首页 / 专利库 / 手术 / 外科学 / 用于电外科学的功率输送阻抗调节控制

用于电外科学的功率输送阻抗调节控制

阅读:457发布:2020-05-12

专利汇可以提供用于电外科学的功率输送阻抗调节控制专利检索,专利查询,专利分析的服务。并且本 发明 提供基于比较传感的组织阻抗与各种阻抗 阈值 来控制电 外科学 功率传送的方法。 能量 作为一系列脉冲在密封周期中传送给组织。起始脉冲所具有的轮廓具有预设能量初始值,所述预设能量初始值以斜升率增加至预设最终值。在每一脉冲期间监测传感的阻抗数据,且将传感的阻抗数据与用于RF设定点的阻抗阈值、用于累积时间的阻抗阈值和用于能量减少的阻抗阈值中的每一者比较。基于在脉冲期间传感的阻抗,可 修改 后续脉冲的轮廓。在反映低组织存在的高阻抗事件的情况下,可减少能量。当其中阻抗值超过阻抗累积时间阈值的累积时间量达到密封周期持续时间限制时,停止密封周期。,下面是用于电外科学的功率输送阻抗调节控制专利的具体信息内容。

1.一种电外科学系统,包含:
RF发生器(18),所述RF发生器(18)经设置以在密封周期中通过电外科学装置(12)传送能量至目标组织,所述密封周期包含一系列脉冲,所述系列脉冲以具有轮廓的起始脉冲开始,所述轮廓包含以预设斜升率增加至预设RF平最终值的预设RF水平初始值;和比较器(170),所述比较器(170)经设置以将所述目标组织的传感的阻抗值与三个预设阻抗阈值中的每一预设阻抗阈值比较,所述阈值包含用于RF设定点的第一阻抗阈值(171)、用于累积时间的第二阻抗阈值(172)和用于能量减少的第三阻抗阈值(173),所述第二阻抗阈值(172)大于所述第一阻抗阈值(171),所述第三阻抗阈值(173)大于所述第二阻抗阈值(172);
其中所述RF发生器(18)进一步经设置以通过回应于所述传感的阻抗值与所述阻抗阈值的比较来控制在所述密封周期期间的所述能量传送,
其中所述系统经设置以当组织的累积时间显示阻抗值超过所述第二阻抗阈值(172)达到预设密封周期持续时间限制时,停止所述密封周期。
2.如权利要求1所述的电外科学系统,其中当在前置脉冲结束时所述传感的阻抗值低于用于RF设定点的所述第一阻抗阈值(171)时,所述系统经设置以控制至后续脉冲的能量传送,以使得所述后续脉冲具有与所述起始脉冲的脉冲轮廓相同的脉冲轮廓。
3.如权利要求1所述的电外科学系统,其中当在前置脉冲结束时所述传感的阻抗值超过用于RF设定点的所述第一阻抗阈值(171)时,所述系统进一步经设置以控制至后续脉冲的能量传送,以使得所述后续脉冲具有升高的能量轮廓。
4.如权利要求3所述的电外科学系统,其中所述后续脉冲的所述升高的能量轮廓包含在所述脉冲开始时从所述预设RF水平初始值直接升高至所述预设RF水平最终值。
5.如权利要求3所述的电外科学系统,其中分别与所述前置脉冲的RF初始值、RF最终值和斜升率相比,所述后续脉冲的所述升高的能量轮廓包含增加的RF初始值、增加的RF最终值和从所述后续脉冲的RF初始值到RF最终值的增加的斜升率中的任何一或多个。
6.如权利要求1所述的电外科学系统,其中当在脉冲期间的任何时刻所述传感的阻抗值超过用于能量减少的所述第三阻抗阈值(173)时,所述系统经设置以减少能量传送。
7.如权利要求6所述的电外科学系统,其中分别与前置脉冲的RF初始值、RF最终值或所述斜升率相比,能量减少包含后续脉冲的RF初始值的减少、所述后续脉冲的RF最终值的减少或从所述后续脉冲的RF初始值到RF最终值的斜升率的减少中的任何一个。
8.如权利要求6所述的电外科学系统,其中能量减少包含将正被传送的能量的量以在所述传感的阻抗值超过用于能量减少的所述第三阻抗阈值(173)时传送的能量的一分数量减少,所述分数量对应于当超过用于能量减少的阻抗阈值时,正被传送能量水平的分数百分比,或者对应于传感的阻抗值与用于能量减少的所述第三阻抗阈值(173)之间的差异。
9.一种电外科学系统,包含:
RF发生器(18),所述RF发生器(18)经设置以在密封周期中通过电外科学装置(12)传送能量至目标组织,所述密封周期包含一系列脉冲,所述系列脉冲以具有轮廓的起始脉冲开始,所述轮廓包含以预设斜升率增加至预设RF水平最终值的预设RF水平初始值;和比较器(170),所述比较器(170)经设置以将所述目标组织的传感的阻抗值与三个预设阻抗阈值中的每一预设阻抗阈值比较,所述阈值包含用于RF设定点的第一阻抗阈值(171)、用于累积时间的第二阻抗阈值(172)和用于能量减少的第三阻抗阈值(173),所述第二阻抗阈值(172)大于所述第一阻抗阈值(171),所述第三阻抗阈值(173)大于所述第二阻抗阈值(172);
其中所述RF发生器(18)进一步经设置以通过回应于所述传感的阻抗值与所述阻抗阈值的比较来控制在所述密封周期期间的所述能量传送,
其中当在前置脉冲结束时所述传感的阻抗值超过用于RF设定点的所述第一阻抗阈值(171)时,所述系统进一步经设置以控制至后续脉冲的能量传送,以使得所述后续脉冲具有升高的能量轮廓,
其中所述后续脉冲的所述升高的能量轮廓包含在所述后续脉冲开始时从所述预设RF水平初始值直接升高至所述预设RF水平最终值。

说明书全文

用于电外科学的功率输送阻抗调节控制

[0001] 相关申请案的交叉引用
[0002] 本申请案为如在2010年3月26日申请的、标题为“用于电外科学的阻抗调节功率传送(IMPEDANCE MEDIATED POWER DELIVERY FOR ELECTROSURGERY)”的Koss等人的美国专利申请案第12/748,229号的部分延续案。
[0003] 以引用的方式并入
[0004] 在本说明书中提到的所有所有公开案和专利申请案都以引用的方式在此并入本申请案中,以使得明确地且个别地指示每一单独公开案或专利申请案都在相同程度上如此并入。

技术领域

[0005] 本案涉及用于电外科学技术的系统和方法。更具体地说,本技术涉及用于电外科学系统的功率传送的阻抗调节控制和用于组织密封的方法。

背景技术

[0006] 双极电外科学仪器施加高射频(radiofrequency;RF)电流至手术部位以切割、切除凝固组织。所述电外科学效应的一种具体应用是密封内腔结构,如血管或胃肠部位,或组织边缘。典型的电外科学仪器采取一对医用镊子的形式,所述一对镊子具有定位在所述镊子的两个尖头上的电极。在电外科学流程中,当尖头在目标部位闭合时,电极处于彼此接近的位置,以使得在两个电极之间的电流路径通过在目标部位内的组织。由尖头施加的机械和电流相结合以产生希望的外科效应。
[0007] 通过控制由尖头施加的机械压力平、电极之间的间隙距离、施加到组织的电外科学能量的强度、频率和持续时间,外科医生可以针对治疗目的来凝固、烧灼或密封组织。更具体地说,控制电外科学能量传送的典型目标是在目标的密封部位之内施加产生希望效应所需的不多不少的数量精确的能量,同时最小化对目标部位的周围组织的有害效应。随着组织吸收如射频能量的能量,组织的射频能量阻抗增加。这种阻抗的增加大体被认为是已朝向治疗终点状态“经处理”组织的程度的度量。本案公开的系统和方法的实施方式的目的在于使用目标组织阻抗作为反馈信号,以适当地控制施加到目标密封部位的能量水平。
发明内容
[0008] 所提供的电外科学系统和方法的实施方式包括在密封周期中以一系列脉冲的形式将能量从电外科学装置传送至目标组织,每一脉冲具有预设持续时间。所述系列脉冲以具有轮廓的起始脉冲开始,所述轮廓包含预设RF水平初始值,所述预设RF水平初始值以预设斜升率增加至预设RF最终值。所述方法可进一步包括在每个脉冲期间发送传感的组织阻抗值至处理器,或更具体地说,发送至处理器之内的阻抗比较器元件。每一脉冲是密封周期中的后续脉冲的前置脉冲,或是最终脉冲。方法可进一步包括将传感的阻抗值与三个预设阻抗阈值中的每一值比较,所述三个预设阻抗阈值包括RF设定点的阻抗阈值、累积时间的阻抗阈值和能量减少的阻抗阈值。方法可进一步包括通过回应于传感的阻抗值与阻抗阈值的比较来控制在密封周期期间的能量传送。
[0009] 在特定实施方式中,控制能量传送包括:当显示阻抗值的组织的累积时间超过阻抗累积时间阈值达到预设密封周期持续时间限制时,停止密封周期。电外科学方法的实施方式可进一步包括记录在进行的密封周期之内的累积时间,在所述进行的密封周期期间,传感的组织阻抗值超过累积时间的阻抗阈值。
[0010] 基于传感的阻抗数据与阻抗阈值的所述比较,可发生各种电外科学操作结果。当在前置脉冲结束时传感的阻抗值低于RF设定点的阻抗阈值时,所述方法可进一步包括控制至后续脉冲的能量传送,以使得所述后续脉冲具有与起始脉冲的脉冲轮廓大体相同的脉冲轮廓。当在前置脉冲结束时传感的阻抗值超过RF设定点的阻抗阈值时,所述方法可进一步包括控制至后续脉冲的能量传送,以使得所述后续脉冲具有升高的轮廓。所述升高的脉冲轮廓可包括在脉冲开始时直接升高至RF最终值。升高的脉冲轮廓也可包括以大于前置脉冲速率的速率从RF初始值斜升至RF最终值。
[0011] 当在脉冲期间的任何时刻传感的阻抗超过用于能量减少的阻抗阈值时,所述方法可包括减少能量传送。所述能量减少可立即发生,或所述能量减少可包括等待累积的预设的经过时间量,在所述时间量期间,传感的阻抗在减少能量传送(例如,达约2秒)之前超过用于能量减少的阻抗阈值。
[0012] 减少能量传送也可包括降低RF传送水平或斜升率中的任一个。降低被传送的能量的量可包括减少能量传送达介于约1伏特至100伏特之间的量。或者,降低被传送的能量的量可包括减少能量传送达被传送的能量的一分数百分比。更具体地说,降低被传送的能量的量可包括减少能量传送达所述能量的量的一分数百分比,所述分数百分比与传感的阻抗超过能量减少值的阻抗阈值的程度成比例。
[0013] 在电外科学方法的各种实施方式中,关于脉冲的脉冲持续时间和脉冲的RF值,RF脉冲通常为可从约0.5秒至约10秒的范围中变化的每个恒定持续时间。在一系列脉冲中的脉冲数目可自1个脉冲至约30个脉冲的范围变化。在电外科学方法的各种实施方式中,累积密封终点持续时间介于约0.1秒与约5秒的范围之间。在电外科学方法的各种实施方式中,RF初始值在约25瓦特至约150瓦特的范围之内变化,且RF最终值在约50瓦特至约150瓦特的范围之内变化。
[0014] 在本方法的各种实施方式中,关于上述的阻抗阈值,RF设定点的阻抗阈值在约5欧姆至约250欧姆的范围之内,能量减少值的阻抗阈值在约100欧姆至约900欧姆的范围之内,且累积时间值的阻抗阈值在约100欧姆至约750欧姆的范围之内。
[0015] 在电外科学方法的各种实施方式中,关于从脉冲的RF初始值至RF最终值的过渡,传递能量包括在脉冲期间将被传递的能量的水平从预设RF初始值增加至预设RF最终值。在一些实施方式中,在脉冲期间增加能量水平包括以一速率斜升,所述速率介于约1瓦特/秒与约100瓦特/秒的范围之间。在一些实施方式中,在脉冲期间增加RF能量的水平包括以一或多个梯级斜升。在一些实施方式中,在脉冲期间增加能量水平可包括以恒定速率或以变化速率斜升。在更进一步实施方式中,在脉冲期间增加能量水平包含在起始脉冲之后立即升高至预设RF最终值。
[0016] 在另一方面,电外科学方法的实施方式包括在密封周期中将能量从电外科学装置传送至目标组织部位,密封周期包括一系列脉冲,每一脉冲具有预设脉冲持续时间。所述系列脉冲以具有起始脉冲轮廓的起始脉冲开始,所述起始脉冲轮廓包含预设RF水平初始值,所述预设RF水平初始值在脉冲期间增加至预设RF最终值。本方法的所述实施方式进一步包括在每一脉冲期间发送传感的组织阻抗值至处理器,每一脉冲为后续脉冲的前置脉冲或为最终脉冲。所述方法的所述后一实施方式进一步包括在密封周期期间控制能量传送,以使得:(A)取决于由起始或前置脉冲期间的组织显示的阻抗值与用于RF设定点的预设阻抗阈值的比较,后续脉冲的轮廓相对于所述后续脉冲的前置脉冲的轮廓具有相同轮廓或较高能量轮廓中的任一轮廓,(B)当传感的阻抗值超过用于能量减少的预设阈值时,能量在脉冲期间减少;且(C)当传感的阻抗已超过累积时间的预设阻抗阈值的累积时间量已累积了预设密封周期的持续时间限制时,能量传送停止。
[0017] 进一步关于电外科学方法的所述后一实施方式,当传感的阻抗超过RF设定点的预设阈值时,后续脉冲的能量轮廓超过前置脉冲的能量轮廓,且当传感的阻抗低于RF设定点的预设阈值时,后续脉冲的能量轮廓与前置脉冲的能量轮廓相同。
[0018] 相对于电外科学方法的实施方式,脉冲的能量轮廓包括RF初始值、RF最终值和在RF初始值与RF最终值之间的过渡阶段。在这些实施方式中,相对于前置脉冲,后续脉冲的下降的脉冲能量轮廓可包括:下降的RF初始值、下降的RF最终值和/或从RF初始值到RF最终值的过渡的下降速率中的任何一个。相对于前置脉冲的后续脉冲的增高的能量脉冲轮廓可包括:较高的的RF初始值、较高的的RF最终值和/或从RF初始值到RF最终值的过渡的较高速率中的任何一个。最后,从RF初始值到RF最终值的过渡包含倾斜过渡和/或阶跃过渡中的任何一个。附图说明
[0019] 图1为根据所公开技术实施方式用于电外科学的阻抗调节RF功率传送的系统的方示意图。
[0020] 图2为关于在电外科学密封周期期间的RF能量传送的可针对阻抗阈值比较传感的阻抗值的阻抗阈值和后续回应的示意图。
[0021] 图3为图示用于在电外科学密封程序期间使用传感的阻抗作为反馈数据以控制RF能量传送的所公开方法的各方面的流程图
[0022] 图4为图示用于在电外科学密封程序期间使用传感的阻抗作为反馈数据以控制RF能量传送的系统和方法的各方面的流程图。
[0023] 图5为图示根据本方法的实施方式电外科学功率传送斜升的阻抗调节控制的实例时序图。
[0024] 图6为图示根据本方法实施方式电外科学功率传送间隔的阻抗调节控制的替代实例时序图。
[0025] 图7A为图示根据本方法实施方式通过组织阻抗反馈控制的RF功率传送轮廓时序图。
[0026] 图7B为图示根据本方法实施方式在能量传送期间组织阻抗轮廓的时序图。
[0027] 图8为图示由阻抗发生急剧上升(这表示在RF电路通道中存在低组织)而修改的在能量传送期间组织阻抗轮廓的时序图。

具体实施方式

[0028] 本文提供的电外科学组织密封技术涉及作为反馈信息应用组织对RF能量的回应动力以在电外科学程序期间控制能量传送。外科最佳的组织密封在将适当水平的能量以最佳的速率被传送至目标部位时发生;过多的能量,或传送过快的能量可损害目标部位和周围组织,且过少的能量不会产生高度完整的密封。另一个考虑在于通过组织密封部位吸收给定量的能量的效应为具体的接收能量的组织类型和总组织体积的函数,所述组织类型和总组织体积两者都为在每一密封程序中起作用的变量。随着组织正在被RF能量(如通过凝结、干燥,或电灼疗法,或所述凝结、干燥,或电灼疗法的任何组合)冲击或“处理”,组织对电流的阻抗增加。阻抗中的变化通常适合因为组织的“相”或“状态”的变化。
[0029] 能量输入与组织状态的变化率之间的关系受到诸因素的影响,如组织成分、组织密度含水量电解液含量。在这些术语中,RF能量传送的最佳速率为推动组织相以最佳速率变化的速率,所述速率反映为阻抗增加的速率。可从实验和临床经验中凭经验获得阻抗最佳变化率。因此,按照由本方法的实施方式所提供,在电外科学程序期间,在组织阻抗中传感的变化为用作在管理传送至目标密封部位的RF能量的速率时的反馈的有利参数。提供本方法的理论基本原理以支持对本方法操作的理解,但没有任何将限制权利要求书于本方法的特征。识别何时缓慢地处理组织,并且作为回应而向组织缓慢地传递能量被认为是有利的。且,当快速地处理组织时,作为回应,向组织快速地传递能量是有利的。因此,将系统平衡以将能量导引至目标部位,且速度不比目标部位可通过组织处理吸收能量的速度快。因此,将组织有效地处理至适当的终点,且将超过目标组织密封部位的多余能量的传播最小化。
[0030] 如下文进一步描述,阻抗阈值可用来控制密封周期中的RF能量传送,所述密封周期包含传递至目标组织部位的一系列能量脉冲。传感的阻抗可用来如在脉冲期间,或以通过控制连续脉冲中的能量传送,以及通过在脉冲期间的任一时刻终止能量传送周期的预期方式,实时地以不同方式控制能量传送。
[0031] 图1为根据所公开技术用于电外科学的阻抗调节功率传送系统方块示意图。虽然本案的描述、实例及附图主要地涉及用于电外科学组织密封的方法的各方面,但是本技术的实施方式还包括适合或经设置以按照本方法的实施方式操作的系统和所述系统的组件的任何子集。在图1中,正在通过电外科学装置12对病人的目标组织10执行电外科学程序。如射频(RF)发生器18的能量源通过控制电路16耦接至电外科学器具。在一些实施方式中,控制电路可操作以调整电流和电压输出中任一者且,从而调整RF发生器的功率输出。控制电路还可逐步地向上或向下调整RF发生器输出,或者所述输出可在脉冲期间以选定的斜率上升或下降。
[0032] 本文提供的方法的实施方式和用于操作方法实施方式的系统适合于单通道和多通道电外科学系统操作两者。多通道系统通常包括RF发生器,所述RF发生器具有耦接至多个电极或电极对的多个输出。在利用本文所述方法的实施方式的多通道系统中,发生器可以能够个别地和独立地控制电极,以使得电极点火可相对于个别电极点火的重复或相对于相邻电极点火的相继次序而无约束地发生。换句话说,每一电极的点火参数可基于仅仅与所述电极相关联的设置和/或反馈。
[0033] 在组织治疗的部位处通过与电外科学器具相关联的一或多个传感器监测电外科学装置对组织的效应。由一或多个传感器产生的信号耦接至传感器电路14。传感器可监测环境因素和操作参数,如温度、阻抗、RF电压、RF电流、经过时间等等。在特定实施方式中,至少一些传感器监测组织阻抗和RF功率参数。
[0034] 传感器电路14产生传达至处理器15的输出信号。在按照本文描述的方法的各方面的程序的控制下操作的处理器经设置以通过向控制电路发出控制信号来调整RF发生器的输出。在这个过程中,处理器可回应于由传感器产生的信号,实时调整传送给组织的RF功率。程序可保存在存储器17中,且程序包括用于操作处理器的指令和确定如何回应于来自传感器的信号、时序以及可用于按照本方法的各方面控制能量传送的其他信息。
[0035] 由于组织是通过应用能量而进行处理,所以组织中发生的相变和状态改变将引起组织中的阻抗的变化。所提供技术的特定特征为回应于通过传感器电路,从如阻抗传感器的一或多个类型的传感器提供至处理器的信号,处理器操作控制电路的方式,因此,所提供技术的特定特征也在于能量供应给组织的方式。
[0036] 更具体地说,本方法的实施方式应用传感的阻抗以改变电外科学脉冲的轮廓的各方面,轮廓组成包括起始RF初始值、RF最终值和在脉冲从RF初始值到RF最终值的过程期间的RF传送的步进或倾斜增加中的任一个。如本文中所使用,能量输出的“斜坡”代表在能量传送的脉冲开始时的输出水平与在脉冲结束时实现的输出水平之间的差异,而“斜率”更具体地代表能量输出在脉冲期间随时间变化的速率。能量通常可在可具有预先选择或预设的恒定持续时间的一系列脉冲中传送,尽管在一些实施方式中,脉冲的长度可有变化。
[0037] 本电外科学系统和方法的实施方式监测当目标组织暴露于RF能量的脉冲时,目标组织所表现出的传感的阻抗,且在包括一系列脉冲的密封周期期间将阻抗数据与各种预设阻抗阈值比较。本系统和方法的实施方式藉由以不同的方式调整正在进行的脉冲的轮廓,藉由调整紧接或后续脉冲的轮廓,且藉由追踪朝向累积密封周期终点(密封周期终止的时刻)持续时间的时间来回应于所述比较。所述各种系统回应集体表示用于在密封周期期间控制电外科学系统的性能的各方面的方法,所述方面包括在个别RF脉冲期间和在整个密封周期期间传递的功率量。
[0038] 所述阻抗阈值包括用于RF设定点的阻抗阈值、用于累积密封周期持续时间的时序的阻抗阈值和用于能量减少的阻抗阈值。尽管所述三个阈值中的每一阈值的阻抗值包括重叠的区域,但是在本方法的典型实施方式之内的阈值可进行排序以使得RF设定点的阻抗阈值为最低阈值,累积密封周期的持续时间的阻抗阈值为中间阈值,且能量减少的阻抗阈值为最高阈值。所述阻抗阈值和所述阻抗阈值在控制能量传送时的作用在下文中进一步详细说明和描述。表1和表2,以及图2、图3和图4提供本方法的各方面的概括,其中特别要注意阻抗数据反馈到处理器中且用以控制传送至目标密封部位的能量的方式。
[0039] 在一方面,基于阻抗的功率控制方法的实施方式涉及控制在一系列脉冲之内个别脉冲的轮廓。通过本方法的实施方式传送的射频脉冲具有包括预设RF初始值和预设RF最终值的轮廓,通常所述预设RF最终值高于所述RF初始值。在脉冲的过程期间,RF能量通常以预设速率从初始值增加至最终值。在一些脉冲中,按照对如下文进一步所述的阈值阻抗值的反应,脉冲可直接从初始值阶跃至最终值。脉冲轮廓的所述参数中的每一个参数通常针对特定组织密封周期而预设,但是每一参数可在数值范围之内调整。RF初始值可介于约25与约150瓦特的范围之间;例如,典型值可为约50瓦特。RF最终值可介于约50与约150瓦特的范围之间;例如,典型值可为约150瓦特。能量可通过斜升率或斜率从RF初始值增加至RF最终值的所述斜升率或斜率可介于约1瓦特/秒与约100瓦特/秒的范围之间;例如,典型值可为约50瓦特/秒。
[0040] RF设定点的阻抗阈值通常为三个阻抗阈值中的最低阈值。这个性能控制调节阈值具有介于约5与约250欧姆的范围之间的预设值;例如,典型值为约50欧姆。系统的一些实施方式经设置以将在脉冲结束时(或脉冲最大时的)的组织阻抗与这个阈值比较,并且根据脉冲结束阻抗是低于RF设定点阈值还是超过RF设定点阈值,将后续脉冲的轮廓导引至两个路径中的一个路径中。在(前置脉冲的)结束脉冲阻抗低于这个阈值的情况下,后续脉冲可以用与前置脉冲相同的轮廓操作。
[0041] 在(前置脉冲的)结束脉冲阻抗超过RF设定点的阻抗阈值的情况下,后续脉冲可以较高能量水平的轮廓操作。升高的能量轮廓可通过增加脉冲持续时间乘以功率的积分值的任何方法发生;例如,在一个实施方式中,脉冲可以RF初始值起始且脉冲可然后直接阶跃(无衰减的斜升)至RF最终值。在其他实施方式中,在脉冲期间的能量传送的斜率可增加。在又一其他实施方式中,RF初始值或RF最终值可能增加。
[0042] 累积密封持续时间的阻抗阈值通常高于RF设定点阈值。在一些实施方式中,所述性能控制调节阈值具有介于约100欧姆与约750欧姆的范围之间的预设值;例如,典型值为约250欧姆。在电外科学程序的过程中,按照本方法的各方面的一系列脉冲所传送,目标组织的阻抗增加。这个增加理解为大体反映组织通过RF能量“处理”至适合于用作特定治疗目的的水平。因此,通过组织显示的阻抗可被认为是组织处理的标记,且处理的最佳水平可被认为是通过持续最佳持续时间吸收最佳水平的RF能量而呈现。因此,所述系统和方法可针对于记录累积持续时间的阻抗阈值处的累积时间,在达到所述阻抗阈值的累积时间之后,系统使得RF能量传送停止。停止能量传送可在累积到预设密封持续时间之后在RF脉冲期间立即发生。按照本方法的实施方式的累积密封终点持续时间可介于约0.1秒与约5秒的范围之间。
[0043] 用于能量减少的阻抗阈值通常为三个阻抗阈值中的最高阈值。在一些实施方式中,这个性能控制调节阈值具有介于约100欧姆与900欧姆的范围之间的预设值;例如,典型值为约700欧姆。在RF脉冲期间的高阻抗水平(见图8)读数可被认为是在装置的镊子之间的电外科学空间中的低组织存在的结果。毕竟,此组织为允许镊子之间的RF能量的传导的组织。在完全没有组织时,电路之内的阻抗实际上为绝对或无限的。在存在低组织的情况下,阻抗并不是无限的,但阻抗可很快变得非常高。与在镊子之间的典型量的目标组织相比,若例如组织或组织的一部分非常薄,则可能发生低组织存在。或者,在没有组织的镊子尖端之间可能有空间。电外科学系统可通过减少能量传送的水平而回应于高阻抗事件。因此,本系统的实施方式包括计时器,所述计时器经设置以记录组织正在表现出这种高阻抗水平的时间量,且在累积到预设量的累积时间之后,系统通过减少正被传送的能量的量来进行回应。
[0044] 按照本方法的实施方式的能量减少可通过减少正被传送的能量脉冲的轮廓而发生。当超过能量减少的阻抗阈值时,所述能量减少可在脉冲期间的任一时刻立即发生。在本方法的替代实施方式中,能量减少可在经过预设延迟之后发生。在又一其他实施方式中,能量减少可在后续脉冲中开始。能量减少量可通过减少能量传送的水平的方式发生,或通过减少能量在脉冲期间增加的速率的方式发生。几种方法中的任何一或多个方法可向下调整能量传送的水平。例如,能量传送可下降绝对量的瓦特数或电压。或者,能量传送的水平可下降在超过用于能量减少的阻抗阈值时,正被传送能量水平的分数百分比。在另一变化中,能量传送的水平可下降对应于传感的阻抗与用于RF能量减少的阻抗阈值之间的差异的分数部分。可以注意到,仅为了理解本方法的各方面的基本原理的目的,包括超过用于能量减少的阻抗阈值的阻抗中的异常快速增大表示少量的组织,而非正常量的组织吸收了所有传送的能量,且因此比所希望的更加快速地处理所述少量的组织。
[0045] 图2提供在电外科学程序期间在控制能量传送的方法的各方面中使用的三个阻抗阈值,以及从传感的阻抗数据被传送回到控制能量传送的系统组件得出的结果的示意图。阻抗阈值排列在图的左侧,且阻抗阈值与上升欧姆值轴对准。阻抗阈值1涉及RF设定点,阻抗阈值2涉及累积时间,且阻抗阈值3涉及能量减少。图的右侧显示在脉冲期间对感测的阻抗值的能量传送结果,感测的阻抗值在所述阈值所包含的各个范围内。所述能量传送结果涉及前置脉冲之后的脉冲(在所述脉冲期间传感阻抗)或涉及在脉冲期间的直接、实时的能量传送的结果。
[0046] 继续图2,从用于RF设定点的阻抗阈值的最低阈值开始,图右侧上的括号部分201展示属于或低于所述阈值的传感的阻抗值(通常为当时间脉冲结束时的阻抗)使后续脉冲中的能量传送的轮廓保持不变或降低。这种减少可为一次性事件,在减少之后轮廓保持恒定,或这种减少可在每一连续的脉冲中继续。如上所述,轮廓可通过向下调整RF设定点减少,或轮廓可通过减少在脉冲期间RF能量增加的速率减少。
[0047] 继续图2,从最低括号部分201向上,下一括号部分202从用于RF设定点的阻抗向上延伸至用于能量减少的阻抗阈值。图的右侧表明所述传感的阻抗(通常为在时间脉冲结束时的阻抗)已落入这部分中的前置脉冲之后的能量脉冲以升高的轮廓传送。这种增加可为一次性事件,在增加之后轮廓保持恒定,或这种增加可在每一连续的脉冲中继续。如上所述,轮廓可通过向上调整RF设定点的方式增加,或轮廓可通过增加在脉冲期间RF能量增加的速率的方式增加。
[0048] 进一步继续图2,括号部分203延伸到用于能量减少的阈值之上接近最大阻抗。在落入所述括号范围的脉冲期间的任何时刻发生的传感的阻抗值的结果为能量传送减少,同时脉冲继续进行。在一些实施方式中,能量立即减少;在其他实施方式中,能量在达几秒的延迟之后减少。如果实施了延迟,那么这种延迟是用于验证高阻抗事件为真实且持久的事件,而非由于来自阻抗传感器的瞬态或错误信号。
[0049] 最后,对于图2,大的括号部分204包括从用于累积时间的阻抗阈值向上的范围的传感的阻抗值。当传感的阻抗值超越这个阈值时,启动计时器,只要阻抗超过这个阈值,计时器就运行。如果阻抗低于这个阈值,则即使当能量减少时,计时器停止累积时间。当阻抗然后可能再次上升超过所述阈值,计时器再次累积时间。在累积到密封周期的预设累积持续时间之后,在所述周期期间的能量传送停止。
[0050] 图3为图示用于在电外科学密封程序期间使用传感的阻抗作为反馈数据以控制RF能量传送的方法的各要素的流程图。在初始步骤198中,将能量以一系列脉冲传送给目标组织部位,每一脉冲具有一轮廓,所述轮廓可能或可能并未回应于后续脉冲中传感的阻抗数据而调整。在第二步骤199中,将传感的阻抗数据发送给系统之内的阻抗阈值比较器。在第三步骤200中,将传感的阻抗数据与用于RF设定点的阻抗阈值(1)、用于预设密封周期持续时间的累积计时的阻抗阈值(2)和在脉冲期间任何时刻用于能量减少的阻抗阈值(3)相比。
[0051] 作为在比较器之内进行的比较的结果(图3),可以遵循若干结果中的任何一个结果。在传感的阻抗小于阻抗阈值1的情况201下,维持或降低后续脉冲的轮廓。在传感的阻抗大于阻抗阈值1的情况202下,维持或升高后续脉冲的轮廓。在传感的阻抗大于阻抗阈值2的情况203下,开始累计计时功能,所述功能朝向预设密封周期持续时间累积时间。当所述时间达到预设密封周期持续时间时,能量传送立即停止。在传感的阻抗大于阻抗阈值3的情况204下,能量传送在瞬时脉冲期间立即减少,或者在短期延迟之后减少,以用于验证高阻抗事件的目的。
[0052] 图4为图示用于在电外科学密封程序期间使用传感的阻抗作为反馈数据以控制RF能量传送的方法和系统的各方面的流程图。本方法的各方面利用RF脉冲轮廓的库和调节器100,所述RF脉冲轮廓包括起始轮廓101、升高轮廓102和下降轮廓103。预设起始轮廓;如表1所示,参数RF初始值、RF最终值和RF初始值与RF最终值之间的过渡(斜率或阶跃)的值都可在所述参数RF初始值、RF最终值和RF初始值与参数RF最终值之间的过渡的各自范围内变化。下降和升高轮廓的参数也按照表1的范围变化,条件是轮廓总体上分别比起始脉冲轮廓101的参数要低或者要高。
[0053] 在传送RF脉冲之前,RF脉冲选择器110选择轮廓库(101、102,或103)中的哪一个脉冲轮廓要传送给组织150。脉冲选择器110基于来自阈值比较器170的输入进行选择(进一步见下文)。RF脉冲选择器110具有驱动RF能量发生器120的设定点的输出,所述RF能量发生器120传送最终指向目标组织部位150的RF能量脉冲140。当正在传送能量时,能量通过以RF能量衰减器或减少区块130形式的中介机构,所述RF能量衰减器或减少区块130可基于来自阈值比较器170的数据实时衰减能量传送。
[0054] 目标组织部位150为通过电外科学镊子145由系统传送的RF能量140的受体,并且是传达回到系统、存储在存储器中并且由处理器处理的阻抗数据160的来源,所述处理器由阈值比较器170表示。阈值比较器执行来自目标组织的传感的阻抗数据的连续监视,并且阈值比较器将所述数据与三个特定阻抗阈值比较,如图2中所图示,并且在本方法的实施方式的概述总结的下文中进一步进行说明。
[0055] 简短地说,所述阻抗阈值包括用于RF设定点的阻抗阈值171、用于脉冲持续时间累积计时的阻抗阈值172和用于能量减少的阻抗阈值173。可以看出,阻抗数据相对于RF设定点阈值的比较结果171定向传送到轮廓选择器和调节器110中,所述轮廓选择器和调节器110然后通常回应于输入数据为后续脉冲分配升高轮廓102或下降轮廓103。阻抗数据相对于用于累积时间的阻抗阈值的比较结果172定向传送到RF能量发生器/传送区块120;若累积时间低于预设持续时间,则启用区块120以产生RF能量。当累积时间达到预设密封周期持续时间时,停止来自区块120的进一步能量传送。阻抗数据相对于能量减少的阻抗阈值的比较结果173定向传送到RF能量衰减器减少区块130。若来自阻抗比较173的数据指示阻抗低于用于能量减少的阻抗阈值,则无衰减地进行能量传送。若来自阻抗比较
173的数据指示阻抗超过用于能量减少的阻抗阈值,则实时有衰减地进行能量传送。
[0056] 在一些实施方式中,回应于组织阻抗超过用于能量减少的阻抗阈值,能量减少的量与在高阻抗事件期间被传送的能量总量成比例。在一些实施方式中,能量减少的分数量可与传感的阻抗超过用于能量减少的阻抗阈值的比例量有关。例如,若用于能量减少的阻抗阈值为300欧姆且传感的阻抗为450欧姆(大于300欧姆的阻抗阈值50%),则能量传送可减少50%。在所述成比例能量减少程序的一些实施方式中,减少是以连续实时的方式执行,回应于立即追踪传感的阻抗超过用于能量减少的阈值的程度的能量减少。
[0057] 表1总结根据所公开方法的各方面,在电外科学组织密封程序期间与射频能量和传感的目标组织阻抗的传送相关联的各种参数值。自(RF值和阻抗阈值的)范围内得到的特定值通常针对任何给定电外科学程序预设和确定,然而,所述预设值在范围之内可调。
[0058] 表1.射频密封方法参数
[0059]
[0060]
[0061] 表2概述了在前置脉冲之后,由在前置脉冲期间传感的组织阻抗控制的RF脉冲的轮廓,以及在示例性密封周期期间对传感的阻抗值的其他系统回应。
[0062] 表2.在能量传送期间对传感的组织阻抗回应的后续能量传送和密封周期终点结果
[0063]
[0064]
[0065] 传感的阻抗在电外科学组织密封周期期间控制RF能量传送的方法的实施方式总结如下。
[0066] 1.以在预设起始RF初始值的脉冲开始密封周期;在脉冲期间以预设起始RF斜升率升高功率直到功率达到RF最终值;继续在所述功率水平达预设脉冲持续时间的持续时间,且然后停止能量传送以结束脉冲。
[0067] 2.在RF起始脉冲和每个后续脉冲期间连续地获得传感的组织阻抗数据。所有传感的阻抗数据都存储在处理器可存取的存储器中。在本方法的各个方面中,来自在脉冲期间任何时刻的传感的阻抗数据都可用作用于比较三个阻抗阈值中的任何一或多个阻抗阈值的值。在本方法的一些方面中,在脉冲结束时的传感的阻抗为用于与阻抗阈值比较的特定值。
[0068] 3.将来自脉冲期间所有时刻的传感的阻抗值相对于(a)阻抗RF设定点阈值(b)用于累积计时阈值的阻抗阈值和(c)阻抗能量减少阈值进行连续比较。取决于这些比较的结果,根据以下选项(4A、4B、4C或4D)向前获得密封周期。
[0069] 4A.若在前置脉冲结束时,传感的脉冲结束阻抗值低于用于RF设定点值的阻抗阈值,则在后续脉冲期间以大体上与前置脉冲的脉冲轮廓相同的脉冲轮廓传送能量。以此方式进行密封周期直到达到预设密封持续时间,如4C中所说明。
[0070] 4B.若在脉冲结束时,传感的脉冲结束阻抗值大于用于RF设定点值的阻抗阈值,则在后续脉冲期间以高于前置脉冲的脉冲轮廓的脉冲轮廓传送能量。在本方法的一些实施方式中,所述脉冲轮廓的这种增大仅在起始脉冲之后的脉冲期间发生一次。在本方法的一些实施方式中,脉冲轮廓通过经历从RF初始值到RF最终值的直接升高而增加(而非通过起始脉冲通常的倾斜增加)。以此方式进行密封周期直到达到预设密封持续时间,如4C中所示。
[0071] 4C.若在任何脉冲期间的任何时刻,传感的阻抗超过用于累积密封时间的阻抗阈值,则启动计时器,运行达预设密封持续时间。若传感的阻抗低于这个阈值,则累积计时器停止记录时间。在完成预设密封持续时间之后,停止能量传送,因此结束密封周期。
[0072] 4D.若在任何脉冲期间的任何时刻,组织阻抗值超过用于能量减少阈值的阻抗阈值,则减少被传送的能量水平。在一些实施方式中,立即减少能量;在其他实施例中,在经过预设能量减少时间之后减少能量。在能量减少之后,进行密封周期直到再次超过用于能量减少的阻抗阈值(在此情况下,能量再次减少),或直到达到预设密封持续时间,如4C中所示,之后停止能量传送。
[0073] 图5至图8提供本文提供的电外科学组织密封方法的各方面的实例和演示。图5为图示在一系列四个脉冲(40、42、44和46)中发生的阻抗调节功率传送斜坡的实例的时序图,所述脉冲中的每一脉冲的持续时间预设为3秒。如表1中所示,脉冲间隔的长度可预设为在约0.5秒至约10秒的范围之内不同于3秒的持续时间。在本方法的实例中,脉冲(或脉冲间隔)的持续时间全部相等。在本方法的替代实施例中,通过预设时间表,或回应于在密封周期期间传感的阻抗值与阻抗阈值的比较,脉冲持续时间或间隔也可在长度上彼此不同。当脉冲在密封周期期间具有变化的持续时间时,所述脉冲可预设为在周期中在增加或减小长度,或者所述脉冲可以任何预设图案增加或减小。当脉冲长度回应于传感的阻抗值而有所不同时,长度可以任何图案增加或减小。
[0074] 在由图5提供的实例中,正被传送的能量的总量随着每一连续脉冲而减少。第一斜坡间隔40的斜率包括第一陡峭部分、平缓的中间部分和大体上水平的第三部分。在脉冲结束之后,能量降低且开始下一斜坡。在本方法的这个实施例中,回应于在前置脉冲期间的组织阻抗的变化率,每一斜坡的斜率可实时调整。第二斜坡42的斜率包括比第一斜坡40的初始部分平缓的初始部分;且第三斜坡44的斜率比第三斜坡44之前的斜坡42的初始部分平缓;且第四斜坡46的起始斜率甚至更加平缓。每一斜坡下的区域表示在斜坡期间提供给组织的总能量。因此,在这个实例中,在每一连续脉冲期间应用的能量逐渐。在系统和方法的其他实施例中,回应于传感的阻抗值,倾斜的RF值和所述倾斜的RF值之间的斜率可独立地变化。在每一脉冲中被传送的能量逐渐降低,接着将能量传送调平的这种图案代表电外科学密封周期,在所述周期中,传感的阻抗降到用于RF设定点的阻抗阈值之下。
[0075] 图6为发生在根据本方法的一方面操作的一系列三个脉冲(50、52和54)中的阻抗调节能量传送斜坡的实例的另一时序图。在图5中,向组织提供起始能量斜坡50。在此情况下,回应于组织阻抗读数和与阻抗阈值的比较,提供在起始脉冲之后的脉冲轮廓增大。一旦达到希望的阻抗,将在脉冲52和脉冲54处提供给组织的能量维持在所要水平达预定时间间隔。在每一脉冲中被传送的能量逐渐增大,接着将能量传送调平的这种图案代表电外科学密封周期,在所述周期中,传感的阻抗超过用于RF设定点的阻抗阈值。
[0076] 图7A和图7B为比较图,显示发生在由本方法的一方面提供的一系列四个3秒脉冲中的电外科学密封程序下的事件的各方面。图7A图示在程序期间传送的RF能量脉冲的轮廓,而图7B集中于一致的组织阻抗轮廓。每一脉冲的长度被称为RF脉冲持续时间,且每一密封允许的最大脉冲数被称为最大RF脉冲计数。在这种电外科学组织密封程序实例期间发生以下事件:
[0077] 1.用于组织密封程序的第一RF脉冲以被称为RF设定点初始值的功率水平开始(图7A)。
[0078] 2.RF功率水平以预设RF斜率从RF设定点初始值增加,直到功率水平达到被称为RF设定点最终值的高水平。RF功率水平保持在这个值上,直到达到3秒脉冲时间的结束为止(图7A)。
[0079] 3.在每一脉冲结束时,确定传感的组织阻抗值且将所述传感的组织阻抗值记录为RF脉冲终端阻抗(图7B),且然后将功率水平设定为零(图7A)。
[0080] 4.对于第一脉冲之后的所有脉冲,进行以下评估(图7A和图7B):
[0081] a.若RF脉冲结束阻抗低于RF设定点的阈值,则RF功率以与第一脉冲的速率相同的速率斜升。
[0082] b.若RF脉冲结束阻抗大于RF设定点的阈值,则传送的RF功率直接阶跃至RF设定点最终值。
[0083] 图7B图示涉及控制能量传送和终止电外科学程序的组织阻抗事件的过程。当组织阻抗达到用于累积时间的预先确定阻抗阈值时,密封周期终止。(检测到发生故障或出错状况也可以终止密封周期。)根据累积密封终点持续时间值停止密封程序按如下发生:
[0084] 1.使用来自RF监测硬件电路的信号确定组织阻抗。
[0085] 2.当计算的组织阻抗超过累积时间的阻抗阈值(在这个实例中是250欧姆)时,启动累积终点计时器。当计算的组织阻抗低于累积时间的阻抗阈值时(例如,当脉冲完成时),终点计时器停止。因此,计时器仅记录组织阻抗大于累积时间的阻抗阈值的总时间。
[0086] 3.当计时器累积被称为密封终点时间的预设时间量时,RF传送停止,通知系统用户已完全密封且系统处于就绪状态。
[0087] 图8提供电外科学组织密封程序的实例,所述电外科学组织密封程序经修改以在电外科学镊子的尖头之间,在目标部位之内容纳低量的组织。当组织特别薄(例如,0.5mm厚或更薄)时或当部分电极不与任何组织接触时,可能发生相对低量的组织。如上所述,低组织环境通常产生高阻抗水平。图示于图8中的事件在单个3秒脉冲中发生。以下步骤说明本方法的各方面如何介入以低组织存在进行校正。
[0088] 1.使用来自RF监测硬件电路的信号计算组织阻抗。
[0089] 2.当传感的组织阻抗超过能量减少的阻抗阈值达被称为阻抗减少时间的持续时间(在这个实例中是0.1秒)时,RF传送藉由减少被传送的RF电压而降低(见表1)。能量传送的减少反映在传感的组织阻抗的立即下降中。若组织阻抗再次超过能量减少的阻抗阈值,则RF电压将再次降低。
[0090] 3.当传感的组织阻抗超过累积时间的阻抗阈值(在这个实例中是250欧姆)时,起动终点计时器。在完成由终点计时器记录的密封终点时间(在这个实例中是1.5秒)的预先确定时间量时,终止电外科学程序或密封周期。
[0091] 除非另外定义,否则在本文中使用的所有技术术语具有如电外科学技术中的一般技术人员通常所理解的相同意义。在本案中描述了特定方法、装置和材料,但类似或等同于本文所述的所述方法和材料的任何方法和材料都可用于实践本发明。虽然已相当详细地和通过说明描述本发明的实施方式,但是所述说明仅用于清晰理解的目的,且不想要构成限制。已在本说明书中使用各种术语以传达对本发明的理解;应理解,所述各种术语的意义延伸至公共语言或语法变化或所述公共语言或语法变化的形式。也应理解,当术语代表装置或设备时,所述术语和名称是作为同期实例来提供,且本发明不受限于所述文字范围。可能合理地理解为衍生自同期术语的稍后引入的术语或指定由同期术语包含的层次子集的术语将被理解为已通过目前同期术语所描述。另外,虽然一些理论研究已发展为进一步提供对回应于吸收射频能量的动力学、关于组织阻抗的结果和利用所述动力学用于最佳控制电外科学系统和方法的理解,但是本发明的权利要求书并不受所述理论的限制。此外,在不偏离本发明的范畴的情况下,本发明的任何实施方式的任何一或多个特征可与本发明的任何其他实施方式的任何一或多个其他特征结合。更进一步,应了解本发明不限于已为了举例的目的而阐述的实施方式,而是本发明应仅通过直接阅读本专利申请案所附的权利要求书而定义,包括所述权利要求书的每一要素授权的全部范围的均等物。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈