首页 / 专利库 / 合金类 / 合金 / 储氢合金 / 储氢合金及使用该储氢合金的储氢单元

储氢合金及使用该储氢合金的储氢单元

阅读:697发布:2020-05-12

专利汇可以提供储氢合金及使用该储氢合金的储氢单元专利检索,专利查询,专利分析的服务。并且本 发明 可以得到一种储氢 合金 ,其具有由Mg和其它合金(例如Mg2Ni)的混合物形成的储氢基体(2),以及 覆盖 该储氢基体(2)表面的催化剂层(3)。由此,该 储氢合金 兼具Mg所具有的高储氢性能,以及Mg2Ni所具有的高固体扩散性能。吸留在Mg上的氢通过Mg2Ni转移到其它Mg(或Mg2Ni)上。该氢的移动不需要热、压 力 。由此,可以在室温、 大气压 下吸留氢。,下面是储氢合金及使用该储氢合金的储氢单元专利的具体信息内容。

1.一种储氢单元,其包含:
具有氢分子能够通过的多个孔的多孔体、以及
覆盖含所述孔的所述多孔体的表面的储氢合金
所述储氢合金具有:
储氢基体,由镁与镁-镍合金、镁-合金、镁-铌合金、镁-锰合金或镁-钴合金的混合物形成,以及
催化剂层,该催化剂层覆盖所述储氢基体的表面,
所述多孔体为具有多个使氢通过的孔的多孔的纳米纤维的聚集体。
2.根据权利要求1所述的储氢单元,其中,所述催化剂层由Pd形成。
3.根据权利要求1所述的储氢单元,其中,所述聚集体内的各个纳米纤维的方向是无规的。
4.根据权利要求1所述的储氢单元,其中,所述储氢合金的所述储氢基体是通过蒸以层状形成在所述多孔体的所述表面的。

说明书全文

储氢合金及使用该储氢合金的储氢单元

技术领域

[0001] 本发明涉及吸留氢的储氢合金及使用该储氢合金的储氢单元。

背景技术

[0002] 作为用于车辆等的燃料电池的氢,使用了气态氢。氢为气体状态时,体积非常大。为此,气态氢需压缩使用。但是,即使这样,对于实用来说其体积仍较大,存在占用空间的问题。另一方面,液态氢比气态氢体积小。但是,将氢保持在液体状态是较为困难的,不适合实用化。因此,正在研究和开发使用体积小、操作性得到提高的固态氢。固态氢以氢吸留在合金内的状态使用。该合金被称为储氢合金。针对该储氢合金,重复进行氢的吸留和放出。
[0003] 专利文献1公开了这样的储氢合金。专利文献1涉及储氢(吸留氢)材料及其制造方法,以及氢产生装置。该储氢材料包含Mg(镁)金属,在其表层部具有最接近原子间距离比Mg金属短的晶体区域X,在300℃以下时,每100重量份上述储氢材料可储存及放出7重量份以上的氢。
[0004] 但是,在使专利文献1所示的状Mg与氢键合进行氢化而形成MgH2的情况下,需要热、压。即,需要用于使氢吸留在储氢合金上的热能、压力能。每次进行氢化反应时必须供给这些能量是较为不便的。
[0005] 另一方面,存在使用Pd(钯)、Pt(铂)等催化剂来提高氢化反应性的方法。但是,使用催化剂也需要热能、压力能。如上所述,关于使储氢合金与氢键合的氢化,存在需要能量的问题。
[0006] 此外,Mg本身具有储氢性能高的优点,但由于氢的固体扩散性能低,因此氢的吸留需要花费时间。氢的固体扩散性能低,即氢的固体扩散缓慢是指,位于合金表面的Mg即使捕获了氢,这些氢也不会移动到位于合金内侧的Mg上。因此,仅合金表面的Mg与氢键合而形成MgH2,这些将形成屏障膜成为妨碍接下来的氢吸留的主要原因。由此,还显示了Mg的固体扩散缓慢的问题。
[0007] 现有技术文献
[0008] 专利文献
[0009] 专利文献1:日本特开2003-147473号公报
[0010] 本发明是考虑了上述现有技术而完成的,其目的在于提供一种储氢合金以及使用该储氢合金的储氢单元,该储氢合金可以在室温、大气压环境下吸留氢,并可以加速固体扩散从而缩短氢化的时间。

发明内容

[0011] 为了实现上述目的,权利要求1的发明提供一种储氢合金,其特征在于,该储氢合金具有储氢基体和催化剂层,所述储氢基体由镁与镁-镍合金、镁-合金、镁-铌合金、镁-锰合金或镁-钴合金的混合物形成,所述催化剂层覆盖所述储氢基体的表面。
[0012] 就权利要求2的发明而言,其特征在于,在权利要求1的发明中,所述催化剂层由Pd形成。
[0013] 此外,权利要求3的发明提供一种储氢单元,该储氢单元使用了权利要求1所述的储氢合金,其特征在于,所述储氢单元含有:具有氢分子能够通过的多个孔的多孔体、以及覆盖含有所述孔的所述多孔体的表面的所述储氢合金。
[0014] 就权利要求4的发明而言,其特征在于,在权利要求3的发明中,所述催化剂层由Pd形成。
[0015] 就权利要求5的发明而言,其特征在于,在权利要求3的发明中,所述多孔体为纳米纤维的聚集体。
[0016] 就权利要求6的发明而言,其特征在于,在权利要求5的发明中,所述聚集体内的各个纳米纤维的方向是无规的。
[0017] 就权利要求7的发明而言,其特征在于,在权利要求3的发明中,所述储氢合金的所述储氢基体是通过蒸以层状形成在所述多孔体的所述表面的。
[0018] 根据权利要求1的发明,可以得到兼具Mg所具有的高储氢性能、以及其它合金(尤其优选为Mg2Ni)所具有的高固体扩散性能的储氢合金。吸留在Mg上的氢通过例如Mg2Ni转移到其它Mg(或Mg2Ni)上。该氢的移动不需要热、压力。因此,可以在室温、大气压下吸留氢。
[0019] 根据权利要求2的发明,氢在Pd的作用下由分子解离为原子(H2→2H)。氢在原子状态下可以最迅速地吸留在Mg上。Pd与Pt不同,不具有将氢原子质子化的能力。因此,通过将Pd用于催化剂,可以使氢停留在原子状态。由此,可以实现比使用铂催化剂更迅速的氢吸留。
[0020] 根据权利要求3的发明,由于储氢合金覆盖在具有多个氢分子能够通过的孔的多孔体表面,因此储氢层的表面积增大,与氢之间的接触面积扩大。由此,可以实现更迅速的氢吸留。
[0021] 根据权利要求4的发明,氢在Pd的作用下由分子解离为原子(H2→2H)。氢在原子状态下可以最迅速地吸留在Mg上。Pd与Pt不同,不具有将氢原子质子化的能力。因此,通过将Pd用于催化剂,可以使氢停留在原子状态。由此,可以实现比使用铂催化剂更迅速的氢吸留。
[0022] 根据权利要求5的发明,当纳米纤维形成聚集体时,纤维之间相互缠绕而形成的间隙成为能够使氢通过的孔。由此,可以容易地形成多孔体。
[0023] 根据权利要求6的发明,即使是不对纳米纤维的配置进行特别限定而自然形成的聚集体,也可形成孔。利用这样的孔,可以进行迅速的氢吸留。
[0024] 根据权利要求7的发明,由于在多孔体上通过蒸镀形成层状的储氢合金,因此制造容易,可以实现迅速的氢吸留。附图说明
[0025] [图1]是本发明涉及的储氢合金的概略图。
[0026] [图2]是本发明涉及的储氢单元的概略图。
[0027] [图3]是储氢纤维的纵向剖面图。
[0028] [图4]是图3的储氢纤维的横向剖面图。
[0029] [图5]是其它的储氢纤维的纵向剖面图。
[0030] [图6]是图5的储氢纤维的横向剖面图。
[0031] [图7]是示出使用本发明涉及的储氢单元吸留氢时的时间和压力的关系的曲线图。
[0032] 符号说明
[0033] 1 储氢合金
[0034] 2 储氢层
[0035] 3 催化剂层
[0036] 4 Mg
[0037] 5 Mg2Ni
[0038] 6 氢
[0039] 7 储氢单元
[0040] 8 储氢纤维
[0041] 9 间隙
[0042] 10 纳米纤维

具体实施方式

[0043] 图1是本发明涉及的储氢合金的概略图。
[0044] 如图所示,本发明涉及的储氢合金1由储氢基体2和催化剂层3形成。储氢基体2为Mg金属4和其它合金(图中为Mg2Ni 5)混合并经过薄膜化后形成的。该Mg 4和Mg2Ni5的混合比例为,相对于1分子的Mg2Ni为0~10(不包括0)分子的Mg。更优选相对于1分子的Mg2Ni为4~8分子的Mg。尤其优选混合后的化学式为Mg6Ni。通过如上所示地将Mg
4和Mg2Ni 5混合,发生以下的化学反应,如图中的箭头所示,氢原子H传递给内侧的Mg(或Mg2Ni),氢的固体扩散性能得到提高。因此,可以实现迅速的氢吸留。需要说明的是,储氢基体2优选为无定形状态。此外,使储氢基体2薄膜化也会有助于氢吸留的迅速化。
[0045] Mg+H2→MgH2
[0046] Mg2Ni+4H2→Mg2NiH4
[0047] 如上所示,通过将Mg 4和Mg2Ni 5混合,可以得到兼具Mg 4所具有的高储氢性能和Mg2Ni 5所具有的高固体扩散性能的储氢合金。该氢的移动不需要热、压力。由此,可以在室温、大气压下进行氢的吸留。
[0048] 催化剂层3由Pd(钯)形成。形成的催化剂层3覆盖储氢基体2的整个表面。但是,也可以仅覆盖其一部分。通过使用Pd,可以将氢由分子解离成原子(H2→2H)。原子状态的氢可以最为迅速地被Mg吸留。Pd与Pt不同,其不具有将氢原子质子化的能力。因此,通过将Pd用于催化剂,可以使氢停留在原子状态。这样一来,可以实现比使用铂催化剂更为迅速的氢吸留。
[0049] 如果使用这样的储氢合金1对氢进行吸留,气体中的氢6与Pd催化剂层3接触而被解离成氢原子。然后,氢原子被存在于储氢基体2表面的Mg 4、Mg2Ni 5吸留。该吸留的氢原子在Mg2Ni 5的作用下,被吸留到内侧的Mg 4、Mg2Ni 5上。
[0050] 需要说明的是,可以使用其它的镁-镍合金、镁-钛合金、镁-铌合金、镁-锰合金、或镁-钴合金来代替上述Mg2Ni。此外,在催化剂层3中,除Pd(钯)之外,还可以使用Pt(铂)、Nb(铌)或ZrNi(锆·镍)等。
[0051] 图2为本发明涉及的储氢单元的概略图。
[0052] 如图所示,本发明涉及的储氢单元7是在纳米纤维上蒸镀有储氢合金1(参见图1)的储氢纤维8的聚集体。通过使多个储氢纤维8相互交叉,形成间隙9。各个纳米纤维的方向可以是无规的。就该间隙9的大小而言,形成为氢分子能够通过的大小。由于在这样的纳米纤维上蒸镀有储氢合金1(参见图1),因此储氢基体2(参见图1)的表面积增大,与氢之间的接触面积扩大。即,间隙9成为使氢分子通过的孔,氢不仅吸留在储氢单元7的表面,氢甚至进入到储氢单元7的内侧从而将氢吸留,因此可以实现更迅速的氢吸留。
[0053] 此外,如果纳米纤维本身为多孔的物质,例如由多孔纳米纤维形成,则可以进一步增加储氢基体2(参见图1)的表面积,扩大与氢之间的接触面积,从而可以实现迅速的氢吸留。需要说明的是,也可以使用具有使氢通过的孔的其它多孔体来形成储氢单元。
[0054] 图3为储氢纤维的纵向剖面图。此外,图4为图3的储氢纤维的横向剖面图。
[0055] 如图所示,储氢纤维8由纳米纤维10、储氢基体(储氢层)2和催化剂层3形成。更具体来说,在纳米纤维10的表面蒸镀形成层状的储氢合金1。通过多个这样的储氢纤维
8相互交叉缠绕而形成聚集体,由此形成了储氢单元7。在纳米纤维10的表面为平滑的情况下,如图所示,可实现均匀地蒸镀。纳米纤维可以使用静电纺丝法等来制作。
[0056] 图5为其它储氢纤维的纵向剖面图。此外,图6为图5的储氢纤维的横向剖面图。
[0057] 如图所示,在储氢合金1为纳米合金粒子的情况下,由Mg和Mg2Ni形成的储氢基体(储氢核)2为球状,在其周围覆盖形成球状的催化剂层3,该催化剂层3由Pd形成。即,由储氢核2和催化剂层3形成胶体。这样的纳米合金粒子附着在纳米纤维10的周围形成储氢纤维8。
[0058] 如上所述,通过适当地改变合金1的制造方法,可以得到各种各样的储氢合金1。
[0059] 图7为示出使用本发明涉及的储氢单元吸留氢时的时间和压力的关系的曲线图。
[0060] 如图所示,如果在真空状态下供给氢,则在通过储氢合金开始吸留氢的同时,压力增加。如果在时间T时停止氢的供给,则通过储氢合金进一步进行氢吸留,压力迅速降低。压力的降低表示供给的气态氢的压力的降低,表示氢被吸留。因此,可以确认进行了迅速的氢吸留。
[0061] 该试验使用如下装置来进行:在收纳了储氢单元的四方管的三方上设置,一方与压力计、另一方与真空、再一方与氢气瓶连接的装置。首先,利用真空泵进行减压直到四方管内的压力稳定(约20Pa)。接着,关闭真空泵侧的阀并打开氢侧阀。注入氢直至达到目标压力,关闭氢气瓶侧阀,利用压力计确认压力变化。在本次试验中,从107190Pa减压至320Pa。作为储氢合金,使用Mg6Ni+Pd,氢的注入在6(ml/min)的条件下以100%H2进行。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈