首页 / 专利库 / 金工 / 熔覆技术 / 激光熔覆 / 具有减少的气体交换的含有流体的袋及其制造方法

具有减少的气体交换的含有流体的袋及其制造方法

阅读:778发布:2023-01-24

专利汇可以提供具有减少的气体交换的含有流体的袋及其制造方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及含有 流体 的袋和形成含有流体的袋的方法。在一个实施方案中,本发明涉及含有流体的袋,包括第一和第二相对片材、以及设置在第一和第二相对片材之间的流体(例如,校准物液、反应物液或洗涤液)。第一片材和第二片材具有基本上液体和气体不渗透性周边密封。片材可以例如通 过热 卷曲、压 力 卷曲、热和压力卷曲、超声 焊接 、金属对金属焊接或 激光焊接 中的一种或多种来密封。根据公开的方法和设备密封的含有流体的袋示出在减少的气体交换、显著地CO2的 增压 水 平方面的实质性改善。,下面是具有减少的气体交换的含有流体的袋及其制造方法专利的具体信息内容。

1.一种含有流体的袋,包括:
第一和第二相对片材;和
设置在所述第一和第二相对片材之间的流体,其中所述第一片材和所述第二片材具有基本上液体和气体不渗透性周边密封,所述密封的至少一部分的密封宽度小于约4mm,并且其中所述袋产生小于约10mm Hg的袋完整性试验ΔpCO2值。
2.根据权利要求1所述的含有流体的袋,其中所述第一片材和所述第二片材以具有多个弯曲的波形图案折叠。
3.根据权利要求1所述的含有流体的袋,其中所述第一片材包括第一箔层和第一塑料层,并且所述第二片材包括第二箔层和第二塑料层。
4.根据权利要求3所述的含有流体的袋,还包括:
设置在所述周边密封的内部边缘的内部塑料密封珠。
5.根据权利要求3所述的含有流体的袋,其中所述第一片材包括第一箔层和第一塑料层,并且所述第二片材包括第二箔层和第二塑料层,以及其中所述周边密封包括第三塑料层,所述第三塑料层设置在所述第一和第二箔之间并且平均厚度小于所述第一和第二塑料层的合并厚度。
6.根据权利要求5所述的含有流体的袋,其中所述第三塑料层的平均厚度比所述第一和第二塑料层的合并厚度小至少约25%。
7.根据权利要求5所述的含有流体的袋,其中所述第三塑料层的平均厚度比所述第一和第二塑料层的合并厚度小至少约50%。
8.根据权利要求5所述的含有流体的袋,其中所述第一和第二箔层的厚度为约0.01至约2.0mm。
9.根据权利要求5所述的含有流体的袋,其中所述第一和第二塑料层的厚度为约
0.005至约0.5mm。
10.根据权利要求5所述的含有流体的袋,其中所述第一和第二塑料层包含塑料,所述塑料选自Primacor、聚氯乙烯、聚乙烯、以及基于硝化纤维素、脲和丙烯酸树脂的涂漆。
11.根据权利要求5所述的含有流体的袋,其中所述第一和第二塑料层是基本上矩形
2 2
的,并且各自面积为约0.5cm 至约20cm。
12.根据权利要求5所述的含有流体的袋,还包括沿着所述周边密封的至少一部分的塑料珠。
13.根据权利要求5所述的含有流体的袋,其中所述周边密封通过施加约200℃至约
500℃的热来形成。
2
14.根据权利要求5所述的含有流体的袋,其中所述周边密封通过施加约34.5MN/m 至
2
约62.1MN/m 的压来形成。
15.根据权利要求5所述的含有流体的袋,其中所述周边密封的周边宽度为约1mm至约
2cm。
16.根据权利要求5所述的含有流体的袋,其中所述周边密封的周边长度为约1cm至约
20cm。
17.根据权利要求1所述的含有流体的袋,其中所述第一片材包括第一箔层和第一硝基漆层,并且所述第二片材包括第二箔层和第二硝基漆层,以及所述第一和第二箔层在所述周边密封处彼此融合。
18.根据权利要求1所述的含有流体的袋,其中所述流体是含有已知浓度的一种或多种分析物的校准物液。
19.根据权利要求1所述的含有流体的袋,其中所述流体是反应物液。
20.根据权利要求1所述的含有流体的袋,其中所述流体是洗涤液。
21.根据权利要求1所述的含有流体的袋,其中所述袋的胀破强度标准偏差小于12%。
22.根据权利要求1所述的含有流体的袋,其中所述第一片材和所述第二片材各自是单一塑料衬里箔的相对折叠的部分。
23.根据权利要求1所述的含有流体的袋,其中所述第一片材和所述第二片材各自是两个单独片的箔。
24.根据权利要求1所述的含有流体的袋,其中所述第一片材和所述第二片材包含金属箔,所述金属箔选自箔、箔和铜锌合金箔。
25.根据权利要求1所述的含有流体的袋,其中所述第一片材和所述第二片材包含厚度为约0.01至约2.0mm的箔。
26.根据权利要求1所述的含有流体的袋,其中所述袋的袋体积为约5μL至约5mL。
27.根据权利要求26所述的含有流体的袋,其中所述袋含有液体体积为约5μL至约
5mL的液体。
28.根据权利要求27所述的含有流体的袋,其中所述液体体积为全部袋体积的约50%至约95%。
29.根据权利要求26所述的含有流体的袋,其中所述袋含有约5μL至约5mL的气体体积。
30.根据权利要求29所述的含有流体的袋,其中所述气体体积为所述全部袋体积的约
5%至约50%。
31.根据权利要求29所述的含有流体的袋,其中所述气相中的气体包括具有已知浓度或分压的一种或多种气体的校准物气体。
32.根据权利要求29所述的含有流体的袋,其中所述气相中的气体是周围空气。
33.根据权利要求1所述的含有流体的袋,其中所述周边密封包括一个或多个卷曲区域。
34.根据权利要求33所述的含有流体的袋,其中所述一个或多个卷曲区域包括多个同心卷曲环。
35.根据权利要求1所述的含有流体的袋,其中所述袋在包括传感器的柱体中。
36.根据权利要求1所述的含有流体的袋,其中所述袋含有用于校准传感器的校准物液。
37.根据权利要求1所述的含有流体的袋,其中所述袋含有具有预定分压的二的校准物液,所述校准物液用于校准用于二氧化碳的分压的传感器。
38.根据权利要求1所述的含有流体的袋,其中所述袋在含有至少一个传感器的一次性柱体中,并且其中所述柱体联合阅读器使用以测量分析物是样品。
39.一种含有流体的袋,包括:
第一和第二相对片材;和
设置在所述第一和第二相对片材之间的流体,其中所述袋的胀破强度标准偏差小于
12%。
40.一种形成含有流体的袋的方法,包括下列步骤:
(a)在第一片材上设置流体;
(b)使第二片材相对于所述第一片材定位;以及
(c)使所述相对第一和第二片材彼此密封,并且形成之间含有所述流体的密封的区域,其中所述密封的区域是基本上液体和气体不渗透性的。
41.根据权利要求40所述的方法,其中所述袋产生小于10mm Hg的袋完整性试验ΔpCO2值。
42.根据权利要求40所述的方法,其中所述密封的区域包括密封的周边区域。
43.根据权利要求40所述的方法,其中所述密封包括施加热和压力至所述第一片材和第二片材。
44.根据权利要求40所述的方法,其中所述密封包括超声焊接
45.根据权利要求40所述的方法,其中所述密封包括激光焊接
46.根据权利要求40所述的方法,其中所述第一片材和所述第二片材以具有多个弯曲的波形图案折叠。
47.根据权利要求40所述的方法,其中所述第一片材包括第一箔层和第一塑料层,并且所述第二片材包括第二箔层和第二塑料层,以及其中密封步骤包括使所述第一塑料层熔融在所述第一片材上和使所述第二塑料层熔融在所述第二片材上,使得形成内部塑料密封珠,并且其中所述内部塑料密封珠基本上防止所述校准物液接触所述第一和第二箔层中的一者或两者。
48.根据权利要求40所述的方法,其中所述第一片材包括第一箔层和第一塑料层,并且所述第二片材包括第二箔层和第二塑料层,以及其中所述周边密封包括第三塑料层,所述第三塑料层设置在所述第一和第二箔之间并且平均厚度小于所述第一和第二塑料层的合并厚度。
49.根据权利要求40所述的方法,其中所述第三塑料层的平均厚度比所述第一和第二塑料层的合并厚度小至少约50%。
50.根据权利要求40所述的方法,其中所述第三塑料层的平均厚度比所述第一和第二塑料层的合并厚度小至少约25%。
51.根据权利要求40所述的方法,其中所述第一片材包括第一箔层和第一硝基漆层,并且所述第二片材包括第二箔层和第二硝基漆层,以及其中密封的步骤包括使所述第一箔层超声焊接至所述第二箔层。
52.根据权利要求40所述的方法,其中所述流体是校准物液。
53.根据权利要求40所述的方法,其中所述流体是反应物液。
54.根据权利要求40所述的方法,其中所述流体是洗涤液。
55.根据权利要求40所述的方法,其中所述袋的胀破强度标准偏差小于12%。
56.根据权利要求40所述的方法,其中该方法还包括在所述第一片材中形成空腔,以及使所述流体沉积在所述空腔中。
57.通过根据权利要求40所述的方法形成的含有流体的袋。
58.一种由塑料衬里箔形成的基本上气密的密封,包括:塑料面邻接的两部分塑料衬里箔,其中相邻部分密封在一起以使第一相与第二相分离,其中所述密封通过下列方式形成:施加足够的热和压力以熔融所述塑料并形成塑料密封,从而所述热和压力由卷曲元件施加,从而产生一个或多个密封区域,其中所述卷曲区域中塑料的平均厚度小于两个塑料衬里的初始合并厚度,并且从而气体在所述第一相和所述第二相之间通过所述塑料密封的传输基本上小于在密封的过程中塑料不卷曲的密封。
59.一种具有周边密封的基本上气密的塑料衬里箔袋,包括两部分塑料衬里箔,其塑料面邻接并密封在一起以形成含有液相和气相的外壳,其中所述周边密封通过下列方式形成:施加足够的热和压力以熔融所述塑料并形成塑料周边层,其中所述压力由卷曲元件施加,从而产生一个或多个周边密封区域,其中所述卷曲区域的周边密封中塑料的平均厚度基本上小于所述两个塑料衬里的初始合并厚度。
60.一种在塑料衬里箔袋中形成基本上气密的密封的方法,包括:
(a)在第一塑料衬里箔中形成囊,施加一部分液体至所述囊中;
(b)使用塑料面邻接的第二塑料衬里箔覆盖所述囊;以及
(c)使所述第一和第二塑料衬里箔密封在一起以形成周边密封,其中所述周边密封通过下列方式形成:施加足够的热和压力以熔融所述塑料并形成塑料周边层,其中所述压力由卷曲元件施加,从而产生一个或多个周边密封区域,其中所述卷曲区域的塑料的平均厚度基本上小于所述两个塑料衬里的合并厚度,所述密封形成含有液相和气相的基本上气密的袋。
61.根据权利要求60所述的方法,在卷筒上使用所述箔进行。
62.根据权利要求60所述的方法,其中所述压力使用卷曲所述箔的夹具来施加。
63.根据权利要求60所述的方法,其中所述热和压力使用超声焊接来施加。
64.一种形成具有周边密封的基本上气密的塑料衬里箔袋的方法,包括:
(a)第一步骤,其中塑料面邻接的两部分塑料衬里箔密封在一起,以形成具有含有液相和气相的周边密封的外壳,其中所述周边密封通过下列方式形成:施加足够的热以熔融所述塑料并足够的压力以形成连续的塑料周边密封;以及
(b)第二步骤,其中所述周边密封卷曲以产生一个或多个周边密封区域,其中所述卷曲区域的塑料的平均厚度基本上小于所述两个塑料衬里的合并厚度。
65.一种由塑料衬里箔形成的基本上气密的密封,包括:塑料面邻接的两部分塑料衬里箔,其中相邻部分密封在一起以使第一相与第二相分离,其中所述密封通过下列方式形成:施加足够的超声焊接以熔融所述塑料并形成塑料密封,从而所述超声焊产生一个或多个塑料密封区域,其中所述密封区域中塑料的平均厚度基本上小于所述两个塑料衬里的初始合并厚度,并且从而气体在所述第一相和所述第二相之间通过所述塑料密封的传输基本上小于塑料的厚度基本上是所述两个塑料衬里的合并厚度的密封。
66.一种具有周边密封的基本上气密的塑料衬里箔袋,包括两部分塑料衬里箔,其塑料面邻接并密封在一起以形成含有液相和气相的外壳,其中所述周边密封通过下列方式形成:施加超声焊以熔融所述塑料并形成连续的塑料周边层,其中迫使一部分塑料从所述密封区域进入所述外壳的至少一部分所述周边中,从而所述周边密封中塑料的平均厚度小于所述两个塑料衬里的初始合并厚度。
67.一种在塑料衬里箔袋中形成基本上气密的密封的方法,包括:
(a)在第一塑料衬里箔中形成囊;
(b)施加一部分液体至所述囊中;
(c)使用塑料面邻接的第二塑料衬里箔覆盖所述囊;以及
(d)使所述第一和第二塑料衬里箔密封在一起以形成周边密封,其中所述周边密封通过下列方式形成:施加超声焊以熔融所述塑料,并迫使一部分塑料从所述密封区域进入所述囊中,所述密封形成含有液相和气相的基本上气密的囊,从而所述周边密封中塑料的平均厚度基本上小于所述两个塑料衬里的合并厚度。
68.一种由塑料衬里箔形成的基本上气密的密封,包括:塑料面邻接的两部分塑料衬里箔,其中相邻部分密封在一起以使第一相与第二相分离,其中所述密封通过下列方式形成:施加足够的焊接能以从所述密封区域基本上除去塑料并熔融所述箔,然后在所述密封区域中形成金属对金属密封。
69.根据权利要求68所述的密封,其中所述焊接能由超声能或激光能提供。
70.一种具有内塑料周边密封和外金属对金属密封的基本上气密的箔袋,包括:在所述箔的预定区域上具有塑料衬里的两部分箔,其中所述区域和塑料面对齐、邻接和密封在一起以形成外壳,由内塑料周边密封包围,含有液相和气相,并且其中所述两部分箔的围绕部分被激光焊接在一起,从而形成外金属对金属密封。
71.一种基本上气密的袋,包括:含有液相和气相的内密封的塑料外壳,和外密封的箔外壳,其中所述两部分箔被激光焊接在一起,以形成围绕所述塑料外壳的外金属对金属密封。

说明书全文

具有减少的气体交换的含有流体的袋及其制造方法

[0001] 相关申请的交叉引用
[0002] 该申请要求于2008年9月15提交的美国专利申请No.12/211,095的优先权,其全部内容通过引用并入本文。

技术领域

[0003] 本发明涉及医学诊断传感器包装。更具体地,本发明涉及用于密封一次性使用的医学诊断传感器包装的系统和方法。

背景技术

[0004] 在使用各种传感技术的患者上的血液测试领域中,熟知如果测量在期望的精确度下进行,传感器必须合适地校准。临床诊断的近期发展导致开发了被利用的测试系统,其中传感器被安装到装置中,该装置用于单组试验,然后被丢弃。这些装置典型地联合能够和所述装置相互作用的阅读器使用。相互作用包括从各传感器提取信号,并且任选地控制流体在装置内的运动,例如,相对于传感器定位样品和校准物液。一种这样系统(本文中称为TMi-STAT 系统)的详细描述在美国专利No.5,096,669(the‘669专利)中找到,其共同拥有并且通过引用的方式并入本文。
[0005] 这些传感系统的关键特征是这些装置被生产并定期运输至消费者。然而,装置的生产和使用之间的时间可以为数月。结果,在标记的情况下生产所述装置,指示在给定组的条件下的可利用的保质期,在储存条件的其他组合中,例如箱内6个月,并且室温下2周。
[0006] 对于给定传感器的保质期为什么可受到限制的数种原因包括但不限于传感器稳定性和校准物液稳定性。对于校准物液,重要的是校准物分析物的浓度(例如,离子浓度、二分压等)在储存过程中不改变。该问题的一种解决方案为将校准物液储存在密封的玻璃皿或安瓿中。在密封的皿中,所述皿的壁不允许气体或液体的交换。然而,当装置被设计用于便利的使用时,例如,在病床边或护理点测试环境中,使用玻璃储存皿可能是不实用的。这些不切实际可涉及脆性和将玻璃元件包装到试验壳体例如一次性试验柱体中的问题。结果,具有塑料层的箔袋被用于影响密封。例如,‘669专利公开了校准物包装,其由具有周边密封的塑料衬里箔制成。具体而言,塑料面邻接的两部分塑料衬里箔密封在一起以形成含有液相和气相的外壳。此处,周边密封通过下列方式来形成:施加足够的热以熔融塑料和施加足够的压以形成连续的塑料周边密封。在外壳(或袋)内,液相包含校准物液,例如,含有已知浓度的待测试的分析物的缓冲性混合物,包括例如钾、钠、葡萄糖和乳酸盐等。袋中的气相可例如是空气或期望的气体组合物(例如5%二氧化碳、20%氧气和75%氮气)。液相中的气相或溶解的气体也可作为校准物,例如分别用于氧气和二氧化碳的分压pO2和pCO2的血液气体传感。
[0007] 对于袋的构造,箔例如~40μm辊的选择由屏障性能来决定,即,对于运输气体、蒸汽和液体的抵抗性。箔还优选被选择以使针孔最小化。各种光学检查构件是鉴定针孔失效的领域所熟知的。塑料层起到这样的构件的作用,该构件提供密封,并且也保护流体直接接触金属箔(这可引起一种或多种校准物液组分的降解)。
[0008] 尽管箔通常是有效的屏障,但是各种气体例如氧气、二氧化碳和水蒸汽可以各种程度溶于塑料中,并且也可以给定的速率渗透塑料基质。该速率是下列因素的函数:温度和压力、塑料的化学组成、浇注的溶剂和浇注材料的密度
[0009] 如果特定气体用于校准目的,例如,已知分压的二氧化碳(pCO2)来校准pCO2传感器,优选密封具有对于pCO2的低渗透性和可溶性。然而,其中包装含有流体的袋的壳体的尺寸可对密封尺寸施加限制。
[0010] 将袋包装到小塑料壳体中示于‘669专利中。此处袋位于塑料基体中,并且具有能够刺穿袋的倒钩结构。袋通过附接塑料封面的双面粘合剂胶带而保持在合适的位置。塑料封面具有直接在袋上并和袋对齐的挠性桨片(paddle)。当将力施加至桨片时,其压迫袋在倒钩上,从而使袋破裂并释放校准物液流过管道并和传感器阵列接触。
[0011] 如果可能,进一步考虑通过下列方式使穿过密封的气体交换最小化:使驱动力最小化,即,分析物的压力和浓度在密封的任一侧上的差。降低的温度还可降低气体交换,然而,该方案必须谨慎地使用,因为冷冻袋内的水性流体可能导致不期望的效果,例如密封破裂。因此,冷藏是可用的妥协方案。
[0012] 关于其他现有技术,美国专利No.6,178,832(下文中为‘832专利)描述了自含试剂的腔室,其具有包括张力计化校准物的流体,其中腔室的壁包括多层材料,并且其中至少一层是薄的挠性玻璃材料。所述壁被延伸以形成填料颈,所述填料颈通过热和压力沿着填料线下方的密封线而被密封,使得没有气泡被捕获在试剂腔室中。
[0013] 美国公开No.20060013744描述了一种用于参比气体的挠性容器,其用于进行这样的设备的校准或质量控制,所述设备用于测定生理流体例如血液中的气体参数。该挠性容器适于使参比气体保持在或接近环境压力。
[0014] 美国公开No.20060183216公开了一种用于液体试剂的容器,其中所述容器具有外壁和内刺破元件。这种容器被构造为储存液体在6至18个月的期限,同时具有最小的液体内部损失,除了如果容器破裂的情况以外。所述容器优选适于用于微流体装置。
[0015] 美国公开No.20040222091公开了一种引入电极和射流以进行化学分析的诊断装置。所述装置包括塑料卡-样主体,并且流体管道和密封的流体储库包含在箔-衬里空腔中。所述储库容纳用于校准电极的校准物液。
[0016] ‘669专利中描述类型的常规含有流体的袋具有用于校准血液测试传感器的改善的商业上的成功,其中所述袋具有在冷藏条件下的延长的保质期。然而,存在这样的需要:改善的含有流体的袋在不冷藏的条件下具有延长的保质期,使得它们的内容物在延长的室温储存下保持基本上不改变。
[0017] 发明概述
[0018] 因此,本发明的总的方面是提供含有流体的袋,其将消除或最小化之前所述类型的问题。在多种实施方案中,本发明涉及具有密封的含有流体的袋,其具有对于气体例如CO2气体的低渗透性和可溶性。降低的渗透性和可溶性可通过例如使用改善的袋密封来实现,所述袋密封由对于气体例如CO2气体具有低渗透性和可溶性的密封材料制成。在一些实施方案中,密封尺寸提供具有最小截面的长和曲折的路径,即,其中截面面积与路径长度高度比较小。本发明还涉及形成这种含有流体的袋的多种方法。
[0019] 在一个实施方案中,本发明涉及含有流体的袋,包括第一和第二相对片材,以及设置在第一和第二相对片材之间的流体,其中第一片材和第二片材具有基本上液体和气体不渗透性周边密封,所述密封的至少一部分的密封宽度小于约4mm,其中所述袋产生如本文中所限定小于约10mm Hg的袋完整性试验ΔpCO2值。除了具有基本上液体和气体不渗透性密封,含有流体的袋优选具有的胀破强度标准偏差小于12%。这些袋特别适用于含有至少一个传感器的一次性柱体,其中柱体联合阅读器使用以测量分析物是样品例如血样。
[0020] 第一片材和第二片材任选地以具有多个弯曲的波形图案折叠。在优选方面,第一片材包括第一箔层和第一塑料层,并且第二片材包括第二箔层和第二塑料层。任选地,袋还包括设置在周边密封的内部边缘的内部塑料密封珠。
[0021] 在一个方面,第一片材包括第一箔层和第一塑料层,第二片材包括第二箔层和第二塑料层,周边密封包括第三塑料层,所述第三塑料层设置在所述第一和第二箔之间并且平均厚度小于所述第一和第二塑料层的合并厚度。例如,第三塑料层任选地具有的平均厚度比所述第一和第二塑料层的合并厚度小至少约25%,例如至少约50%。在优选实施方案中,第一和第二塑料层包含塑料,所述塑料选自Primacor、聚氯乙烯、聚乙烯、以及基于硝化纤维素、脲和丙烯酸树脂的涂漆。在一个实施方案中,第一片材包括第一箔层和第一硝基漆层,第二片材包括第二箔层和第二硝基漆层,并且第一和第二箔层在周边密封彼此融合。
[0022] 周边密封优选通过施加约34.5MN/m2至约62.1MN/m2的压力和/或施加约200℃至约500℃的热来形成。周边密封任选地具有的周边宽度为约1mm至约2cm,并且任选地具有的周边长度为约1cm至约20cm。
[0023] 袋中含有的流体可改变,但优选是含有已知浓度的一种或多种分析物的校准物液、反应物液或洗涤液。袋优选地具有的袋体积为约5μL至约5mL。袋中的液体体积优选为全部袋体积的约50%至约95%,气体体积优选为全部袋体积的约5%至约50%。气相中的气体优选包括具有已知浓度或分压的一种或多种气体的校准物气体。气相中的气体任选地是周围空气。
[0024] 在优选的实施方案中,周边密封包括一个或多个卷曲区域。一个或多个卷曲区域优选包括多个同心卷曲环。
[0025] 在另一实施方案中,本发明涉及含有流体的袋,包括第一和第二相对片材、以及设置在第一和第二相对片材之间的流体,其中袋的胀破强度标准偏差小于12%。
[0026] 在另一实施方案中,本发明涉及形成含有流体的袋的方法,包括下列步骤:(a)在第一片材上设置流体;(b)使第二片材相对于所述第一片材定位;以及(c)使所述相对第一和第二片材彼此密封,并且形成之间含有所述流体的密封的区域,其中所述密封的区域是基本上液体和气体不渗透性的。优选地,袋产生如本文限定的小于10mm Hg的袋完整性试验ΔpCO2值。该方法优选还包括在第一片材中形成空腔,以及使所述流体沉积在所述空腔中。
[0027] 所述密封优选包括施加热和/或压力至第一片材和第二片材。在另一方面,所述密封包括超声焊接激光焊接。任选地,第一片材和第二片材以具有多个弯曲的波形图案折叠。在特别优选的方面,第一片材包括第一箔层和第一塑料层,并且第二片材包括第二箔层和第二塑料层,密封步骤包括使所述第一塑料层熔融在所述第一片材上和使所述第二塑料层熔融在所述第二片材上,使得形成内部塑料密封珠。内部塑料密封珠基本上防止所述校准物液接触所述第一和第二箔层中的一者或两者。
[0028] 在另一实施方案中,本发明涉及由塑料衬里箔形成的基本上气密的密封,包括:塑料面邻接的两部分塑料衬里箔,其中相邻部分密封在一起以使第一相与第二相分离。所述密封通过下列方式形成:施加足够的热和压力以熔融所述塑料并形成塑料密封,从而所述热和压力由卷曲元件施加,从而产生一个或多个密封区域,其中所述卷曲区域中塑料的平均厚度小于两个塑料衬里的初始合并厚度,并且从而气体在所述第一相和所述第二相之间通过所述塑料密封的传输基本上小于在密封的过程中塑料不卷曲的密封。优选地,该方法在卷筒上使用所述箔进行。压力任选地使用卷曲箔的夹具来施加。热和压力任选地使用超声焊接施加。
[0029] 在另一实施方案中,本发明涉及具有周边密封的基本上气密的塑料衬里箔袋,包括两部分塑料衬里箔,其塑料面邻接并密封在一起以形成含有液相和气相的外壳。所述周边密封通过下列方式形成:施加足够的热和压力以熔融所述塑料并形成塑料周边层,其中所述压力由卷曲元件施加,从而产生一个或多个周边密封区域,其中所述卷曲区域的周边密封中塑料的平均厚度基本上小于所述两个塑料衬里的初始合并厚度。
[0030] 在另一实施方案中,本发明涉及一种在塑料衬里箔袋中形成基本上气密的密封的方法,包括:(a)在第一塑料衬里箔中形成囊,并施加一部分液体至所述囊中;(b)使用塑料面邻接的第二塑料衬里箔覆盖所述囊;(c)使所述第一和第二塑料衬里箔密封在一起以形成周边密封,其中所述周边密封通过下列方式形成:施加足够的热和压力以熔融所述塑料并形成塑料周边层。在该实施方案中,所述压力由卷曲元件施加,从而产生一个或多个周边密封区域,其中所述卷曲区域的塑料的平均厚度基本上小于所述两个塑料衬里的合并厚度,所述密封形成含有液相和气相的基本上气密的袋。
[0031] 在另一实施方案中,本发明是一种形成具有周边密封的基本上气密的塑料衬里箔袋的方法,包括:(a)第一步骤,其中塑料面邻接的两部分塑料衬里箔密封在一起,以形成具有含有液相和气相的周边密封的外壳。所述周边密封通过下列方式形成:施加足够的热以熔融所述塑料并足够的压力以形成连续的塑料周边密封。该方法包括(b)第二步骤,其中所述周边密封卷曲以产生一个或多个周边密封区域,其中所述卷曲区域的塑料的平均厚度基本上小于所述两个塑料衬里的合并厚度。
[0032] 在另一实施方案中,本发明涉及一种由塑料衬里箔形成的基本上气密的密封,包括:塑料面邻接的两部分塑料衬里箔,其中相邻部分密封在一起以使第一相与第二相分离,其中所述密封通过下列方式形成:施加足够的超声焊接以熔融所述塑料并形成塑料密封。所述超声焊产生一个或多个塑料密封区域,其中所述密封区域中塑料的平均厚度基本上小于所述两个塑料衬里的初始合并厚度,并且从而气体在所述第一相和所述第二相之间通过所述塑料密封的传输基本上小于塑料的厚度基本上是所述两个塑料衬里的合并厚度的密封。
[0033] 在另一实施方案中,本发明涉及一种具有周边密封的基本上气密的塑料衬里箔袋,包括两部分塑料衬里箔,其塑料面邻接并密封在一起以形成含有液相和气相的外壳,其中所述周边密封通过下列方式形成:施加超声焊以熔融所述塑料并形成连续的塑料周边层,其中迫使一部分塑料从所述密封区域进入所述外壳的至少一部分所述周边中,从而所述周边密封中塑料的平均厚度小于所述两个塑料衬里的初始合并厚度。
[0034] 在另一实施方案中,本发明涉及一种在塑料衬里箔袋中形成基本上气密的密封的方法,包括:(a)在第一塑料衬里箔中形成囊;(b)施加一部分液体至所述囊中;(c)使用塑料面邻接的第二塑料衬里箔覆盖所述囊;(d)使所述第一和第二塑料衬里箔密封在一起以形成周边密封,其中所述周边密封通过下列方式形成:施加超声焊以熔融所述塑料,并迫使一部分塑料从所述密封区域进入所述囊中。所述密封形成含有液相和气相的基本上气密的囊,从而所述周边密封中塑料的平均厚度基本上小于所述两个塑料衬里的合并厚度。
[0035] 在另一实施方案中,本发明涉及一种由塑料衬里箔形成的基本上气密的密封,包括:塑料面邻接的两部分塑料衬里箔,其中相邻部分密封在一起以使第一相与第二相分离。所述密封通过下列方式形成:施加足够的焊接能以从所述密封区域基本上除去塑料并熔融所述箔,然后在所述密封区域中形成金属对金属密封。所述焊接能优选由超声能或激光能提供。
[0036] 在另一实施方案中,本发明涉及一种具有内塑料周边密封和外金属对金属密封的基本上气密的箔袋,包括:在所述箔的预定区域上具有塑料衬里的两部分箔,其中所述区域和塑料面对齐、邻接和密封在一起以形成外壳,由内塑料周边密封包围,含有液相和气相,并且其中所述两部分箔的围绕部分被激光焊接在一起,从而形成外金属对金属密封。
[0037] 在另一实施方案中,本发明涉及一种基本上气密的袋,包括:含有液相和气相的内密封的塑料外壳,和外密封的箔外壳,其中所述两部分箔被激光焊接在一起,以形成围绕所述塑料外壳的外金属对金属密封。
[0038] 附图简述
[0039] 当结合附图阅读时,通过参照下面优选实施方案的详细描述,将更好地理解本发明的新型特征和优点。
[0040] 图1示出用于自动形成、填充和密封方法以填充和密封含有流体的袋的示意性设计。
[0041] 图2示出在它们进入图1中所示的自动的含有流体的袋密封体系时两片密封箔的剖视图。
[0042] 图3示出常规含有流体的袋密封夹具。
[0043] 图4示出常规密封的含有流体的袋的俯视图,其示出密封区。
[0044] 图5示出在如美国专利No.5,096,669所述密封后含有流体的袋的密封区域的截面的显微照片。
[0045] 图6A-6B示出在根据本发明的示例性实施方案密封后两个含有流体的袋的密封区域的截面显微照片。
[0046] 图7A-7C和7E分别示出使用根据本发明的示例性实施方案如图1中示出的系统制造的含有流体的袋的俯视图、第一透视图、侧视图和第二透视图,并且图7A示出根据本发明的示例性实施方案在含有流体的袋的制造过程中的数种可变尺寸。图7D示出常规密封的含有流体的袋.
[0047] 图8示出根据本发明的示例性实施方案的密封夹具的剖视图。
[0048] 图9示出图8中示出的卷曲夹具的卷曲区域的特写剖视图。
[0049] 图10示出具有顶着下部卷曲夹具放置的下部密封箔2的卷曲区域36的进一步特写剖视图。
[0050] 图11A和11B示出气体控制储存皿,其用于在控制的气体环境中在控制的温度下储存含有流体的袋延长的时间。
[0051] 图12示出如图11A和11B中所示的气体控制储存皿的拆解图。
[0052] 图13示出根据本发明的实施方案的超声焊接系统。
[0053] 图14是根据本发明的超声焊接实施方案制造的含有流体的袋的密封区域的截面的显微照片,其中Primacor位于含有流体的袋的上部和下部密封箔层之间。
[0054] 图15A是根据本发明的超声焊接实施方案制造的含有流体的袋的另一密封区域的截面的显微照片,其中Primacor位于含有流体的袋的上部和下部密封箔层之间。图15B是图15A的区域的特写剖视图。
[0055] 图16是根据本发明的超声焊接实施方案制造的含有流体的袋的密封区域的截面的显微照片,其中涂漆位于含有流体的袋的两个密封箔层之间。
[0056] 图17是图16中示出的一部分截面的特写视图。
[0057] 图18示出根据本发明的可替换实施方案的激光焊接系统。
[0058] 图19是根据本发明的可替换实施方案使用激光焊接制造的含有流体的袋的密封区域的截面的显微照片,其中Primacor位于含有流体的袋的两个密封箔层之间。
[0059] 图20A是根据本发明的可替换实施方案使用激光焊接制造的含有流体的袋的密封区域的截面的另外的显微照片,其中Primacor位于含有流体的袋的两个密封箔层之间。图20B是图20A的特写视图。
[0060] 图21列表显示根据本发明的多种实施方案的数种密封设计的多种参数和改善因子。
[0061] 图22是用于各根据本发明的多种实施方案的数种密封设计的图21中列表显示的改善因子的图。
[0062] 图23示出两组在50℃下储存约180天的期限的含有流体的袋的二氧化碳(CO2)压力对时间的数据图,其中第一组含有流体的袋按照常规方式密封,并且其中第二组含有流体的袋使用根据本发明的实施方案的方法密封。
[0063] 图24示出比较第一组含有流体的袋和第二组含有流体的袋的胀破强度变化的胀破强度的数据图。
[0064] 图25示出根据本发明的可替换实施方案的卷曲夹具的卷曲区域的特写剖视图。
[0065] 发明详述
[0066] 现在参照附图来描述优选实施方案的各种特征,其中类似的部件用相同的附图标记来表示。
[0067] 介绍
[0068] 考虑用于i-STAT血液测试系统的实施方案来描述本发明。然而,如本领域技术人员将认识到,本发明广泛地适用于其他类似的系统(用于临床和非临床环境),包括但不限于水质量测试。i-STAT系统的深入描述在下列共同拥有的专利中发现,它们的全部内容通过引用并入本文:美国专利No.5,096,669;5,112,455;5,200,051;5,614,416;6,030,827;6,438,498;6,750,053;和7,263,501。
[0069] i-STAT系统包括手持阅读器,其带有多个一次性丢弃柱体来运行。各柱体具有带一组电化学传感器的芯片,所述传感器可用于测定各种分析物的浓度,例如钠、钾、葡萄糖、肌酸酐、pH、氧、二氧化碳、肌蛋白I、B-钠尿肽等。
[0070] 各i-STAT柱体还具有不透气密封的箔袋,所述箔袋含有在分析过程例如测定过程中使用的流体,以提供用于校准,和样品反应,或作为洗涤液。当流体用于校准时,在第一步骤中,袋借助于由阅读器产生的力破裂。然后流体流过管道并接触传感器。电接触阅读器的传感器产生校准物信号,该信号由阅读器记录。在第二步骤中,血样被迫通过管道来取代校准物液,并且来自接触血样的传感器的信号被记录。基于校准物液中分析物的已知浓度,阅读器可以通过使用两种信号的算法来计算血液中分析物的未知浓度。
[0071] 根据示例性实施方案生产的含有流体的袋提供下列优点:简化用于医院和其他用户的产品的运输和储存。根据示例性实施方案,在袋的形成过程中利用高级袋密封技术。在优选的实施方案中,材料例如箔的相对片材彼此密封以使它们融合在一起,并在其周边形成基本上液体和气体不渗透性界面。在袋密封技术中,合适的密封加工的例子包括热卷曲、压力卷曲、热和压力卷曲、超声焊接、金属对金属焊接和激光焊接。
[0072] 本领域技术人员将认识到所得袋的完整性直接取决于流体例如校准物液的完整性。这意味着在其生产和密封在袋中、以及在其被用于例如测定时之间流体必须保持基本上不变。该时间差异可以是数月。结果,袋是密封对于其完整性是关键的。
[0073] 常规含有流体的袋的形成和密封
[0074] 如图2中所示,各密封箔2a,2b包括塑料衬里侧10和箔侧8。根据图3中所示的常规方法,夹具4包括通常为凹形的下部4a和为平坦的上部4b。在该上下文中,术语“凹陷”通常用于是指陷入部分,其形状可能不是凹陷的。下部4a和/或上部4b中的一者或两者分别包括加热元件6a,6b。一片密封箔2a以凹陷方式由夹具4的下部4a形成,其中箔2a的塑料衬里侧10背向下部凹陷部分4a。将箔形成为凹形可通过气动的方式,或使用真空吸盘,或通过使用凹形来压制。然后,设置在下部4a的凹陷区域中的箔2a部分填充期望的流体5(如图3中所示),例如校准物液,第二密封箔2b放置在箔2a的顶部的上方,并且密封箔2b的塑料衬里侧邻接密封箔2a的塑料衬里侧(如图2和3中所示)。然后夹具4的上部4b应用至两片密封箔2a,2b以实现密封,并且热和压力通过加热元件6a,6b施加至密封箔2a,2b的周边区域。结果,箔2a,2b的两个单独塑料层10a,10b分别融合在一起以形成使箔2a和箔2b彼此融合的单一塑料层。所述方法有效地逐步进行下列步骤:(a)在第一塑料衬里箔中形成囊;(b)沉积液体至所述囊中;(c)使用塑料面彼此邻接的第二塑料衬里箔覆盖所述囊;以及(d)使所述第一和第二塑料衬里箔密封在一起以形成周边密封,其中周边密封通过施加足够的热和/或压力以实现周边密封来形成。图4示出常规密封的含有流体的袋50的俯视图,其示出周边密封区52(散列标记)。图7D示出类似袋50的透视图。
[0075] 图5示出在使用上述常规夹具4密封后,含有流体的袋100的密封区域的截面的显微照片。如所示,上部层箔2b紧密接近下部箔层2b,并且上部和下部塑料层10b,10a分别彼此熔融以形成单一连续塑料层9。显微照片示出塑料密封层(分别包含上部箔层2b和下部箔层2a的上部和下部塑料层10b,10a)具有穿越这样的区域的基本上均匀的厚度,在该区域中将产生密封。如上所述,本发明的含有流体的袋具有这样的密封,该密封更好地抑制袋内的气体和袋外部的周围空气的交换。
[0076] 改善的含有流体的袋
[0077] 在一些实施方案中,本发明涉及改善的含有流体的袋,其具有基本上液体和气体不渗透性的密封。为了本发明的说明书权利要求的目的,如果密封如下所述从袋完整性试验产生的ΔpCO2值小于30mmHg、优选小于20mm Hg或小于10mm Hg,其“基本上液体和气体不渗透性”。产生小于10mm Hg的ΔpCO2值的袋是高度期望的,因为他们提供较之常规袋改善袋保质期,在室温下尤其是如此。在其他方面,本发明涉及形成含有流体的袋的多种方法。
[0078] 袋可例如通过下列方式形成:以包括一个或多个弯曲的规则波形卷曲(例如,使用热和/或压力)、超声焊接、激光焊接和/或折叠材料,使得材料保持期望的形状。在优选的实施方案中,含有流体的袋通过卷曲方法来密封,其中热和压力被施加以使相对箔彼此密封,并形成基本上液体和气体不渗透性密封。优选地,热足以熔融塑料并且压力足以迫使熔融的塑料的一部分从密封区域到囊中,从而导致在加热之前,在其中周边密封中的塑料的平均厚度比两个塑料衬里的初始合并厚度小优选至少25%或更小、至少50%或更小、至少75%或更小、至少90%或更小、或比两个塑料衬里的合并厚度小至少95%的结构。
[0079] 图6A和6B示出根据本发明的两个示例性实施方案的密封区域的截面显微照片。这些显微照片通过下列方式来制造:切过袋并将其安装到树脂块中,然后抛光表面使得可TM
以记录密封的图像。具体而言,树脂例如Crystalbond 被加热(~250℃),并且和组件一起放置到模具中。在冷却后,树脂优选被抛光,例如首先使用800Grit纸、逐步精细磨料,然后最后使用3μm金刚石抛光,直到产生光学上满意的表面。已发现,暗场图像给出更好的细节,并且该方法用于示出的图像。
[0080] 如图6A中的实施方案所示,下部密封箔2a已经使用卷曲夹具18和上部密封箔2b密封(参见图8)以形成减小的塑料密封区域12(厚度减小),并且形成内部塑料密封珠14,下面将详细讨论的净效应提供基本上液体和气体不渗透性密封。在图6B的实施方案中,下部密封箔2a已经使用卷曲夹具18和上部密封箔2b密封(参见图8)以形成减小的塑料密封区域12(厚度减小),并且形成内部塑料密封珠14以及外部塑料密封珠16,从而提供基本上液体和气体不渗透性密封。图6A的实施方案可从图6B的实施方案例如通过下列方式来形成:修剪减小的塑料密封区域的区域中的袋(任选地在穿孔站32中,下面参照图1来描述),以除去外珠16。
[0081] 图1是根据本发明的一个实施方案用于自动形成、填充和密封方法与系统(袋密封体系150)以填充和密封含有流体的袋的示意性设计。根据优选实施方案,密封箔2a,2b包括铝箔8,其标称厚度为约0.01至约2.0mm,优选为约0.02至约0.05mm,在优选实施方案中为约0.0015英寸(0.038mm)。箔还优选包括形成于其上的塑料层10,其标称厚度为约0.005至约0.5mm,优选为约0.01至约0.05mm,在优选实施方案中为约0.0008英寸(0.020mm)。
[0082] 塑料层中利用的特定塑料材料可广泛地改变。在一些示例性实施方案中,塑料选TM TM自聚氯乙烯(PVC)、聚乙烯和聚丙烯例如DowCorning 、Primacor 塑料衬里。在生产过程中,塑料层10优选挤出到铝箔辊8上。本领域技术人员将认识到还可以使用衬里箔,包括例如涂覆PVC的铝或涂覆聚乙烯的铝。除了使用铝用于箔层,还可使用或铜锌合金箔或其他金属箔。
[0083] 如图1中所示,密封体系150包括数个组件,包括形成箔拆卷台20、有源/无源转位台(转位台)22、形成台24、流体分配台25、盖箔拆卷台26、密封台28、压窝台30、穿孔站32、和后转台33。保持和分配下部密封箔2a的形成箔拆卷台20包括用于各种材料卷筒宽度的调节,包括导辊、驱动辊、和对橡胶辊。允许移动密封箔2a的转位台22包括工作台上的气动驱动器,其具有用于有源转位的机械止动和弹簧回位无源转位,以保持在密封箔2a上恒定的张力。转位台22对于有源和无源转位都可调节。形成台24通过施加高压气体在成形形成(例如,凹陷卷曲夹具18a,示于图8)或通过机械变形而气动冷形箔。各种方法都使囊形成,在囊中流体分配到流体分配台25。流体分配站25包括控制器安装。根据多种实施方案,可以使用约0.01至约2.0mL的流体。在优选实施方案中,使用约0.1至约
0.3mL、优选约0.16mL的流体,例如校准物液、反应物液或洗涤液,该流体被分配到各囊中。
[0084] 盖箔拆卷台26提供上部密封箔2b,并且包括用于多种材料卷筒宽度的调节和导辊。在盖箔拆卷台26后是密封台28。密封台28的密封组件,形成卷曲夹具18的部件,包括冷冻顶板和加热上部密封板(平坦卷曲夹具18b,示于图8),和温度控制器。根据示例性实施方案,密封温度取决于被施用的塑料的熔点,并且通常为约200℃至约500℃,例如约200℃至约450℃。这些值容易地从塑料文献中获得。在优选实施方案中使用Primacor,优选施用密封温度为约300至400℃,并且制造袋的实际温度设定在360℃±5℃。密封力优选初始为约900顿±50N,在密封周期内增加至最大力约6,700牛顿±230N。任选地,周
2 2
边密封通过施加压力来形成,所述压力为约5,000lb/英寸 (34.5MN/m)至约9,000lb/英
2 2 2 2
寸 (62.1MN/m),任选地约6,666lb/英寸 (46.0MN/m)。
[0085] 本领域技术人员将认识到,密封区将影响施加力以获得可靠的密封。这可在无需使用本文中所述的方法的试验下而确认。流体分配台28还优选包括负载单元以监控密封力。
[0086] 示例性密封体系150的后面组件是压窝台30。压窝台30机械变形密封的箔袋的一侧,从而产生凹陷。所述凹陷优选在含有流体的袋100的囊的中心中,如图7A和7B中所示。图7A-7C分别示出使用密封体系150生产的含有流体的袋100的俯视图、透视图和侧视图。图7E提供了示出卷曲边缘101。(为了比较,图7D示出常规密封的含有流体的袋,其缺乏卷曲边缘101)的另外透视图。激光器,未示于图1中,可用于测量凹陷的尺寸。在i-STAT柱体中,凹陷的目的用于避免穿孔元件和箔袋的过早接触。
[0087] 示例性密封体系150还包括穿孔或切削台32,其发挥作用以从箔卷筒中切出含有流体的袋100。穿孔站32可包括例如台、导柱、千分表和调节螺丝。而且,穿孔站32可包括递送斜道,所述斜道可卸载凿除状含有流体的袋100,从而以这样的速度卸载运输装置,所述速度例如为约10至约100周期/分,并且典型地约30周期/分。注意,如果箔的宽度可容纳超过一个袋,生产速度将成倍、成三倍等。在优选密封体系150中,箔的宽度容纳三个相邻的袋。在穿孔站32后是后转台33,其可以类似于转位台22的方式来运行。
[0088] 根据优选实施方案,如图1中所示,两个单独部分的塑料衬里密封箔2a,2b用于制造含有流体的袋100(即,密封箔2的两个单独辊设置在一起并彼此融合)。在另一实施方案中,单片密封箔2用于制造含有流体的袋100。根据该可替换的实施方案,单片密封箔例如可被折叠,并相对密封边缘以形成含有流体的袋100。
[0089] 在密封步骤之前一个或多个步骤例如液体施加和密封步骤可在控制的气氛中进行,以控制袋中所含的所得气相组成。例如,手套箱可用于该目的。另外或可选择地,液相的化学组成可被选择以基本上测定密封后的气相组成。如果可能,后者是优选的,因为其简化总的生产过程。例如,碳酸氢盐可加入流体中,并储存在没有头部空间的密封的分配容器中。然后,合并的流体和碳酸氢盐可分配到囊中并快速密封。由于碳酸氢盐随后平衡于袋中的较小头部空间中的空气,因此其将确定流体和头部空间中的二氧化碳的分压。碳酸氢盐的平衡是熟知的,并且遵守下列反应顺序:
[0090]
[0091]
[0092] 上述袋形成方法可以以基本上手工的方式来进行,其中箔-形成夹具和密封夹具分隔开,并且填充步骤通过手动移液来完成。然而,优选过程是自动的,如图1中所示,其示出自动的含有流体的袋卷筒-基密封体系150,其中箔2a,2b的辊连续地进料以形成、填充和密封。自动化能够使流体分配步骤和密封步骤之间的时间较短(例如,约1秒至约10秒),并从袋至袋来控制。
[0093] 图8示出根据示例性实施方案的卷曲夹具18的剖视图,其用在流体分配和密封台28中,并且图9示出图8中所示的卷曲夹具18的卷曲区域的特写剖视图。卷曲夹具18包括下部凹陷卷曲夹具18a和平坦卷曲夹具18b。如所示,卷曲夹具孔口34接受下部密封箔2a,任选地施加真空,因为其从形成箔拆卷台20、转位台22和形成台24传递在下部凹陷卷曲夹具18a上。下部密封箔2a的外部周边边缘位于卷曲区域36上。卷曲区域36,在图9中详细示出,包括内部卷曲区域边缘38、平坦卷曲区域40和外部卷曲区域边缘42。如所示,向内成边缘39分隔开内部卷曲区域边缘38和平坦卷曲区域40。在压制过程中,向内成角边缘39促进熔融的塑料从平坦卷曲区域40的区域朝向内部卷曲-区域边缘38的向内迁移。另外或可选择地,卷曲区域可包括向外成角边缘(未示出),其使平坦卷曲区域
40分隔开外部卷曲区域边缘42,该向外成角边缘促进熔融的塑料从平坦卷曲区域40的区域朝向外部卷曲-区域边缘42的向外迁移。
[0094] 尽管图8示出的卷曲区域36为下部凹陷卷曲夹具18a的一部分,但是在另一实施方案中(未示出),卷曲区域是上部卷曲夹具的一部分,并且下部凹陷卷曲夹具的周边区域是基本上平坦的。在另一方面(未示出),上部和下部卷曲夹具包括卷曲区域(即,上部和下部卷曲夹具在其周边都不包括基本上平坦的区域)。
[0095] 图10示出卷曲区域36,其中在孔口34容纳密封箔2a后但在上部密封箔2b和上部平坦卷曲夹具18b已经顶着下部密封箔2a和下部卷曲夹具18a压制之前,下部密封箔2a顶着下部凹陷卷曲夹具18a放置。最后地,通过下列方式施加力:压制上部平坦卷曲夹具18b和上部密封箔2b顶着下部密封箔2a和下部卷曲夹具18a,优选在热存在下(下部凹陷卷曲夹具18a和/或上部平坦卷曲夹具18b可以或不可以被加热),从而形成卷曲含有流体的袋100。如上所示,箔2a,2b的塑料侧优选彼此面向或邻接,使得来自箔2a和箔2b的塑料彼此熔融,并且从平坦卷曲区域40向内和/或向外迁移,以分别形成内部和/或外部塑料密封珠。
[0096] 平坦卷曲区域40的宽度(W)可广泛地改变。一些不同设计变体形式(A-H)被测试以确定平坦卷曲区域40的宽度对于含有流体的袋100承受CO2进气(in-gassing)能力的影响。一些设计尺寸A,B,C和D示于图7A-7C。用于试验设计A-H的设计参数提供在图21。在一个实施方案中,尺寸A和B之差提供含有流体的袋100的两侧上平坦卷曲区域40的宽度(对于单侧而言为[A-B]/2),C和D之差提供含有流体的袋100的另外两侧上平坦卷曲区域40的宽度。在其他方面,平坦卷曲区域40小于含有流体的袋100的两侧上尺寸A和B之差(例如,比尺寸A和B之差小10至90%、小25至75%、或小45至55%),并且小于含有流体的袋100的另外两侧上尺寸C和D之差(例如,比尺寸C和D之差小10至
90%、小25至75%、或小45至55%)。在卷曲区域小于尺寸A和B之差和/或尺寸C和D之差的那些方面中,卷曲区域优选分别在尺寸A和B或尺寸C和D的中心。结果列于图21中,并且图示于图22中,并且在下面更详细地讨论。图21还列表了密封面积(平方英寸),其是A,B,C和D的尺寸的函数。
[0097] 图5示出在热压制后常规含有流体的袋100的密封区域的截面的显微照片。显微照片显示塑料密封区域12具有穿过密封的基本上均匀的厚度。相反,根据本发明的示例性实施方案的卷曲步骤的效果示于图6A和6B的显微照片。如所示,上部和下部密封箔2的一些塑料10已经从密封区域12挤出到含有流体的袋100的内部,即远离卷曲区域36,从而形成内部塑料密封珠14。还注意,图像清晰地示出在卷曲后,卷曲区域36中的塑料层的厚度基本上减少,因为其被迫使朝向卷曲区域36的外边缘和卷曲区域36的内部。卷曲区域中密封的厚度可广泛变化,但在一些示例性实施方案中为2至30μm,例如2至20μm或为2至10μm。在厚度穿过卷曲区域变化的那些实施方案中,这些范围是指穿过卷曲区域的平均厚度。
[0098] 在图6A和6B中所示的实施方案中,在密封箔的各层上的塑料层10的初始生产的厚度为约0.0008英寸(或约0.020mm或20μm)。因此,考虑到箔2a和箔2b,在卷曲前塑料的平均厚度为约0.0016英寸或40μm。在卷曲后,塑料密封区域12的平均厚度优选为约1μm至约10μm,约3μm至约7μm,或优选约5μm。因此,在本发明的该实施方案中通过基本上减小整个密封的截面塑料面积显著的倍数。在优选的实施方案中,总密封宽度为约
2mm,密封周边的长度为约75mm。
[0099] 多种不同的卷曲图案可用于本发明的多种实施方案。源自多个示例性试验图案的密封的效果示于图21。各种设计A-H具有不同选择的密封表面。注意,这些袋的设计具有总体上矩形形状,如图7A-7C中所示。结果,矩形设计的长和短轴的内和外密封具有指定的尺寸。对于各设计A-H,一批袋(均含有校准物液)被制备用于测试气体交换。袋完整性试验(PIT)系统和方法在下面详细地示出。
[0100] 袋完整性试验
[0101] 图11A和11B示出气体控制储存皿44,其用于在控制的气体环境中在控制的温度下储存含有流体的袋延长的时间以用于进行PIT,图12示出图11A和11B中所示的气体控制储存皿44的拆解图。储存皿44包括可密封金属箱45,其具有气体入口46和气体出口48。储存皿44能够在控制的条件下温育含有流体的袋,所述条件例如在测试前的温度、压力和外部气体组成。放置在储存皿44中的含有流体的袋可温育不同的时间,并且被测试以确定通过密封产生的气体交换的量。在PIT中,校准物袋被毛细管或注射器破裂,并且内容物被引入化学分析系统,例如,商业血液气体分析器或临床化学分析器。本领域技术人员将认识到,用于pO2、pCO2和pH的商业血液气体分析器试验具有样品引入端口,该端口可容纳借助于毛细管或注射器桶递送的样品。注意,PIT不依赖于用于测定气体组成的特定设备。
重要因素是测试方式提供可靠的方式来测定在皿44中温育之前和之后的样品的溶解的气体组成。而且,认识到,因为袋是一次性抛弃组件,必须按照相同的方式制备一批袋,然后在PIT的不同阶段的批次的试验部分进行以测定密封设计通过时间的总的性能。
[0102] PIT如下进行。含有流体的袋放置到储存皿44中,从而确保样品不覆盖储存皿44的内部上的气体入口46和气体出口48。然后O形环56被清洁并且放置在O形环沟槽58中,从而证实区域和O形环56不含可妨碍合适的密封的任何污染物。然后储存皿44的盖54使用供应的硬件被密封至可密封的金属箱45,其中六个螺母64以交叉图案被加紧。然后储存皿44上的入口60和出口阀62被打开,并且入口阀60连接CO2气体筒(未示出)。
CO2气体流优选至少十倍于储存皿44的体积,其被用于最小约15分钟来注满储存皿44。最后,入口阀60被关闭,然后出口阀62被关闭。然后储存皿44例如在控制的温度下被储存在期望的试验环境中。
[0103] 在本文中所述的PIT中,各含有流体的袋含有:160μL的水溶液,含有在pH 7.3的47mM HEPES缓冲液中的葡萄糖(90mg/dL),脲(4.0mM),钠(118mM),钾(4.0mM),氯化物(100mM),钙(1.5mM)和乳酸盐(2.0mM)。当然,其他流体可在PIT下被使用和分析,这取决于待测试的袋的特定目的。还存在足够的碳酸氢盐以提供28mm Hg的初始pCO2,其中袋中的气相为约100μL。在PIT中,袋在1大气压的二氧化碳的上述温育皿中储存8天。在50℃的温度下进行试验。袋中的初始pCO2被测量并且在试验末期袋中的pCO2再次被测量。典型地,pCO2(初始)通过使用毛细管涨破第一袋来测定,并且pCO2(末端)按照相同的方式来测定,但来自与第一袋相同批次形成的第二袋。pCO2(初始)和pCO2(末端)之差提供ΔpCO2值,其是袋完整性的指示,较小ΔpCO2值反映较小气体交换,并因此反映更好的密封。
[0104] 各建议的设计以加速测试的方式使用上述温育皿来评价。含有流体的袋(A-H)的一些样品被放置在1大气压的二氧化碳的温育皿中并储存8天。在50℃的温度下进行试验。袋中的初始pCO2被测量(通常约28mm Hg),并且在试验末期袋中的pCO2再次被测量。对于标准方法,在常规密封的情况下,最后pCO2为约60mm Hg。这是由于如上所述通过密封进入CO2。该32mm Hg ΔpCO2值被用作基线结果,针对该结果测试各种卷曲设计。图21中的表列出改善因子,其在本文中定义为用于标准方法的ΔpCO2除以用于新方法的ΔpCO2。
对于设计A,ΔpCO2值远小于32mm Hg(标准方法观察到的),从而提供4.8的改善因子。用于其他设计的改善因子列于图21中,并图示于图22中,设计E提供最佳结果。在下列描述的测试中立即使用设计E。
[0105] 长期稳定性研究
[0106] 随后组的试验被设计以指示设计E在正常储存条件下的长期性能,所述条件即冷藏或室温下的周围空气。这些试验还以加速的方式来进行,即,储存试验样品在50℃。本领域技术人员将认识到,以加速的方式获得的令人满意的结果应该指示在周围或冷藏温度下类似或(更可能)更好的性能,因为塑料的气体渗透性通常随着温度而增加。
[0107] 设计E的含有流体的袋100中头部空间或气相体积为约100μL,含有流体的袋100内CO2的分压类似于血样中发现的那些,例如约28mm Hg。相反,周围空气中CO2浓度为约0.03%或约0.24mm Hg。这基本上较小,并因此驱动力为来自含有流体的袋100的CO2损失。驱动力基于质量作用法则;净处理将用于CO2以缓慢地通过塑料密封扩散出去,并且离开含有流体的袋100。本领域技术人员将认识到类似于上述PIT试验的测试可使用周围空气代替二氧化碳气体来进行。使用1大气压(760mm Hg)的二氧化碳提供用于CO2进入的驱动力,而周围空气提供用于离开的驱动力。两者都可提供关于密封完整性的信息,然而PIT使用二氧化碳气氛,因为更容易地测量袋pCO2的增加,并且由于更大的驱动力结果也更迅速地获得。注意,高温被用于增加气体转运的速度,意在观察两种类型的袋之间的可证实的差别,例如,根据示例性实施方案的卷曲和常规密封的含有流体的袋50。
[0108] 为了确定含有流体的袋100的CO2的内部初始分压的任何变化,间歇地测试子组含有流体的袋100。具体而言,在0,30,60,90,120,150和180天的时间,含有流体的袋100和常规含有流体的袋50从50℃下的周围空气温育器除去并且进行测试。这通过下列方式来完成:将它们集合到i-STAT EG7+柱体中,并且测试二氧化碳(pCO2)的所得分压对28mm Hg的pCO2处的张力计化对照流体。注意pCO2是由i-STAT系统提供、使用电化学pCO2传感器的标准试验。
[0109] 对于背景,重要的是注意i-STAT阅读器中的试验算法分配28mmHg的值至校准流体中记录的信号。这是工厂校准过程,其中阅读器被用软件预编程,所述软件假设校准物液pCO2值将是28mm Hg,含有流体的袋100用流体组合物来生产,所述组合物预期为28mm Hg。一旦制得一批含有流体的袋100并装配到试验装置中,所述批次的统计上有效的样品被测试以确定是否预期的pCO2值是否实际观察到。如果这样,含有流体的袋100的批次可装配到柱体中,然后被运输给客户。
[0110] 因此,如果试验中的校准物液和张力计化流体都具有约28mm Hg的浓度,则这将是记录值(参见图23中的数据点)。然而,如果CO2从含有流体的袋100中损失并且实际值为例如10mm Hg,因为阅读器将分配预编程的28mm Hg值至来自校准物液的信号,当传感器被实际28mm Hg的张力计化样品攻击时,记录的值将更高。记录的值高于28mm Hg的程度是多少CO2在储存过程中从袋中损失的量度。
[0111] 图23示出在50℃下储存的两组含有流体的袋在约180天的期限内二氧化碳(CO2)分压对时间的数据图,其中第一组含有流体的袋50以常规的方式密封,并且第二组含有流体的袋使用根据本发明的示例性实施方案(设计E)的方法卷曲。在图23中,菱形表示设计E的含有流体的袋的pCO2值,方形表示常规含有流体的袋50的pCO2值,两者都储存在50℃下,通过数据点进行计算的线性拟合。最初,两组袋的pCO2读取为约28mm Hg。然而,在180天后,标准袋中的pCO2已经足够下降来使张力计化流体样品读取为约47mm Hg,而根据设计E生产的含有流体的袋仅轻微改变以读取为约31mm Hg。
[0112] 这是吃惊的、未预料到和显著的结果,因为卷曲步骤能预期为对于密封产生有害的效果,尽管这会变窄密封截面。例如,塑料层10或箔层8中产生显微裂隙,密封箔2预计会降低袋的性能。结果,吃惊地发现,卷曲特征基本上通过减小气体交换来改善密封。
[0113] 如上所述,还明显的是,CO2损失可选择性地通过下列方式来确定:破裂含有流体的袋100(或常规含有流体的袋50),使用含有流体的袋中的一部分流体填充玻璃毛细管。然后,流体被转移至标准台式血液气体分析器,其中流体被注射,并且pCO2结果通过分析器被记录。在这些试验中,还示出设计E的含有流体的袋在50℃下180天后具有基本上不变的pCO2值,而常规含有流体的袋50显示出CO2损失。
[0114] 胀破强度试验
[0115] 基于图23中的数据的结论通过对于含有流体的袋100的胀破强度的单独试验而证实。在胀破强度试验中,不同夹具被用于确定要求用于胀破含有流体的袋100的力,即,引起密封的毁坏性失效。在卷曲引起密封损坏的情况下,这将导致密封的更可变的胀破强度。如图24中所示,尽管常规含有流体的袋50的胀破强度更高(平均551.7N并且n=102,标准偏差为66.1(12%)),但是其比根据示例性实施方案设计E的含有流体的袋100更加可变(平均307.2N并且n=105,标准偏差为30.7(10%))。发现,胀破强度越恒定,即标准偏差越低,含有流体的袋100的设计E指示更可靠和重现的方法。注意,较低胀破强TM
度指示密封区域中减少量的Primacor 粘合剂。
[0116] 如上所述,图21示出显示不同卷曲设计的表,其中设计E对应于含有流体的袋100的优选实施方案。这些结果还指示卷曲方法可产生适用于高体积要求的改善和可行的生产方法。期望的卷曲设计是这样一种,其中箔层之间的间隙基本上最小化。然而,因为含有流体的袋100内含有的流体的潜在地腐蚀性质和其与铝层8的相互作用,卷曲不必破裂密封箔2的聚合物(塑料)衬里10的完整性。卷曲也不应该引起缝隙或引起对于铝层8的其他损害。
[0117] 通过进一步试验和设计发现,下列特征反映含有流体的袋的优选实施方案。根据2
优选实施方案,两部分的密封箔2是矩形的,例如,1.5cm x 2.2cm,面积为约3.3cm。发现,
2 2
有用的箔面积可以为约0.5cm 至20cm。
[0118] 根据优选实施方案,含有流体的袋100的外壳的体积为约100至300μL,然而可以使用的袋的内部体积为约5μL至约5mL。因此,外壳中液相的体积可以为约5μL至约5mL。同样,外壳中气相的体积可以为约5μL至约5mL。
[0119] 根据优选实施方案,外壳中液相的体积为外壳的总体积的约50%至95%,例如为60%至65%。另外,外壳中气相的体积可以为外壳的体积的约5%至约50%。
[0120] 根据优选实施方案,一部分塑料层10通过密封的作用而被迫使并卷曲到外壳中,并且沿着密封的至少一部分内部周边形成内部塑料密封珠14,如图6A和6B中所示。这过程适应在密封和卷曲的过程中从密封区域损失的塑料。如图5和6中可见,周边密封中塑料的平均厚度基本上小于两个塑料层10的初始合并厚度,并且小至少20%。
[0121] 根据优选实施方案,周边密封的周边宽度(或气体扩散路径-长度)小于约20mm,例如小于约10mm或小于约5mm。就范围而言,周边密封任选地具有的宽度为约1mm至约20mm,最优选约2mm至约3mm。周边宽度优选等于或小于由A减去B的一半或C减去D的一半所限定的长度,如图7A中所示。特定周边宽度典型地由卷曲区域的宽度来确定。另外,根据优选实施方案,周边密封的周边长度为约1cm至约20cm,最优选约7cm至约8cm,如图
7A所示,即由2A加上2C所限定的长度。
[0122] 尽管用于卷曲含有流体的袋100的设备的优选实施方案示于图8和9中,但是卷曲特征还可包括多个同心卷曲环,其中所述环的数量可为例如,2至10个卷曲环。在该上下文中,术语“环”和“同心”不限于环形,因为方形或矩形卷曲特征是优选的。典型地这些将具有圆形拐角。例如,参照图9,平坦卷曲区域40可均匀地分为5个部分,其中内、外和中间部分与平坦卷曲区域40所述的高度相同,并且在中间部分的任一侧上的两个其他部分具有区域52所示的高度。该构造示于图25,并且发挥作用以形成三个同心卷曲环。如所示,环由峰40a,40b和40c形成,并且由对应于谷42a,42b和42c的间隙分隔开。当然,多种其他图案可类似地通过变化数量和/或宽度的峰来形成。
[0123] 依照本文中讨论和描述的本发明的原理来生产的示例性含有流体的袋已经证明成功地校准血液测试传感器。另外,本发明的含有流体的袋显示出在冷藏情况下的延长的保质期,并且在延长的室温储存下保持基本上未改变例如6个月。本发明的含有流体的袋优选具有的室温保质期大于3个月,大于6个月,大于9个月或大于1年。结果,本发明的含有流体的袋提供下列优点:减缓运输至含有本发明的含有流体的袋的试验柱体的生产,并且还简化柱体对于医院和其他用户的储存。
[0124] 根据可替换的示例性实施方案,具有基本上液体和气体不渗透性密封的含有流体的袋可使用超声焊接机66来生产,示于图13。本领域技术人员将认识到,聚合物可通过它们的气体传播速度来表征,并且因此通过非密封材料来表征。因此还考虑有利地获得金属对金属密封作为金属例如铝,在缺乏针孔通常不渗透气体的情况下。然而,金属对金属密封的优点需要针对校准物液和金属的可能相互作用而平衡,如上所述。干涉惰性聚合物层的使用消除了该潜在的问题。
[0125] 根据各种示例性实施方案至少两种另外类型的密封箔可用于超声焊接机66:首先是上述类型的Primacor-涂覆的铝箔(即,密封箔2,具有箔层8和塑料层10),其次是涂漆-涂覆的密封箔(密封箔2’,具有箔层8和硝基漆层11)。根据示例性实施方案,期望在箔层8上存在硝基漆层11以避免校准物液和铝之间的直接接触。涂漆可包含例如硝化纤维素、脲和丙烯酸类树脂中的一种或多种,并且可例如通过印刷来施加。施加的涂漆的量通2 2
常为约0.1至约10g/m,优选约1.5g/m。
[0126] 图13示出根据示例性实施方案的焊接机66。超声焊接通过下列方式而实现:施加压力至保持在固定多脊板70和移动多脊板68(其以超声频率振动)之间的部分。针对密封箔72的移动部分摩擦密封箔74的固定部分的作用会引起氧化物分散,从而允许发生金属对金属焊接。当然,在其他实施方案中,取代或除了上部板,下部板可振动。
[0127] 图14示出密封区域的显微照片,所述密封区域使用具有塑料层(由PrimacorTM形成)的密封箔2形成,和由具有脊板的超声焊接机形成。图14示出38μm上部密封箔2b和下部密封箔2a,上下密封未损坏,并且Primacor的连续层(可变厚度~5-30μm)保持。图14中示出的密封具有第一塑料区域76和第二塑料区域78(其厚于第一塑料区域)。图
15A和15B示出类似密封区域的显微照片,所述密封区域也通过超声焊接形成,并且具有带塑料层(约5μm厚)的第一塑料区域76和带塑料层(约15μm厚)的第二塑料区域78。
根据示例性实施方案,即使在更薄区域中也基本上不发生直接金属对金属接触或焊接,如图15A和15B的区域82中所示。具体而言,区域82表示塑料层10a,10b的厚度为约10μm的区域。区域80表示塑料层10a,10b的厚度为约30μm的区域。
[0128] 图16是密封区域的显微照片,所述密封区域通过超声焊接具有邻接保护性硝基漆层的密封箔而形成。示出的所述实施方案使用具有基本上平坦板的超声焊接机形成。图16、特别是图17(其是图16中示出的密封区域的特写)示出在上部密封箔层2a和下部密封箔层2b之间存在最小的间隙,并且在一些区域有金属对金属接触,如图17中的放大视图的区域81所示。
[0129] 因此,根据示例性实施方案,明显的是,通过超声焊接机66制备的密封,对于由卷曲夹具18a,b制备的卷曲密封还可有利地最小化或消除含有流体的袋的内部和外部周围空气之间的气体交换。
[0130] 在另一实施方案中,基本上液体和气体不渗透性密封通过激光焊接系统形成。图18示出激光焊接系统84。激光焊接还可有用地应用于使用Primacor-涂覆的密封箔或涂漆-涂覆的密封箔来密封含有流体的袋。激光焊接通过下列方式来实现:以紧密接触的方式放置两个片材例如箔,然后施加足够高的功率密度的激光(对于铝而言约107瓦特/英
2
寸 )以引起材料的熔融。用于焊接薄的材料例如聚合物涂覆的密封箔的激光焊接系统84示于图18。在该描述中,激光光学装置86用于使用激光光导88聚焦激光,以足够高的能量密度以引起上部密封箔2b和下部密封箔2a的熔融。可选择的焊接几何形状还可以用激光焊接,例如,为了形成邻接或T-焊接结点。
[0131] 根据优选实施方案,激光焊接机84使用耦合激光光学装置86和激光光导88的脉冲钕YAG激光器来实现密封箔2a,2b的密封激光焊接。激光脉冲宽度的期限为约1.5毫秒,并且递送的能量/脉冲为约1.0焦。连续焊接(或密封)可通过下列方式来实现:以例如约1-20mm/s、优选5mm/s的速度,通过平移配件来重叠激光脉冲,即,相对于激光焊接机84的密封箔2a,2b的位置。
[0132] 为了证实激光焊接机84可使用Primacor-涂覆的密封箔2(即,具有箔层8和塑料层10的密封箔2)来产生金属对金属密封,密封箔层2a,2b被翻转,使得箔层8a,8b彼此邻接。图19是密封区域的显微照片,并且示出在上部和下部密封箔层2b,2a之间没有间隙,并且金属对金属焊接在激光密封的区域90处形成。图20A提供具有激光密封的区域90的焊接的一侧的另外的显微照片,并且图20B示出图20A的区域的特写视图。如上所述,完全金属对金属密封是高度期望的,因为其消除通过塑料密封进行气体交换的机会,并且因此形成基本上液体和气体不渗透性密封。注意,金属对金属焊接还可以通过使箔层和塑料层邻接在一起而形成,并且进行激光焊接方法。此处,密封区域中的塑料优选气化以允许金属对金属焊接形成。
[0133] 根据可替换实施方案,完全金属对金属密封的含有流体的袋100可被制备,其中含有的流体完全囊封在聚合物内,前提是箔上的图案化聚合物可利用。聚合物图案化箔可通过空间控制地加入聚合物至箔或选择性地从整个聚合物涂覆的箔除去聚合物来制备。可用于允许空间控制地加入聚合物至箔的方法的例子包括印刷、光蚀和层压。选择性地从整个聚合物涂覆的箔除去聚合物可通过激光烧蚀来实现。为了连续制备这些袋,重要的过程控制问题是对齐上和下图案化箔部分。可以实现一致的对齐的一种方法是通过使用在卷筒上的索引的库存材料。根据进一步可替换的实施方案,完全金属对金属密封的含有流体的袋100可被制备,其中通过首先密封含有流体的聚合物袋、然后使密封金属对金属密封的袋内的容器密封,内部流体完全地含有在聚合物内。聚合物袋可通过下列方式来制备:热密封和切割填充流体的聚合物管的片段。然后这些聚合物袋可大致放置用于在箔袋内密封。
[0134] 已经参照某些示例性实施方案来描述了本发明。然而,本领域技术人员将容易地明白,可以以除了上述那些示例性实施方案之外的特定方式来实施本发明。这可在不偏离本发明的精神和范围的情况下来完成。示例性实施方案仅仅是示意性的,并且不应该以各种方式被认为是限制性的。本发明的范围由所附权利要求书及其等同形式来限定,而不是由前面的说明书限定。上面讨论的所有美国专利和申请、外国专利、和公开通过引用的方式全部并入本文中。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈