首页 / 专利库 / 疗法 / 透析 / 基于竹红菌素纳米晶体的水溶性竹红菌素二氧化硅纳米粒的制备方法

基于竹红菌素纳米晶体的溶性竹红菌素纳米粒的制备方法

阅读:350发布:2023-01-24

专利汇可以提供基于竹红菌素纳米晶体的溶性竹红菌素纳米粒的制备方法专利检索,专利查询,专利分析的服务。并且基于竹红菌素 纳米晶 体的 水 溶性竹红菌素 二 氧 化 硅 纳米粒的制备方法:(1)通过“再沉淀法”制备竹红菌素纳米晶体:依次加入竹红菌素溶液和二次蒸馏水,磁 力 搅拌后,用 透析 带透析,即得 水溶性 竹红菌素纳米晶体;其中竹红菌素在溶液中的浓度为1×10-4~1×10-2M;二次蒸馏水与竹红菌素溶液的体积比为2000~20∶1;(2)应用纳米 二氧化硅 对竹红菌素纳米晶体进行直接包封:依次加入竹红菌素纳米晶体水溶液、 氨 基类硅烷化合物,磁力搅拌器20小时, 冷冻干燥 后即可得水溶性竹红菌素二氧化硅纳米粒。本 发明 方法中没有引入 表面活性剂 及助表面活性剂,杂质及副产物少、 稳定性 高;1O2产率得到显著提高;方法简单,易操作。,下面是基于竹红菌素纳米晶体的溶性竹红菌素纳米粒的制备方法专利的具体信息内容。

1. 一种基于竹红菌素纳米晶体的溶性竹红菌素纳米粒的制 备方法,其特征在于,步骤如下,
(1)、通过“再沉淀法”制备竹红菌素纳米晶体;
(2)、利用单一基类硅烷化合物或多种氨基类硅烷化合物水解产生的具 有核壳结构的纳米二氧化硅对竹红菌素纳米晶体进行直接包封,制备出适合 静脉注射的水溶性竹红菌素二氧化硅纳米粒。
2. 根据权利要求1所述的基于竹红菌甲素纳米晶体的水溶性竹红菌甲 素二氧化硅纳米粒的制备方法,其特征在于,具体步骤是:
(1)、通过“再沉淀法”制备竹红菌甲素纳米晶体:在实验体系中依次加入 竹红菌素溶液和二次蒸馏水,磁搅拌10小时后,用12-14kD的透析带透 析12小时,即得水溶性竹红菌甲素纳米晶体;
其中竹红菌素在溶液中的浓度为1×10-4~1×10-2M;
二次蒸馏水与竹红菌素溶液的体积比为2000~20∶1;
(2)、应用纳米二氧化硅对竹红菌甲素纳米晶体进行直接包封:
实验体系中依次加入竹红菌素纳米晶体水溶液、单一氨基类硅烷化合物 或多种氨基类硅烷化合物,磁力搅拌器20小时,冷冻干燥后即可得基于纳 米晶体制备的水溶性竹红菌甲素二氧化硅纳米粒。
3. 根据权利要求2所述的基于竹红菌素纳米晶体的水溶性竹红菌素二 氧化硅纳米粒的制备方法,其特征在于,
其中竹红菌素纳米晶体水溶液与单一氨基类硅烷化合物或多种氨基类 硅烷化合物的体积比为1000~10∶1;
所述竹红菌素纳米晶体水溶液的浓度为14mg/L~18mg/L。
4. 根据权利要求2所述的基于竹红菌素纳米晶体的水溶性竹红菌素二 氧化硅纳米粒的制备方法,其特征在于,二次蒸馏水与竹红菌素溶液的体积 比为2000~20∶1;
所述竹红菌素纳米晶体水溶液的浓度为16mg/L左右。
5. 根据权利要求1或2或3或4所述的基于竹红菌素纳米晶体的水溶 性竹红菌素二氧化硅纳米粒的制备方法,其特征在于,所涉及的竹红菌素为 竹红菌甲素或竹红菌乙素,或竹红菌甲素的衍生物,或竹红菌乙素的衍生物。
6. 根据权利要求2或3或4所述的基于竹红菌素纳米晶体的水溶性竹 红菌素二氧化硅纳米粒的制备方法,其特征在于,所涉及的单一氨基类硅烷 化合物或多种氨基类硅烷化合物选自:N-(β-氨乙基)-γ-氨丙基-三乙氧基 硅烷、γ-氨基丙基三乙氧基硅烷、γ-氨基丙基三甲氧基硅烷,或N-(氨基乙 基)-γ氨基丙基三甲氧基硅烷。
7. 根据权利要求6所述的基于竹红菌素纳米晶体的水溶性竹红菌素二 氧化硅纳米粒的制备方法,其特征在于,所涉及的助溶剂选自二甲基亚砜、 N-N-二甲基甲酰胺、甲醇、乙醇和丙
8. 根据权利要求6所述的基于竹红菌素纳米晶体的水溶性竹红菌素二 氧化硅纳米粒的制备方法,其特征在于,在第(2)步骤加入硅烷类化合物的同 时,加入0~500uL的氨水

说明书全文

技术领域

发明属于具有光动活性的光敏剂技术领域,涉及一种基于竹红菌素 纳米晶体的溶性竹红菌素纳米粒的制备方法。

背景技术

光动力疗法(photodynamic therapy,简称PDT)是一种正在研究发展中的 新型临床治疗技术.光动力疗法于20世纪70年代末开始用于恶性肿瘤的 临床诊断和治疗研究,在抗病毒、光动力农药方面也已有成功的应用,90年 代开始向某些常规疗法难以治愈的良性常见病方向发展,如治疗鲜红斑痣、 微血管类疾病视网膜黄斑变性和动脉粥样硬化等,并取得突出进展。在临 床癌症治疗中也已取得了令人瞩目的成就,1993年加拿大卫生部首先批 准将Photofrin应用于膀胱癌和食管癌的光动力治疗,到目前为止,光动力 疗法在荷兰、法国、德国、日本和美国等国相继获得批准,还有11个欧洲 国家正在寻求获得批准.光动力疗法已被公认为临床上除手术、放疗、化疗 之外的第4种治疗癌症的方法.但是相对于疗法而言,光动力药物的发展 严重滞后,因此,高效、低毒的光敏剂仍是人们大力寻求的目标。
竹红菌素是从中国南箭竹上的一种寄生真菌-竹红菌(Hypocrella bambusae(B.et Br)Sacc.)中提取的天然光敏剂,属于3,10-二羟基-4,9-苝醌 衍生物,有竹红菌甲素(Hypocrellin A,简称HA,如结构I所示)和竹红 菌乙素(Hypocrellin B,简称HB,如结构II所示)两种主要成分,均具有 光敏产生各种活性氧的能力。民间曾用竹红菌素治疗胃病、关节炎和皮肤 病等。目前,中国一些医院已经在临床上用竹红菌素光疗法治疗某些皮肤 病(如外阴白色病变、白癫病、皮癣等)。1980年万象仪在《科学通报》 1980年第25期1148页,罗子华等人在《云南医药》1980年第一期20页 上报道竹红菌素光疗法治疗外阴白色病变和疤痕疙瘩。经过十多年来对竹 红菌素的结构、光化学、光物理、光生物、药理学等各方面的广泛系统的 研究,研究工作者发现与目前已经商品化的光敏剂(如血卟啉类衍生物) 相比,它与具有易得、易纯化、化学修饰性好、三重态量子产率高、单重 态氧量子产率高、光毒性高、体内代谢快等优点,并且该光敏剂还具有杀 灭HIV病毒(Photochemistry & Photobiology,1997,65(2):352-354)、抗单 纯性疱疹类型I病毒和Sindbis病毒的活性。另外,加拿大学者经过系统动 物毒性实验宣布竹红菌素几乎没有暗毒性(Photochem Photobiol,1997,65(4): 714-722)!因此竹红菌素被公认为是一种极有应用前景的光疗药物,在光动 力抗滋病毒、治疗肿瘤和微血管类疾病等方面有广泛的潜在应用价值。

但是,作为抗癌光疗药物而言,由于天然的竹红菌素均属于亲脂性化合 物,在水溶液中溶解度很低,当其被注射人体内后,容易在血液中发生自发 聚集,从而形成毛细血管栓塞,使其不便于制成药剂,难以直接给药,因此, 开展竹红菌素临床前期的应用基础研究,解决其血液中的有效传输等问题, 成为推动竹红菌素在光动力疗法领域中的临床应用进程的关键。目前研究者 主要通过如下两个途径来克服竹红菌素水溶性差的缺陷
(1)结构修饰合成出水溶性的竹红菌素衍生物。竹红菌素分子结构中的 芳环、酚羟基、醌羰基、七元环和甲氧基等均是可以发生取代的位置,研 究人员希望通过化学修饰在上述位置上引入具有水溶性的基团来改善竹红 菌素的水溶性,并已合成了一系列的竹红菌素衍生物,包括溴代的竹红菌 素、磺化的竹红菌素、糖苷修饰的竹红菌素、环糊精修饰的竹红菌素、 基酸修饰的竹红菌素,以及金属配合物等(科学通报,2000,45(19): 2019-2033)。在此过程中,本申请发明人也合成出了一些具有水溶性的竹 红菌素衍生物,如硫醇类化合物修饰的衍生物、酪氨酸修饰的衍生物和镧 系金属配合物等(Chem.Comm.,2003:1372-1373;Chem.Comm.,2003: 2370-2371)。然而研究结果表明这些衍生物的水溶性虽然得到明显改善,但 是这类衍生物不是导致其活性氧量子产率降低,就是增加其在血液中传输 的困难,同时通过化学修饰获得的水溶性竹红菌素衍生物在体内细胞的摄 取率也比较低,这些原因导致竹红菌素强的光动力活性受到显著的抑制, 这表明通过化学修饰的途径不能达到在不降低竹红菌素强光动力活性的基 础上,促进其在血液中有效传输的目的。
(2)构建竹红菌素水溶性的药物载体。目前使用的载体包括脂质体(磷 脂、胆固醇)、天然生物蛋白(药用明胶阿拉伯胶、人血清蛋白、牛血清蛋 白、酪蛋白)、多糖类生物大分子(海藻酸钠、壳聚糖)、可生物降解的高 分子聚合物(聚丙烯酰胺、聚甲基丙烯酸酯、聚氰基丙烯酸烷烃酯)、 天然油脂、表面活性剂、脂肪乳、无机陶瓷载体(氧化硅、氧化)等, 这些载体在助溶剂和分散剂存在下对脂溶性的竹红菌素进行包封,可以制 成适合于静脉注射的竹红菌素纳米粒子。但是利用上述的载体来包裹竹红 菌素,虽然使得肿瘤细胞吸收的药物效果比游离的药物好,却仍然存在缺 陷,这些载体或制备工艺要求高、或所制得的产品长期稳定性低、或制备 载体过程复杂、或载体本身及制备载体过程中的副产物会增加药物的毒性 等。因此寻找具有很好的水溶性和稳定性、以及制备方法简单及反应体系 简单的药物传递方式及载体成为从事光动力疗法领域研究的人们追求的目 标。
“再沉淀法”制备有机物纳米晶体的研究已经比较成熟,而将这种方法引 入光敏剂领域应用也已初现端倪(Molecular Pharmaceutics,2006,4:289- 297)。与先前的药物载体相比,该纳米晶体具有制备方法简单,对环境和温 度要求低,水溶液中稳定及不引入任何杂质等优点。而基于纳米晶体直接在 水体系中制备纳米二氧化硅载体也可以有效的简化纳米二氧化硅载体的制 备方法,并有效的保留纳米二氧化硅载体的优势,如不释放性、强的光稳定 性、pH稳定性及活性氧产生能力等。
申请人的第200710022808.X的中国专利申请,公开了一种水溶性竹 红菌素二氧化硅纳米粒的制备方法:通过单一种氨基类硅烷化合物或多种氨 基类硅烷化合物水解产生的具有核壳结构的纳米二氧化硅,在表面活性剂存 在或不存在两种情况下对竹红菌素进行包封,制备出适合静脉注射的粒径小 于150nm的水溶性竹红菌素二氧化硅纳米粒。该方法得到的纳米粒的直径小 于150nm,有利于竹红菌素类注射针剂的制备和保存。但是该方案产物的单 线态氧量子产率与竹红菌素单独存在时相比,变化不明显,如所制得的水溶 性竹红菌甲素二氧化硅纳米粒单线态氧的平均量子产率为1.16(以竹红菌素 在水溶液中的单线态氧量子产率作为基准),表明该方案在增强竹红菌素的 光敏能力方面尚不够理想,有待于进一步提高。尤其值得注意的是,该方案 中需要使用表面活性剂及助表面活性剂,在制备的水溶性竹红菌素二氧化硅 纳米粒中会有少量残留物造成的细胞毒性。

发明内容

本发明的目的在于克服现有技术的上述不足,提供一种新的基于竹红菌 素纳米晶体制备的水溶性竹红菌素二氧化硅纳米粒的制备方法,新方法可以 显著提高竹红菌素的光敏能力,如所制备的水溶性竹红菌甲素二氧化硅纳米 粒的单线态氧量子产率能达到2.02(以竹红菌甲素在水溶液中的单线态氧量 子产率作为基准),这在推进其临床应用方面具有重大意义。另外,本发明 的制备方法还将不使用表面活性剂及助表面活性剂,制备的水溶性竹红菌素 二氧化硅纳米粒中不会有残留物,可消除残留物造成的细胞毒性,达到使竹 红菌素在血液中有效传输和降低其光毒副作用的目的。本发明对推动竹红菌 素的实用化进程具有理论和实用双重意义。
本发明的技术方案是:
一种基于竹红菌素纳米晶体的水溶性竹红菌素二氧化硅纳米粒的制备 方法,其特征在于,步骤如下,
(1)、通过“再沉淀法”制备竹红菌素纳米晶体;
(2)、利用单一氨基类硅烷化合物或多种氨基类硅烷化合物水解产生的具 有核壳结构的纳米二氧化硅对竹红菌素纳米晶体进行直接包封,制备出适合 静脉注射的水溶性竹红菌素二氧化硅纳米粒。
更优化和更具体地说,上述基于竹红菌素纳米晶体的水溶性竹红菌素二 氧化硅纳米粒的制备方法,其具体步骤是:
(1)、通过“再沉淀法”制备竹红菌甲素纳米晶体:在实验体系中依次加入 竹红菌素溶液和二次蒸馏水,磁力搅拌10小时后,用12-14kD的透析带透 析12小时,即得水溶性竹红菌甲素纳米晶体;
其中竹红菌素在溶液中的浓度为1×10-4~1×10-2M;
二次蒸馏水与竹红菌素溶液的体积比为2000~20∶1;
(2)、应用纳米二氧化硅对竹红菌甲素纳米晶体进行直接包封:
实验体系中依次加入竹红菌素纳米晶体水溶液、单一氨基类硅烷化合物 或多种氨基类硅烷化合物,磁力搅拌器20小时,冷冻干燥后即可得基于纳 米晶体制备的水溶性竹红菌甲素二氧化硅纳米粒。
其中竹红菌甲素纳米晶体水溶液与单一氨基类硅烷化合物或多种氨基 类硅烷化合物的体积比为1000~10∶1。
所述竹红菌素纳米晶体水溶液的浓度为14mg/L~18mg/L。本申请推荐浓 度为16mg/L左右。
以上所述的“竹红菌素溶液”是指竹红菌素的助溶剂溶解的溶液。
本发明的优化方案有:
在第(2)步骤加入硅烷类化合物的同时,加入一定量氨水(0~500uL)。
本发明中所涉及的竹红菌素包括:竹红菌甲素、竹红菌乙素,或者竹红 菌甲素的衍生物,或竹红菌乙素的衍生物。
本发明中所涉及的单一氨基类硅烷化合物或多种氨基类硅烷化合物选 自N-(β-氨乙基)-γ-氨丙基-三乙氧基硅烷、γ-氨基丙基三乙氧基硅烷、γ- 氨基丙基三甲氧基硅烷,或N-(氨基乙基)-γ氨基丙基三甲氧基硅烷等氨 基类硅烷化合物。
本发明中所涉及的竹红菌素溶液的助溶剂可选二甲基亚砜(DMSO)、 N-N-二甲基甲酰胺(DMF)、甲醇、乙醇和丙等。
本发明所制得的水溶性竹红菌素二氧化硅纳米粒具有如下的优点:
1、本方法中没有引入表面活性剂及助表面活性剂,引入杂质及副产物 少、稳定性高,这将减少制备过程残留物造成的细胞毒性;有利于竹红菌素 类注射针剂的制备和保存。
2、单线态氧量子(1O2)产率得到显著提高,活性氧的能力得到增强, 从使其光敏能力得到显著提高,并有效提高了竹红菌素的光稳定性。光敏损 伤小牛胸腺DNA(CT DNA)实验结果表明,基于竹红菌素纳米晶体制备的 水溶性竹红菌素二氧化硅纳米粒光敏损伤DNA的能力得到显著增强。
3、本方法有效地提高了纳米二氧化硅对竹红菌甲素纳米晶体包裹的效 果。
4、制备方法简单、最大限度的简化了制备的流程,易操作。
附图说明
图1为“再沉淀法”制备得到的竹红菌甲素纳米晶体透射电镜图;
图2为基于竹红菌甲素纳米晶体制备的水溶性竹红菌甲素二氧化硅纳米 粒与竹红菌甲素水溶液(DMSO助溶)的单线态氧检测比较图。A为基于竹 红菌甲素纳米晶体制备的水溶性竹红菌甲素二氧化硅纳米粒单线态氧产生 随时间变化规律,B为竹红菌甲素水溶液(DMSO助溶)单线态氧产生随时 间变化规律;
图3为基于竹红菌甲素纳米晶体制备的水溶性竹红菌甲素二氧化硅纳米 粒与竹红菌甲素水溶液(DMSO助溶)的光降解小牛胸腺DNA(CT DNA) 效果比较图。曲线A为基于竹红菌甲素纳米晶体制备的水溶性竹红菌甲素二 氧化硅纳米粒光降解CT DNA百分比随时间变化规律,曲线B为竹红菌甲 素水溶液(DMSO助溶)光降解CT DNA百分比随时间变化规律。

具体实施方式

实施例1,基于竹红菌甲素纳米晶体的水溶性竹红菌甲素二氧化硅纳米 粒的制备方法:
实验体系中依次加入二次蒸馏水20mL和HA的DMSO溶液(3mM), 二次蒸馏水与HA溶液的体积比为200∶1;磁力搅拌器20分钟后,使用 12-14kD的透析带透析12小时,即得水溶性竹红菌甲素纳米晶体。
实验体系中依次加入竹红菌甲素纳米晶体水溶液20mL(16.35mg/L), N-(β-氨乙基)-γ-氨丙基-三乙氧基硅烷200ul,磁力搅拌器20小时,冷冻 干燥后即得基于竹红菌甲素纳米晶体制备的水溶性竹红菌甲素二氧化硅纳 米。
可参见图1、图2、图3。
实施例2,与实施例1基本相同,但所述第(2)步骤改为:实验体系中依 次加入竹红菌甲素纳米晶体水溶液20mL,N-(β-氨乙基)-γ-氨丙基-三乙氧 基硅烷200ul以及100uL氨水,磁力搅拌器20小时,冷冻干燥后即得基于 竹红菌甲素纳米晶体制备的水溶性竹红菌甲素二氧化硅纳米。
实施例3,与实施例1基本相同,但有以下改变:
所述的竹红菌甲素改用竹红菌乙素;
竹红菌乙素溶液的浓度改为1×10-4;溶剂改用N`-N`-二甲基甲酰胺;
二次蒸馏水与竹红菌乙素溶液的体积比为2000∶1;
竹红菌乙素纳米晶体水溶液与N-(β-氨乙基)-γ-氨丙基-三乙氧基硅烷 的体积比为100∶1;
其中竹红菌甲素的衍生物纳米晶体水溶液的浓度为18mg/L。
实施例4,与实施例2基本相同,但有以下改变:
竹红菌乙素溶液的浓度改为1×10-2M;溶剂改用丙酮。
二次蒸馏水与竹红菌乙素溶液的体积比为20∶1;
竹红菌乙素纳米晶体水溶液与N-(β-氨乙基)-γ-氨丙基-三乙氧基硅烷 的体积比为10∶1;
其中竹红菌甲素的衍生物纳米晶体水溶液的浓度为14mg/L。
实施例5,与实施例1基本相同,但所述的竹红菌甲素改用竹红菌甲 素的衍生物(如竹红菌甲素卤代衍生物、竹红菌甲素硫代衍生物、竹红菌甲 素胺基取代衍生物、竹红菌甲素金属金属离子络合衍生物等)。所述的HA 溶液的助溶溶剂改用DMF。
实施例6,与实施例1基本相同,但所述的竹红菌乙素改用竹红菌乙 素的衍生物(如竹红菌乙素卤代衍生物、竹红菌乙素硫代衍生物、竹红菌乙 素胺基取代衍生物、竹红菌乙素金属金属离子络合衍生物等)。
实施例7,与实施例2基本相同,但所述的竹红菌甲素改用竹红菌甲 素的衍生物(如竹红菌甲素卤代衍生物、竹红菌甲素硫代衍生物、竹红菌甲 素胺基取代衍生物、竹红菌甲素金属金属离子络合衍生物等)。
实施例8,与实施例2基本相同,但所述的竹红菌乙素改用竹红菌乙 素的衍生物(如竹红菌乙素卤代衍生物、竹红菌乙素硫代衍生物、竹红菌乙 素胺基取代衍生物、竹红菌乙素金属金属离子络合衍生物等)。
实施例9,与实施例1基本相同,但所述的氨基硅烷改用γ-氨基丙基三 乙氧基硅烷;所述的DMSO改用甲醇。
在第(2)步骤加入硅烷类化合物的同时,加入500uL的氨水。
实施例10,与实施例1基本相同,但所述的氨基硅烷改用γ-氨基丙基三 甲氧基硅烷;所述的DMSO改用乙醇;
在第(2)步骤加入硅烷类化合物的同时,加入200uL的氨水。
实施例11,与实施例1基本相同,但所述的氨基硅烷改用N-(氨基乙 基)-γ氨基丙基三甲氧基硅烷。
水溶性竹红菌甲素二氧化硅纳米粒的表征:
本发明实例中光化学性质以紫外光谱荧光光谱表征。纳米粒的形貌以 透射电镜观测。
(1)、光稳定性检测结果
比较基于竹红菌甲素纳米晶体制备的水溶性竹红菌甲素二氧化硅纳米 粒与竹红菌甲素水溶液(DMSO助溶)的光稳定性,可知基于竹红菌甲素纳 米晶体制备的水溶性竹红菌甲素二氧化硅纳米粒的光稳定性明显强于竹红 菌甲素水溶液(DMSO助溶)。
(2)、竹红菌甲素纳米晶体的电镜观察
透射电镜观察纳米粒大小及形貌,透射电镜照片显示通过“再沉淀法”制 得的竹红菌甲素纳米晶体粒径约为100nm。
(3)、单线态氧量子产率检测结果
比较基于竹红菌甲素纳米晶体制备的水溶性竹红菌甲素二氧化硅纳米 粒与竹红菌甲素水溶液(DMSO助溶)的单线态氧产生能力,可知所制得的 水溶性竹红菌甲素二氧化硅纳米粒的单线态氧产生能力明显强于竹红菌甲 素水溶液(DMSO助溶),这是纳米二氧化硅载体对活性氧的有效保护作用。
(4)、光敏损伤小牛胸腺DNA(CT DNA)实验结果
比较基于竹红菌甲素纳米晶体制备的水溶性竹红菌甲素二氧化硅纳米 粒与竹红菌甲素水溶液(DMSO助溶)的光敏损伤小牛胸腺DNA能力,可 知所制得的水溶性竹红菌甲素二氧化硅纳米粒光敏损伤小牛胸腺DNA能力 明显强于竹红菌甲素水溶液(DMSO助溶)。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈