件102的两个支腿部102a、102b之间的结合部联接到摆动轴105,使得移动侧构件102绕摆动轴105摆动。摆动轴105联接到固定于气缸盖3上的固定至盖的构件106。静止侧构件101的销103装配在移动侧构件102的槽104内,使得销103能够在槽104内滑动。
[0056] 当气缸盖3由于可变压缩比机构A的操作移动从而靠近曲轴箱1(沿由图6和7A-7C中的箭头L所示的方向)时,移动侧构件102的支腿部102a被销103向上推,从而枢转到由图7A中的虚线所示的位置M处。伴随着这个运动,移动侧构件102绕着摆动轴105枢转,使得控制杆90沿着由箭头O所示的方向移动。
[0057] 相反地,如果气缸盖3由于可变压缩比机构A的操作而远离曲轴箱1(沿与图中箭头L的方向相反的方向)移动,则移动侧构件102的支腿部102a被销103向下推,从而枢转到由图7A中的虚线所示的位置N。伴随着这个运动,移动侧构件102绕着摆动轴105枢转,使得控制杆90沿着与箭头O的方向相反的方向移动。
[0058] 排气可变气门机构C的作用角改变机构还通过连杆机构以基本上与上述方式相同的方式联接到可变压缩比机构A。
[0059] 接下来,参照图7A和图8B及8B来描述如上所述构造的可变压缩比机构A和进气可变气门机构B的操作。图8A是示出气缸盖3沿箭头L的方向的位移x与控制杆90沿箭头O的方向的位移y之间的关系的图。图8B是示出由可变压缩比机构A所决定的机械压缩比与由作用角改变机构B1所决定的进气门7的作用角之间的关系的图。下面将结合排气可变气门机构C不工作的情况——即例如排气门9的作用角和升程量保持不变的情况——给出示例。但是,也能够为排气可变气门机构C执行与如下所述基本上相同的控制。 [0060] 在如图7A中所构造的连杆机构100的情况下,位移x和位移y具 有由图8A中的曲线a所示的关系。即,当气缸盖3沿箭头L方向的位移x小时,控制杆90沿箭头O方向的位移y也小。由于可变压缩比机构的操作,当气缸盖3沿箭头L方向的位移x变大时,位移y也变大。
[0061] 在此实施方式中,可变压缩比机构A被构造成使得如上所述如果气缸体2和气缸盖3向着曲轴箱1移动则机械压缩比变高。进气可变气门机构B的作用角改变机构B1被构造成使得如果控制杆90沿着图7A中箭头O的方向移动则进气门7的作用角和升程量变小。
[0062] 因此,当由可变压缩比机构A所决定的机械压缩比低时,气缸盖3沿箭头L方向的位移x小,因此控制杆90的位移y也小,使得进气门7的作用角和升程量大。相反,如果机械压缩比变大,则气缸盖3沿箭头L方向的位移x变大,因此控制杆90的位移y也变大,使得进气门7的作用角和升程量变小。即,可变压缩比机构A和作用角改变机构B1由于连杆机构100而操作,使得机械压缩比和作用角具有由图8B中的曲线a’所示的关系。 [0063] 图9A和9B各自示出进气门7的升程的改变、排气门9的升程的改变以及表示进气门7或排气门9与活塞4的干涉的极限的活塞干涉线。在图9A和9B中,如果排气门9的升程曲线与活塞干涉线相交,则排气门9与活塞4干涉,如果进气门7的升程曲线与活塞干涉线相交,则进气门7与活塞4干涉。
[0064] 图9A示出当机械压缩比相对较低时气门的升程等的改变。在这种情况下,即使当活塞4位于上止点时,活塞4的上表面和燃烧室5的上表面也相对地彼此隔开,使得活塞干涉线处于如图9A中所示的较高位置处。因此,如上所述,如果在机械压缩比低时使进气门7的作用角和升程量变大,则活塞4和进气门7之间不会发生干涉问题。
[0065] 图9B示出进气门7的升程的改变、排气门9的升程的改变及活塞干涉线。如果机械压缩比变高,则在活塞4位于上止点处时活塞4的上表面和燃烧室5的上表面之间产生的间隙小;因此,如果如图9B中的虚线所示进气门7的作用角和升程量大则活塞4和进气门7之间发生干涉的问题。
[0066] 在此实施方式中,如果机械压缩比变高,则如上所述使进气门7的作用角和升程量变小,从而进气门7的升程变成如图9B中的实线所示。 因此,即使当机械压缩比变高时,也能够防止活塞4和进气门7之间的干涉。
[0067] 具体地说,在该实施方式中,作用角改变机构B1中的进气门7的作用角随着气缸盖3和曲轴箱1之间的位置关系改变,其中气缸盖3和曲轴箱1在可变压缩比机构A的作用下相对地移动,即,作用角改变机构B1中的进气门7的作用角随着由可变压缩比机构A设定的机械压缩比改变。换言之,在此实施方式中,可变压缩比机构A经由机械连杆机构联接到作用角改变机构B1而不需要电子控制单元30介入,可变气门机构B根据用于经由可变压缩比机构A改变压缩比的操作量(后面称其为“压缩比改变操作量”)或者根据由可变压缩比机构A设定的机械压缩比而受到控制。
[0068] 在此应当注意,在可变压缩比机构A和作用角改变机构B彼此独立地受到电子控制单元30的电子控制时,如果在控制系统的一部分中发生异常,则该控制变得复杂并且同时活塞4与进气门7将彼此干涉。但是,根据本实施方式,可变压缩比机构A与作用角改变机构B1经由机械连杆机构联接,与发生上面所述的使控制系统复杂化的异常的概率相比,连杆机构中发生异常的概率非常低。因而,本实施方式能够有效地防止活塞4和进气门7之间的干涉。
[0069] 另外,可变气门机构可以以任何方式控制,只要如果机械压缩比变高则作用角变小即可,从而有效地防止活塞4和进气门7之间的干涉。例如,可以根据可变压缩比机构的压缩比改变操作量控制可变气门机构,使得在活塞4位于压缩上止点处时测得的活塞4和进气门7之间的距离基本恒定。
[0070] 根据本实施方式,由可变压缩比机构A决定的机械压缩比和由作用角改变机构B1决定的作用角之间的关系能够仅通过改变连杆机构100的移动侧构件102的两个支腿部102a、102b之间的角α来得以改变。例如,如果如图7B中所示两支腿部102a、102b之间的角α变小,则沿方向L的位移x和沿方向O的位移y具有由图8A中的曲线b所示的关系,使得作用角和机械压缩比具有如图8B中的曲线b’所示的关系。即,这种情况下相对于机械压缩比来说,作用角变得比如图7A中所示构造的移动侧构件102的情况下更小。 [0071] 相反,如果如图7C中所示两支腿部102a、102b之间的角α变大,则沿方向L的位移x和沿方向O的位移y具有由如图8A中所示的曲线c所示的关系,使得机械压缩比和作用角具有由图8B中的曲线c’所示的关系。具体地说,在这种情况下相对于机械压缩比来说,作用角变得比如图7A中所示构造的移动侧构件102的情况下更大。
[0072] 上述连杆机构仅是示意性的,并且也可以使用任何各种其它连杆机构,只要其能够根据可变压缩比机构的机械压缩比或压缩比改变操作量控制可变气门机构即可。 [0073] 连杆机构不仅能够用于上述类型的可变压缩比机构和上述类型的作用角改变机构,而且还能够用于其它各种类型的可变压缩比机构和作用角改变机构。 [0074] 例如,为了使作用角改变机构能够通过沿轴线的方向移动凸轮轴本身来改变进气门的作用角和升程量,能够采用与前述连杆机构基本相同的机构来沿轴线方向移动凸轮轴。
[0075] 例如,如果作用角改变机构的类型是通过旋转控制杆来改变气门的作用角和升程量,例如,则可以采用如图10中所示的连杆机构。在图10中,连杆机构具有联接杆111,联接杆111的一个端部具有齿条112,另一个端部固定到曲轴箱1。作用角改变机构的控制杆110设置有小齿轮113。齿条112和小齿轮113彼此啮合。因此,控制杆110能够根据曲轴箱1和气缸盖3之间的相对运动旋转。
[0076] 在本实施方式中,尽管连杆机构通过利用曲轴箱1和气缸体2或气缸盖3的组合之间的相对运动控制作用角改变机构,但是可变压缩比机构A可以以任意方式联接到连杆机构,只要进气门或排气门的作用角和升程量能够随着可变压缩比机构的机械压缩比或压缩比改变操作量改变即可;例如,连杆机构可以直接联接到可变压缩比机构A的致动器59等。
[0077] 此外,在前述实施方式中,可变压缩比机构A和作用角改变机构B1通过机械连杆机构联接。但是,可变压缩比机构A和作用角改变机构B1可以以任意方式联接,例如以使用液压的方式或者任意其它方式联接,只要两个机构A和B1以机械的方式联接即可。 [0078] 接下来将描述本发明的第二实施方式。类似于第一实施方式,本实施方式具有可变压缩比机构A和可变气门机构B。这些机构以与第一实施方式中基本相同的方式受控制。但是,在此实施方式中,根据可变压缩比机构A的操作,除改变进气门7的作用角和升程量外,还执行进气门7的相位角的改变。在本说明书中,“相位角”指的是在进气门7或排气门
9的升程达到峰值时出现的曲轴转角。
[0079] 图11A和11B示出设置在发动机机体的侧表面上的正时相关机构120。正时相关机构120具有:减速齿轮121,其与固定到曲轴的曲轴链轮1a啮合;以及链带122。链带122包绕减速齿轮121、联接到进气凸轮轴70的进气链轮70a以及联接到排气凸轮轴的排气链轮70a’,因而使得它们协调地旋转。
[0080] 当可变压缩比机构A操作从而沿如上所述图6和图7A-7C中的箭头L的方向相对于曲轴箱1移动气缸盖3等时,曲轴链轮1a到进气链轮70a和排气链轮70a’之间的距离变短(从图11A中的距离I变短成图11B中的I’)。在本实施方式中,为了防止链带122在链轮间距离变短时变松,减速齿轮121沿着由图11B中的箭头P所示的方向相对于曲轴链轮1a移动。该移动将减速齿轮121旋转与如图11B中所示的角β对应的角,从而使进气门7和排气门9的相位角提前。
[0081] 图12是类似于图9A和9B的图,示出了进气门7和排气门9的升程改变以及活塞干涉线。在图12中,用虚线示出当机械压缩比低时发生的气门升程等的改变,用实线示出当机械压缩比高时发生的气门升程等的改变。从这些图中可以理解,如果机械压缩比变高,则进气门7的作用角和升程量变小,并且进气门7和排气门9的正时都被提前。但是,进气门7的正时提前量是这样的一个量,即,所述量使得进气门7不与活塞4干涉。 [0082] 如果当发动机负载高时即当气缸内充有的空气量大时压缩比升高,则发生爆震的可能性增加。因此,通常,仅当发动机负载低时机械压缩比升高。另外,当发动机负载低时,需要减小气缸内所充空气量。通常,在这种情况下,通过减小节气门19的开度来减少缸内所充空气量。
[0083] 但是,通过减小节气门19的开度来减少缸内所充空气量使得气损失增加。能够例如通过沿远离进气上止点(BDC)的方向移动进气门7的闭合正时来独立于节气门19控制缸内所充空气量。因而,优选通过 利用进气门7来独立于节气门19或者与节气门19结合地控制缸内所充空气量。
[0084] 根据此实施方式,如从图12中可以看出,当机械压缩比变高时,进气门7的相位角提前,并且进气门7的闭合正时提前。因此,能够降低泵气损失,并且能够改善燃料经济性。 [0085] 在此实施方式中,因为排气门9的相位角也连同进气门7的提前而提前,所以能够可靠地防止活塞4和排气门9之间的干涉。
[0086] 在前述实施方式中,尽管通过正时相关机构120使进气门7的相位角随着可变压缩比机构A的操作提前,但是可以使用其它机构,只要所述机构能够通过机械构造随着可变压缩比机构A的压缩比改变操作量来改变进气门7的相位角即可。
[0087] 此外,尽管在前述实施方式中进气门7的相位角和排气门9的相位角都被提前,但可以替代地采用仅使进气门7或仅使排气门9的相位角提前的构造。
[0088] 接下来,将描述本发明的第三实施方式。在此实施方式中,除了作用角改变机构B1之外,可变气门机构B还包括相位角改变机构B2,所述相位角改变机构B2安装在凸轮轴70的一端并且被操作以改变凸轮轴70的凸轮的相位。
[0089] 图13示出设置为用于凸轮轴70的进气可变气门机构B,所述凸轮轴70设置为用于驱动进气门7。参照图13,下面将描述进气可变气门机构B的相位角改变机构B2。此相位角改变机构B2包括:正时带轮71,其通过正时皮带在曲轴的作用下沿箭头X的方向旋转;筒形壳体72,其与正时带轮71一起旋转;旋转轴73,其与凸轮轴70一起旋转并且能够相对于筒形壳体72旋转;多个分隔壁74,其从筒形壳体72的内周面延伸到旋转轴73的外周面;以及叶片75,其位于分隔壁74之间,并且从旋转轴73的外周面延伸到筒形壳体72的内周面。在每个叶片75的两侧形成有正时提前液压室76和正时延迟液压室77。 [0090] 工作油向液压室76、77的供给受工作油供给控制阀78的控制。工作油供给控制阀78包括:分别连接到液压室76、77的油压端口79、80;用于从液压泵81喷射出的工作油的供给端口82;一对排放端口83、84;以及控制端口79、80、82、83、84之间的连通/断开的滑阀85。滑阀85 受致动器86的控制,致动器86通过驱动电路38连接到电子控制单元30的输出端口36。
[0091] 当要提前凸轮轴70的凸轮的相位时,滑阀85沿图13中向下的方向移动,使得通过供给端口82供给到滑阀的工作油经由油压端口79而被供给到正时提前液压室76,并且通过排放端口84排放出正时延迟液压室77中的工作油。此时,旋转轴73关于筒形壳体72沿箭头X的方向相对地旋转。因此,进气门7的相位角提前(沿图14中箭头Q的方向移动)。
[0092] 另一方面,当要使凸轮轴70的凸轮的相位延迟时,滑阀85沿图13中向上的方向移动,使得通过供给端口82供给到滑阀的工作油经由油压端口80被供给到正时延迟液压室77,并且通过排放端口83排放出正时提前液压室76中的工作油。此时,旋转轴73关于筒形壳体72沿与箭头X相反的方向相对地旋转。因此,进气门7的相位角延迟(沿图14中箭头R的方向移动)。
[0093] 如果旋转轴73相对于筒形壳体72旋转的同时滑阀85返回到图13中所示的中间位置,则旋转轴73的相对旋转停止,并且旋转轴73被保持在当时的相对旋转位置。因此,通过使用相位角改变机构B2,凸轮轴70的凸轮的相位能够提前或延迟所需的量。即,通过使用相位角改变机构B2,进气门7的打开正时能够被随意地提前或延迟到给定正时。 [0094] 因而,能够用相位角改变机构B2随意地将进气门7的相位角改变到给定相位角。 [0095] 如上所述,在此实施方式中,可变气门机构B的作用角改变机构B1通过连杆机构100以机械方式联接到可变压缩比机构A,相位角改变机构B2不以机械方式联接到可变压缩比机构A,而是由电子控制单元30根据与发动机的工作状态相关的发动机工作参数(例如发动机负载或发动机转速)进行控制。
[0096] 另外,如图13中所示的相位角改变机构B2仅仅是示意性的,也可以使用如图13中所示机构之外的任意各种类型的相位角改变机构。此外,排气可变气门机构C具有与进气可变气门机构B基本上相同的构造,并且能够随意地将排气门9的相位角改变到给定的相位角。
[0097] 接下来,将参照图15A、15B、15C和16描述使用如上述所构造的 可变压缩比机构A和可变气门机构B的控制的示例。尽管下列描述是结合排气可变气门机构C不工作的情况即排气门9的相位角、作用角和升程量保持不变的情况给出的,但是,对于排气可变气门机构C也能够执行与如下所述基本上相同的控制。
[0098] 图15A、15B和15C各自是示出在不同发动机工作区域中进气门7和排气门9的升程改变以及活塞干涉线的图。图16是示出发动机工作区域的图。当发动机工作状态处于高负载高速度区域内时,即,当发动机工作区域处于图16中的区域I内时,机械压缩比在可变压缩比机构A的作用下变低,并且进气门7和排气门9的升程如图15A中所示地改变。即,因为机械压缩比在可变压缩比机构A的作用下变低,所以进气门7的作用角和升程量在连杆机构100的作用下相应地自动变大。另外,电子控制单元30根据发动机负载控制进气门7的相位角,使得缸内所充空气量变得最优化,或者使得缸内所充空气量之外的其它工作参数变得最优化。
[0099] 因而,当发动机工作状态处于高负载高转速区域中时,机械压缩比变低,从而防止爆震;另外,进气门7的作用角和升程量变大并且进气门7的相位角被调整到最优值,使得大量的空气能够被最优地充到气缸内。
[0100] 当发动机工作状态处于低负载低转速区域内即处于图16中的区域II内时,机械压缩比在可变压缩比机构A的作用下变高,并且进气门7和排气门9的升程如图15B中所示地进行改变。即,因为机械压缩比在可变压缩比机构A的作用下变高,所以进气门7的作用角和升程量在连杆机构100的作用下相应地自动变小。另外,电子控制单元30将进气门7的相位角提前。
[0101] 因而,当发动机工作状态处于低负载低转速状态时,能够通过提升机械压缩比来提高内燃发动机的热效率;另外,因为进气门7的作用角和升程量变小,所以能够防止活塞4和进气门7之间的干涉。另外,因为进气门7的相位角提前,所以能够像上述那样降低泵气损失。
[0102] 另外,在此实施方式中,能够由电子控制单元30控制的进气门7的相位角的范围受限制。具体地说,进气门7的相位角不能够被设定在最提前相位角R的提前侧。最提前相位角是在图15A-15C中用虚线R 示出的相位角,并且是即使当压缩比高时活塞4和进气门7也彼此不相干涉的范围内的最提前相位角。因为进气门7的相位角的可控范围被设定在最提前相位角R的延迟侧,所以此实施方式在整个发动机工作区域上有效地防止了活塞4和进气门7之间的干涉。
[0103] 此外,在内燃发动机冷起动时,即,当缸内温度低并且发动机工作状态处于图16中的区域III内时,机械压缩比在可变压缩比机构A的作用下变高,并且进气门7和排气门9的升程如图15C中所示地改变。即,机构压缩比在可变压缩比机构A的作用下变高,并且进气门7的作用角和升程量在连杆机构100的作用下自动变小,进气门7的相位角在电子控制单元30的作用下延迟。
[0104] 因而,在内燃发动机冷起动时,因为机械压缩比变高并且进气门7的打开正时延迟,所以缸内温度能够迅速升高。
[0105] 另外,在前述实施方式中,尽管在内燃发动机的正常工作期间(即冷起动之外的其它期间)机械压缩比以两个分开的发动机工作区域——高负载高转速区域及低负载低转速区域——的方式改变,但是,发动机工作区域还可以被分成三个或更多个区域,并且能够相应地改变机械压缩比等。此外,机械压缩比等还能够根据发动机工作状态而连续地改变。 [0106] 接下来将描述本发明的第四实施方式。如下所述,除相位角改变机构B2的构造不同于第三实施方式的相位角改变机构的构造之外,此实施方式的构造与第三实施方式的构造基本上相同。
[0107] 图17是示出此实施方式中的相位角改变机构B2的构造的图。如前述实施方式中所述,相位角改变机构B2包括正时带轮71、筒形壳体72、旋转轴73、分隔壁74和叶片75。在每个叶片75的两侧形成有正时提前液压室76和正时延迟液压室77。
[0108] 工作油向液压室76、77的供给受工作油供给控制阀130的控制。工作油供给控制阀130包括:将工作油分别供给到液压室76、77的油压供给端口131、132;用于从液压室76、77排放工作油的油压泄放端口133;供给从液压泵81喷射出的工作油的一对供给端口
134、135;排放端口136以及用于控制端口131、132、133、134、135、136之间的连通/断开的滑阀137。滑阀137由致动器139控制。致动器139由电源138供电,并且由电子控制单元
30的输出控制。
[0109] 在此实施方式中,正时提前液压室76和正时延迟液压室77二者均连接到油压泄放端口133。工作油总是从这些液压室76、77经由油压泄放端口133和排放端口136排放出,而与滑阀37的工作位置无关。
[0110] 当滑阀137位于图17中所示的中间位置时,分别通过油压供给端口132、133为正时提前液压室76和正时延迟液压室77供给工作油,使得供给到液压室76、77的工作油的量与从液压室76、77排放出的工作油的量平衡。因而,旋转轴73相对于筒形壳体72的旋转停止。
[0111] 当滑阀137沿图17中向上的方向移动时,因为油压供给端口131打开,所以正时提前液压室76被供给以工作油,并且因为油压供应端口132关闭,所以中断了工作油向正时延迟液压室77的供给。因此,因为工作油从正时延迟液压室77排出而没有任何工作油被供给到液压室77,所以旋转轴73关于圆柱圆壳体72沿箭头X的方向相对地旋转,因而进气门7的相位角提前。
[0112] 相反,如果滑阀137沿图17中向下的方向移动,则因为油压供给端口132打开,所以正时延迟液压室77被供给以工作油,同时因为油压供应端口131被关闭,所以中断了工作油向正时提前液压室76的供给。因此,因为工作油从正时提前液压室76排出而没有任何工作油被供给到正时提前液压室76,所以旋转轴73关于筒形壳体72沿与箭头X的方向相反的方向相对地旋转,因而进气门7的相位角延迟。
[0113] 在此实施方式中的工作油供给控制阀130中,工作油总是从正时提前液压室76和正时延迟液压室77排出。因此,如果停止从液压泵81供给工作油,则工作油从正时提前液压室76和正时延迟液压室77排出。在这种情况下,旋转轴73由于其惯性关于筒形壳体72最远地向提前侧相对地旋转。
[0114] 在此实施方式中,如图18A及18B中所示的供给关断阀140设置在液压泵81和工作油供给控制阀130之间。在此实施方式中,供给关断阀140设置在形成于气缸盖3内的油道141中。供给关断阀140包括:阀体143,其打开和关闭油道141的开口部142;以及管状构件144,其直接或间接连接到曲轴箱1并且随着曲轴箱1关于气缸盖3的相对移动而移动。
[0115] 阀体143联接到管状构件144,并且基本上随着管状构件144的移 动而移动。因此,当管状构件144沿远离油道141的开口部142的方向移动时,阀体143从开口部142离开,从而打开开口部142。相反地,当管状构件144沿朝向开口部142的方向移动时,阀体143靠近开口部142,并且关闭开口部142。另外,在阀体143和管状构件144之间设置有弹簧145。
[0116] 当由可变压缩比机构A所决定的机械压缩比低时,即,当曲轴箱1和气缸盖3之间的距离长时,如图18A中所示管状构件144定位为与开口部142分开,因此开口部142打开。当机械压缩比在可变压缩比机构A的作用下变高时,即,当曲轴箱1和气缸盖3之间的距离变短时,如图18B中所示管状构件144相应地靠近开口部142,使得开口部142被阀体143关闭。
[0117] 即,在此实施方式中,当由可变压缩比机构A决定的机构压缩比低时,工作油从液压泵81供给到工作油供给控制阀130。当机械压缩比在可变压缩比机构A的作用下变高时,由供给关断阀140关断从液压泵81到工作油供给控制阀130的工作油的供给。因此,从正时提前液压室76和正时延迟液压室77二者均排出工作油,使得旋转轴73由于其惯性关于筒形壳体72最远地向提前侧相对地旋转。因此,进气门7的相位角延迟。 [0118] 即,根据此实施方式,当机械压缩比在可变压缩比机构A的作用下变高时,进气门7的相位角延迟。因而,由于当机械压缩比高时进气门7的相位角延迟,所以能够可靠地防止活塞4和进气门7之间的干涉。
[0119] 在此实施方式中,作用角改变机构B1可以由致动器控制,所述致动器根据电子控制单元30的输出得以控制;而不是通过连杆机构100等将作用角改变机构B1以机械方式联接到可变压缩比机构。另外,如图13中所示的工作油供给控制阀78也可以用作工作油供给控制阀。
[0120] 前述用于可变气门机构的控制方法不仅能够被用于前述可变气门机构,而且还可以用于各种其它类型的可变气门机构。例如,该控制方法还能够用于如下可变气门机构,所述可变气门机构具有凸轮轮廓彼此不同的两个凸轮并且从这两个凸轮中液压地选择作用在进气门上的凸轮。
[0121] 当机械压缩比在可变压缩比机构A的作用下变高时,可以使用不同 于前述方法的方法来延迟进气门7的相位角。例如,可以在电源138和设置为用于驱动工作油供给控制阀130的滑阀137的致动器139之间设置以机械方式联接到可变压缩比机构A的开关,当机械压缩比在可变压缩比机构A的作用下变高时,此开关可以被关闭以防止对致动器139供电。致动器139构造成使得当切断电源供电时,致动器139沿图17中向下的方向移动滑阀137。因此,此时旋转轴73由于其惯性关于筒形壳体72最远地向提前侧相对地旋转,因而进气门7的相位角延迟。
[0122] 或者,为了当机械压缩比在可变压缩比机构A的作用下变高时延迟进气门7的相位角,也可以使用与图11A和11B中所示的机构基本上相同的机构。例如,如果减速齿轮121置于曲轴链轮1a上与图11A和11B中所示的一侧相反的一侧,则在机械压缩比变高时可以延迟进气门7的相位角。另外,根据这种构造,能够根据机械压缩比连续地延迟相位角。 [0123] 接下来将描述本发明的第五实施方式。类似于前述实施方式,本实施方式也具有可变压缩比机构A和可变气门机构B。此实施方式中的这些机构都以与前述实施方式基本上相同的方式得以控制。但是,在此实施方式中,连杆机构100不是以如图4、6或7中所示的直接的方式联接,而是以如图19中所示的方式联接。
[0124] 如图19中所示,作用角改变机构B1的控制杆90沿其轴线方向由致动器150驱动,并且在致动器150的附近具有从控制杆90的外周面凸出的凸出部151。另一方面,连杆机构100的移动侧构件102与运动限制构件152相联接。移动限制构件152具有两个环形止挡构件153、154,所述环形止挡构件153、154位于控制杆90的外周面上。环形止挡构件153、154能够在控制杆90上沿控制杆90的轴线方向滑动。控制杆90的凸出部151位于两个环形止挡构件153、154之间。
[0125] 当控制杆90在致动器150的作用下顺控制杆90的轴线沿任意方向移动时,凸出部151与环形止挡构件153、154中相应的一个接触,使得控制杆90不能沿该方向进一步移动。即,控制杆90的移动受到环形止挡构件153、154的限制,使得控制杆90只能在环形止挡构件153、154之间的范围内移动。这意味着进气门7的作用角和升程量被限制在预定范围内。
[0126] 另一方面,移动限制构件152联接到连杆机构100从而根据可变压 缩比机构A的压缩比改变操作量沿着控制杆90的轴线方向移动。这意味着,根据可变压缩比机构A的压缩比改变操作量,即,根据由可变压缩比机构A设定的机械压缩比,改变控制杆90能够移动的范围,因此在致动器150的作用下进气门7的作用角和升程量所能够改变的范围得以改变。
[0127] 图20是示出机械压缩比和在致动器150的作用下作用角能够改变的范围之间的关系的示例的图。在图20中,由阴影线示出的区域Q表示在致动器150的作用下作用角所能够改变的范围。在图20中所示的示例中,当机械压缩比在可变压缩比机构A的作用下变高时,所以作用角在致动器150的作用下所改变的范围变换到较小的作用角。即,当机械压缩比低时,作用角在致动器150作用下能够改变的范围的上限值(如图20中的直线R所示)大。当机械压缩比在可变压缩比机构A的作用下变高时,作用角在致动器150的作用下能够改变的范围的上限值变小。
[0128] 由于如上所述当机械压缩比变高时作用角在致动器150的作用下能够改变的范围的上限值变小,所以即使当机械压缩比高时也能够防止活塞4和进气门7之间的干涉。此外,因为进气门7的作用角能够根据发动机工作状态改变,所以尽管该改变在预定范围内进行,但是可以使内燃发动机最优地工作。
[0129] 另外,还能够以与如图20中所示的示例中基本上相同的方式控制气门升程量。这也将使得在防止活塞4和进气门7之间的干涉的同时可以使内燃发动机最优地工作。另外,此实施方式也能够应用到排气可变气门机构C。
[0130] 在前述实施方式中,尽管在致动器的作用下作用角以及气门升程量能够改变的范围根据机械压缩比改变,但是,在致动器的作用下相位角能够改变的范围也能够根据机械压缩比改变。这可以通过组合如图11A和11B中所示的正时相关机构120和如图13中所示的相位角改变机构B2来实现。在这种情况下,如果机械压缩比变高,则在致动器的作用下相位角能够改变的范围的提前侧极限角延迟。这使得可以防止活塞4和进气门7之间的干涉,并且还可以通过使用致动器来根据发动机工作状态改变——尽管是在预定范围内——进气门7的相位角。因此,可以使内燃发动机最优地工作。
[0131] 此外,如图21中所示,致动器150可以直接联接到连杆机构100的移动侧构件102,而不设置移动限制构件152。通过采用这种构造,能够使得机械压缩比和相位角在致动器150的作用下能够改变的范围之间也具有如图20中所示的关系。
[0132] 虽然已经参照被认为是本发明优选实施方式的内容对本发明进行了描述,但是应当理解,本发明并不局限于所公开的实施方式或构造。相反,本发明意在覆盖各种改型和等同设置。另外,虽然所公开的发明的各种元件以各种组合和配置示出,但是这些只是示例性的,包括更多个、更少个或仅仅单个元件的其它组合和配置也落入本发明的范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈