首页 / 专利库 / 病理 / 乳腺癌 / 预防乳腺癌复发的疫苗

预防乳腺癌复发的疫苗

阅读:524发布:2020-05-13

专利汇可以提供预防乳腺癌复发的疫苗专利检索,专利查询,专利分析的服务。并且提供了诱导和维持对HER2/neu原癌基因GP2的肽的保护性细胞毒性T淋巴细胞应答的方法,其效应为在临床缓解中诱导和维持针对患者中 乳腺癌 的保护性和 治疗 性免疫性,所述患者包括具有低至中等 水 平的HER2/neu表达的患者。所述方法包括向患者施用有效量的包含可药用载体、佐剂例如GM-CSF、和GP2肽的 疫苗 组合物。该方法还包括根据降低的GP2特异性T细胞免疫性的需要,施用周期性增强疫苗剂量。还提供了用于所述方法的疫苗组合物。,下面是预防乳腺癌复发的疫苗专利的具体信息内容。

1.预防受试者乳腺癌复发的方法,其中受试者为在用标准治疗过程治疗后有所缓解,所述方法包括给予受试者下述量的组合物,所述组合物的量能有效地预防乳腺癌复发,其中所述组合物包括药学有效载体、具有SEQ ID NO:2的基酸序列的肽和粒细胞巨噬细胞集落刺激因子,并且其中组合物不包含具有SEQ ID NO:3的氨基酸序列的E75肽。
2.权利要求1的方法,其中通过注射或接种给予该组合物。
3.权利要求2的方法,其中该注射是皮内注射。
4.权利要求2的方法,其中该组合物以一个或多个分次剂量注射。
5.权利要求4的方法,其中受试者上的注射位点彼此位置隔开约5cm。
6.权利要求1的方法,其中每月给予组合物,进行6个月。
7.权利要求1的方法,还包括给予该受试者加强剂,该加强剂包括有效量的包括药学有效载体和具有SEQ ID NO:2的氨基酸序列的肽的疫苗加强剂组合物。
8.权利要求7的方法,其中在完成初次免疫方案后每6个月或12个月给予该加强剂。
9.权利要求1的方法,其中受试者是人。
10.权利要求9的方法,其中人表达人白细胞抗原A2。
11.权利要求9的方法,其中来自人的癌细胞表达可测平的HER2/neu。
12.权利要求11的方法,其中来自人的癌细胞具有低至中等的HER2/neu表达,其中低至中等的HER2/neu表达为对于HER2/neu基因表达具有免疫组织化学(IHC)等级1+或2+的蛋白表达,或荧光原位杂交(FISH)等级小于约2.0。
13.权利要求1的方法,其中粒细胞巨噬细胞集落刺激因子是重组人粒细胞巨噬细胞集落刺激因子。
14.权利要求8的方法,其中疫苗加强剂组合物还包括佐剂。
15.权利要求14的方法,其中该佐剂是粒细胞巨噬细胞集落刺激因子。
16.权利要求1的方法,其中给予该组合物诱导对于具有SEQ ID NO:2的氨基酸序列的肽的细胞毒性T淋巴细胞应答。
17.疫苗组合物,其包括可药用载体、有效量的具有SEQ ID NO:2的氨基酸序列的肽、以及粒细胞巨噬细胞集落刺激因子,并且其中组合物不包含具有SEQ ID NO:3的氨基酸序列的E75肽。
18.权利要求17的组合物,其中肽的有效量是1mg/ml,佐剂剂量为0.1和0.5mg/ml之间。
19.权利要求17的组合物,其中肽的有效量是1mg/ml,且粒细胞巨噬细胞集落刺激因子的剂量是0.25mg/ml。
20.权利要求1的方法,其中受试者不具有预先存在的针对具有SEQ ID NO:2的氨基酸序列的肽的免疫。

说明书全文

预防乳腺癌复发的疫苗

[0001] 本申请为2009年12月9日提交的、发明名称为“预防乳腺癌复发的疫苗”的PCT申请PCT/US2009/067264的分案申请,所述PCT申请进入中国国家阶段的日期为2011年6月10日,申请号为200980149494.7。
[0002] 序列表
[0003] 本申请包含通过EFS-Web递交且通过参考以其整体并入本文的序列表。所述于2009年12月7日生成的ASCII拷贝被命名为HMJ106PCT.txt,并且其大小为11,473bytes。
[0004] 政府权益
[0005] 本发明部分由政府资助完成。政府对本发明具有一定的权利。
[0006] 相关申请的交叉引用
[0007] 本申请主张2008年12月10日递交的美国临时专利申请号61/121,220的权益,其全部公开内容在此通过引用作为参考。
[0008] 背景
[0009] 乳腺癌(BCa)是女性最常见的癌症诊断并且是女性中与癌症相关死亡的第二主导因素(Ries LAG等人(编)SEER Cancer Statistics Review,1975-2003,National Cancer Institute,Bethesda,MD)。过去20年间在乳腺癌治疗中的主要进展使得无疾病生存(DFS)率显著提高。例如,已经将利用对肿瘤相关抗原反应性抗体疗法用于阻断特定的细胞过程以减缓疾病进展或者预防疾病复发。尽管近来在乳腺癌治疗上有所进展,但是相当数量的患者最终将死于复发疾病。疫苗由于易于给药,以及因为他们在感染性疾病中观察到的高成功率而是预防、减缓或者抑制复发疾病的发展的引人注意的模型。构建癌症疫苗的基本原理在理论上是直接的。然而实践中,有效的实体瘤癌症疫苗的开发仅存有限的成功。例如,一个尝试给予针对转移性黑色素瘤的肽疫苗的小组仅观察到2.6%的客观反应率(objective response)(Rosenberg SA等人,(2004)Nat.Med.10:909-15)。
[0010] 对于这一低成功率存在许多可能的解释(Campoli M等人,(2005)Cancer Treat.Res.123:61-88)。例如,即使抗原与特定类型的肿瘤细胞特异性结合,但该肿瘤细胞可以仅表达低平的抗原,或者它可以位于隐蔽位点或者屏蔽免疫检测。此外,在肿瘤生长时,它们经常通过使抗原脱落而改变它们的抗原谱。同样影响该低成功率的事实是肿瘤细胞可以表达非常低水平产生免疫应答所需的MHC蛋白以及其它的共刺激蛋白。
[0011] 在晚期癌症患者中存在其它面临针对肿瘤接种疫苗尝试的问题。此种患者趋于具有较大的原发和转移性肿瘤,并且肿瘤内部的细胞由于血流量差而可能不易接近。这与疫苗策略趋于对恶性血液病治疗更成功的观察相一致(Radford KJ等人,(2005)Pathology 37:534-50;以及Molldrem JJ(2006)Biol.Bone Marrow Transplant.12:13-8)。此外,当肿瘤变成转移性的,它们可以产生将免疫抑制因子释放到它们的微环境中的能(Campoli,
2005;以及Kortylewski M等人,(2005)Nature Med.11:1314-21)。转移性肿瘤也已经与外周血淋巴细胞的数量减少以及树突细胞功能障碍相关联(Gillanders WE等人,(2006)Breast Diseases:A Year Book and Quarterly 17:26-8)。
[0012] 虽然这些因素中的一些或全部可以造成难于开发有效的预防性或治疗性疫苗,但是主要的潜在挑战是多数肿瘤抗原是自体抗原或者与自体抗原具有高度的同源性,并且因此认为其从属于严格的免疫耐受中。因此很明显,许多基于肽的癌症疫苗(具有或没有免疫刺激辅助物)由于低免疫原性以及缺乏特异性而在临床实践上可能注定仅有有限的成功。
[0013] 在动物实验和乳腺癌患者的临床检测中,基于单抗原的原型乳腺癌疫苗已经略有小成地诱导了可测量的免疫应答。然而,所观察到的免疫应答没有转化成对于通过标准疗法(例如,手术、放射性疗法和化疗)所缓解的疾病复发的临床上显著的保护性免疫。
[0014] HER2/neu是许多上皮恶性肿瘤中表达的原癌基因(Slamon DJ等人,(1989)Science 244:707-12)。HER2/neu是表皮生长因子受体家族的成员并且编码参与调节细胞生长及繁殖的185kd酪酸激酶受体(Popescu NC等人(1989)Genomics 4:362-366;Yarden Y等人(2001)Nat Rev Mol Cell Bio 2:127-137.)。在25-30%的浸润性乳腺癌(BCa)中发现了HER2/neu的过表达和/或扩增并且这与更具攻击性的肿瘤以及更差的临床结果相关联。(Slamon DJ等人Science(1987)235:177-182;Slamon DJ等人Science(1989)244:707-12;Toikkanen S等人J ClinOncol(1992)10:1044-1048;Pritchard KI等人(2006)N.Engl.J.Med.354:2103-11.)
[0015] 主要通过免疫组织化学(IHC)和荧光原位杂交(FISH)两种检测来进行HER2/neu状+ +态的确定。IHC检测HER2/neu蛋白的过表达并且以0至3+(0=阴性,1=低表达,2=中度,和
3+=过表达)的半定量标度来报告。另一方面FISH检测HER2/neu基因的扩增(过量拷贝)并且以HER2/neu基因拷贝数与17号染色体基因拷贝数的比来表示,如果FISH≥2.0个拷贝,那么解释为“过表达”。(Hicks DG等人Hum Pathol(2005)36:250-261.)IHC和FISH的一致率约
90%。(Jacobs等人J Clin Oncol(1999)17:1533-1541.)将FISH认为是金标准,因为回顾性分析揭示了它是曲妥珠单抗(Tz)应答的较佳预测;它是更加客观且可再现的。(Press MF等人J Clin Oncol(2002)14:3095-3105;Bartlett J等人J Pathol(2003)199:411-417;
Wolff AC等人J Clin Oncol(2007)25:118-145.)
[0016] 对HER2/neu作为原癌基因的鉴定和量化带来了基于体液或抗体的被动免疫治疗,包括曲妥珠单抗( Genentech Inc.,South San Francisco,CA)的使用。曲妥珠单抗是结合HER2/neu蛋白的胞外近膜结构域的重组人化单克隆抗体。(Plosker GL等人Drugs(2006)66:449-475.)对HER2/neu过表达(IHC 3+或者FISH≥2.0)、结阳性(NP)以及转移性BCa患者指示使用Tz(Vogel CL等人J Clin Oncol(2002)20:719-726;Piccart-Gebhart MJ等人N Engl J Med(2005)353:1659-1672)且其在具有低至中度HER2/neu表达的患者中显示出非常有限的活性。( (曲妥珠单抗),prescription product 
insert,Genentech Inc,South San Francisco,CA:2000年9月修订.)
[0017] 研究的另一种免疫治疗形式是靶向对于诸如HER2/neu的肿瘤相关抗原上的表位的细胞免疫应答的接种疫苗和主动免疫治疗。HER2/neu是若干可以刺激免疫系统以识别并杀死表达HER2/neu的癌细胞的免疫原性肽的来源。(Fisk B等人J Exp Med(1995)181:2109-2117.)两种此类太被命名为E75和GP2。E75和GP2都是9氨基酸肽,它们是人白细胞抗原(HLA)-A2-限制的并且刺激CTL识别和裂解表达HER2/neu的癌细胞(Fisk B等人J Exp Med(1995)181:2109-2117;Peoples GE等人Proc Natl Acad Sci USA(1995)92:432-436)。
[0018] E75衍生自HER2/neu蛋白质的胞外结构域,并且对应于HER2/neu氨基酸序列的氨基酸369-377(KIFGSLAFL)(SEQ ID NO:3),其在美国专利No.6,514,942中表示为SEQ ID NO:11,所述专利以其整体通过参考并入本文。全长HER2/neu蛋白质序列如下所示,并且在美国专利No.5,869,445中表示为SEQ ID NO:2,所述专利以其整体通过参考并入本文:
[0019] MKLRLPASPETHLDMLRHLYQGCQVVQGNLELTYLPTNASLSFL
[0020] QDIQEVQGYVLIAHNQVRQVPLQRLRIVRGTQLFEDNYALAVLDNGDPLNNTTPVTGA
[0021] SPGGLRELQLRSLTEILKGGVLIQRNPQLCYQDTILWKDIFHKNNQLALTLIDTNRSR
[0022] ACHPCSPMCKGSRCWGESSEDCQSLTRTVCAGGCARCKGPLPTDCCHEQCAAGCTGPK
[0023] HSDCLACLHFNHSGICELHCPALVTYNTDTFFSMPNPEGRYTFGASCVTACPYNYLST
[0024] DVGSCTLVCPLHNQEVTAEDGTQRCEKCSKPCARVCYGLGMEHLREVRAVTSANIQEF
[0025] AGCKKIFGSLAFLPESFDGDPASNTAPLQPEQLQVFETLEEITGYLYISAWPDSLPDL
[0026] SVFQNLQVIRGRILHNGAYSLTLQGLGISWLGLRSLRELGSGLALIHHNTHLCFVHTV
[0027] PWDQLFRNPHQALLHTANRPEDECVGEGLACHQLCARGHCWGPGPTQCVNCSQFLRGQ
[0028] ECVEECRVLQGLPREYVNARHCLPCHPECQPQNGSVTCFGPEADQCVACAHYKDPPFC
[0029] VARCPSGVKPDLSYMPIWKFPDEEGACQPCPINCTHSCVDLDDKGCPAEQRASPLTSI
[0030] ISAVVGILLVVVLGVVFGILIKRRQQKIRKYTMRRLLQETELVEPLTPSGAMPNQAQM
[0031] RILKETELRKVKVLGSGAFGTVYKGIWIPDGENVKIPVAIKVLRENTSPKANKEILDE
[0032] AYVMAGVGSPYVSRLLGICLTSTVQLVTQLMPYGCLLDHVRENRGRLGSQDLLNWCMQ
[0033] IAKGMSYLEDVRLVHRDLAARNVLVKSPNHVKITDFGLARLLDIDETEYHADGGKVPI
[0034] KWMALESILRRRFTHQSDVWSYGVTVWELMTFGAKPYDGIPAREIPDLLEKGERLPQP
[0035] PICTIDVYMIMVKCWMIDSECRPRFRELVSEFSRMARDPQRFVVIQNEDLGPASPLDS
[0036] TFYRSLLEDDDMGDLVDAEEYLVPQQGFFCPDPAPGAGGMVHHRHRSSSTRSGGGDLT
[0037] LGLEPSEEEAPRSPLAPSEGAGSDVFDGDLGMGAAKGLQSLPTHDPSPLQRYSEDPTV
[0038] PLPSETDGYVAPLTCSPQPEYVNQPDVRPQPPSPREGPLPAARPAGATLERPKTLSPG
[0039] KNGVVKDVFAFGGAVENPEYLTPQGGAAPQPHPPPAFSPAFDNLYYWDQDPPERGAPP
[0040] STFKGTPTAENPEYLGLDVPV(SEQ ID NO:1)
[0041] 尝试了利用E75作为抗癌疫苗,例如,在过量表达HER2/neu蛋白质的患有晚期癌症患者中作为与不同免疫佐剂组合的单肽疫苗(Zaks TZ等人,(1998)Cancer Res.58:4902-8;Knutson KL等人,(2002)Clin.Cancer Res.8:1014-8;以及Murray JL等人,(2002)Clin.Cancer Res.8:3407-18);载于自体树突细胞上并且重新注入(Brossart P等人,(2000)Blood 96:3102-8;以及Kono K等人,(2002)Clin.Cancer Res.8:3394-3400);或者嵌入能够结合HLA II类分子的较长肽中以便募集CD4辅助性T细胞(Disis ML等人,(1999)Clin.Cancer Res.5:1289-97;以及Disis ML等人,(2002)J.Clin.Oncol.20:2624-32)。每种方法都刺激了E75特异的细胞毒性T细胞介导的免疫应答,但是它们在晚期乳腺癌女性中没有显示临床显著的治疗性或保护性免疫。使用E75疫苗制品无法表现出有意义的临床益处一部分是由于下述事实,E75衍生自“自体”肿瘤抗原。靶向“自体”肿瘤抗原的癌症疫苗,例如衍生自HER2/neu的那些,由于自体蛋白质的免疫耐受性特征而有特有的困难。此外,前面的研究已经关注于患有晚期疾病的癌症患者,例如III期或IV期癌症,而非在标准疗法后无病的患者。因此,这些使用E75作为抗癌疫苗的尝试没有表现出该疫苗预防或延缓缓和后的疾病的复发的能力。基于这些E75的研究,其他人最近进行了临床试验以确定E75诱导的免疫力是否赋予了预防高险乳腺癌患者的复发的临床益处。Peoples GE等人,J.Clin.Oncol.(2005)23:7536-45;Peoples GE等人,Clin Cancer Res(2008)14(3):797-
803;Holmes等人,Cancer(2008)113:1666-75。这些研究的数据表明增加的体内E75诱导的DTH应答与复发患者的降低的复发和增加的存活时间相关。
[0042] 最初由Peoples等人描述的GP2是衍生自HER2/neu蛋白质的跨膜部分的9氨基酸肽,其对应于全长序列的氨基酸654-662(即IISAVVGIL:SEQ ID NO:2)(Peoples GE等人,Proc Natl Acad Sci USA(1995)92:432-436,其通过引用以其整体并入本文)。该肽是使用来自患有乳腺癌和卵巢癌的患者的肿瘤相关淋巴细胞分离的,随后被发现在一些上皮恶性肿瘤(包括非小细胞癌和胰腺癌)中也存在(Linehan DC等人,J Immunol(1995)155:4486-4491;Peiper M等人,Surgery(1997)122:235-242;Yoshino I等人,Cancer Res(1994)54:3387-3390;Peiper M等人,Eur J Immunol(1997)27:1115-1123)。
[0043] E75对于HLA-A2分子具有高的结合亲和性,被认为是HER2/neu蛋白质的免疫显性肽。它同样也是实验室和临床研究中最有意义的HER2/neu衍生的肽。Peoples等人,J.Clin.Oncol.(2005)23:7536-45。同时也预期免疫显性肽E75诱导更有力的免疫应答。另一方面,GP2对HLA-A2具有相对差的结合亲和力,而被认为是亚优势表位。(Fisk B,等人J Exp Med(1995)181:2109-2117.)这是靶向于针对HER-2/neu表位的细胞免疫应答的疫苗策略之所以集中于E75而非GP2的原因之一。
[0044] GP2以前的研究使用了自体树突状细胞离体脉冲GP2(和其它肽)并且皮下(Brossart P等人Blood(2000)96:3102-3108)或静脉内(Dees EC等人Cancer Immunol Immunother(2004)53:777-785)再次注射到患有转移性乳腺癌或卵巢癌的HER2/neu+患者中以诱导CTL应答。Brossart等人检测了体内的肽特异性(GP2和E75)CTL应答,他们注意到,尽管有已知的在HLA-AL结合亲和力上的差异,两种肽表现出了相似的免疫应答。Dees等人评价了在转移性乳腺癌患者中的GP2-脉冲的树突细胞,能够临床记录到两名患者中的稳定疾病。但是,重要的是,没有研究使用GP2作为肽疫苗。而在两个研究中,用已经被GP2脉冲的树突细胞注射患者。此外,与E75研究类似,GP2研究限于患有晚期癌症的患者。因此,Brossart和Dees都没有证明GP2脉冲的树突细胞预防或延缓缓和后的疾病复发的能力。如E75,癌症疫苗靶向“自体”肿瘤抗原,如GP2所衍生自的HER2/neu,现今独特的困难是由于自体蛋白质的免疫耐受特征。
[0045] Peoples等人已经预先评价了使用GP2用于基于肽的乳腺癌疫苗试验,这是通过在体外用GP2-脉冲的树突细胞和自乳腺癌患者中获得的CD8T细胞进行细胞毒性测定(Mittendorf EA等人Cancer(2006)106:2309-2317.)。尽管来自这些体外实验的结果证实了在患有HER2/neu+乳腺癌女性中存在GP2特异性前体细胞毒性T淋巴细胞,但是结论是由于对给定肽的应答的多样性以及在体内抗原表达的异质性,需要用多种不同的肽(包括免疫显性肽E75)接种,来提供足够的免疫应答(Mittendorf EA等人Cancer(2006)106:2309-2317.)。
[0046] 如上所述,指示了曲妥珠单抗用于HER2/neu过量表达((IHC 3+或FISH>2.0))、结阳性(NP)的转移性乳腺癌患者,并且表现出在具有低至中等HER2/neu表达的患者中非常有限的活性。类似地,在上述研究中,接受基于E75和GP2的疫苗的患者的选择部分是基于过表达HER2/neu肿瘤的存在。因此,并不预期GP2肽疫苗在具有低至中等水平的HER2/neu肿瘤表达的癌症患者中有效。
[0047] 概述
[0048] 在一个实施方案中,本发明涉及在具有HER2/neu表达的肿瘤细胞的受试者中预防癌症复发的方法。在优选的实施方案中,该方法涉及在用标准治疗过程治疗后有所缓解的受试者中预防乳腺癌复发。在一个实施方案中,标准治疗过程是用曲妥珠单抗治疗,所述治疗可以与本文描述的方法一起继续进行。该方法包括给予受试者有效量的包括药学有效载体以及GP2肽的组合物。优选地,GP2肽具有SEQ ID NO:2的氨基酸序列。在一个实施方案中,除了GP2肽,组合物不包含任何其它的HER2/neu衍生肽,包括例如免疫显性肽E75.可以通过本领域任何适合的方法完成给药,例如接种或注射,更具体为皮内注射,其可以以一次或多次单独剂量来进行。该剂量可以包括相等浓度的肽和免疫佐剂,可以基本上同时给予,并且可以在皮肤表面的一个接种位点或者相互分开的位点给予。按月计,可以给予组合物约三至六次或者更多次直到建立保护性免疫。在一些方面中,组合物还包括诸如粒细胞巨噬细胞集落刺激因子(GM-CSF)(优选地重组人GM-CSF)的佐剂。
[0049] 在一些方面中,该方法还包括给予受试者加强疫苗(booster vaccine)剂量,其包括有效量的包括药学有效载体以及具有SEQ ID NO:2的氨基酸序列的肽的组合物。一些方面,加强剂的组合物还包括诸如GM-CSF(优选的重组人GM-CSF)的佐剂。可以通过本领域的任何合适的方式实现加强剂的给药,例如接种或注射,并且更特别地,皮内注射,其可以用一个或多个分开的剂量进行。此类剂量可以包含相等浓度的肽和免疫佐剂,可以同时大量给药,并且可以在皮肤表面的一个接种位点或者相互分开的位点给予。通常在初次免疫方案完成后给予加强剂,并且优选地在初次免疫后,根据需要每6或12个月给予。
[0050] 受试者可以是任何哺乳动物,优选人类。某些方面,人对于血液分型为人白细胞抗原A2或人白细胞抗原A3的主要的组织相容性抗原是阳性的。其它方面,来自人的癌细胞对可测水平的HER2/neu的表达是阳性的。一些方面,癌细胞表现出低或中度HER2/neu表达。例如,一些优选的方面,来自人的癌细胞具有免疫组织化学(IHC)评分为1+或2+,和/或荧光原位杂交(FISH)评分小于2.0。其它方面,来自人的癌细胞可以具有IHC评分高达3+。其它方面,来自人的癌细胞可以表现出HER2/neu的过表达。例如,一些优选的方面,来自人的癌细胞具有免疫组织化学(IHC)评分为3+和/或荧光原位杂交(FISH)评分大于或等于2.0。在其他实施方案中,人预先不存在对GP2(SEQ ID NO:2或SEQ ID NO:4)的免疫。
[0051] 在另一个实施方案中,本发明提供了用于本申请中描述的方法的组合物。另一方面,该组合物包括可药用的载体,有效量的具有SEQ ID NO:2的氨基酸序列的肽,以及诸如粒细胞巨噬细胞集落刺激因子的佐剂。优选以优化的免疫方案给予组合物。在一个实施方案中,疫苗组合物包含0.1-1mg/ml肽和0.125-0.5mg/ml佐剂。一些具体方面,疫苗组合物的优选的浓度和方案包括:(1)1mg/ml肽和0.25mg/ml佐剂,(2)0.5mg/ml肽和0.25mg/ml佐剂,(3)0.1mg/ml肽和0.25mg/ml佐剂,(4)1mg/ml肽和0.125mg/ml佐剂,以及(5)0.5mg/ml肽和0.125mg/ml佐剂,各为每月接种,至少连续6个月,然后周期性加强接种(优选地每半年或每年),持续1年、2年或3年或更多年。
[0052] 附图概述:
[0053] 所包含的附图提供对本发明的进一步的理解,并引入组成本说明书的一部分,附图多方面图解本发明,并与说明书一起用于解释本发明的原理。附图中:
[0054] 图1通过剂量组显示了针对GM-CSF剂量的平均局部反应。在四个剂量组中用肽和GM-CSF接种患者。A:100mcg肽/250mcg GM-CSF剂量组。B.500mcg肽/250mcg GM-CSF剂量组。C.1000mcg肽/250mcg GM-CSF剂量组。D.500mcg肽/125mcg GM-CSF剂量组。以毫米测量局部反应(实线)。局部反应≥100mm硬结需要GM-CSF剂量减少50%(虚线)。无肽剂量减少。
[0055] 图2显示了GP2I期试验中的所有患者的毒性和免疫应答。A:毒性-无患者经历3-5级的局部或全身毒性。B.离体免疫应答——前-最大%特异性CD8+T-细胞显著性增加(p=0.001)。C.体内免疫应答——GP2前-后DTH显著性增加(p=0.002)。也显示了生理盐水(NS)对照用于比较。
[0056] 图3显示了GP2I期试验中的患者的毒性和免疫应答,所述试验比较了无预先存在免疫性(前-二聚体<0.03)和预先存在免疫性(前-二聚体>0.03)。A.毒性-尽管没有显著增加,在无预先存在免疫的患者中毒性有少量增加。B.离体免疫应答-无预先存在免疫的患者在对接种的应答中表现出前-最大、前-后和前-长期的%特异性CD8+T细胞的统计学显著的增加(分别是p=0.003,p=0.03和p=0.01)。C.体内免疫应答——前-后DTH应答均显著增加(无p=0.03和预先存在p=0.0004)。注意到在DTH应答后无统计学显著差异(p=0.3)。
[0057] 图4显示了GP2I期试验中的所有患者的毒性和免疫应答,所述试验对比GM-CSF剂量125mcg vs 250mcg。A.毒性-尽管没有显著增加,在GM-CSF 250mcg的患者中毒性有少量增加。B.离体免疫应答-GM-CSF 125mcg前-最大%特异性CD8+T细胞没有显著增加(p=0.17),但是GM-CSF 250mcg前-最大%特异性CD8+T细胞则显著增加(p=0.005)。C.体内免疫应答-GM-CSF 125mcg和250mcg前-后DTH显著增加(分别是p=0.009,且p=0.008)。在GM-CSF 125mcg后DTH和GM-CSF 250mcg后DTH之间没有统计学显著性(p=0.1)。
[0058] 图5显示了应答GP2的离体免疫应答和表位扩展。在用GP2肽接种疫苗的应答中测量平均E75特异性CD8+T淋巴细胞。比较了接种前E75二聚体vs最大(0.8±0.2%vs.2.0±0.2%,p=0.0001),前vs后(0.8±0.2%vs.1.2±0.2%,p=0.1),以及前vs长期(0.8±
0.2%vs.1.0±0.2%;p=0.6)。注意到在GP2和E75值之间没有显著差异,但是注意到有更大的E75最大二聚体应答的趋势(2.0±0.2%vs.1.4±0.2%;p=0.07)。
[0059] 图6显示了GP2II期试验中患者的体内免疫应答。在GP2肽组(PG)中,从接种前水平到接种后水平,对GP2的DTH反应中值显著增加(1.0±0.8cm至18.0±3.1cm;p<0.0001),而在对照佐剂组(AG)中,则具有较低的程度(0.0±1.0cm至0.5±3.3cm;p<0.01)。相较于AG,在PG中接种后DTH显著更大(18.0±3.1cm vs 0.5±3.3cm,p=0.002)。
[0060] 详细说明
[0061] 将多种涉及本发明方法和其它方面的术语用于本说明书和权利要求通篇。除非另有指明,否则以本领域普通含义给出该术语。对于其他特别定义的术语,以与此处提供的定义相一致的方式来解释。
[0062] 术语“预防”的各种形式指通过任何客观或主观参数(包括放射学的或身体检查的结果)所测量,在临床缓解的患者中预先阻止或延缓乳腺癌复发(recurrence)/复发(relapse)的任何成功或该成功的任何象征。
[0063] “有效量”或“治疗有效量”在此互换使用,并且指如在此所描述的对于实现特定生物学结果有效的化合物、物质或组合物的量,该生物学结果例如但不限于在此公开、描述或示例的生物学结果。该结果可以包括但不限于由适于本领域的任何方法所测定的乳腺癌的预防,并且更具体地,复发乳腺癌的预防,例如受试者中复发的预防。最佳治疗量指实现最佳治疗结果的剂量、方案和加强剂的使用。
[0064] “可药用的”指鉴于组合物、制剂、稳定性、患者接受以及生物可利用性的度,从药学/毒理学观点讲,患者可接受的那些特性和/或物质,以及从物理/化学观点讲,对从事制造的药剂师而言可接受的那些特性和/或物质。“可药用载体”指不干扰活性成分的生物活性的效力并且对于其给予的宿主没有毒性的介质。
[0065] “保护性免疫”或“保护性免疫应答”意指受试者建立了对于抗原如在此描述和示例的乳腺癌抗原的免疫原性组分的活性免疫应答,以致在随后暴露于该抗原时,受试者的免疫系统能够靶向并破坏表达该抗原的细胞,从而减少受试者癌症复发的发病率和死亡率。本发明上下文中的保护性免疫优选由T淋巴细胞所赋予,但不排除其它。
[0066] “预存免疫”被定义为至少0.3%肽特异性二聚体水平。可以使用标准测定,例如本申请中描述的HLA-A2免疫球蛋白二聚体测定,来测量肽特异性二聚体水平。
[0067] 术语“约”当在此用于指可测值例如量、持续时间等时意指包含与该特定值有±20%或±10%,更优选±5%,甚至更优选±1%,且还更优选±0.1%的变化,该变化对于进行所公开的方法是适当的。
[0068] “肽”指任何包括通过肽键或修饰肽键(即肽电子等排体)相互连接的两个或多个氨基酸。多肽指短链(通常称作肽、寡肽或寡聚物)和较长链(通常称作蛋白质)。多肽可以含有除20种基因编码的氨基酸以外的氨基酸。多肽包括通过天然加工(例如翻译后加工)或通过本领域众所周知的化学修饰技术所修饰的氨基酸序列。此种修饰在基础课本中被充分地描述并且在专著以及很多的研究文献中被更加详细地描述。修饰可以在多肽的任何位置发生,包括肽骨架、氨基酸侧链以及氨基或羧基末端。应理解的是在给定多肽的若干位点处,可以以相同或不同程度存在相同类型的修饰。给定多肽也可以含有许多类型的修饰。作为遍在蛋白化的结果,多肽可以分支,并且他们可以是带有或不带有分支的环形。环形、分支以及分支的环形多肽可以由天然翻译后加工或者可以由合成方法所产生。修饰包括乙酰化、酰化、ADP-核糖基化、酰胺化、黄素共价结合、血红素部分的共价结合、核苷酸或核苷酸衍生物的共价结合、脂或脂衍生物的共价结合、磷脂酰肌醇的共价结合、交联、环化、二硫键形成、去甲基化、共价交联的形成、胱氨酸的形成、焦谷氨酸的形成、甲酰化、γ-羧化、糖基化、GPI锚形成、羟化、碘化、甲基化、豆蔻酰化、化、蛋白水解加工、磷酸化、异戊二烯化、外消旋化、硒化(selenoylation)、硫酸化、转运RNA介导的氨基酸向蛋白质的添加例如精氨酰化(arginylation),和遍在蛋白化。
[0069] “加强剂”指给予患者以增强、延长或维持保护性免疫以及克服由调节T细胞介导的T细胞应答下调的剂量免疫原。
[0070] “无乳腺癌”或者“无疾病”或者NED(无疾病证据)意指患者处于由目前标准护理疗法的治疗所引起的临床缓解。对于同义使用的“缓解”或“临床缓解”,其意指根据临床诊断,乳腺癌的临床体征、放射学体征以及症状已经显著减少或者完全消失,尽管癌细胞仍旧可能存在于体内。因此,认为缓解包括部分和完全缓解。残留癌细胞的存在可以通过诸如CTC(循环肿瘤细胞)检测法来计算并且可以预测复发。
[0071] “复发(Relapse)”或“复发(recurrence)”或“再现(resurgence)”在此互换使用,并且指在一段时间的改善或缓解后,乳腺癌的复发的放射照相诊断,或者复发的体征和症状。
[0072] 乳腺癌是世界范围女性主要的健康关注。迄今尝试的乳腺癌疫苗效力有限,尤其是对于预防在标准治疗过程后减轻的患者的复发。如本申请所讨论的,确定了给予HER2/neu原癌基因的肽GP2(SEQ ID NO:2)可以诱导有效的体内免疫应答,所述应答已知与无疾病患者中降低的乳腺癌复发率相关。GP2肽与MHC HLA-A2相关,并且因此可以诱导具有HLA-A2单元型的患者中的保护性免疫。HLA-A2单元型已经显示为卵巢癌(Gamzatova等人,Gynecol Oncol(2006)103:145-50)和前列腺癌(Hueman等人,Clin Cancer Res(2005)11:7470-79;De Petris等人,Med Oncol(2004)21:49-52)中的阴性预测因子,并且这一发现可能也扩展至乳腺癌。因此,HLA-A2+患者似乎表现为减轻后癌症复发的更高的风险。但是,意外证明包含GP2+GM-CSF的疫苗组合物有效诱导HLA-A2+患者中的强力的体内免疫应答,所述患者已知与较之HLA-A2-对照患者更低的乳腺癌复发风险和更长的无疾病存活相关。此外,令人惊讶地发现用GP2(亚优势表位)和GM-CSF治疗的患者表现出较之包含E75(免疫优势表位)和GM-CSF的疫苗组合物更强力的DTH应答。值得注意的是,这些结果并非通过组合GP2与另一表位(例如E75)来产生多表位疫苗而获得的,而是用单表位(即GP2)疫苗来获得的。此外,基于初步的数据,表明了GP2也可以诱导具有HLA-A3单元型的患者中的保护性免疫。
[0073] 由于GP2衍生自HER2/neu蛋白质,人们将预期过量表达HER2/neu的患者将较之那些具有低至中等HER2/neu表达的患者表现出对于基于GP2的疫苗更好的应答。例如,另一种基于HER2/neu的疗法,曲妥珠单抗( Genentech Inc.,South San Francisco,CA)仅仅被认为用于HER2/neu过表达(IHC 3+或FISH≥2.0),结阳性(NP)转移性乳腺癌患者,并且在具有低至中等的HER2/neu表达的患者中表现出非常有限的活性。但是,出人意料地观察到具有低至中等水平的HER2/neu表达的患者经历了针对GP2的强力的免疫应答,强度类似于在过量表达HER2/neu的患者中的GP2诱导的应答。
[0074] 因此,本发明的一个方案涉及诱导针对乳腺癌复发(relapse或recurrence)的保护性免疫的疫苗组合物。另一实施方案提供了诱导及维持针对乳腺癌的保护性免疫的方法,并且更具体的针对复发的乳腺癌。一些方面,本方法包括向受试者给予有效量的包括药学有效的载体、具有SEQ ID NO:2的氨基酸序列的多肽以及任选地免疫佐剂(例如GM-CSF)的组合物。SEQ ID NO:2的变体包括具有如美国专利公开号NO.20050169934(其以其整体通过参考并入本文)所描述的具有修饰的氨基酸侧链的那些,其适于在本申请的疫苗组合物和方法中使用。
[0075] 此外,已经鉴定了在密码子655处的天然存在的多态性(异亮氨酸至缬氨酸的取代),其产生具有序列IVSAVVGIL(SEQ ID NO:4)的多态型GP2肽(Papewalis等人,Nucleic Acid Res.(1991)19:5452)。这一多态型GP2肽也适合用于本申请的疫苗组合物和方法。类似地,一些小组已经调查了在GP2肽的多个位点上引入的单一、两个和三个氨基酸取代,所述位点包括锚定残基(第2位和第9位),并且发现某些氨基酸取代导致GP2与HLA-A2的增加的结合(Tanaka等人,Int J Cancer(2001)94:540-44;Kuhns等人,J Biol Chem(1999)274:36422-427;Sharma等人,J Biol Chem(2001)276:21443-449,这些参考均在此以其整体通过引用并入本文)。因此,本领域的技术人员将理解可以对GP2进行某些取代(特别是在锚定残基上),而不负面影响其诱导保护性免疫应答的能力。在一个实施方案中,除了在增加GP2肽对HLA-A2分子的亲和力的残基处的取代外,GP2肽包含SEQ ID NO:2或SEQ ID NO:4的氨基酸序列。优选地,取代发生在GP2的一个或两个锚定残基处(第2和第9位)。更优选地,取代包含在第2位的异亮氨酸至亮氨酸的取代和/或在第9位的亮氨酸至缬氨酸的取代。在另一个实施方案中,除了在下述残基处的取代外,GP2肽包含SEQ ID NO:2或SEQ ID NO:4的氨基酸序列,与包含SEQ ID NO:2的野生型GP2肽对HLA-2分子的亲和力相比,所述取代不影响GP2肽对HLA-A2分子的亲和力。用于测试GP2和HLA-A2的结合亲和力的测定是本领域已知的,并且包括例如Sharma等人,J Biol Chem(2001)276:21443-449中公开的T2细胞表面集合测定。
[0076] 在一个方面,GP2肽的氨基酸残基不超过9、10、11、12、13、14或15个。在一个实施方案中,GP2肽的氨基酸残基不超过9个。优选地,具有不超过9个氨基酸的GP2肽是SEQ ID NO:2或SEQ ID NO:4,或具有在第2位和/或第9位处的取代的SEQ ID NO:2或SEQ ID NO:4的突变形式。
[0077] 受试者可以是任何动物,并且优选哺乳动物例如人、小鼠、大鼠、仓鼠、豚鼠、兔、猫、狗、猴、、猪等。最优选人。高度优选的方面,人对于HLA-A2单元型是阳性的。其它优选的方面,人类对于人HER2/neu的表达是阳性的,优选包括具有低和/或中度表达HER2/neu的肿瘤的人类,以及作为HER2/neu的过表达者的人类。
[0078] 此外,我们的小组以前证明了曲妥珠单抗和GP2肽刺激的离体CTL之间可能的协同作用。用曲妥珠单抗预处理乳腺癌细胞,然后将其与GP2-肽诱导的CTL孵育,在三个肿瘤细胞系中,产生了较之用曲妥珠单抗或GP2-特异性CTL单独处理而言增强的细胞毒性(Mittendorf EA等人,Annals of Surgical Oncology(2006)13(8):1085-1098)。鉴于本申请中公开的用GP2的实验结果,这些发现表明在曲妥珠单抗治疗期间同时GP2接种可能是有效的组合免疫疗法。
[0079] 可以根据适于本领域的任何方法以冻干或液体制剂来配制疫苗组合物。液体形式制剂的非限制性实例包括溶液、悬剂、糖浆剂、浆液和乳剂。适合的液体载体包括任何适合的有机或无机溶剂,例如水、醇、盐水溶液、缓冲的盐水溶液、生理盐水溶液、葡萄糖溶液、丙二醇水溶液等,优选无菌形式。
[0080] 可以以中性或盐形式配制疫苗组合物。可药用的盐包括酸加成盐(由活性多肽的游离氨基形成)、及由无机酸(例如盐酸磷酸)或者有机酸(例如乙酸、草酸酒石酸、苦杏仁酸)等形成。由游离羧基形成的盐也可以源自无机例如钠、、铵、、或者的氢氧化物,以及如异丙胺、三甲基胺、2-乙氨基乙醇、组氨酸、普鲁卡因等的有机碱。
[0081] 优选配制疫苗组合物用于接种或注射受试者。对于注射,本发明的疫苗组合物可以配制为水性溶液如水或醇,或者生理上相容的缓冲液如Hank’s溶液、Ringer’s溶液或生理盐水缓冲液。该溶液可以含有配方剂如悬剂、防腐剂、稳定剂和/或分散剂。可以以固体形式制剂来制备注射制剂,该固体制剂旨在于例如使用前通过适合的介载体如无菌水、盐水溶液或醇构建于使用前不久转化成适于注射的液体形式制剂。
[0082] 也可以以缓释介载体或缓释剂配制疫苗组合物。可以通过接种或植入(例如皮下或肌肉内)或通过注射给予此长效的制剂。因此,例如可以用适合的聚合材料或疏水材料(例如作为可接受的油中的乳液)或离子交换树脂,或者作为略溶的衍生物(例如作为略溶的盐)配制疫苗组合物。脂质体和乳剂是适合用作载体的递送介载体的公知实例。
[0083] 疫苗组合物可以包括增强疫苗保护效力的活性剂,例如佐剂。佐剂包括作用于增加对GP2肽抗原的保护性免疫应答,从而降低疫苗中所需抗原量、和/或产生保护性免疫应答所需给药频率的任何化合物或多种化合物。佐剂可以包括例如乳化剂、胞壁酰二肽、阿夫立定(avridine)、水性佐剂如氢氧化、基于壳聚糖的佐剂、和本领域已知的多种皂苷、油及其他物质中的任一,例如爱菲金(Amphigen)、LPS、细菌细胞壁提取物、细菌DNA、CpG序列、合成的寡核苷酸及其组合(Schijns等人,(2000)Curr.Opin.Immunol.12:456)、草分枝杆菌(Mycobacterialphlei(M.phlei))细胞壁提取物((MCWE)(美国专利No.4,744,984))、草分枝杆菌(M.phlei)DNA(M-DNA)和M-DNA-M.phlei细胞壁复合物(MCC))。可以用作乳化剂的化合物包括天然和合成的乳化试剂,以及阴离子、阳离子和非离子化合物。合成的化合物中,阴离子乳化试剂包括例如月桂酸和油酸的钾、钠和铵盐,脂肪酸的钙、镁和铝盐,以及有机磺酸盐如硫酸月桂酯钠。合成的阳离子试剂包括例如十六烷基三甲基溴化铵,而合成的非离子试剂示例为甘油酯(例如单硬脂酸甘油酯)、聚乙二醇酯和醚,以及山梨糖醇酐脂肪酸酯(例如山梨糖醇酐单棕榈酸酯)及其聚氧乙烯衍生物(例如聚氧乙烯山梨糖醇酐单棕榈酸酯)。天然乳化试剂包括阿拉伯胶、明胶、卵磷脂和胆固醇。
[0084] 可以由油组分,例如单一油、油混合物、油包水乳液或水包油乳液来形成其他适合的佐剂。油可以是矿物油、植物油或动物油。矿物油是通过蒸馏技术获自矿脂的液体氢化合物,并且本领域也称作液体石蜡、液体矿脂或石蜡油。适合的动物油包括例如鱼肝油、大比目鱼油、鲱鱼油、罗非鱼油和鲨鱼肝油,其全部是市售可得的。适合的植物油包括例如芥花籽油、杏仁油籽油、玉米油、橄榄油花生油、红花油、芝麻油、豆油等。Freund’s完全佐剂(FCA)和Freund’s不完全佐剂(FIA)是通常用于疫苗制剂的两种常见佐剂,并且也适合用于本发明。FCA和FIA都是矿物油包水乳液;然而,FCA也含有灭活的分枝杆菌属(Mycobacterium sp.)。
[0085] 也可以将免疫调节细胞因子用于疫苗组合物以增强疫苗效力,例如作为佐剂。该细胞因子的非限制性实例包括干扰素α(IFN-α),白介素-2(IL-2),以及粒细胞巨噬细胞集落刺激因子(GM-CSF),或其组合。GM-CSF是高度优选的。
[0086] 可以使用本领域熟练技术人员公知的技术,包括但不限于混合、超声法和微流化(microfluidation)来制备包括GP2肽抗原以及还包括佐剂的疫苗组合物。佐剂可以组成约10%至约50%(v/v)的疫苗组合物,更优选约20%至约40%(v/v),并且更优选约20%至约
30%(v/v),或者这些范围内的任何整数。高度优选约25%(v/v)。
[0087] 可以通过灌注或注射(例如静脉内、肌肉内、皮内、皮下、鞘内、十二指肠内、腹膜内等)给予疫苗组合物。也可以鼻内、阴道、直肠、口服或经皮给予疫苗组合物。此外,可以通过“无针”递送体系给予疫苗组合物。优选地,通过皮内注射给予该组合物。可以在医生或医生助理的指导下给药。
[0088] 注射可以分成多次注射,此种分开接种优选地基本上同时给药。当作为分开接种给药时,免疫原的剂量优选在每个单独的注射中等分,但也非必须。如果疫苗组合物中存在佐剂,佐剂的剂量优选在每个单独的注射中等分,但也非必须。用于分开接种的单独的注射优选在患者身体上彼此基本上邻近的给予。一些优选的方面,在身体上彼此至少隔开约1cm给予注射。一些优选的方面,在身体上彼此至少隔开约2.5cm给予注射。高度优选的方面,在身体上彼此至少隔开约5cm给予注射。一些方面,在身体上彼此至少隔开约10cm给予注射。一些方面,在身体上彼此隔开大于10cm给予注射,例如在身体上彼此隔开约12.5、15、17.5、
20cm或者更多。初次免疫注射和加强剂注射可以按照在此所述和示例而作为分开接种给予。
[0089] 可以使用多种可选的药物递送体系。此种体系的非限制性实例包括脂质体和乳剂。也可以使用某些有机溶剂如二甲基亚砜。此外,可以使用缓释体系,例如含有治疗剂的固体聚合物的半渗透基质来递送疫苗。多种可用的缓释材料是本领域技术人员熟知的。缓释胶囊可以根据它们的化学性质在若干天到若干周到若干月的范围内释放疫苗组合物。
[0090] 为了预防处于乳腺癌缓解的患者乳腺癌复发,将治疗有效量的疫苗组合物给予受试者。如以本领域中的任何适合方法所测量,治疗有效量将在患者中提供GP2特异性细胞毒性T-淋巴细胞(CD8+)数量的临床显著增加,以及对于该抗原的细胞毒性T淋巴细胞应答的临床显著增加。此外,由于表位扩展,治疗有效量的GP2疫苗组合物将在患者中提供E75特异+性细胞毒性T-淋巴细胞(CD8 )的数量的增加,如本领域适合的任何方法所测量的。总体上,患者中,治疗有效量的疫苗组合物将破坏残留的微观疾病并且显著降低或消除患者中乳腺癌复发的风险。
[0091] 疫苗组合物的有效量可以取决于任何数量的变量,包括但不限于患者的物种、品种、体型、高度、重量、年龄、总体健康、制剂类型、给药模式或方式、或者是否存在显著增加患者复发乳腺癌的可能性的风险因素。此风险因素包括但不限于手术类型、淋巴结状态和阳性数量、肿瘤大小、肿瘤组织学级别、激素受体(雌激素和孕受体)存在与否、HER2/neu表达、淋巴血管浸润以及遗传倾向性(BRCA 1和2)。一些优选的方面,有效量取决于患者是淋巴结阳性或淋巴结阴性,并且如果患者是淋巴结阳性,则取决于阳性结的数量和程度。所有情况下,本领域技术人员可以使用常规优化技术和医师熟练且知情的判断以及其它对于本领域技术人员显而易见的因素来常规确定适当的有效量。优选地,在此描述的疫苗组合物的治疗有效量将对受试者提供治疗预防益处而不造成实质毒性。
[0092] 可以在细胞培养物或实验动物中通过标准药学方法(例如用于测定LD50(群体中50%致死的剂量)和ED50(群体中50%治疗有效的剂量)的方法)来确定疫苗组合物的毒性和治疗效力。毒性和治疗效果之间的剂量比是治疗指数并且它可以表示为LD50/ED50比率。
优选显示高治疗指数的疫苗组合物。可以将获自细胞培养物检测和动物研究的数据用来配制用于患者的剂量范围。此疫苗组合物的剂量优选处于包括具有少量或没有毒性的ED50的循环浓度范围内。可以根据所用剂型以及使用的给药途径在此范围内改变剂量。
[0093] 可以使用毒性信息以更加准确地确定对特定受试者如人的有用剂量。治疗医生可以由于毒性或器官功能障碍而终止、中断或调整给药,并且如果临床应答不足,可以按需要调整治疗来提高应答。预防复发乳腺癌的给药剂量数量将随患者病情的严重性、复发的相对风险或者给药途径等等因素而变化。患者病情的严重性可以例如部分通过标准预后评估方法来评估。
[0094] 可以以任何适于诱导和/或维持针对乳腺癌复发的保护性免疫,并且更具体地,诱导和/或维持对GP2和/或E75(由于表位扩展)的细胞毒性T淋巴细胞应答的方案向患者给予疫苗组合物。例如,可以按在此所述和示例向患者给予疫苗组合物作为初次免疫,随后给予加强剂以增强和/或维持保护性免疫。
[0095] 一些方面,可以每月1次、2次或更多次向患者给予疫苗组合物。优选每月一次连续6个月以建立保护性免疫应答,尤其对于初次免疫方案。一些方面,可以在初次免疫方案完成后,以常规间隔如每6个月或更多个月给予加强剂。加强剂的给药优选为每6个月。也可以视需要给予加强剂。
[0096] 只要患者需要,可以持续疫苗给药方案,包括初次免疫和加强剂给药,例如在若干年的疗程中,至患者终生。一些方面,疫苗方案包括在疫苗方案初始更频繁的给药,以及包括随着时间而较不频繁的给药(如加强剂)以维持保护性免疫。
[0097] 可以在疫苗方案初始以较低剂量给予疫苗,而随着时间以较高剂量给予。也可以在疫苗方案初始以较高剂量给予疫苗,而随着时间以较低剂量给予。可以修改和/或调整初次疫苗和加强剂给药的频率以及给予的GP2的剂量以满足个别患者的特别需要,由给药医生根据本领域的任何适合方法所确定。
[0098] 一些方面,疫苗组合物(包括作为加强剂给药的组合物)包括约0.1mg至约10mg的GP2肽。一些优选的方面,该组合物包括约0.1mg的GP2。一些优选的方面,该组合物包括约1mg的GP2。一些最优选的方面,该组合物包括约0.5mg的GP2。
[0099] 一些优选的方面,包括GP2的组合物(包括有作为加强剂给药)的疫苗组合物还包括GM-CSF。此组合物优选包括约0.01mg至约0.5mg的GM-CSF。一些优选的方面,该组合物包括约0.125mg的GM-CSF。一些优选的方面,该组合物包括约0.25mg的GM-CSF。
[0100] 一些特别优选的方面,疫苗组合物在总共1ml体积中包括约0.5mg至1mg的GP2肽以及0.125至0.250mg的GM-CSF,并且以每份0.5ml的分开接种来每月给予,通过在患者身体上隔开约5cm注射给予,同时或混合给予。给药方案优选为每月给药持续6个月。约48小时的时间后,可以对注射位点评估红斑和硬结的局部反应。如果在两位点的反应汇合并且总硬结面积测量值>100mm(或者患者感受到任何>2级的全身毒性),那么可以减少GM-CSF的剂量,例如减半,尽管预期肽剂量保持不变。如果患者在随后剂量上表现出强烈(robust)的反应,那么可以进行GM-CSF的进一步减少,例如减半。如果患者没有表现出强烈的反应,那么可以继续以较高GM-CSF剂量给予患者。一些方面,类似地确定给药方案和加强剂的剂量,开始用包括1mg GP2和0.25mg GM-CSF的疫苗组合物、在初次免疫疫苗方案结束后约每六个月给予加强剂。
[0101] 提供下列实施例以一般性地描述本发明。它们并不旨在限制本发明。
[0102] 实施例1:GP2+GM-CSF的I期试验
[0103] 患者特征和临床方案:
[0104] 这是在无疾病的乳腺癌患者中HER2/neu衍生的GP2肽与GM-CSF免疫佐剂的第一个I期临床试验。该试验得到地方伦理审查委员会(Institutional Review Boards)批准并且作为试验性新药应用在Walter Reed Army Medical Center进行。已经通过标准免疫组织化学在组织学上证明了所有患者是结节阴性的乳腺癌,表达所有水平的HER2/neu(IHC 1-3+)。在入组前,患者已经完成了手术、化疗和放射性疗法(根据需要)的标准过程,并且进行激素化学预防的那些患者仍继续它们的特定疗法。在根据合格标准以及合适的咨询并同意进行筛选后,令合适的HLA-A2+患者参与到研究中。在接种前,对患者用一组回忆抗原(Mantoux测试)进行皮试。如果患者对2种抗原以上有反应(>5mm),则认为患者是具有免疫活性的。
[0105] 我们集合并且接种了18位结节阴性、无疾病的乳腺癌患者,他们具有所有水平的HER2/neu表达(IHC 1-3+)。没有患者从该项研究中退出,也没有失去随访。患者的人口统计、预后因素和治疗模式如表1所示。
[0106] 表1.I期研究的患者的人口统计、预后因素和治疗模式
[0107]
[0108]
[0109] 接种和临床试验
[0110] 疫苗.GP2肽(HER2/neu,654-662)由NeoMPS,Inc.(San Diego,CA)以优良药品制造标准(GMP)根据联邦标准商业化生产。由高效液相色谱和质谱验证肽纯度(>95%),并通过氨基酸分析确定氨基酸含量。制造商进行无菌、内毒素(鲎阿米巴样细胞裂解物实验)和综合安全测试。在无菌盐水中将冻干肽复溶,所述盐水为下述浓度:100mcg/0.5ml,500mcg/0.5ml,和1mg/0.5ml。GP2-肽与GM-CSF(Berlex,Seattle,WA)以250mcg/0.5ml混合,并将
1.0ml接种物分为两份,在间隔5cm的两位点以相同手段皮内给予。
[0111] 接种疫苗系列.将研究按照剂量成比例增加的安全性试验来设计和进行,以确定安全性、免疫原性以及与佐剂GM-CSF组合的GP2肽的最佳剂量。将最佳剂量定义为给予最佳的体内和离体免疫应答的疫苗和佐剂的最小剂量。
[0112] 将接受6次每月接种GP2和250mcg GM-CSF的前三个剂量组的每组中分配3名患者。剂量组被列为GP2-肽(mcg):GM-CSF(mcg):#次接种疫苗,并且包括100:250:6,500:250:6和
1000:250:6。如果患者发展有测量为>100mm的局部反应或>2级的全身毒性,则将GM-CSF减少50%。在最后一组患者中,将GM-CSF减少至125mcg,从而这9名患者接受500:125:6。
[0113] 这一剂量成比例增加试验使用增加的GP2-肽剂量(100mcg,500mcg,和1000mcg)加250mcg的GM-CSF,对于前三个剂量组,每月接种疫苗,进行6次(缩写:GP2-肽(mcg):GM-CSF(mcg):#次接种疫苗–100:250:6,500:250:6和1000:250:6)。如果患者发展有测量为>100mm的局部反应或>2级全身毒性,则将GM-CSF减少50%。由于强的局部反应,前9名患者中的8名(89%)需要GM-CSF剂量减少。鉴于需要剂量减少的人数,对于第4和最后一组的9名患者,将GM-CSF的起始剂量从每次接种疫苗250mcg减少至125mcg(500:125:6)。在最后剂量组中的9名患者中仅2名(22%)需要进一步的GM-CSF剂量减少。对于接种疫苗系列,不需要肽剂量减少。图1描述了平均局部反应vs每个剂量组的平均GM-CSF。对于每次接种疫苗使用125mcg的GM-CSF起始剂量时,在接种疫苗系列中,最后剂量组中的局部反应波动较少。
[0114] 毒性:接种疫苗后1小时观察患者速发性超敏反应,并且患者在48-72小时后返回以测量他们的注射位点,并接受毒性询问。通过用于Adverse Everts 3.0版本的NCI Common Terminology cirteria将毒性分级(CTCAE)。只有不存在剂量限制性毒性时,才从一个剂量组升级至下一个剂量组,所述剂量限制性毒性被定义为超敏反应或者剂量组中的两名患者发展了≥三级毒性。
[0115] 外周血单核细胞(PBMC)的分离和培养。在每次接种疫苗前、疫苗系列完成1个月(疫苗后)和六个月(长期)后抽血。抽出50ml血液并分离PBMC。洗涤PBMC并在培养基中重悬,并用做淋巴细胞来源。
[0116] HLA-A2免疫球蛋白二聚体检测.在每次连续的接种前的基线处,以及在完成接种疫苗系列后的第1、6和12个月时,通过二聚体测定离体直接评估患者中新分离的PBMC的GP2-特异性CD8+T细胞的存在(Woll MM等人,J Clin Immunol(2004)24:449-461)。简言之,通过用过量(5mcg)的肽和0.5mcg的β2微球蛋白(Sigma,St.Louis,MO)在37℃过夜孵育1mcg二聚体,而令HLA-A2:免疫球蛋白(Ig)二聚体(PharMingen,San Diego,CA)荷载GP2、E75或对照肽(E37,叶酸结合蛋白(25-33)RIAWARTEL),然后在4℃储存至使用。洗涤PBMC并在PharMingen染色缓冲液(PharMingen)中重悬并在5ml圆底聚苯乙烯试管(Becton Dickinson,Mountain View,CA)中以5x105个细胞/100μl/管添加,并用荷载的二聚体和抗体染色。测定每位患者中应答各相继接种疫苗的GP2特异性和E75特异性CD8+细胞的水平,并且将平均接种疫苗后水平与接种疫苗前的水平进行比较。
[0117] 迟发型过敏反应(DTH)。在接种疫苗系列之前和之后进行对GP2肽的DTH反应。在背部或肢体(与接种疫苗相反的一侧)皮内注射,使用100mcg的0.5mL盐水中的GP2(无GM-CSF),与等体积的对照盐水接种物相比较。在48-72小时,使用灵敏的原子笔法二维测量DTH反应,并且报告为正交平均值。Sokol JE,Measurement of delayed skin test responses.N Engl J Med(1975)293:501-501。
[0118] 统计学分析.根据需要,使用Wilcoxon,Fisher’s精确检验或χ2,计算临床病理因素的P值。根据需要,使用成对或不成对的Student t检验,计算比较接种疫苗前和接种疫苗后的DTH的P值以及二聚体测定。当p<0.05时,认为差异是显著的。
[0119] 结果
[0120] 包含GP2和GM-CSF的组合物都是安全且高度免疫原性的。离体和体内的免疫应答似乎受到接种系列起始时GP2-特异性免疫的存在与否以及所使用的GM-CSF剂量的影响。此外,GP2接种疫苗有效产生抗原内表位扩展。
[0121] 将毒性限制为温和的局部反应(这是想要的并且作为免疫原性的替代性量度)和温和的全身应答,所述全身应答中的大多数是GM-CSF的已知副作用。没有剂量限制性毒性,且GM-CSF的剂量减少足以将系列接种疫苗所遇到的局部反应限制到≤2级。总体上,疫苗组合是良好耐受的。
[0122] 如以下更多细节所讨论的,显示了疫苗的离体免疫原性,但主要在当实施无预先存在免疫性的患者的亚组分析时是明显的。无预先存在免疫性的患者(先前定义为肽特异性二聚体水平<0.3%)达到了对GP2接种疫苗的CTL应答的最大诱导。这一应答是均一的,与GP2肽的剂量无关。具有预先存在免疫性的患者显示出了较少的CTL应答,这表示对肽接种疫苗的存在一定耐受水平或者预先优化的内源免疫应答。
[0123] 通过在接种疫苗系列之前和之后对GP2-肽(无GM-CSF)的应答的DTH反应的增加来表明GP2+GM-CSF疫苗的体内免疫原性。在每一剂量组中,这一应答的差异达到了渐增的统计学显著性。众所周知,无预先存在免疫性的患者趋向于更大的DTH反应。而且,接受250mcg GM-CSF剂量的患者趋向于更大的DTH应答,但是在更低的GM-CSF剂量组中具有预先存在免疫性的患者的百分比更高推翻了上述这一发现。因此,不清楚在250mcg GM-CSF患者中发现的差异是否是由于佐剂剂量还是由于缺乏耐受性。综上,这些DTH应答将表明在应答接种疫苗的所有组中,维持并且增强了体内免疫性。
[0124] 剂量组.这一剂量成比例增加试验使用渐增的GP2-肽剂量(100mcg,500mcg,和1000mcg)加250mcg的GM-CSF,对于前三个剂量组,每月接种疫苗,进行6次(缩写:GP2-肽(mcg):GM-CSF(mcg):#接种疫苗–100:250:6,500:250:6和1000:250:6)。如果患者产生有测量为>100mm或>2级全身毒性的局部反应,则将GM-CSF减少50%。由于强的局部反应,前9名患者中的8名(89%)需要GM-CSF剂量减少。鉴于需要剂量减少的数量,对于第4和最后一组的9名患者,将GM-CSF的起始剂量从每次接种疫苗250mcg减少至125mcg(500:125:6)。在最后剂量组中的9名患者中仅2名(22%)需要进一步的GM-CSF剂量减少。对于接种疫苗系列,不需要肽剂量减少。图1描述了平均局部反应vs每个剂量组的平均GM-CSF剂量。对于每次接种疫苗使用125mcg的GM-CSF起始剂量时,在接种疫苗系列中,最后剂量组中的局部反应波动较少。
[0125] 组合给药组.在接受总共108个剂量的GP2+GM-CSF的18位患者中,无3-5级毒性。在所有患者中,在整个系列期间发生的最大局部毒性为1级(38.9%)或2级(61.1%)。在系列期间的最大全身毒性是0级(5.6%)、1级(61.1%)和2级(33.3%)。最常见的局部反应包括红斑和硬结(100%患者)、瘙痒(25%)和炎症(23%)。最常见的全身反应是1级疲劳(40%)和1级关节痛/肌痛(15%)。总体组合的局部和全身毒性率显示在图2a中。
[0126] GP2+GM-CSF疫苗离体和体内均能够引发免疫应答。通过HLA-A2:Ig二聚体测定评估离体免疫应答,以检测循环GP2-特异性CD8+T细胞的百分比。将GP2-特异性CTL报告为平+均±标准偏差百分比的总体循环CD8群体。分析的时间点包括前-疫苗(前=0.5±0.1%),完成所有接种疫苗后一个月(后=0.6±0.1%),系列期间的最大值(最大=1.4±0.2%),以及完成所有接种疫苗后的6个月(长期=0.9±0.2%)。尽管当比较前vs最大疫苗水平时,在患者中有统计学显著的增加(p=0.0003),但是在比较前vs后或长期疫苗二聚体水平时没有显著增加(分别是p=0.7和p=0.2)(图2b)。
[0127] 使用GP2(无GM-CSF)以及盐水体积对照,通过前和后-疫苗系列DTH应答分析疫苗的体内效力。在GP2中注意到前vs后-疫苗DTH应答的统计学显著的增加(2.5±1.4mm vs.35.1±7.0mm,p=0.0002)(图2c)。
[0128] 为了更好地阐明对GP2疫苗的免疫应答,进行两个不同的亚组分析:基于预先存在GP2-特异性免疫性的存在的应答,以及基于GM-CSF的剂量的应答。提供如下。
[0129] 预先存在vs无预先存在免疫性。如以前所定义的,预先存在免疫性是肽特异性二聚体水平>0.3%(Peoples GE等人,J Clin Oncol(2005)23:7536-7545)。10名患者(56%)具有符合对GP2预先存在免疫性的二聚体水平,8名患者(44%)无预先存在免疫性。在两组前疫苗GP2-二聚体水平之间存在统计学差异(0.8+0.1%vs.0.06+0.02%,p=0.0007)。
[0130] 与预先存在免疫性的组相比,无预先存在免疫性的患者具有轻微增加的局部反应,所述局部反应具有稍微更高的局部毒性;然而并不具有统计学显著性(图3a)。
[0131] 在两组中都观察到了离体和体内免疫应答,但是在无预先存在免疫性的患者组中更强。来自无预先存在免疫性的组的GP2二聚体水平为:前vs最大(0.06±0.02%vs.1.4±0.4%;p=0.009),前vs.后(0.06±0.02%vs.0.5±0.2%;p=0.07),以及前vs.长期(0.06+0.02%vs.0.9+0.4%;p=0.06)。在10名预先存在免疫性的患者中,对接种疫苗的CTL应答为:前vs.最大(0.8±0.1%vs.1.5±0.2%;p=0.02),前vs.后(0.8±0.1%vs.0.6±
0.2%;p=0.2),以及前vs.长期(0.8±0.1vs.0.9±0.2;p=0.7)(图3b)。
[0132] 当比较体内免疫应答组时,两组在它们的前vs后DTH应答中均具有统计学显著的增加(无预先存在免疫性=3.3±2.1mm vs.43.9±14.6mm;p=0.02;以及预先存在免疫性=2.0±2.0mm vs.28.0±4.6mm;p=0.0001)。
[0133] 与具有预先存在免疫性的组的后DTH应答相比,无预先存在免疫性的患者具有更大的后DTH应答,但是这一差异不是统计学显著的(分别是43.9+14.6mm vs.28.0+4.6mm;p=0.3)(图3c)。
[0134] GM-CSF 250mcg vs.125mcg.也进行了根据两个起始剂量的GM-CSF的患者分析。在125mcg GM-CSF的最后剂量组中,局部和全身毒性均有减少,尽管无统计学显著性(图4a)。
[0135] 在250mcg剂量组(n=9)中的CTL应答为:前vs.最大(0.3±0.1%vs.1.1±0.2%;p=0.004)、前vs.后(0.3±0.1%vs.0.5±0.2%;p=0.07),以及前vs.长期(0.3±0.1%vs.0.4±0.09%;p=0.2)。在125mcg剂量组(n=9)中的CTL应答为:前vs.最大(0.8±0.2%vs.1.8±0.3%;p=0.04)、前vs.后(0.8±0.2%vs.0.6±0.2%;p=0.5),以及前vs.长期(0.8±0.2%vs.1.4±0.3%;p=0.5)(图4b)。在前至最大二聚体应答中,GM-CSF的250mcg和125mcg组均具有显著增加,且250mcg组趋向显著。这一分析可被下述事实所推翻,即33%(3/9)的250mcg组的患者具有预先存在免疫性,而77.8%(7/9)的125mcg组的患者具有预先存在免疫性。
[0136] 对于体内免疫应答,与GM-CSF剂量无关,比较前vs后疫苗测量时,所有患者具有DTH应答的统计学显著的增加(125mcg=3.8±2.5mm至24.4±5.5mm;p=0.009,250mcg=1.3±1.3mm至45.7±12.2mm;p=0.008)。接受250mcg的GM-CSF的患者趋向于更大的后-疫苗DTH应答,尽管不是统计学显著的(45.7±12.2mm vs.24.4±5.5mm;p=0.1)(图4c)。
[0137] HER2表达状态.分析了根据HER2表达(IHC 1+,IHC 2+,或IHC 3+)水平分组的患者的体内免疫应答数据,如下表2所示。所有三个组在疫苗后显示出明显的DTH反应。令人惊讶地,具有低至中等的HER2/neu表达的患者表现出的体内免疫应答在强度上类似于在IHC 3+患者中观察到的后-疫苗DTH应答。与IHC 3+患者相比,低至中等表达HER2/neu的患者还显示出趋向于在前和后-疫苗DTH应答之间统计学更加显著的差异。具体地,在DTH应答中,比较前vs后-疫苗测量时,IHC 2+患者具有统计学显著的增加(2.3±2.3mm至32.5±6.6mm;p=0.02)。具有IHC 1+和IHC 3+的患者趋向于更强的后-疫苗DTH应答,其中IHC1+患者比IHC 3+患者更接近统计学显著性(IHC 1+=2.1±2.1mm至33.0±12.8mm;p=0.06,且IHC 3+=
3.9±3.9mm至44.0±17.9mm;p=0.1)。当将低至中等表达的患者的DTH数据组合(“LE”),且与来自IHC 3+患者的DTH数据(“OE”)相比较时,出乎意料地观察到,在比较前vs后-疫苗测量时,在DTH应答中,与OE患者(3.9±3.9mm至44.0±17.9mm;p=0.1)相比,LE患者具有统计学显著的增加(2.0±1.4mm至31.7±7.1mm;p=0.002)
[0138] 表2.基于HER2表达水平的DTH应答
[0139]  IHC 1+ IHC 2+ IHC 3+ 无IHC
[0140]数量 7 5 5 1
         
GP2前-DTH        
平均±SE 2.1±2.1 2.3±2.3 3.9±3.9  
中值(范围) 0(0-14.5) 0(0-11.5) 0(0-19.5)  
         
GP2后-DTH        
平均±SE 33.0±12.8 32.5±6.6 44.0±17.9  
中值(范围) 23.5(0-104) 28(22.5-58.5) 30(14.5-114.5)  
         
p-值前-后(t-检验) 0.06 0.02 0.1  
         
         
  LE OE    
数量 13 5    
         
GP2前-DTH        
平均±SE 2.0±1.4 3.9±3.9    
中值(范围) 0(0-14.5) 0(0-19.5)    
         
GP2后-DTH        
平均±SE 31.7±7.1 44.0±17.9    
中值(范围) 24.0(0-104) 30(14.5-114.5)    
         
p-值前-后(t-检验) 0.002 0.1    
[0141] 表位扩展。最后,进行了对于用GM2+GM-CSF的接种疫苗的应答的内部-抗原性表位扩展证据的评估。进行了在接种疫苗之前、期间和之后的GP2特异性和E75特异性CTL的测量。我们观察到应答用GP2-肽接种疫苗时,E75-特异性CTL的百分比在我们比较前vs最大水平时,确实显著上升(0.8±0.2%vs.2.0±0.2%;p=0.0001),在比较前vs后-疫苗水平(0.8±0.2%vs.1.2±0.2%;p=0.1)和在比较前vs长期水平时,增加但不显著(0.8±0.2%vs.1.0±0.2%;p=0.6)。众所周知的,这些E75特异性CTL的水平在强度上类似于用E75初次接种疫苗,唯一的差异是与GP2相比,趋向于更大的E75最大二聚体应答(2.0±
0.2%vs.1.4±0.2%;p=0.07)。
[0142] 对在用更高的GM-CSF剂量起始的患者中的伴随更大的CTL应答的更强的DTH和局部反应的观察表明,免疫佐剂剂量在免疫原性以及可能在HER2/neu肽疫苗的效力中起作用。如以前报道的,更大剂量的E75+GM-CSF导致更强的DTH反应,并趋向于更少的复发以及在复发的患者中改善的存活(Peoples GE等人,Clin Cancer Res(2008)14(3):797-803)。另一用E75的近期研究表明对1000mcg EG75和250mcg GM-CSF的最佳剂量组(ODG)中的无疾病乳腺癌患者以每月接种疫苗(进行6次)施用E75和GM-CSF(1000:250:6),导致21.5mm的平均接种疫苗后DTH应答。Holmes等人,Cancer(2008)113:1666-75。次佳剂量组(SDG)的接种疫苗后DTH应答显著低于OBD。令人感兴趣地是,尽管具有更严重的疾病,ODG中的患者具有更少的疾病复发病例,表明DTH应答提供了临床结果的有用标记,并且特别地,测量对疾病复发的素因的有用标记,其中更低的DTH与更高的疾病复发的素因或更短的无疾病存活时间相关,反之亦然。
[0143] 令人惊讶地,尽管GP2对于HLA-A2具有相对差的结合亲和力,并且是亚优势的表位,但是与用免疫优势的表位E75(加GM-CSF)诱导的那些患者相比,用GP2和GM-CSF治疗的患者明显表现出更大的DTH应答。在用GP2的这一试验中,在无预先存在免疫性的患者(43.9mm)以及接受更高的GM-CSF剂量的患者(45.7mm)中观察到更大的DTH应答。特别地,对于所有GP2+GM-CSF患者而言,平均接种疫苗后的DTH应答为35.1mm,而对于E75+GM-CSF患者的平均接种疫苗后的DTH应答为11.3mm(SDG)和21.5mm(ODG)。用GP2和250mcg GM-CSF治疗的患者具有的平均接种疫苗后DTH超过类似治疗的E75OBD(1000:250:6)患者的尺寸的2倍(45.7mm vs.21.5mm)。令人惊讶地,与用免疫优势的肽E75的以前的试验相比较,对GP2的平均DTH反应大约是平均起来一半肽剂量的E75所诱导的尺寸的两倍。这些发现不仅进一步阐明了GP2的免疫原性和强调了其临床实用性,而且体内DTH数据还强有力地表明了GP2尽管是亚优势表位,应该比E75在减少乳腺癌复发上更加有效。
[0144] 实施例2:GP2+GM-CSF II期试验
[0145] 方法
[0146] 已经完成了标准佐剂疗法的无疾病、高风险乳腺癌患者在多个地点加入,并且他们随机接受6次的500mcg GP2加125mcg GM-CSF(肽组;PG)或单独125mcg的GM-CSF(佐剂组;AG)每月接种疫苗。在每次接种疫苗后评估毒性。通过测量的延迟型超敏反应(DTH)和检测GP2-特异性CD8+T-淋巴细胞的HLA-A2:免疫球蛋白二聚体测定来监控免疫应答。临床、放射线照相以及病理性地监控患者的复发。
[0147] 结果
[0148] 迄今为止,计划的200名患者中的50(27PG,23AG)名已经完成了初个系列。PG和AG具有相似的人口统计和预后特征(表3)。
[0149] 表3.II期研究的患者人口统计和预后特征
[0150]
[0151] 在PG和AG中的毒性模式几乎相同,在各臂中都无4-5级局部毒性也无3-5级全身毒性。在PG组中完成初级系列(接种疫苗后)后,对GP2的中值DTH反应比接种疫苗前水平显著增加(1.0±0.8cm至18.0±3.1cm;p<0.0001),而在AG组中程度较低(0.0±1.0cm至0.5±3.3cm;p<0.01)(图6)。与AG相比,在PG中接种疫苗后DTH显著更大(18.0±3.1cm vs 0.5±
3.3cm,p=0.002)(图6)。与45.5%(10/22)的AG患者相比,所有(27/27)PG患者在接种疫苗后通过DTH(反应大于1cm)表现出显著的免疫性(SI)。在具有接种疫苗后SI的10名AG患者中,50%(5/10)具有接种疫苗前的SI,而无SI接种疫苗后的仅为16.6%(2/12)(p=0.38)。
在PG中,完成初级系列后,在6个月时%GP2-特异性CD8+淋巴细胞自基线显著增加(0.65±
0.15至1.82±0.23,p=0.002),而在AG中没有显著改变(1.08±0.16至1.41±0.49,p=
0.45)。
[0152] 由于此为进行性多点研究,其中的患者滚动加入,复发数据仍未完成。但是,初步的数据表明,与对照AG患者相比,PG患者的复发率减少了大约50%,类似于用E75+GM-CSF治疗的患者在24个月时观察到的复发率(Peoples GE等人,Clin Cancer Res(2008)14(3):797-803)。更具体地,在中值为17.9个月的随访中,与AG中的复发率13%(3/23)相比,PG中的复发率是7.4%(2/27)(p=0.65)。随着更多的患者在24个月时和以后的随访,以及随着更多的患者加入到研究中,将可获得更多的复发率数据。
[0153] 本文引用的所有专利、专利申请和公开的参考文献通过参考以其整体引入本文。尽管本发明已经参考性地具体说明和描述了其优选的实施方案,本领域的技术人员应当理解,可以在其中进行多个姓氏和细节上的改变,而不偏离所附权利要求所包括的本发明的范围。
相关专利内容
标题 发布/更新时间 阅读量
乳腺癌标志物 2020-05-11 52
一种预防乳腺癌的内衣 2020-05-12 376
一种治疗乳腺癌的中药 2020-05-13 408
一种乳腺癌防治药物 2020-05-13 558
乳腺癌保乳标本取量台 2020-05-13 204
乳腺癌标志物 2020-05-11 212
乳腺癌治疗剂 2020-05-12 605
用于乳腺癌的piRNA 2020-05-11 575
乳腺癌标志物 2020-05-12 635
乳腺癌标志物 2020-05-11 552
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈