首页 / 专利库 / 诊断设备和程序 / 医学影像学 / 心电图 / 无线式病人监护系统和方法

无线式病人监护系统和方法

阅读:192发布:2022-10-08

专利汇可以提供无线式病人监护系统和方法专利检索,专利查询,专利分析的服务。并且公开了一种有助于管理处于形成一个或多个压 力 性溃疡的 风 险中的病人的病人监护系统。该系统包括病人佩戴的无线 传感器 ,其感测病人的取向并将表示所感测到的取向的信息无线地传送给病人监护仪。病人监护仪接收、存储和处理传送的信息。它还显示和传送表示病人取向的信息,以帮助护理人员管理病人形成一个或多个压力性溃疡的风险。该系统可以识别病人的当前取向并确定病人在当前取向中的时间。如果病人超过预定持续时间保持取向,则系统可以通知病人和/或看护者应将该病人重新 定位 。,下面是无线式病人监护系统和方法专利的具体信息内容。

1.一种通过在护理人员环境中将无线生理传感器与病人监护装置配对来降低所监测病人长出一个或多个压性溃疡的险的方法,在该护理人员环境中其它无线传感器可与其它病人监护装置配对并通信,
所述生理传感器包括移动传感器、第一处理器和第一无线收发器,所述生理传感器被构造成最终相对于所监测病人的表面定位以传送信息,该信息响应于病人运动、缺少运动或两者中的一种或多种,
所述病人监护装置包括第二处理器、内存器、存储器、显示器和第二无线收发器,所述病人监护装置响应于由所述生理传感器所传送的信息,以向护理人员呈现表示所述病人的压力性溃疡的所述风险的信息,
所述方法包括:
在所述生理传感器中,启动配对操作模式;
从所述生理传感器无线地传送配对信号,所述配对信号被构造成对配对信号传送范围有效,所述配对信号包括识别所述生理传感器的信息;
在所述生理传感器中,接收来自所述病人监护装置的、确认所述生理传感器已与所述病人监护装置配对的确认信号;
在所述生理传感器中,启动病人参数感测操作模式;和
向所述病人监护装置无线地传送病人参数感测信号,所述病人参数感测信号被构造成对病人参数感测信号传送范围有效,所述病人参数感测信号包括表示所述压力性溃疡的所述风险的信息,
其中,所述配对信号传送范围被构造成远小于所述病人参数感测传送范围。
2.根据权利要求1所述的方法,其中,无线地传送所述配对信号包括无线地传送被构造成在约零(0)至约三十六(36)英寸有效的所述配对信号。
3.根据权利要求1或2所述的方法,其中,无线地传送所述配对信号包括无线地传送被构造成在约零(0)至约十二(12)英寸有效的所述配对信号。
4.根据权利要求1至3中任一项所述的方法,其中,无线地传送所述配对信号包括无线地传送被构造成在约零(0)至约六(6)英寸有效的所述配对信号。
5.根据权利要求1至4中任一项所述的方法,其中,无线地传送所述配对信号包括无线地传送被构造成在约零(0)至约三(3)英寸有效的所述配对信号。
6.根据权利要求1至5中任一项所述的方法,其中,无线地传送所述病人参数感测信号包括无线地传送被构造成在约十(10)英尺至约三十(30)英尺有效的所述病人参数感测信号。
7.根据权利要求6所述的方法,其中,无线地传送所述病人参数感测信号包括无线地传送被构造成在约十(10)英尺有效的所述病人参数感测信号。
8.根据权利要求1至7中任一项所述的方法,其中,无线地传送所述病人参数感测信号包括无线地传送被构造成在约三(3)米有效的所述病人参数感测信号。
9.根据权利要求1至8中任一项所述的方法,其中,无线地传送所述配对信号和所述病人参数感测信号包括无线地传送这样构成的所述病人参数感测信号,其相较于无线传送的所述配对信号高一个数量级有效。
10.根据权利要求1至9中任一项所述的方法,其中,
传送所述配对信号和所述病人参数感测信号还包括向扩展器/中继器传送,和接收所述确认信号还包括从所述扩展器/中继器接收。
11.根据权利要求1至10中任一项所述的方法,包括:
使用所述病人移动传感器的加速度计来感测加速度并且使用所述病人移动传感器的陀螺仪来感测速度;
凭借所述第一处理器处理响应于所述感测到的加速度和角速度的信号;和
凭借所述第一无线收发器传送响应于所述处理的所述病人参数感测信号。
12.根据权利要求1至11中任一项所述的方法,其中,传送所述配对信号还包括传送表示所述无线生理传感器先前已被激活的消息。
13.根据权利要求1至12中任一项所述的方法,其中,传送所述配对信号还包括传送表示与所述生理传感器相关联的质量标准已降低的通知。
14.根据权利要求1至13中任一项所述的方法,其中,传送所述病人参数感测信号还包括传送表示所述生理传感器接近使用寿命尽头的消息。
15.根据权利要求1至14中任一项所述的方法,其中,启动所述配对操作模式还包括激活所述无线生理传感器。
16.根据权利要求15所述的方法,其中,激活所述无线生理传感器包括从所述无线生理传感器移除电池绝缘件。
17.根据权利要求15所述的方法,其中,激活所述无线生理传感器包括按压所述无线生理传感器上的按钮达预定持续时间。
18.一种通过在护理人员环境中将无线生理传感器与病人监护装置配对来降低所监测病人长出一个或多个压力性溃疡的风险的方法,在该护理人员环境中其它无线传感器可与其它病人监护装置配对并通信,
所述生理传感器包括移动传感器、第一处理器和第一无线收发器,所述生理传感器被构造成最终相对于所监测的病人的表面定位,以传送信息,该信息响应于所述病人移动、过少移动或两者中的一种或多种,
所述病人监护装置包括第二处理器、内存器、存储器、显示器和第二无线收发器,所述病人监护装置响应于来自所述生理传感器所传送的信息,以向护理人员呈现表示所述压力性溃疡的所述风险的信息,
该方法包括:
在所述病人监护装置中,接收从所述无线生理传感器传送的配对信号,其中所述传送的配对信号被构造成对配对信号传送范围有效,所述配对信号包括识别所述生理传感器的信息;
在所述病人监护装置中,将所述无线生理传感器与所述病人监护装置相关联;
向所述无线生理传感器传送确认信号,确认所述无线生理传感器与所述病人监护装置相关联;和
在所述病人监护装置中,接收从所述生理传感器传送的病人参数感测信号,其中,传送的病人参数感测信号被构造成对病人参数感测信号传送范围有效,所述病人参数感测信号包括表示所述压力性溃疡的所述风险的信息,
其中,所述配对信号传送范围远小于所述病人参数感测传送范围。
19.根据权利要求18所述的方法,其中,所述病人参数感测信号响应于所述病人在第一时间段和第二时间段的取向;该方法包括处理所述病人参数感测信号以判断所述病人参数感测信号在所述第一时间段和所述第二时间段之间是否存在表示病人翻身的足够的差值。
20.根据权利要求18或19所述的方法,其中,所述病人参数感测信号响应于包括数据元素的传感器数据向量;该方法包括以电子方式:
处理所述数据元素以确定表示病人跌倒的多个特征以形成特征向量
将权重向量应用于所述特征向量以导出激活值;
分析所述激活值以判断病人是否已经跌倒;和
响应于确定病人跌倒已经发生而报告病人跌倒。
21.一种用于通过在护理人员环境中将无线传感器与便携式计算装置配对来降低所监测病人长出一个或多个压力性溃疡的风险的系统,在该护理人员环境中其它无线传感器可与其它计算装置配对并通信,该系统包括:
无线传感器,其包括加速度计、陀螺仪、第一处理器和第一无线收发器,所述无线传感器被构造成以关联模式操作,以期望的关联传送范围传送关联信号,所述无线传感器还被构造成以病人参数测量模式操作,以期望的测量传送范围传送测量信号,其中所述关联传送范围远小于所述测量信号传送范围;和
便携式计算装置,其包括第二处理器、内存器、存储器、显示器和第二无线收发器,所述计算装置被构造成接收所述关联信号,所述病人监护仪还被构造成传送关联确认信号,并且所述病人监护仪还被构造成接收所述测量信号;
其中,所述计算装置响应于接收所述关联信号而将所述无线传感器与所述计算装置相关联并传送所述关联确认信号;和
其中,所述无线传感器响应于接收所述关联确认信号而中止在所述关联模式下的操作并开始以所述病人参数测量模式操作且传送测量信号。
22.一种用于监测病人的取向以降低病人长出压力性溃疡的风险的系统,该系统包括:
传感器,其包括加速度计、处理器和第一无线收发器,所述传感器被构造成输出响应于加速度的信号,所述加速度表示当所述病人佩戴所述传感器时所述病人取向可能的变化;

病人监护仪,其包括信号处理器、内存器、存储器和第二无线收发器,所述第二无线收发器被构造成接收所述信号,并且所述信号处理器被构造成处理所述信号以判断所述可能的变化是否对应于所述取向的实际改变,在所述实际改变已经发生时,信号处理器被构造成记录病人翻身事件以将所述病人翻身事件与病人翻身规范进行比较,而当所述可能的改变不是所述实际改变并且根据病人翻身规范没有病人翻身事件发生时,所述病人监护仪被构造成向护理人员通知不符合病人翻身规范,
其中被构造成判断所述可能的改变是否对应于所述实际改变的所述信号处理器包括被构造成至少基于所述信号确定在先前时间和当前时间的所述取向之间的差异,且当所述差异高于阈值时记录所述病人翻身事件。
23.根据权利要求22所述的系统,其中,所述病人监护仪的所述信号处理器还被构造成当所述处理器记录所述病人翻身事件时重置病人取向持续时间计时器。
24.根据权利要求22或23所述的系统,包括第三无线收发器,所述第三无线收发器被构造成接收来自所述传感器的所述信号并将所述信号传送到所述病人监护仪。
25.根据权利要求24所述的系统,包括用于所述第三无线收发器的电源,其不同于用于所述传感器或所述病人监护仪的电源。
26.根据权利要求22至25中任一项所述的系统,其中,所述传感器包括陀螺仪。
27.根据权利要求22至26中任一项所述的系统,其中,所述传感器包括声学传感器。
28.根据权利要求22至27中任一项所述的系统,其中,所述传感器包括温度传感器。
29.根据权利要求22至28中任一项所述的系统,其中,所述传感器包括ECG传感器。
30.根据权利要求22至29中任一项所述的系统,其中,所述传感器包括声学传感器、温度传感器和ECG传感器中的一个或多个。
31.根据权利要求22至30中任一项所述的系统,其中,所述病人监护仪被构造成确定以下参数中的一个或多个的测量值:加速度、角速度、磁场、呼吸率、温度、阻抗值、分值、血测定值和心电图
32.一种通过使用病人佩戴的传感器监测病人运动来判断病人取向变化的方法,将表示所述监测的信号传送到处理装置,在所述处理装置处接收所述信号并使用信号处理器处理所述信号以判断是否已经发生所述变化,所述病人佩戴的传感器包括加速度计、处理器和第一无线收发器,所述处理装置包括所述信号处理器、内存器、存储器和第二无线收发器,所述方法包括:
从所述病人佩戴的传感器接收表示在第一时间段的病人取向的信息;
从所述病人佩戴的传感器接收表示在第二时间段的病人取向的信息,其中,所述第一时间段早于所述第二时间段并且在时间上接近于所述第二时间段;和
凭借所述信号处理器处理所述信息,包括:
组合接收到的信息以形成病人取向信息的时间窗,其中所述时间窗跨时所述第一时间段和所述第二时间段;
将所述时间窗划分成区段,其中每个区段具有表示所述病人取向的区段值;
确定所述区段值之间的差值;
当所述确定的差值超过预定阈值时,判断病人翻身事件已经发生;
将所述病人翻身事件分类;
将已分类的病人翻身事件报告给护理人员;和
重置与病人翻身规范相关的计时器。
33.根据权利要求32所述的方法,包括判断所述病人是否保持取向一超出预定最大持续时间的时间段并且响应于所述判断传送警告。
34.根据权利要求32或33所述的方法,其中,接收表示在所述第一时间段和所述第二时间段的所述病人取向的信息包括接收在所述第一时间段和所述第二时间段的加速度数据。
35.根据权利要求34所述的方法,其中,所述加速度数据包括翻滚轴值和俯仰轴值。
36.根据权利要求35所述的方法,包括响应于所述翻滚轴值判断所述病人在纵轴上的变化,并响应于所述俯仰轴值判断相对于对齐于病人的臀部的轴的变化。
37.根据权利要求32至36中任一权利要求所述的方法,其中,将所述病人翻身事件分类包括将所述区段值与病人取向变化动作的概况表进行比较。
38.根据权利要求32至37中任一权利要求所述的方法,其中,每个所述区段值均包括翻滚轴中值和俯仰轴中值,且其中所述翻滚轴中值和所述俯仰轴中值以度数为单位,范围为-
180度至+180度。
39.根据权利要求32至38中任一项所述的方法,其中,所述区段值之间的所述差值的所述预定阈值是45度。
40.一种通过用病人佩戴的传感器监测病人移动来判断病人的取向变化的方法,将表示所述监测的信号传送给处理装置,在所述处理装置处接收所述信号,并且使用信号处理器处理所述信号以判断是否已经发生取向变化,所述病人佩戴的传感器包括加速度计、处理器和第一无线收发器,所述处理装置包括所述信号处理器、内存器、存储器和第二无线收发器,所述方法包括:
从所述病人佩戴的传感器接收表示当前时间段病人取向的信息,所述信息包括具有翻滚轴值和俯仰轴值的加速度数据;
凭借所述信号处理器电子地处理所述信息,包括:
从所述存储器提取表示在先前时间段的病人取向的信息,所述先前时间段早于所述当前时间段且在时间上接近所述当前时间段;
组合所述当前和先前的取向信息以形成病人取向信息的时间窗,所述时间窗跨越所述先前时间段和所述当前时间段;
将所述时间窗分段成至少两个区段;
为每个区段确定区段值,每个区段值包括翻滚分量和俯仰分量;
成对地比较确定出的区段值;
用每次成对比较判断病人是否已经发生翻身事件;
响应于判断出的发生病人翻身事件,将判断出的翻身事件分类;
识别最频繁分类的翻身事件;
将最频繁分类的翻身事件报告为所述病人的新取向;和
重置取向持续时间计时器。
41.根据权利要求40所述的方法,其中,所述接收的信息包括以采样率采样的多个样本。
42.根据权利要求41所述的方法,其中,所述采样率被构造成在约10Hz与约100Hz之间。
43.根据权利要求41所述的方法,其中,所述采样率被构造成在约5Hz与约40Hz之间。
44.根据权利要求40至43中任一项所述的方法,其中,处理所述信息还包括:
确定表示所述病人相对于病人的纵轴的取向的翻滚轴取向;和
确定表示所述病人相对于对齐于病人臀部的轴的取向的俯仰轴取向。
45.根据权利要求40至44中任一项所述的方法,其中,所述接收的信息包括以采样率采样的多个样本,并且其中处理所述信息还包括为所述多个采样中的每一个确定表示所述病人相对于病人的纵轴的取向的翻滚轴值和表示所述病人相对于对齐于病人臀部的轴的取向的俯仰轴值。
46.根据权利要求45所述的方法,其中,确定所述翻滚轴值和俯仰轴值包括确定范围从-180度到+180度的、以度数为单位的所述值。
47.根据权利要求40至46中任一项所述的方法,其中,确定所述区段值包括确定翻滚轴中值和俯仰轴中值,所述翻滚轴中值和所述俯仰轴中值以度数为单位、范围为-180度到+
180度。
48.根据权利要求47所述的方法,其中,比较所述区段值包括确定翻滚轴中值和俯仰轴中值之间的差值。
49.根据权利要求48所述的方法,其中,确定是否表示病人翻身事件包括确定在所述翻滚轴中值之间的所述差值或所述俯仰轴中值之间的所述差值是否超过预定阈值,当超过所述预定阈值时,判断已发生病人翻身事件。
50.根据权利要求40至49中任一项所述的方法,还包括:
判断所述病人在取向上保持一超过预定持续时间的时间段;和
传送所述病人已经在所述取向上保持一超过所述预定持续时间的时间段的警告。
51.一种通过处理表示病人移动的信号来检测所监测的病人是否已经跌倒或即将跌倒中的至少一个的方法,该信号由无线传感器输出并传送到处理装置,所述传感器包括加速度计、陀螺仪、第一处理器和第一无线收发器,所述传感器被构造成由所述病人佩戴,所述处理装置具有信号处理器、内存器、存储器、显示器和第二无线收发器,所述处理装置被构造成处理所述信号以判断所述病人是否已经跌倒或即将跌倒中的至少一个,所述方法包括:
由所述处理装置从所述无线传感器接收响应于所述病人的线性加速度和角速度的信号;和
用所述处理装置的所述信号处理器处理所述信号,包括以电子方式:
形成包括响应于所述线性加速度和所述角速度的数据元素的传感器数据向量;
归一化所述数据元素以形成归一化的传感器数据向量;
从所述归一化传感器数据向量确定表示病人跌倒的多个特征以形成特征向量;
将先验权重向量应用于所述特征向量以导出激活值;
分析所述导出的激活值以判断病人跌倒是否已经发生或即将发生中的至少一个;和当判断出所述病人已经跌倒或即将跌倒中的至少一个时提醒护理人员。
52.根据权利要求51所述的方法,其中,所述接收所述信号包括接收响应于加速度计的输出的表示所述线性加速度的所述信号并且接收响应于陀螺仪的输出的表示所述角速度的所述信号。
53.根据权利要求52所述的方法,其中,
所述接收表示所述线性加速度的所述信号包括接收表示在三个维度上的所述线性加速度的所述信号,
所述接收表示所述角速度的所述信号包括接收表示在三个维度上的所述角速度的所述信号,
所述传感器向量包括六个数据元素。
54.根据权利要求51至53中任一项所述的方法,其中,所述归一化所述数据元素包括:
将每个所述数据元素归一化为具有零均值和单位方差;和
形成包括归一化数据元素的所述归一化传感器数据向量,其中,某些所述归一化数据元素对应于所述线性加速度,并且某些所述归一化数据元素对应于所述角速度。
55.根据权利要求51至54中任一项所述的方法,其中,确定形成特征向量的所述多个特征还包括:
确定加速度大小;
确定角速度大小;
确定加加速度大小;
确定跌倒持续时间;
确定俯仰变化;和
确定竖向速度。
56.根据权利要求51至55中任一权利要求所述的方法,其中,将所述权重向量应用于所述特征向量以导出所述激活值包括计算所述特征向量与所述权重向量的内积。
57.根据权利要求51至56中任一项所述的方法,其中,将所述权重向量应用于所述特征向量以导出所述激活值包括:
监督学习算法提供包含示例输入和已知输出的训练数据;和
通过所述监督学习算法将所述示例输入映射到所述已知输出以导出所述权重向量。
58.根据权利要求57所述的方法,其中,所述将所述示例输入映射到所述已知输出以导出所述权重向量由费舍尔线性判别公式执行。
59.根据权利要求51至58中任一项所述的方法,其中,所述分析所述导出的激活值以判断病人跌倒是否已经发生或即将发生中的至少一个包括识别所述导出的激活值的标志属性,其中所述导出的激活值的正标志属性表示所述病人已经跌倒或即将跌倒。
60.一种构造成判断病人是否已经跌倒或即将跌倒中的至少一个的系统,所述系统包括:
无线生理传感器,其包括加速度计、陀螺仪、处理器和第一无线收发器,所述传感器被构造成感测所述病人的线性加速度和角速度,所述传感器还被构造成传送表示所述病人的感测出的线性加速度和所述角速度的信息;
病人监护仪,其包括信号处理器、内存器、存储器、通信接口、显示器和第二无线收发器,所述病人监护仪被构造成接收所述传送的信息、分析所述接收到的信息并且判断所述病人是否已经跌倒或即将跌倒的至少一个,所述病人监护仪还被构造成响应于判断出所述病人已经跌倒或即将跌倒而传送所述病人已经跌倒或即将跌倒的通知。
61.根据权利要求60所述的系统,其中,所述病人监护仪还被构造成从接收到的信息来确定加速度大小、角速度大小、加加速度大小、跌倒持续时间和俯仰变化中的一个或多个,并且形成包括所述确定出的加速度大小、角速度大小、加加速度大小、跌倒持续时间和俯仰变化的特征向量。
62.根据权利要求61所述的系统,其中,所述病人监护仪还被构造成将权重向量应用于所述特征向量。
63.根据权利要求62所述的系统,其中,所述病人监护仪还被构造成确定所述权重向量和所述特征向量的内积。
64.根据权利要求60至63中任一项所述的系统,其中,所述加速度计包括三轴加速度计,并且所述陀螺仪包括三轴陀螺仪。
65.根据权利要求62所述的系统,其中,所述权重向量是使用包括存储在计算机可读介质上的可执行指令的监督学习算法导出的。
66.根据权利要求65所述的系统,其中,所述监督学习算法被构造成在处理装置上执行,以接收一组具有示例输入和已知输出的训练数据,并且被构造成将所述示例输入映射到所述已知输出以导出所述权重向量。
67.根据权利要求65所述的系统,其中,所述监督学习算法是费舍尔线性判别公式。
68.一种用于测量病人的加速度的无线生理传感器,所述生理传感器包括:
基座,其包括底表面和顶表面,所述基座还包括第一孔、第二孔和第三孔,其中所述第一孔、第二孔和第三孔均在所述基座的所述底表面和所述顶表面之间延伸;
衬底层,其包括导电迹线和连接垫、顶侧和底侧,所述衬底层的所述底侧布置在所述基座的所述顶表面上方,所述衬底层还包含第一通孔通路和第二通孔通路,其中所述第一通孔通路和第二通孔通路均在所述衬底层的所述顶侧和底侧之间延伸通过所述衬底层;
响应于所述病人的热能的温度传感器,所述温度传感器安装在所述衬底层的所述顶侧上,所述温度传感器包括与所述衬底层的所述顶侧热导通的热触点,其中所述第一通孔通路与在所述衬底层的所述顶侧上的所述温度传感器的所述热触点对齐且与在所述衬底层的所述底侧上的所述基座的所述第一孔对齐,并且其中所述基座的所述第一孔和所述第一通孔通路填充有至少一种导热材料,以使所述温度传感器与所述基座的所述底表面对应于所述第一孔的部分热导通;
ECG传感器,其安装在所述衬底层的所述顶侧上,所述ECG传感器响应于由所述病人的心脏产生的电信号,所述ECG传感器包含具有响应于所述电信号的电极的可延伸导线,所述ECG传感器还包含与所述衬底层的所述顶侧电导通的电触点,其中所述第二通孔通路与所述衬底层的所述顶侧上的所述ECG传感器的所述电触点对齐并且与所述衬底层的所述底侧上的所述基座的所述第二孔对齐,并且其中所述基座的所述第二孔和所述衬底层的所述第二通孔通路填充有至少一种导电材料,以使所述ECG传感器与所述基座的所述底表面对应于所述第二孔的部分电导通;
加速度计,其安装在所述衬底层上,所述加速度计响应于所述病人的线性加速度;和声学呼吸传感器,其响应于由所述病人产生的振动运动,所述声学呼吸传感器布置在所述衬底层的所述底侧上并且延伸穿过所述基座中的所述第三孔并超出所述基座的所述底表面,所述声学呼吸传感器与所述衬底层处于结构传导,以便将振动运动机械地传送到所述加速度计。
69.根据权利要求68所述的生理传感器,还包括被构造成存储表示所述生理传感器是否先前已被激活的信息的信息元件。
70.根据权利要求68或69所述的生理传感器,还包括安装在所述衬底层上的陀螺仪,所述陀螺仪响应于所述病人的角速度。
71.根据权利要求68至70中任一项所述的生理传感器,其中,所述基座使所述基座的所述底表面对应于所述第一孔的所述部分周围的所述病人身体的部分绝热。
72.根据权利要求68至72中任一项所述的生理传感器,还包括无线收发器,所述无线收发器被构造成无线传送表示所述热能、所述电信号、所述线性加速度和所述振动运动的信息。
73.根据权利要求72所述的生理传感器,其中,所述无线收发器被构造成传送配对信号。
74.根据权利要求72所述的生理传感器,其中,所述无线收发器被构造成传送表示所述生理传感器先前已被激活的消息。
75.根据权利要求72所述的生理传感器,其中,所述无线收发器被构造成传送与所述生理传感器相关联的质量标准已降低的通知。
76.根据权利要求72所述的生理传感器,其中,所述无线收发器被构造成传送表示所述生理传感器接近使用寿命尽头的消息。
77.根据权利要求68至76中任一项所述的生理传感器,还包括:
电池,其安装在所述衬底层的所述底侧上并且在所述衬底层的所述底侧和所述基座的所述顶表面之间,所述电池与所述衬底层电接触,其中所述电池在所述衬底层的所述底侧的一部分和所述基座的所述顶表面之间形成凹部;和
安装框架,其被布置成填充形成的凹部,所述安装框架被构造成在所述基座和所述衬底层之间提供刚性结构支撑
78.根据权利要求77所述的生理传感器,其中,所述安装框架还包括:
第一安装框架孔,其与所述第一通孔通路和所述基座的所述第一孔对齐,其中,所述第一安装孔至少填充有所述导热材料,以使所述温度传感器与所述基座的所述底表面的对应于所述第一孔的部分热导通;和
第二安装框架孔,其与所述第二通孔通路和所述基座的所述第二孔对齐,其中,所述第二安装孔至少填充有所述导电材料,以使所述ECG传感器与所述基座的所述底表面的对应于所述第二孔的部分电导通。
79.根据权利要求68至78中任一项所述的生理传感器,还包括:
陀螺仪,其安装在所述衬底层上,所述陀螺仪响应于所述病人的角速度;
磁力计,其安装在所述衬底层上,所述磁力计响应于磁场;
处理器,其安装在所述衬底层上并与所述温度传感器、ECG传感器、加速度计、陀螺仪和磁力计通信,所述处理器被构造成产生代表所述热能、电信号、线性加速度、振动运动、角速度和磁场的信号;和
无线收发器,其安装在所述衬底层上并与所述处理器通信,所述无线收发器被构造成传送代表所述热能、电信号、线性加速度、振动运动、角速度和磁场的已产生的信号。
80.根据权利要求79所述的生理传感器,还包括:
阻抗传感器,其安装在所述衬底层上并且与所述基座的所述底表面的对应于所述第二孔的所述部分电导通。
81.根据权利要求79所述的生理传感器,其中,所述加速度计是三维加速度计,并且所述陀螺仪是三维陀螺仪。
82.一种用于监测压力性溃疡风险、跌倒检测或跌倒风险中的至少一种的可佩戴无线传感器,所述生理传感器包括:
基座,其包括第一孔;
电路层,其包括延伸穿过所述电路层的第一通孔通路;和
温度传感器,其响应于病人的热能,所述温度传感器安装在所述电路层上,所述温度传感器包括与所述电路层热导通的热触点,
其中,所述第一通孔通路与所述温度传感器的所述热触点对齐且与所述基座的所述第一孔对齐,
其中,所述第一孔和所述第一通孔通路包括导热材料,以使所述温度传感器与所述基座的对应于所述第一孔的部分热导通。
83.根据权利要求82所述的传感器,其中,所述基座使所述基座的对应于所述第一孔的部分的周围的所述病人身体的部分绝热。
84.根据权利要求82或83所述的传感器,还包括:
在所述基座中的第二孔;
第二通孔通路,其延伸穿过在所述顶侧和底侧之间的所述电路层;
ECG传感器,其安装在所述电路层上,所述ECG传感器响应于电信号,所述ECG传感器包括具有响应于所述电信号的电极的可延伸导线,所述ECG导线还包括与所述电路层电导通的电触点,
其中,所述第二通孔通路与所述电路层上的所述ECG传感器的所述电触点对齐且与所述基座的所述第二孔对齐,以及
其中,所述基座的所述第二孔和所述电路层的所述第二通孔通路包括导电材料,所述ECG传感器通过所述导电材料与所述基座的对应于所述第二孔的部分电导通。
85.根据权利要求82至84中任一项所述的传感器,还包括:
加速度计,其安装在所述电路层上,所述加速度计响应于所述病人的线性加速度;
在所述基座中的第三孔;和
声学呼吸传感器,其响应于所述病人的振动运动,所述声学呼吸传感器布置在所述电路层上并且延伸穿过所述基座中的所述第三孔,其中,所述声学呼吸传感器与所述电路层处于刚性结构连通,以便将感测到的振动运动机械地传送给所述加速度计。
86.根据权利要求82至85中任一项所述的传感器,还包括安装在所述电路层上的陀螺仪,所述陀螺仪响应于所述病人的角速度。
87.根据权利要求86所述的传感器,其中,所述加速度计包括三维加速度计,并且所述陀螺仪包括三维陀螺仪。
88.根据权利要求82至87中任一项所述的传感器,还包括信息元件,其被构造成存储表示所述生理学传感器是否先前已被激活的信息。

说明书全文

无线式病人监护系统和方法

[0001] 通过援引差入任何优先权申请
[0002] 本申请要求于2015年8月31日提交的美国临时申请第62/212467号、于2015年8月31日提交的美国临时申请第62/212472号、于2015年8月31日提交的美国临时申请第62/
212484号的权益,其全部内容被援引纳入本文。

技术领域

[0003] 本文涉及病人监护领域。具体地说,本文描述了一种测量病人的位置、取向和移动并将测量信息无线地传达至病人监护系统的可佩带传感器

背景技术

[0004] 在比如医院、疗养院、休养所、专业看护场所、术后康复中心等的临床环境中,病人通常被长时间限制在床上。有时候病人昏迷或被镇静到使得他们仅能有限地改变或控制他们在床上的位置的程度。这些病人可能有形成压性溃疡的险,这对病人的健康和康健构成严重的风险。压力性溃疡也可以被称为“褥疮”、“压疮”和“褥疮溃疡”,其包括对病人的皮肤以及通常在下面的组织的伤害,这是由施加到病人的身体部位上的持续很久的压力导致的。通常,压力性溃疡发生在覆盖身体的骨骼区域的皮肤上,该皮肤在表面之下具有较少的肌肉和/或脂肪组织来将由于长时间与床或椅子的表面接触而施加于其上的压力进行分配。这种身体位置的示例包括头部的背面或侧面、肩部、肩胛骨、肘部、脊柱、臀部、下背部、尾骨、脚后跟、脚踝和膝盖后面的皮肤。
[0005] 压力性溃疡是通过在皮肤和其它组织的解剖部位处施加阻塞血液流到该位置附近的压力而引起的。当施加的压力大于流过毛细血管的血压时,结构表面(例如床)与病人身体上的特定点之间的持续压力可以限制血液流动,该毛细血管将气和其它营养物质递送至皮肤和其它组织。缺乏氧气和营养物质,皮肤细胞可能会受损,在短至2-6小时内导致组织坏死。尽管在老年人和行动不便人群中经常发生,但医院内感染的压力性溃疡被认为是可以预防的,并被称为“从不会发生的事件”。保险公司已对他们赔偿医院用于压力性溃疡治疗的金额施加限制,并且州和联邦立法现在要求医院报告在他们的设施中压力性溃疡的发生率。
[0006] 压力性溃疡的风险因素可以分类为可降低和不可降低的。可降低的风险因素包括医疗保健机构可以采取的行动,而不可降低的风险因素包括病人健康和行为方面。记录这些不可降低的风险因素是非常有价值的,使得护理人员可以识别和关注有发生压力性溃疡风险的病人。建议护理人员制定记录的风险评估政策,以预测病人发生压力性溃疡的风险。这种评估可涵盖病人的健康和环境的各个方面,并可采用该领域常用的措施,比如Braden和Norton量表。风险评估工具不仅在病人在其床上休息时,而且在接受手术时可用于指导预防策略。
[0007] 可以导致压力性溃疡形成的额外因素包括摩擦力和剪切力。当移动病人可能发生拖动表面的皮肤时,尤其是皮肤潮湿时,可能会发生摩擦。这种摩擦力会损伤皮肤并使其更容易受伤,包括形成压力性溃疡。剪切是在两个力向相反方向移动时发生。例如,当床的头部以倾斜的方式升高时,病人的脊椎、尾骨和臀部区域倾向于由于重力而向下滑动。当病人身体的多骨部分向下移动时,覆盖该区域的皮肤可以保持在其当前位置,从而在骨骼结构的相反方向拉动。这种剪切运动会损伤该位置的皮肤和血管,导致皮肤和其它局部组织容易形成压力性溃疡。
[0008] 对于处于形成压力性溃疡风险中的病人建立的实践是遵循翻身规范,通过该翻身规范病人周期性地重新定位或“翻身”以重新分配强加于病人身体的各个点上的压力。处于压力性溃疡风险的个体被定期重新定位。通常建议病人每2小时以特定的倾斜重新定位,并且这样做的方法可以减少病人皮肤上的摩擦和剪切量。重新定位日志可以被保留并包括关键信息,比如时间、身体取向和结果。
[0009] 压力性溃疡预防方案已经有效并且可以减少与治疗相关的长期成本。2002年的一项研究在两个长期护理机构中采用了综合预防计划,每位居民每月需要花费519.73美元。该计划的结果显示两家医院压力性溃疡发生率降低了87%和76%。后来的一项研究发现,预防策略能够将内科重症监护病房的压力性溃疡发生率从29.6%降至0%,在医院的所有病房中,该比例从9.2%降至6.6%。这些干预措施采用比如手动病人重新定位和记录、组织可视化和触诊、减压床垫以及使用风险评估工具等策略。
[0010] 然而,翻身规范没有考虑病人在确定的翻身间隔之间进行的位置变化,既未观察也未记录。因此,可能在某些情况下,遵循翻身规范的行为可能具有意想不到的负面临床效果。发明内容
[0011] 本文尤其描述了用于监测处于形成一个或多个压力性溃疡风险中的病人的位置和取向的系统、设备和方法的实施例
[0012] 本文的一个方面包括病人翻身和移动监护系统,其被构造成帮助管理处于形成一个或多个压力性溃疡风险中的病人。病人翻身和监护系统的一些实施例包括具有一个或多个传感器的由病人佩戴的无线传感器,该一个或多个传感器被构造成获得描述病人取向的信息并且无线地传送表示所感测的取向信息的信息。该系统还包括病人监护仪,该病人监护仪被构造成接收、存储和处理由无线传感器传送的信息并且显示和传送表示病人取向的信息(或数据)以帮助护理人员管理病人形成一个或多个压力性溃疡的风险。病人翻身和移动监护系统可以识别病人的当前取向并确定病人在当前取向中已经多久。如果病人保持取向超出一预定的、临床医生指定的病人取向持续时间,则该系统可以通知病人和/或看护人该病人应该重新定位。在某些实施例中,病人取向持续时间计时器用于监测这样的取向时间。在所公开的病人翻身和移动监护系统的某些实施例中,位于无线传感器的接收范围内的信号中继器被用于接收表示从无线传感器感测到的取向信息的信息并将其转发至基于网络的处理节点
[0013] 本文的另一方面包括无线传感器,其包括被构造成从病人处获得位置、取向和运动信息的一个或多个传感器。该一个或多个传感器可以包括加速度计、陀螺仪和磁力计,其被构造成确定病人在三维空间中的位置和取向。无线传感器被构造成将传感器数据和/或表示传感器数据的信息无线地传送至病人监护仪。病人监护仪可以被构造成处理所接收的信息,以显示表示或从所接收的数据导出的信息,并且将信息(包括显示、警报、警告和通知)传送到多病人监护系统,该多病人监护系统可例如位于护士站。
[0014] 本文的另一方面涉及用于将无线传感器与病人监护仪相关联的系统和方法。在一些实施例中,无线传感器包括激活标签,其在被移除时激活无线传感器。在激活时,无线传感器中的无线收发器发射具有最大约三英寸的配对信号传送范围的低功率配对信号。在一些实施例中,无线传感器具有开关或按钮,其在被按下时,将无线传感器置于配对操作模式中,使无线传感器发出低功率配对信号。当病人监护仪在无线传感器的范围内时(例如,在约三英寸的范围内),无线传感器和病人监护仪相关联,由此将无线传感器和病人监护仪构造成彼此通信。一旦无线传感器和病人监护仪之间的配对完成,无线传感器就变成病人参数感测操作模式,其中无线传感器传送病人参数感测信号。该病人参数感测信号具有远大于配对信号传送范围的病人信号传送范围。无线传感器然后处于被放置在病人身上的状态。
[0015] 在本文的一些方面中,监测和记录病人的位置和取向。一旦无线传感器被贴至病人的身体(比如,例如病人的躯干),与病人的运动相对应的传感器数据(例如,加速度和角速度)就被获得、预处理并传送到病人监护仪。病人监护仪存储并进一步处理接收到的数据以确定病人的取向。示意性地,病人监护仪可以确定病人是站立、坐着还是在俯卧、仰卧、左侧或右侧位置躺卧。
[0016] 在一些实施例中,病人监护仪确定病人身体的精确取向。例如,病人监护仪可以确定病人身体垂直和/或平倾斜的程度,由此生成病人相对于病人躺卧的支撑结构(比如床)的位置的精确描述。
[0017] 在本文的另一方面中,病人监护仪存储所确定的位置和取向信息并且跟踪病人在每个确定的位置中保持多久,从而创建病人的位置历史的连续记录。病人监护仪分析和处理存储的数据以向病人的护理提供者提供临床相关的可操作信息。示意性地,病人监护仪计数由病人在床上进行的翻身数,并且监测和显示自病人上次翻身以来经过的时间量。当经过的时间超过临床医生限定的持续时间(例如,两小时)时,病人监护仪显示已超过病人翻身之间的最大时间的表示。病人监护仪还可以通过例如多病人监护系统、临床医生通知装置等将通知传送给负责照顾病人的一个或多个临床医生。病人监护仪还可以确定并显示统计信息,比如给定的临床医生限定的时间周期(比如24小时)的翻身之间的平均、最小和最大时间量。病人监护仪还可以在临床医生限定的时间段内确定和显示相同位置和取向的翻身数。同样,病人监护仪可以显示病人在临床医生限定的时间段内每个特定位置的总时间量。此外,病人监护仪可以确定病人保持在临床限定的可接受位置期间的频率和持续时间段。
[0018] 在本文的又一方面,病人监护仪确定病人的移动状态,例如病人是否走动、站立、坐着、倾斜或跌倒。在某些方面,无线式监护系统可以包括警告系统以提醒护理人员病人正在跌倒、起床、或以其它以禁止方式或以需要护理人员注意的方式的移动。警告可以是监护系统上的可听和/或可视警报,或警告可以传送给护理人员(例如,护士站、临床医生装置、寻呼机、手机、计算机等)。示意性地,病人监护仪可以显示病人的活动状态并传送病人活动并离开床的通知。在一些情况下,病人监护仪可以确定病人是否违反临床医生的命令,比如,例如留在床上的指示或仅在陪从的协助下步行到卫生间的指示。在这种情况下,可以将通知、警告或警报传送给适当的护理人员。
[0019] 在某些方面,由无线传感器接收的信息可以用于创建病人移动的时序表示。这种表示可以显示在病人监护仪上或传送到护士站或其它处理节点,以使护理人员能够监测病人。可以实时查看和/或记录回放时间顺序的表示。例如,如果警报提醒护理人员病人已经跌出床,护理人员可以在该时间段之前和期间访问和检查病人移动的历史顺序。
[0020] 本文的另一方面涉及基于病人的步态和其它信息(比如,例如病人的当前用药方案)来预测病人跌倒的风险。当病人监护仪确定病人跌倒的风险高于预定阈值时,病人监护仪可发出警报或警告以通知护理提供者所识别的风险,以努力预测并因此防止病人跌倒。此外,病人监护仪可以确定病人何时跌倒,并发出适当的警报和警告来召唤护理提供者提供帮助。
[0021] 在本文的一个方面中,病人监护仪经由网络访问病人的健康记录和临床医生输入。示意性地,由于病人的健康记录而分析的病人的位置历史数据可以揭示或提出可能为特定病人产生有利的临床结果的翻身规范(或其它治疗方案)。因此,病人监护仪结合从无线传感器接收到的信息来分析所访问的信息以确定用于病人的推荐病人翻身规范(或其它治疗方案)。
[0022] 在本文的又一方面中,病人监护仪评估护理人员和设施对临床医生限定的为病人建立的翻身规范的遵循情况。例如,病人监护仪可以识别病人在大于规定持续时间的时间段内保持在某个位置的次数,指示违反了病人翻身规范,以及每个这样的长期暴露的长度。病人监护仪还可以在发出通知、警告或警报时跟踪临床医生的反应时间。
[0023] 根据本文的另一方面,可基于对应于多个病人的总计的位置历史数据来确定护理提供者工作流生产率、效率和有效性,其中每个病人配备有所公开的无线传感器。此外,基于所确定的压力性溃疡形成的风险,可以优先照顾特定位置的病人,比如医院病房或疗养院楼,在那儿病人与医务人员的比例相对较高。因此,确定具有最高风险的病人首先被指定接受注意。
[0024] 在本文的又一方面,无线传感器包括传感器以从病人获得额外的生理测量结果。例如,无线传感器可以包括温度传感器,该温度传感器被构造成通过使病人的皮肤表面在温度传感器周围绝热来测量病人的身体核心体温。由于温度传感器周围的绝热,病人皮肤表面和身体核心之间的自然温差达到平衡,从而达到病人身体核心温度(其温度通常高于病人皮肤表面)。无线传感器还可以包括声学呼吸传感器,其被构造成感测由病人胸部产生的振动运动。声学呼吸传感器被构造成将感测到的振动通过装置的刚性结构机械地传送到加速度计。加速度计信号的处理尤其可以提供病人的呼吸和心率。心电图(ECG)传感器,其被构造成感测与病人胸部电接触的两个或多个电极电信号,其也可以包括在无线传感器中。ECG信号可被处理以检测心律失常,比如心动过缓、快速性心律失常、心室纤颤等。另外,可以处理加速度计信号(包含表示来自声学呼吸传感器的机械传送的振动的信息)和/或ECG信号以识别呼吸窘迫或功能障碍,包括但不限于打鼾、咳嗽、窒息、喘鸣、呼吸暂停事件和气道阻塞。
[0025] 在本文的另一方面,病人监护仪可以确定描述病人的健康/疾病状态的分数,其也可以被称为“Halo指数”。示例性地,病人监护仪访问并分析病人的健康记录、临床医生输入、由无线传感器提供的位置历史数据、表面结构压力数据以及由无线传感器收集并提供的其它生理参数数据(比如,作为非限制性示例,病人温度、呼吸率、心率、ECG信号等)来评估病人的整体健康状况。
[0026] 在本文的一个方面,病人监护仪访问由病人的支撑结构(例如,床、床垫、床单、床垫褥等)提供的信息以确定施加在病人身体的特定解剖部位上的压力的程度。示意性地,病人的支撑结构可以构造有测量病人在特定位置施加在支撑结构上的压力的压力传感器阵列。病人监护仪可以结合由支撑结构提供的信息来分析病人的体位历史数据,以基于测量的施加在解剖位置上的压力量乘以解剖位置一直处于这种压力之下的时间量来确定在特定解剖位置处形成压力性溃疡的可能性。当评估的风险超过预定阈值时,病人监护仪可以发出警报和/或警告来重新定位病人,以避免在指定的解剖位置形成压力性溃疡。另外,病人监护仪可以基于在这种压力下施加的压力和时间长度的组合分析来建议特定位置和/或病人翻身规范。
[0027] 在一些方面,一种通过在护理人员环境中将无线生理传感器与病人监护装置配对来降低所监测的病人形成一个或多个压力性溃疡的风险的方法,在护理人员环境中,其它无线传感器可与其它病人监护装置进行配对并通信,该生理传感器包括移动传感器、第一处理器和第一无线收发器,该生理传感器被构造成最终相对于所监测病人的表面进行定位,以传送信息,该信息响应于病人移动、过少移动或二者中的一种或多种,病人监护装置包括第二处理器、内存器、存储器、显示器和第二无线收发器,病人监护装置响应于由生理传感器所传送的信息,以向护理人员呈现表示所述压力性溃疡的所述风险的信息,该方法包括在所述生理传感器中启动配对操作模式;从所述生理传感器无线地传送配对信号,该配对信号被构造成对配对信号传送范围有效,所述配对信号包括识别所述生理传感器的信息;在所述生理传感器中接收来自所述病人监护装置的、确认所述生理传感器已与所述病人监护装置配对的确认信号;在所述生理传感器中,启动病人参数感测操作模式;以及向所述病人监护装置无线地传送病人参数感测信号,所述病人参数感测信号被构造成对病人参数感测信号传送范围有效,所述病人参数感测信号包括表示所述压力性溃疡的所述风险的信息,其中所述配对信号传送范围是被构造成远小于所述病人参数感测传送范围。
[0028] 在一些方面中,配对信号包括无线地传送被构造成在约为零(0)至约(36)三十六英寸有效的配对信号。在一些方面,无线地传送所述配对信号包括无线地传送被构造成在约零(0)到约十二(12)英寸有效的所述配对信号。在一些方面中,无线地传送所述配对信号包括无线地传送被构造成在约零(0)到约六(6)英寸有效的配对信号。在一些方面,配对信号包括无线地传送被构造成在约零(0)至约三(3)英寸有效的配对信号。
[0029] 在一些方面中,病人参数感测信号包括无线地传送被构造成在约十(10)英尺至约三十(30)英尺有效的所述病人参数感测信号。在一些方面,病人参数感测信号包括无线地传送被构造成在约十(10)英尺有效的所述病人参数感测信号。在一些方面,无线地传送所述病人参数感测信号包括无线地传送被构造成在约三(3)米有效的所述病人参数感测信号。在一些方面中,无线地传送配对信号和所述病人参数感测信号包括无线地传送这样构成的所述病人参数感测信号,其相较于无线传送的所述配对信号高一个数量级有效。
[0030] 在一些方面,该方法包括其中所述传送所述配对信号和所述病人参数感测信号还包括传送到扩展器/中继器,并且其中所述接收所述确认信号还包括从所述扩展器/中继器接收。在一些方面,该方法包括使用所述病人移动传感器的加速度计感测加速度和使用所述病人移动传感器的陀螺仪感测角速度;凭借所述第一处理器处理响应于所述感测到的加速度和角速度的信号;并且凭借所述第一无线收发器,传送响应于所述处理的所述病人参数感测信号。
[0031] 在一些方面,配对信号还包括传送表示所述无线生理传感器先前已被激活的消息。在一些方面,配对信号还包括传送表示与所述生理传感器相关联的质量标准已降低的通知。在一些方面,病人参数感测信号还包括传送表示所述生理传感器接近使用寿命尽头的消息。
[0032] 在一些方面,所述启动所述配对操作模式还包括激活所述无线生理传感器。在一些方面,激活所述无线生理传感器包括从所述无线生理传感器移除电池绝缘件。在一些方面,激活所述无线生理传感器包括按压所述无线生理传感器上的按钮达预定持续时间。
[0033] 根据一些方面,一种用于通过在护理人员环境中将无线生理传感器与病人监护装置配对来降低所监测的病人形成一个或多个压力性溃疡的风险的方法,在护理人员环境中,其它无线传感器可与其它病人监护装置配对并通信,生理传感器包括移动传感器、第一处理器和第一无线收发器,生理传感器被构造成最终相对于所述被监测病人的表面定位,以传送信息,其响应于病人移动、过少移动或两者中的一种或多种,病人监护装置包括第二处理器、内存器、存储器、显示器和第二无线收发器,病人监护装置响应于来自生理传感器的所传送的信息向护理人员呈现表示所述压力性溃疡的风险的信息,该方法包括在所述病人监护装置中接收从所述无线生理传感器传送的配对信号,其中所述传送的配对信号被构造成对配对信号传送范围有效,所述配对信号包括识别所述生理传感器的信息;在所述病人监护装置中,将所述无线生理传感器与所述病人监护装置相关联;无线传送到所述无线生理传感器的确认信号,确认所述无线生理传感器与所述病人监护装置相关联;并且在所述病人监护装置中,接收从所述生理传感器传送的病人参数感测信号,其中所述传送的病人参数感测信号被构造成对病人参数感测信号传送范围有效,所述病人参数感测信号包括表示所压力性溃疡的所述风险,其中所述配对信号传送范围远小于所述病人参数感测传送范围。
[0034] 在一些方面,所述病人参数感测信号响应于所述病人在第一时间段和第二时间段的取向;该方法还包括处理所述病人参数感测信号以判断所述病人参数感测信号在所述第一时间段和所述第二时间段之间是否存在表示病人翻身的足够的差值。在一些方面,病人参数感测信号响应于包括数据元素的传感器数据向量;该方法包括电子地处理所述数据元素以确定表示病人跌倒的多个特征以形成特征向量;将权重向量电子地应用于所述特征向量以导出激活值;分析所述激活值以判断病人是否已经跌倒;并且响应于确定病人跌倒已经发生而报告病人跌倒。
[0035] 根据一些方面,一种用于通过在护理人员环境中将无线传感器与便携式计算装置配对来降低所监测的病人形成一个或多个压力性溃疡的风险的系统,在护理人员环境中其它无线传感器可与其它计算装置配对并通信,其它计算装置包括无线传感器,无线传感器包括加速度计、陀螺仪、第一处理器和第一无线收发器,所述无线传感器被构造成以关联模式操作以传送关联信号一期望关联传送范围,无线传感器还被构造成以病人参数测量模式操作以传送测量信号一期望测量传送范围,其中所述关联传送范围远小于所述测量信号传送范围;并且便携计算装置包括第二处理器、内存器、存储器、显示器和第二无线收发器,所述计算装置被构造成接收所述关联信号,所述病人监护仪还被构造成传送关联确认信号,并且所述病人监护仪还被构造成接收所述测量信号;其中所述计算装置响应于接收到所述关联信号而将所述无线传感器与所述计算装置相关联并且传送所述关联确认信号;并且其中所述无线传感器响应于接收所述关联确认信号而中止在所述关联模式下的操作并且开始以所述病人参数测量模式操作并且传送所述测量信号。
[0036] 根据一些方面,一种用于监测病人的取向以降低病人形成压力性溃疡的风险的系统,其包括传感器,其包括加速度计、处理器和第一无线收发器的,所述传感器被构造成输出信号响应加速度,所述加速度表示当所述病人佩戴所述传感器时所述病人取向可能的变化;以及病人监护仪,其包括信号处理器、内存器、存储器和第二无线收发器,所述第二无线收发器被构造成接收所述信号,并且所述信号处理器被构造成处理所述信号以判断所述可能的变化是否对应于所述取向的实际改变,当所述实际改变已经发生时,所述信号处理器被构造成记录病人翻身事件以将所述病人翻身事件与病人翻身规范进行比较,而当所述可能改变不是所述实际改变并且根据病人翻身规范没有病人翻身事件发生时,所述病人监护仪被构造成向护理人员通知违反了病人翻身规范,其中,被构造成判断所述可能改变是否对应于所述实际改变的所述信号处理器包括被构造成至少基于所述信号确定所述取向在前一时间和当前时间之间的差值,并且当所述差值高于阈值时,记录所述病人翻身事件。
[0037] 在一些方面中,所述病人监护仪的所述信号处理器还被构造成当所述处理器记录所述病人翻身事件时重置病人取向持续时间计时器。在一些方面,该系统包括第三无线收发器,所述第三无线收发器被构造成接收来自所述传感器的所述信号并将所述信号传送到所述病人监护仪。
[0038] 在一些方面,该系统包括用于所述第三无线收发器的电源,其不同于用于所述传感器或所述病人监护仪的电源。在一些方面,所述传感器包括陀螺仪。在一些方面,所述传感器包括声学传感器。在一些方面,所述传感器包括温度传感器。在一些方面,所述传感器包括ECG传感器。在一些方面,所述传感器包括声学传感器、温度传感器和ECG传感器中的一个或多个。在一些方面,所述病人监护仪被构造成确定以下参数中的一个或多个的测量值:加速度、角速度、磁场、呼吸率、温度、阻抗值、湿度值、血氧定量值和心电图。
[0039] 根据一些方面,一种通过用病人佩戴的传感器监测病人移动来判断病人的取向变化的方法,将表示所述监测的信号传达到处理装置,在所述处理装置处接收所述信号,以及使用信号处理器处理所述信号以判断是否发生了所述取向改变,所述病人佩戴的传感器包括加速度计、处理器和第一无线收发器,所述处理装置包括所述信号处理器、内存器、存储器和第二无线收发器,该方法包括:从所述病人佩戴的传感器接收表示在第一时间段的病人的取向的信息;从所述病人佩戴的传感器接收表示在第二时间段的病人的取向的信息,其中所述第一时间段早于所述第二时间段并且时间接近于所述第二时间段;以及用所述信号处理器处理所述信息,包括:组合所述接收的信息以形成病人取向信息的时间窗,其中所述时间窗时跨所述第一和第二时间段;将所述时间窗划分成区段,其中每个区段具有表示所述病人的取向的区段值;确定所述区段值之间的差异幅值;当所述确定的差异幅值超过预定阈值时,判断病人翻身事件已经发生;分类所述病人翻身事件;将已分类的病人翻身事件报告给护理人员;以及重置与病人翻身规范相关的计时器。
[0040] 在一些方面中,该方法包括判断病人是否已经保持取向一超过预定的最大持续时间的时间段并且响应于所述判断传送警报。在一些方面,接收表示在所述第一和第二时间段的所述病人取向的信息包括接受在所述第一和第二时间段的加速度数据。在一些方面,所述加速度数据包括翻滚轴值和俯仰轴值。在一些方面,该方法包括响应于所述翻滚轴值判断在所述病人的纵轴上的变化,以及响应于所述俯仰轴值确定相对于对齐于病人的臀部的轴的变化。
[0041] 在一些方面中,将所述病人翻身事件分类包括将所述区段值与病人取向变化动作的概况表进行比较。在一些方面,每个所述区段值包括翻滚轴中值和俯仰轴中值,并且其中所述翻滚轴中值和所述俯仰轴中值以度数为单位,范围为从-180度到+180度。在一些方面,所述区段值之间的所述差值的所述预定阈值是45度。
[0042] 根据一些方面,一种通过使用病人佩戴的传感器监测病人移动来判断病人的取向变化的方法,将表示所述监测的信号传送给处理装置,在所述处理装置处接收所述信号,并且使用信号处理器处理所述信号以判断是否已发生取向变化,所述病人佩戴的传感器包括加速度计、处理器和第一无线收发器,所述处理装置包括所述信号处理器、内存器、存储器以及第二无线收发器,该方法包括:从所述病人佩戴的传感器接收表示当前时间段的病人的取向的信息,所述信息包括具有翻滚轴值和俯仰轴值的加速度数据;利用所述信号处理器电子地处理所述信息,包括:从所述存储器提取表示在先前时间段的病人取向的信息,所述先前时间段早于所述当前时间段并且在时间上接近于所述当前时间段;组合所述当前和先前的取向信息以形成病人取向信息的时间窗,所述时间窗时跨所述先前和当前时间段;将所述时间窗分段成至少两个区段;确定每个区段的区段值,每个区段值包括翻滚分量和俯仰分量;成对地比较的所述确定的区段值;用每次成对比较判断是否已经发生病人翻身事件;响应于判断出的发生病人翻身事件,将所判断出的翻身事件分类;识别最频繁分类的翻身事件;将所述最频繁分类的翻身事件报告为所述病人的新取向;并重置取向持续时间计时器。
[0043] 在一些方面,所述接收的信息包括以采样率采样的多个样本。在一些方面,所述采样率被构造成在约10Hz和约100Hz之间。在一些方面,所述采样率被构造成在约5Hz和约40Hz之间。在一些方面,处理所述信息还包括:确定翻滚轴取向,其表示所述病人相对于病人的纵轴的取向;以及确定俯仰轴取向,其表示所述病人相对于与病人臀部对齐的轴的取向。
[0044] 在一些方面,所述接收的信息包括以采样率采样的多个样本,并且其中处理所述信息还包括针对所述多个样本中的每一个确定翻滚轴值和俯仰轴值,翻滚轴值表示所述病人相对于纵轴的取向,俯仰轴值表示所述病人相对于与病人臀部对齐的轴的取向。在一些方面,确定所述翻滚轴值和俯仰轴值包括确定范围为-180度到+180度的、以度为单位的所述值。在一些方面,确定所述区段值包括确定翻滚轴中值和俯仰轴中值,所述翻滚轴中值和俯仰轴中值以度为单位,范围为-180度到+180度。在一些方面,比较所述区段值包括确定翻滚轴中值之间的差与俯仰轴中值之间的差。在一些方面中,确定是否病人翻身事件被表示包括确定所述翻滚轴中值之间的所述差或者所述俯仰轴中值之间的所述差是否超过预定阈值,当超过所述预定阈值时,判断病人翻身事件已经发生。在一些方面,该方法还包括确定所述病人在取向上保持超过预定持续时间的时间段;以及传送所述病人在所述取向上保持超过所述预定持续时间的时间段的警报。
[0045] 根据一些方面,一种通过处理表示病人的移动的信号来检测所监测的病人是否已经跌倒或即将跌倒中的至少一个的方法,该信号由无线传感器输出并被传送到处理装置,传感器包括加速度计、陀螺仪、第一处理器和第一无线收发器,传感器被构造成由病人佩戴,处理装置具有信号处理器、内存器、存储器、显示器以及第二无线收发器,处理装置被构造成处理信号以判断病人是否已经跌倒或即将跌倒中的至少一个,该方法包括由通过所述处理装置从所述无线传感器接收响应于线性加速度和所述病人的角速度的信号;以及用所述处理装置的所述信号处理器处理所述信号,包括电子地:形成包括响应于所述线性加速度和所述角速度的数据元素的传感器数据向量;归一化所述数据元素以形成归一化的传感器数据向量;从所述归一化传感器数据向量确定表示病人跌倒的多个特征以形成特征向量;将先验权重向量应用于所述特征向量以导出激活值;分析所述导出的激活值以确定病人跌倒是否已经发生或即将发生;并且当所述确定是所述病人跌倒已经发生或即将发生的至少一个时,提醒护理人员。
[0046] 在一些方面,所述接收所述信号包括响应于加速度计的输出而接收表示所述线性加速度的所述信号并且响应于陀螺仪的输出接收表示所述角速度的所述信号。在一些方面,所述方法还包括,其中所述接收表示所述线性加速度的所述信号包括接收表示在三个维度上的所述线性加速度的所述信号,其中所述接收表示所述角速度的所述信号包括接收表示在三个维度上的所述角速度的所述信号,并且其中所述传感器向量包括六个数据元素。在一些方面,所述归一化所述数据元素包括:将每个所述数据元素归一化为具有零均值和单位变化;以及形成包括归一化数据元素的所述归一化传感器数据向量,其中某些所述归一化数据元素对应于所述线性加速度,并且某些所述归一化数据元素对应于所述角速度。
[0047] 在一些方面中,确定形成特征向量的所述多个特征还包括:确定加速度大小;确定角速度大小;确定加加速度大小;确定跌倒持续时间;确定俯仰变化;并确定竖向速度。在一些方面,所述将所述权重向量应用于所述特征向量以导出所述激活值包括计算所述特征向量与所述权重向量的内积。在一些方面,所述将所述权重向量应用于所述特征向量以导出所述激活值包括:以监督学习算法呈现包含示例输入和已知输出的训练数据;以及通过所述监督学习算法将所述示例输入映射到所述已知输出以导出所述权重向量。
[0048] 在一些方面中,所述将所述示例输入映射到所述已知输出以导出所述权重向量由费舍尔线性判别公式执行。在一些方面中,所述分析所述导出的激活值以确定病人跌倒是否已经发生或将要发生中的至少一个包括识别所述导出的激活值的标志属性,其中所述导出的激活值的正标志属性表示所述病人已经跌倒或即将跌倒。
[0049] 根据一些方面,被构造成确定病人是否已经跌倒或即将跌倒中的至少一个的系统包括无线生理传感器,该无线生理传感器包含加速度计、陀螺仪、处理器和第一无线收发器,所述传感器被构造成感测所述病人的线性加速度和角速度,所述传感器还被构造成传送表示所述感测到的所述病人的线性加速度和角速度的信息;病人监护仪包含信号处理器、内存器、存储器、通信接口、显示器和第二无线收发器,所述病人监护仪被构造成接收所述传送的信息、分析所述接收到的信息并且确定所述病人是否已经跌倒或即将跌倒的至少一个,所述病人监护仪还被构造成响应于确定所述病人已经跌倒或即将跌倒而传送所述病人已经跌倒或即将跌倒的通知。
[0050] 在一些方面中,所述病人监护仪还被构造成从所述接收到的信息中确定加速度大小、角速度大小、加加速度大小、跌倒持续时间和俯仰变化中的一个或多个,并且形成包括所述确定的加速度大小、角速度大小、加加速度大小、跌倒持续时间和俯仰变化的特征向量。在一些方面,所述病人监护仪还被构造成将权重向量应用于所述特征向量。在一些方面,所述病人监护仪还被构造成确定所述权重向量和所述特征向量的内积。在一些方面,所述加速度计包括三轴加速度计,并且所述陀螺仪包括三轴陀螺仪。在一些方面中,所述权重向量是使用包括存储在计算机可读介质上的可执行指令的监督学习算法导出的。在一些方面,所述监督学习算法被构造成在处理装置上执行,以接收具有示例输入和已知输出的一组训练数据,并且将所述示例输入映射到所述已知输出以导出所述权重向量。在一些方面,所述监督学习算法是费舍尔线性判别公式。
[0051] 根据一些方面,一种用于测量病人的加速度的无线生理传感器,该生理传感器包括:包含底表面和顶表面的基座,所述基座还包括第一孔、第二孔和第三孔,其中所述第一孔、第二孔和第三孔均在所述基座的所述底表面和所述顶表面之间延伸;包含导电迹线和连接垫、顶侧和底侧的衬底层,所述衬底层的所述底侧布置在所述基座的所述顶表面之上,所述衬底层还包括第一通孔通路和第二通孔通路,其中所述第一通孔通路和第二通孔通路均在所述衬底层的所述顶侧和底侧之间延伸通过所述衬底层;温度传感器,其响应于所述病人的热能,所述温度传感器安装在所述衬底层的所述顶侧上,所述温度传感器包含与所述衬底层的所述顶侧热导通的热触点,其中所述第一通孔通路与在所述衬底层的所述顶侧上的所述温度传感器的所述热触点以及在所述衬底层的所述底侧上的所述基座的所述第一孔对齐,并且其中所述基座的所述第一孔和所述衬底层的所述第一通孔通路填充有至少一种导热材料以使所述温度传感器与所述基座的所述底表面的对应于所述第一孔的部分热导通;ECG传感器,其安装在所述衬底层的所述顶侧上,所述ECG传感器响应于由所述病人的心脏产生的电信号,所述ECG传感器包含具有响应于所述电信号的电极的可延伸导线,所述ECG传感器还包含与所述衬底层的所述顶侧电连通的电触点,其中所述第二通孔通路与所述衬底层的所述顶侧上的所述ECG传感器的所述电触点以及所述衬底层的所述底侧上的所述基座的所述第二孔对齐,并且其中所述基座的所述第二孔和所述衬底层的所述第二通孔通路填充有至少一种导电材料,以使所述ECG传感器与所述基座的所述底表面的对应于所述第二孔的部分电导通;加速度计,其安装在所述衬底层上,所述加速度计响应所述病人的线性加速度;以及响应于由所述病人产生的振动运动的声学呼吸传感器,所述声学呼吸传感器布置在所述衬底层的所述底侧上并且延伸穿过所述基座中的所述第三孔并超出所述基座的所述底表面,所述声学呼吸传感器与所述衬底层处于结构连通,以便将振动运动机械地传送到所述加速度计。
[0052] 在一些方面,传感器还包括信息元件,该信息元件被构造成存储表示所述生理传感器是否先前已被激活的信息。在一些方面,传感器还包括安装在所述衬底层上的陀螺仪,所述陀螺仪响应于所述病人的角速度。在一些方面中,所述基座将所述基座的所述底表面的对应于所述第一孔的所述部分的周围的所述病人身体的部分绝热。在一些方面,传感器还包括无线收发器,该无线收发器被构造成无线地传送表示所述热能、所述电信号、所述线性加速度和所述振动运动的信息。在一些方面,所述无线收发器被构造成传送配对信号。在一些方面,所述无线收发器被构造成传送表示所述生理传感器先前已被激活的消息。在一些方面中,所述无线收发器被构造成传送与所述生理传感器相关联的质量标准已降低的通知。在一些方面,所述无线收发器被构造成传送表示所述生理传感器接近使用寿命尽头的消息。
[0053] 在一些方面中,传感器还包括电池,该电池安装在所述衬底层的所述底侧上并且在所述衬底层的所述底侧和所述基座的所述顶表面之间,所述电池与所述衬底层电接触,其中所述电池在所述衬底层的所述底侧的一部分和所述基座的所述顶表面之间形成凹部;以及安装框架,其布置成填充所述形成的凹部,所述安装框架被构造成在所述基座和所述衬底层之间提供刚性结构支撑。在一些方面,所述安装框架还包括:与所述第一通孔通路和所述基座的所述第一孔对齐的第一安装框架孔,其中所述第一安装孔至少填充有所述导热材料,以使所述温度传感器与所述基座的所述底表面的对应于所述第一孔的所述部分热导通;以及与所述第二通孔通路和所述基座的所述第二孔对齐的第二安装框架孔,其中所述第二安装孔至少填充有所述导电材料,以使所述ECG传感器与所述基座的所述底表面的对应于所述第二孔的所述部分电导通。
[0054] 在一些方面,传感器还包括安装在所述衬底层上的陀螺仪,所述陀螺仪响应于所述病人的角速度;安装在所述衬底层上的磁力计,所述磁力计对磁场作出响应;处理器,其安装在所述衬底层上并与所述温度传感器、ECG传感器、加速度计、陀螺仪和磁力计通信,所述处理器被构造成产生代表所述热能、电信号、线性加速度、振动运动、角速度和磁场的信号;以及安装在所述衬底层上并与所述处理器通信的无线收发器,所述无线收发器被构造成传送代表所述热能、电信号、线性加速度、振动运动、角速度和磁场的所述产生的信号。
[0055] 在一些方面,所述传感器还包括阻抗传感器,该阻抗传感器安装在所述衬底层上并与所述基座的所述底表面的对应于所述第二孔的所述部分电导通。在一些方面中,所述加速度计是三维加速度计,并且所述陀螺仪是三维陀螺仪。
[0056] 根据一些方面,一种用于监测压力性溃疡风险、跌倒检测或跌倒风险中的至少一个的可佩戴无线传感器,其包括:包含第一孔的基座;电路层,其包含延伸穿过所述电路层的第一通孔通路;以及响应病人的热能的温度传感器,所述温度传感器安装在所述电路层上,所述温度传感器包含与所述电路层热导通的热触点,其中所述第一通孔通路与所述温度传感器的热触点以及所述基座的所述第一孔对齐,并且其中所述第一孔和所述第一通孔通路包含导热材料,以使所述温度传感器与所述基座的对应于所述第一孔的部分热导通。
[0057] 在一些方面中,所述基座将所述基座的对应所述第一孔的所述部分的周围的所述病人身体的部分绝热。在一些方面,传感器还包括在所述基座中的第二孔;在所述电路层的所述顶侧和底侧之间延伸穿过所述电路层的第二通孔通路;安装在所述电路层上的ECG传感器,所述ECG传感器响应于电信号,所述ECG传感器包含具有响应于所述电信号的电极的可延伸导线,所述ECG导线还包括与所述电路层电连通的电触点,其中,所述第二通孔通路与所述电路层上的所述ECG传感器的所述电触点和所述基座的所述第二孔对齐,并且其中所述基座的所述第二孔和所述电路层的所述第二通孔通路包含导电材料,所述ECG传感器通过所述导电材料与所述基座的对应于所述第二孔的部分电导通。
[0058] 在一些方面,传感器还包括安装在所述电路层上的加速度计,所述加速度计响应于所述病人的线性加速度;在所述基座中的第三孔;以及声学呼吸传感器,其响应于所述病人的振动运动,所述声学呼吸传感器布置在所述电路层上并且延伸穿过所述基座中的所述第三孔,其中所述声学呼吸传感器与所述电路层处于刚性结构连通,以便将感测到的振动运动机械地传送给所述加速度计。
[0059] 在一些方面,传感器还包括安装在所述电路层上的陀螺仪,所述陀螺仪响应于所述病人的角速度。在一些方面,所述加速度计包括三维加速度计,并且所述陀螺仪包括三维陀螺仪。在一些方面,传感器还包括被构造成存储表示所述生理传感器是否先前已被激活的信息的信息元件。
[0060] 为了总结本文,本文已经描述了某些方面、优点和新颖特征。当然,应该理解的是,所有这些方面、优点或特征不一定都将体现在任何特定实施例中。附图说明
[0061] 以下将参阅附图来描述各个实施例。提供附图和相关描述以说明本文的实施例,并且不限制权利要求的范围。在附图中,相似的元件具有相似的附图标记。
[0062] 图1A是所公开的病人监护系统的实施例的立体图,其包括靠近病人监护仪的病人佩戴的无线传感器。
[0063] 图1B是所公开的病人监护仪的显示器的实施例的功能框图
[0064] 图1C是所公开的病人监护系统的实施例的功能框图。
[0065] 图1D是所公开的病人监护系统的实施例的功能框图。
[0066] 图1E是所公开的病人监护系统的实施例的功能框图。
[0067] 图1F是所公开的病人监护系统的实施例的功能框图。
[0068] 图2A是所公开的无线传感器的实施例的功能框图。
[0069] 图2B是包含可选的感测部件的所公开的无线传感器的实施例的功能框图。
[0070] 图3A是所公开的无线传感器的实施例的示意性分解立体图。
[0071] 图3B是图3A所公开的无线传感器的实施例的示意性组装立体图。
[0072] 图3C是图3A和3B所公开的无线传感器的实施例的示意性侧视图。
[0073] 图4A是包含温度传感器的所公开的无线传感器的实施例的示意性截面图。
[0074] 图4B是图4A所公开的无线传感器的实施例的示意性仰视图。
[0075] 图4C是图4A-4B所公开的无线传感器的实施例的示意性分解立体图。
[0076] 图5A是包含声学呼吸传感器的所公开的无线传感器的实施例的示意性截面图。
[0077] 图5B是图5A所公开的无线传感器的实施例的示意性仰视图。
[0078] 图5C是图5A-5B所公开的无线传感器的实施例的示意性分解立体图。
[0079] 图6A是包含温度传感器和声学呼吸传感器的所公开的无线传感器的实施例的示意性截面图。
[0080] 图6B是图6A所公开的无线传感器的实施例的示意性仰视图。
[0081] 图6C是图6A-6B所公开的无线传感器的实施例的示意性分解立体图。
[0082] 图7A是所公开的病人监护系统的实施例的立体图,该病人监护系统包括具有靠近病人监护仪的ECG传感器的病人佩戴的无线传感器。
[0083] 图7B是图7A所公开的无线传感器的实施例的示意性组装立体图。
[0084] 图7C是图7A和7B所公开的无线传感器的实施例的示意性侧视图。
[0085] 图7D是图7A-7C所公开的无线传感器的实施例的截面图。
[0086] 图7E是图7A-7D所公开的无线传感器的实施例的示意性仰视立体图。
[0087] 图7F是图7A-7E所公开的无线传感器的实施例的示意性分解立体图。
[0088] 图8A是具有温度传感器、声学呼吸传感器和ECG传感器的所公开的无线传感器的实施例的示意性分解立体图。
[0089] 图8B是图8A所公开的无线传感器的示意性仰视图。
[0090] 图9是描述根据本文的实施例将无线传感器与病人监护仪相关联的过程的流程图
[0091] 图10是描述根据本文的实施例的确定病人是否已经改变取向的过程的流程图。
[0092] 图11A是根据本文的实施例的用于确定病人的取向的经处理的加速度计数据随时间变化的示例性曲线图。
[0093] 图11B是根据本文的实施例的病人取向的持续时间的示例性曲线图。
[0094] 图12是描述根据本文的实施例的确定病人是否已跌倒的过程的流程图。
[0095] 图13A-13F示出根据本文实施例的反映病人位置的显示器的实施例。
[0096] 图14示出病人监护仪的示例显示器,其并入根据本文的实施例的图13A-13F所示的图标。
[0097] 图15A-15H示出根据本文的实施例的显示在病人显示监护仪上的房间显示器的各种构造。
[0098] 图16示出根据本文实施例的示例方法。

具体实施方式

[0099] 现在将参阅附图描述本文的实施例,其中相同的附图标记始终指代相同的元件。以下描述本质上仅仅是示意性的,并且决不旨在限制本文公开的内容、应用或用途。应该理解,方法内的步骤可以以不同的顺序执行而不改变本文的原理。此外,本文公开的实施例可以包括若干新颖特征,其中没有单独一个仅负责其期望属性或者对于实践本文公开内容的系统、装置和方法是必不可少的。
[0100] 本文涉及监测和管理处于形成一个或多个压力性溃疡风险中的病人的位置、取向和移动的系统、装置、方法和计算机可读介质。在一个实施例中,该系统包括病人佩戴的无线传感器,其包括被构造成从病人处获得位置、取向和移动信息的一个或多个传感器。该一个或多个传感器可以包括一个或多个加速度计、陀螺仪和磁力计(即指南针)。示意性地,传感器连续或周期性地(例如,每秒)获得描述病人在三维方向的信息。无线传感器包括被构造成处理所获得的传感器信息的处理器。无线传感器还包括收发器,该收发器被构造成将处理后的传感器数据和/或表示传感器数据的信息无线地传送给病人监护仪(或其它处理装置)以供进一步处理。病人监护仪可以被构造成存储并进一步处理所接收的信息,以显示表示所接收数据的信息或从所接收的数据导出的信息,并且将信息(包括显示、警报、警告和通知)发送到其它病人护理系统(包括可从例如护士站访问的多病人监护系统)。
[0101] 图1A是所披露的在临床环境中的病人监护系统100的实施例的立体图。病人监护系统100包括由病人佩戴的无线传感器102,其靠近位于病床118侧的桌子116上的病人监护仪106。无线传感器102在本文中也可以称为“无线生理传感器102”、“病人佩戴的传感器102、“移动传感器102”和“可佩戴的无线传感器102”。无线传感器102包括被构造成测量病人的位置、取向和动作的一个或多个传感器。在一些实施例中,无线传感器102包括被构造成测量病人的线性加速度的加速度计和被构造成测量病人的角速度的陀螺仪。测得的线性加速度和角速度信息可以被处理以确定病人的三维方向。在一些实施例中,无线传感器102中包括磁力计以测量地球的重力场。由磁力计测得的信息可用于提高所确定的病人取向的准确度。
[0102] 无线传感器102还包括无线收发器206(在图2A和2B中示出),其可以向病人监护仪106传送代表由无线传感器102从病人处获得的传感器数据的信息。有利地,病人没有物理地连接到床边的病人监护仪106,因此可以自由地移动到床118上的不同位置。
[0103] 根据本文的某些实施例,无线传感器102被贴至病人的衣服下的病人身体的皮肤,如图1A中所反映的。具体地说,无线传感器102可以被放置在病人的胸骨上方、胸部宽阔的上部上的病人胸部上。在该位置,无线传感器102相对于病人身体的纵轴和病人的重心附近大致居中,该位置例如在病人处于床上时确定病人的取向是有用的。
[0104] 无线传感器102可使用任何形式的医学上合适的粘附材料(包括涂覆或施加到无线传感器102的底表面的压敏粘合剂)贴至病人的皮肤。本领域技术人员将会理解,在不脱离本文的范围的情况下,可以使用许多其它材料和技术将无线传感器102贴至病人。
[0105] 经常地,在临床环境中,多个医疗传感器被附接或粘附至病人以同时监测多个生理参数。医疗传感器的一些示例包括但不限于位置、取向和移动传感器、温度传感器、呼吸传感器、心率传感器、血氧传感器(如脉搏血氧饱和度传感器)、声学传感器、脑电图(EEG)传感器、心电图(ECG)传感器、血压传感器、镇静状态传感器等等。典型地,附接到病人的每个传感器通常通过电缆将获得的生理数据传送到被构造成接收和处理传感器数据的附近监护装置,并将其转换成供护理人员用来监测和管理病人的状况的临床信息。当病人同时受到多个生理传感器的监测时,电缆的数量和所使用的床边监护装置的数量可能会过多,并且可能会限制病人的活动自由并阻碍护理人员接近病人。将病人连接到床边监护装置的电缆也可能使病人更难以从一个房间移动到另一个房间或切换到不同的床边监护仪。
[0106] 有利地,所公开的无线传感器102可以将数据无线地发送到病人数据处理环境105,其中可以使用一种或多种处理能力来处理传感器数据。如图1A所示,无线传感器102经由无线通信链路104传送数据。无线通信链路104可由床边病人监护仪106和/或扩展器/中继器107接收。病人监护仪106和扩展器/中继器107通过高速和可靠的连通接口提供对病人数据处理环境105的访问。为了说明的目的,病人监护仪106和扩展器/中继器107都在图1A中示出。然而,通常仅需要一个这样的装置来建立无线传感器102与病人数据处理环境105之间的无线连接。无线通信链路104可以使用各种无线技术中的任一种,比如Wi-Fi(802.11x)、蓝牙、ZigBee、蜂窝电话、红外、RFID、卫星传送、专有协议、它们的组合等。无线传感器102可以被构造成执行遥测功能,比如测量和报告关于病人的位置,取向和移动信息。根据一个实施例,无线传感器102使用蓝牙无线连通标准来与病人监护仪106无线连通。
[0107] 扩展器/中继器107可以通过无线通信链路104从无线传感器102接收传感器数据,然后经由网络108将接收到的传感器数据转发到病人数据处理环境105内的一个或多个处理节点。例如,扩展器/中继器107可以将所接收的传感器数据转发到可能位于特定无线传感器102的无线通信链路104的范围之外的病人监护仪106。备选地,扩展器/中继器107可以将传感器数据传送到病人数据处理环境105内的其它处理节点,例如多病人监护系统110或护士站系统113。本领域技术人员将认识到,可以使用多个处理节点和系统来处理由无线传感器102传送的数据。
[0108] 图1A还示出了病人监护仪106的实施例,其在本文中也可称为“处理装置106”、“便携式计算装置106”和“病人监护装置106”。病人监护仪106的示例被公开在转让给本文的受让人的美国专利公开号2013/0262730和2015/0099955中,且其全部内容通过援引并入本文。病人监护仪106是处理装置,并且因此包括执行处理装置的功能的必要部件,包括至少一个处理器、记忆装置、存储装置、输入/输出装置和通信接口,它们通过一条或多条通信总线连接。因此,在某些实施例中,病人监护仪106被构造成处理由无线传感器102提供的传感器数据。在其它实施例中,传感器数据的处理可以由病人数据处理环境105内的其它处理节点执行。病人监护仪106被构造成与无线传感器102无线通信。病人监护仪106包括显示器120和连接器,其被构造成与也具有显示器130的便携式病人监护仪122机械和电气地配合。
病人监护仪106容纳在可移动、可安装且便携的壳体中,该壳体形成为大致直立的倾斜形状,其被构造成搁置在水平平坦表面上,如图1A所示。当然,本领域技术人员将认识到,壳体可以被固定在各种各样的位置和配件中,并且可以包括各种各样的形状和尺寸。
[0109] 在实施例中,显示器120单独或与便携式病人监护仪122的显示器130组合可以以数字、图形、波形或其它显示标记呈现各种测量和/或治疗数据。例如,显示器120可以显示各种病人特定的配置和/或参数,比如病人体重、年龄、治疗类型、疾病类型、医疗状况类型、营养、水合作用和/或保持时间等等。在一个实施例中,显示器120占据壳体的大部分正面,但是本领域技术人员将会意识到,显示器120可以包括桌面或桌面水平形态,膝上型计算机结构等。其它实施例可以包括将显示信息和数据传送给平板电脑、智能电话、电视机或者本领域技术人员可以识别的任何显示系统。有利地,如图1A所示,病人监护仪106的直立倾斜构型以易于观看的方式向护理人员显示信息。
[0110] 图1A的便携式病人监护仪122可有利地包括血氧计、共同血氧计、呼吸监护仪、镇静深度监护仪、无创血压监护仪、生命体征监护仪等,比如可从加利福尼亚州Irvine的Masimo公司购得的和/或在美国专利公开号2002/0140675、2010/0274099、2011/0213273、2012/0226117、2010/0030040、美国专利申请临时号61/242,792、61/387457、61/645,570、
13/554,908和美国专利号6,157,850、6,334,065中所公开的,其全部内容通过援引并入本文。便携式病人监护仪122可以与各种非侵入性和/或微创设备连通,比如通过非限制性示例的无线传感器102、具有光发射和检测电路的光学传感器、声学传感器、测量手指的血液参数的装置、袖带套、呼吸机等。便携式病人监护仪122可以包括其自身的呈现其自己的显示标记的显示器130。显示标记可以基于便携式病人监护仪122的对接状态而改变。当未被定时,显示器130可以包括参数信息并且可以基于由例如重力传感器或加速度计提供的信息来改变其显示取向。尽管参照特定的便携式病人监护仪122进行了公开,但是本领域技术人员将从本文的公开内容中认识到存在大量且种类繁多的、可以有利地与病人监护仪
106对接的医疗装置。
[0111] 图1B是所公开的病人监护仪106的显示器120和便携式病人监护仪122的显示器130的实施例的功能框图。病人监护仪106的显示器120可以被构造成呈现病人生理数据
124、病人翻身数据126、和/或附加的可选病人数据128。通过非限制性示例,病人生理数据可以包括氧饱和度、脉搏率、呼吸率、部分动脉血氧饱和度、总血红蛋白、体积描记器可变性指数、高血红蛋白、氧血红蛋白、灌注指数和氧含量。有利地,显示器120可构造成允许用户调整生理参数124、病人翻身数据126和可选病人数据128呈现在显示器120上的方式。
尤其,对于临床医生可以以更大的格式显示更感兴趣或更重要的信息,并且还可以以数字和图形两种格式显示,以传达当前测量值以及一段时间内(比如,举例来说前一小时)的测量的历史趋势。
[0112] 如图1B中的虚线所示,便携式病人监护仪130的显示器130是病人监护仪106的可选特征,其可被构造成呈现病人生理数据134、病人翻身数据136和附加的可选病人数据138。
[0113] 图1C是所公开的病人监护系统100的实施例的简化功能框图。该系统包括具有一个或多个传感器的病人佩戴的无线传感器102,来自无线传感器102的传感器数据通过无线通信链路104访问病人数据处理环境105,该病人数据处理环境包括病人监护仪106、通信网络108、多病人监护系统110、医院或设施信息系统112、一个或多个护士站系统113以及一个或多个临床医生装置114。本领域技术人员将认识到,在公开的病人监护系统100中可以包括许多其它计算系统、服务器、处理节点、显示设备、打印机等。
[0114] 无线传感器102由已经被确定有形成一个或多个压力性溃疡风险的病人佩戴,例如长时间被限制在床上的病人。无线传感器102能够以连续或周期(例如,每秒)的方式监测病人的取向,以帮助确定病人是否足够频繁地重新定位而减少病人形成压力性溃疡的风险。在某些实施例中,无线传感器102最低限度地处理所测量的加速度和/或角速度数据,并且通过无线通信链路104将最低限度处理的数据无线地传送到病人监护仪106。
[0115] 无线传感器102和病人监护仪106可以被构造成利用不同的无线技术来形成无线通信链路104。在某些情况下,例如,当无线传感器102和病人监护仪106之间的距离在蓝牙或ZigBee通信的范围内时,可能需要通过蓝牙或ZigBee传送数据。使用蓝牙或ZigBee传送数据是有利的,因为这些技术比其它无线技术需要更少的功率。相应地,可以通过使用蓝牙或ZigBee协议来增加使用电池的所公开的无线传感器102的实施例的寿命。
[0116] 在其它情况下,例如当无线传感器102和病人监护仪106之间距离超出蓝牙或ZigBee的通信范围时,可能需要使用Wi-Fi或蜂窝电话传送数据。与其它无线技术相比,无线传感器102可能能够使用Wi-Fi或蜂窝电话以更大的距离传送数据。在其它情况下可能需要使用第一无线技术传送数据,然后自动切换到第二无线技术以便最大化数据传送和/或能量效率。
[0117] 在一些实施例中,当无线传感器102在距离床边病人监护仪106的预定范围内时,无线传感器102自动地通过蓝牙或ZigBee传送数据。当无线传感器102在床边病人监护仪106的预定范围之外时,无线传感器102自动地通过Wi-Fi或蜂窝电话传送数据。在某些实施例中,根据无线传感器102和床边病人监护仪106之间的距离,无线传感器102可自动地从蓝牙或ZigBee转换成Wi-Fi或蜂窝电话,反之亦然。
[0118] 在一些实施例中,当蓝牙或ZigBee信号强度足够强时或Wi-Fi或蜂窝电话存在干扰时,无线传感器102自动地通过蓝牙或ZigBee传送数据。当蓝牙或ZigBee信号强度不够强时,无线传感器102自动地通过Wi-Fi或蜂窝电话传送数据。在某些实施例中,根据信号强度,无线传感器102可自动地从蓝牙或ZigBee转换成Wi-Fi或蜂窝电话,反之亦然。
[0119] 病人监护仪106能够可操作地接收、存储和处理由无线传感器102传送的所测量的加速度和角速度以确定病人的取向。一旦确定,病人监护仪106可显示病人的当前取向。在某些实施例中,病人监护仪106随着时间显示病人当前的取向以及病人的先前取向,从而为用户提供查看病人取向的历史记录的能力。在某些实施例中,例如,如图13A-F和图14所示,病人取向通过图标(比如简笔画)使临床医生能够容易地理解病人的当前位置状态和病人的位置历史。病人监护仪106也可被构造成跟踪病人保持在特定取向的时间长度。在一些实施例中,病人监护仪106显示已经处于当前取向的病人的时间量。此外,根据重新定位协议,病人监护仪106可确定病人何时在特定取向保持的持续时间大于临床医生规定的持续时间。在这样的情况下,病人监护仪106可给病人和/或护理人员发出警报、警告和/或通知,显示病人应该重新定位以符合规定的重新定位协议来减少病人形成压力性溃疡的风险。
[0120] 如图1C所示,病人监护仪106通过网络108与病人数据处理环境105通信,病人数据处理环境包括多病人监护系统110、医院/设施系统112、护士站系统113以及临床医生装置114。美国专利公开号2011/0105854、2011/0169644和2007/0180140公开了包括多个病人监护系统110的基于网络的临床处理环境的示例,其全部内容通过援引纳入本文。通常,多病人监护系统110与医院/设施系统112、护士站系统113和临床装置114连通。医院/设施系统
112可包括比如电子病案(EMR)和/或入院、出院和转院(ADT)系统的系统。多病人监护系统
110可通过推送、拉取或组合技术有利地获得病人入院时输入的病人信息,比如病人身份信息、人口统计信息及账单信息等等。病人监护仪106可访问该信息以将所监测的病人和医院/设施系统112关联。多病人监护系统110、医院/设施系统112、护士站系统113、临床医生装置114和病人监护仪106之间的通信可通过本文公开的、本领域技术人员可识别的任何技术(包括无线、有线、通过手机或其它计算网络等)来完成。
[0121] 图1D是图1C所公开的病人监护系统100的简单功能框图,其扩展以说明在具有多个病人的护理环境中多个无线传感器102的使用。有利地,病人监护系统100可在例如病人监护仪106上提供单个病人信息以及在例如护士站服务器或系统114上提供总计的病人信息。因此,护理人员可具有对应于位于例如住院楼或单元中的病人群的位置信息概览。
[0122] 在一些情况下,可能不需要、不期望或没有可用资源来采用与病人佩戴的无线传感器102相关联的床边的病人监护仪106。例如,临床环境可能配备人员,以便在中央观察站(如护士站)而不是病人床边收集、分析、显示和监测病人数据。而且,当信息将由临床医生在床边访问时,护理人员可以使用便携式临床装置114(例如举例来说平板电脑、PDA等)在病人床边访问所需的病人特定信息。
[0123] 在这种情况下,如图1E和1F所示,无线传感器102可以通过信号扩展器/中继器107与临床计算环境的各种系统进行通信。扩展器/中继器107位于无线传感器102的范围内(例如,靠近病人的床118)并且被构造成经由网络108在无线传感器102和能够处理、存储、显示和/或传送由无线传感器102收集的数据的一个或多个计算系统之间中继数据。有利地,相对低成本的扩展器/中继器107可以用于使用更短距离、更低功耗的传送模式(比如,举例来说,蓝牙或ZigBee)通过(多个)无线通信链路104接收从一个或多个无线传感器102传送的信号。扩展器/中继器107然后可以通过网络108将接收到的信号重新传送到病人数据处理环境105中的一个或多个计算系统。根据一些实施例,扩展器/中继器107是蓝牙至以太网网关,其通过网络108将从无线传感器102接收的信号重新传送到计算节点(比如,举例来说,多病人监护系统110)。在一些实施例中,扩展器/中继器107是蓝牙至WiFi桥,其提供访问至用于无线传感器102的网络108。当然,本领域技术人员将认识到存在多种实施扩展器/中继器107的方式。
[0124] 图2A示出了所公开的无线传感器102的实施例的简化硬件框图。如图2A所示,无线传感器102可包括处理器202、数据存储装置204、无线收发器206、系统总线208、加速度计210、陀螺仪212、电池214和信息元件215。处理器202尤其可以被构造成处理数据、执行指令以执行一种或多种功能(比如本文公开的方法),并且控制无线传感器102的操作。数据存储装置204可包括一个或多个存储数据的内存器,包括但不限于随机存取存储器(RAM)和只读存储器(ROM)。无线收发器206可以被构造成使用各种无线技术中的任一种,比如Wi-Fi(802.11x)、蓝牙、ZigBee、蜂窝电话、红外、RFID、卫星传送、专有协议以及它们的组合等。无线传感器102的部件可以通过系统总线208关联在一起,系统总线可以为一条或多条总线。
电池214为本文描述的无线传感器102的硬件部件提供电力。如图2A所示,电池214通过系统总线208与其它部件连通。本领域技术人员将理解,电池214可以通过一个或多个独立的电连接与图2示出的一个或多个硬件功能部件电导通。信息元件215可以是存储器存储元件,该存储器存储元件在非易失性存储器中存储用于帮助保持与无线传感器102相关的质量标准的信息。示意性地,信息元件215可以存储关于传感器102是否先前已被激活以及传感器
102是否先前已在延长的时间段(比如,举例来说四小时)内运行的信息。存储在信息元件
215中的信息可以用于帮助检测无线传感器102的不适当的重复使用。
[0125] 在一些实施例中,加速度计210是三维(3D)加速度计。这里使用的术语3D加速度计包括本领域技术人员已知的广义含义。加速度计210提供响应于无线传感器102沿三个正交轴(有时表示为“X”、“Y”和“Z”轴)的加速度的输出。加速度计210可以测量其相对于地球重力经历的加速度。加速度计210可以提供沿三个轴的加速度信息,并且它可以提供与惯性加速度减去当地重力加速度的差异幅值相等的加速度信息。加速度计210对于本领域技术人员来说是众所周知的。加速度计210可以是微机电系统(MEMS),并且除了其它形式的实施方式之外,其可以包括压电电阻器。加速度计210可以是高阻抗电荷输出或低阻抗电荷输出加速度计210。在一些实施例中,加速度计210可以是三轴加速度计,并且加速度计210的输出可以包括三个信号,每个信号代表在特定轴上的测量加速度。加速度计210的输出可以是8位、12位或任何其它合适大小的输出信号。加速度计的输出可以是模拟或数字形式。加速度计210可以用于确定无线传感器102所附接到的病人的位置、取向和/或运动。
[0126] 在一些实施例中,陀螺仪212是角度分辨率为两度和传感器漂移调节能力为一度的三轴数字陀螺仪。这里使用的术语“三轴陀螺仪”包括本领域技术人员已知的广义含义。在与俯仰、偏航和翻滚的测量值相对应的三个正交轴上,陀螺仪212提供响应于感测到的无线传感器102(如贴在病人身上)的角速度的输出。本领域技术人员将认识到,在不脱离本文公开的范围的情况下,可以在无线传感器102中使用许多其它陀螺仪212。在某些实施例中,加速度计210和陀螺仪212可以被集成到可以被称为惯性测量单元(IMU)的单个硬件部件中。在一些实施例中,IMU还可以包括嵌入式处理器,该嵌入式处理器尤其还可进行感测到的惯性数据的信号采样、缓冲、传感器校准和传感器融合处理。在其它实施例中,处理器202可以执行这些功能。并且仍然在其它实施例中,感测到的惯性数据通过无线传感器102的部件被最小程度地处理并且被传送到外部系统(比如病人监护仪106)以用于进一步处理,从而最小化无线传感器102的复杂性、功耗和成本,其可以是一次性使用的一次性产品。
[0127] 图2B是所公开的无线传感器102的实施例的简化硬件功能框图,其包括以下可选的(如虚线所反映的)感测部件:磁力计216,其也可以被称为指南针、温度传感器218、声学呼吸传感器220、心电图(ECG)传感器222、一个或多个血氧测量传感器224、湿度传感器226和阻抗传感器228。在一些实施例中,磁力计216是三维磁力计,其提供表示包括地球磁场在内的磁场的信息。虽然在图2B中示出为单独的功能元件,本领域技术人员将理解,加速度计210、陀螺仪212和磁力计214可以被集成到比如惯性测量单元的单个硬件部件中。
[0128] 根据一个实施例,本文描述了一种由附接到物体的三个传感器的输入推算物体的三维位置和取向的系统和方法:被构造成沿着三轴测量线性加速度的加速度计210;陀螺仪212,其被构造成测量绕三轴的角速度;以及磁力计214,其被构造成沿着三轴测量磁场(比如地球磁场)的强度。在实施例中,将三个传感器210、212和214附接到贴至病人的无线传感器102。根据实施例,传感器210、212和214以约10Hz和约100Hz之间的速率采样。本领域技术人员将认识到,传感器210、212和214可以以不同的速率被采样而不偏离本文的范围。处理来自三个传感器210、212和214的采样数据提供九个传感器输入以描述病人在三维空间中的位置和取向。在实施例中,病人的位置和取向根据欧拉角被描述成绕病人的X-Y-Z轴组的一组旋转。
[0129] 还在图2B中示出温度传感器218,其可以用于测量病人的身体核心温度,它是临床医生用于监测和管理病人状况的重要标志。温度传感器218可包括热电偶、带有彼此在一个或多个点处接触的两个不相似导体或半导体的温度测量装置。不同的导体经历温差。当接触点与参考温度不同时,热电偶产生电压。有利地,热电偶是自供电的,并且因此不需要外部电源进行操作。在实施例中,温度传感器218包括热敏电阻。热敏电阻是其电阻值根据其温度而变化的一种电阻。热敏电阻通常在有限的温度范围内提供高精度
[0130] 声学呼吸传感器220可以用于感测病人身体(例如,病人的胸部)的表征各种生理参数和/或状况的振动运动,包括但不限于心率、呼吸率、打鼾、咳嗽、窒息、喘息和呼吸阻塞(例如呼吸暂停事件)。ECG传感器222可用于测量病人的心脏活动。根据实施例,ECG传感器222包括两个电极和单个导线。(多个)血氧饱和度传感器224可用于监测病人的作为人体氧供应的指标的脉搏血氧饱和度,这种监测是广泛采用的用于测量动脉血的氧饱和度水平的无创性处置。典型的脉搏血氧饱和度测定系统利用夹在病人身体的一部分(如指尖、垂、鼻孔等)上的光学传感器来测量在正被感测的身体部分内流动的脉动动脉血液中氧合血红蛋白的相对体积。使用(多个)血氧饱和度传感器224可对血氧饱和度(SpO2)、脉率、体积描记器波形、灌注指数(PI)、血容量变异指数(PVI)、高铁血红蛋白(MetHb)、碳氧血红蛋白(CoHb)、总血红蛋白(tHb)、葡萄糖和/其它进行测量和监测。湿度传感器226可被用来确定病人皮肤的湿度含量,其是评估病人形成压力性溃疡的风险的相关临床因素。阻抗传感器
228可用于跟踪病人的液位。例如,阻抗传感器228可以监测和检测病人的水肿、心力衰竭进展和败血症。
[0131] 图3A是所公开的无线传感器102的实施例的示意性分解立体图,其包括底部基座310、可移除电池绝缘件320、安装框架330、电路板340、壳体350和顶部基座360。底部基座
310是具有顶表面和底表面的基板,无线传感器102的各种部件位于顶表面上,底表面用于将无线传感器102固定到病人的身体。仅举几例,底部基座310和顶部基座360可由医疗级泡沫材料制成,比如白色聚乙烯、聚氯酯或网状聚氯酯泡沫。如在图3A中示出的实施例所示,底部基座310和顶部基座360每个呈大致椭圆形,厚度约为1mm。顶部基座360包括切口362,在组装期间壳体350通过切口362安装。当然,本领域技术人员将理解,在不脱离本文范围的情况下,顶部基座310和底部基座360可以有很多可适用的尺寸和形状。底部基座310的底表面涂覆有高粘性医用级粘合剂,其在施用于病人皮肤时适合于长期监测,比如,举例来说两天或更长时间。由于底部基座310和顶部基座360在组装无线传感器102期间粘附在一起,所以底部基座310的顶表面的部分也涂覆有医疗级粘合剂。
[0132] 可移除电池绝缘件320是由电绝缘材料制成的柔性带,其用来阻断电池214与电路板340上的电触点(未示出)之间的电连接。电池绝缘件320用于保存电池电力,直到准备好使用无线传感器102。电池绝缘件320阻断电池214和电路板340之间的电连接,直到将电池绝缘件320从无线传感器102移除。电池绝缘件320可由具有足够的柔韧性的任何材料制成,以便可滑动地从其初始位置移除并其具有足够的介电性能以将电池与电路板340电隔离。例如电池绝缘件可由塑料、聚合物膜、纸、泡沫、这些材料的组合等制成。当组装无线传感器
102时,电池绝缘件320包括延伸穿过壳体350的槽352的拉片322。拉片322可以被纹理化以提供摩擦表面来帮助抓住并拉动拉片322离开其原始组装位置。一旦电池绝缘件320被移除,电池214就与电池触点电连接以激活无线传感器102的电子部件。
[0133] 安装框架330是帮助将电池214固定到电路板340的结构支撑元件。安装框架340具有翼部342,当组装时,该翼部在电池触点342和电池214之间滑动。另外,安装框架330用来在电路板340与底部基座310之间提供刚性结构。根据包括声学呼吸传感器的一些实施例,刚性结构将从病人发出的振动运动(振动)(比如举例来说,与呼吸、心跳、打鼾、咳嗽、窒息、喘息、呼吸阻塞等有关的振动运动)传送到在电路板340上的加速度计210。
[0134] 电路板340(其在本文中也可被称为衬底层340和电路层340)机械地支撑并电连接电气部件以执行无线传感器102的许多功能。电路板340包括导电轨和连接垫。这样的电气部件可以包括但不限于处理器202、存储装置204、无线收发器206、加速度计210、陀螺仪212、磁力仪214、温度传感器218、声学呼吸传感器220、ECG传感器222、血氧饱和度传感器
224、湿度传感器226和阻抗传感器228。在实施例中,电路板340是双侧的,具有安装在顶侧上的电子部件和安装在底侧上的电池触点(未示出)。当然,本领域技术人员将认识到用来安装和互连无线传感器102的电气和电子部件的其它可能性。
[0135] 如图3A所示,电池保持件342附接到顶部电路板340的两侧并且在电路板340的底侧下方延伸(形成支撑结构)以将电池214相对于电路板340保持在适当位置。电池保持件342由导电材料制成。在一些实施例中,电池214是纽扣电池,其具有在顶侧上的正极和在底侧上的负极。电池214的负极和电路板340之间的电连接通过电池保持件来进行,该电池保持件与电池214的负极和电路板340电接触。电池214的正极被定位成接触电路板340的底侧上的电池触点(未示出)。在一些实施例中,电池触点包括弹簧臂,该弹簧臂将力施加在电池触点上以确保在电池214的负极和电池触点之间形成接触。在组装过程中和使用之前,将电池绝缘件320插入电池214的负极和电池连接器之间以阻断电接触。
[0136] 壳体350是用来容纳和保护无线传感器102的部件的结构部件。壳体350可由能够充分保护无线传感器102的电子部件的任何材料制成。这样的材料的示例包括但不限于热塑性塑料和热固性聚合物。壳体350包括槽352,电池绝缘件320在组装期间通过槽352被插入。壳体350还包括围绕壳体350的外表面延伸的边缘354。当组装无线传感器102时,边缘354用于将壳体350相对于底部基座310和顶部基座360固定就位。
[0137] 以如下方式组装无线传感器102:将电路板340和保持电池214的电池保持件342放置在壳体350中。将安装框架330的翼部332插入在电池214和电池保持件342之间,以便将安装框架330与电路板340对准。然后,将电池绝缘件320定位在电池触点和电池214之间。然后,电池绝缘件320的拉片322穿过壳体350中的槽352被送出。然后,将顶部基座360定位在壳体350上,使用切口362进行对齐,壳体350现在容纳有组装好的电路板340、电池保持件342、电池214、安装框架330和电池绝缘件320。壳体350的边沿354粘附于顶部基座360的底表面,该底表面涂覆有高粘性医疗级粘合剂。现在将包括顶部基座360、壳体350、电路板
340、电池保持件342、电池214、安装框架330和电池绝缘件320的部分组件被居中地定位在底部基座310的顶表面上,从而将基座顶部360的边缘与基座底部310的边缘对齐。在一些实施例中,使用取样片(或模切工具)来切除现在已组合的顶部基座360和底部基座310的多余部分以形成无线传感器102的最终形状。然后,底部基座310的底表面涂覆有高粘性医疗级粘合剂,并且将剥离衬垫(未示出)放置在底部基座3310的底表面上以保护粘合剂直到使用时。
[0138] 组装好的无线传感器102的示意性立体图示出在图3B中。还在图3B中示出了位于壳体350的顶部上的按钮/开关324。按钮/开关324可用于改变无线传感器102的模式。例如,在一些实施例中,按压并保持按钮/开关324可导致无线传感器102切换到配对操作模式。配对模式用于将无线传感器102与病人监护仪106或扩展器/中继器107相关联。图3C提供了组装好的无线传感器102的实施例的示意性侧视图,其中标识了截面线A-A。
[0139] 现在参阅图4A和4B,公开了包括温度传感器218的无线传感器102的实施例。图4A是沿着图3C的线A-A截取的示意性截面图,其示出了所公开的组装好的包括温度传感器218的无线传感器102的实施例。为了更容易看到,未示出电池绝缘件320和电池保持件342。图4B是图4A公开的无线传感器的实施例的示意性仰视图。示出了底部基座310的底表面。还以虚线(即,点虚线)示出了切口362的轮廓,这表示壳体350相对于底部基座310的底表面的位置。
[0140] 如上面关于无线传感器102的组装所解释的,底部基座310的顶表面接触并粘合至顶部基座360的底表面。壳体350的边缘354夹在两个基座310、360之间以固定壳体350。壳体350还突出穿过顶部基座360的切口362。在壳体内,电池214和安装框架330与底部基座310的顶表面相邻。
[0141] 如图4A所示,温度传感器218安装在电路板340上。为了执行其温度感测功能,温度传感器218与病人皮肤热接触。为实现这一点,提供了将来自病人身体的热能传送给温度传感器218的结构。尤其是温度传感器218的输入端热连接到位于电路板340中的多个通孔通路410。通孔通路是电路板340中的小的竖向开口或通路,可通过通孔通路放置导热和/或导电材料,从而允许从电路板340的一侧向另一侧传送热能和/或电能。在通孔通路410下方是延伸穿过安装框架330(以形成安装框架孔)并穿过无线传感器102的底部基座310的孔或开口404。当病人佩戴无线传感器102时,孔404提供从温度传感器218到病人皮肤的通道。孔404和通孔通路410填充有导热材料402。导热材料在本领域中是公知的且作为非限制性例子可包括导热弹性体、聚合物、树脂等。示意性地,无线传感器102在操作中被贴至病人的皮肤。暴露于病人皮肤的导热材料402通过孔404和通孔通路410将来自病人身体的热能传送到达温度传感器218的输入端。
[0142] 有利地,凭借使用可从皮肤表面测量深部组织温度的技术的温度传感器218,所公开的无线传感器102可测量病人的身体核心温度(确定的和有用的生命体征)。在人体中,身体核心和皮肤表面之间存在自然热通量,因为身体核心温度通常处于比皮肤表面更高的温度。因此热量从身体核心流向皮肤。通过在皮肤温度测量点处和测量点周围使皮肤表面绝热,从而阻止热量逸出,身体核心和皮肤表面之间的温度梯度将降低。绝热区域下的皮肤温度将升高,直至它达到与绝热条件下最热区域(即身体核心)相平衡的温度,从而接近身体核心温度。当达到平衡时,皮肤温度等于核心体温。有利地,与温度传感器218周围的病人皮肤接触的无线传感器102的底部基座310和顶部基座360具有绝热特性。示意性地,作为非限制性例子,底部基座310和顶部基座360可由绝热材料制成,包括聚氯酯泡沫、聚苯乙烯泡沫、氯丁橡胶泡沫、氯丁橡胶、聚酯(Mylar)、聚四氟乙烯(PTFE)、泡沫、硅橡胶等。温度传感器218可相应地测量病人的身体核心温度。
[0143] 图4C是图4A和4B公开的无线传感器的实施例的示意性分解立体图。如图所示,温度传感器218安装在电路板340的顶表面上。孔404延伸穿过安装框架330和底部基座310,并与通孔通路410(图4C中未示出)和温度传感器218竖向对齐。孔404和通孔通路410填充有导热材料402。因此,所公开的结构实现了病人皮肤和温度传感器218之间的热连接。
[0144] 现在参阅图5A和5B,公开了包括声学呼吸传感器220的无线传感器102的实施例。图5A是沿着图3C的线A-A截取的示意性截面图,其示出了所公开的组装好的包括声学呼吸传感器220的无线传感器102的实施例。为了更容易看到,电池绝缘件320和电池保持件342未示出。图5B是图5A所公开的无线传感器的实施例的示意性仰视图。示出了底部基座310的底表面。还以虚线(即,点画虚线)示出切口362的轮廓,其表示壳体350相对于底部基座310的底表面的位置。
[0145] 如图5A所示,声学呼吸传感器220安装在电池214的下方。在操作上,声学呼吸传感器220检测从病人身体(例如,病人的胸部)发出的振动运动并且将检测到的振动运动机械地传送到加速度计210。加速度计210感测机械传送的振动运动。由加速度计210收集的信号可以被处理以将振动运动从其它感测到的加速度信号中提取出来。这种振动运动的示例可包括但不限于心跳、呼吸活动、咳嗽、喘息、打鼾、窒息和呼吸阻塞(例如呼吸暂停事件)。为了有效地机械地传送感测到的振动运动,声学呼吸传感器220与加速度计210以刚性结构接触。为了实现这一点,将声学呼吸传感器220被安装到电池214的底侧。尤其是,声学呼吸传感器220包括夹在电池214的底表面和底部基座310之间的边沿221。因此,边沿221用于将声学呼吸传感器220刚性地固定到电池214的底表面。
[0146] 如图5A所示,声学呼吸传感器220突出穿过底部基座310中的孔或开口502,超出由底部基座310产生的平面。这是为了确保声学呼吸传感器220与病人身体直接接触(例如,胸部)以便感测病人发出的振动运动。在声学呼吸传感器220内带有柔性导线或其它处于轻微张力下的这类结构,使得当导线暴露于振动运动时,其将以与所感测的振动运动关于所感测的振动运动的频率和幅度两者成比例的方式振动。声学呼吸传感器220被构造成通过无线传感器102的刚性结构传送感测的振动运动,使得所传送的振动运动被加速度计210感测。刚性结构包括电池214和电路板340。
[0147] 图5C是图5A-B所公开的无线传感器的实施例的示意性分解立体图。如图所示,加速度计210安装在处于电池214上方的电路板340的顶表面上,该电池固定在电路板340下方。声学呼吸传感器220(图5C中未示出)在电池214和底部基座310之间装入。孔502延伸穿过底部基座310并且与电池214竖向对齐,使得声学呼吸传感器220被紧固至无线传感器102的刚性结构。因此,所公开的结构为声学呼吸传感器220具有将来自病人胸部的振动运动机械地传送到加速度计210的能力。
[0148] 图6A-6C示出了所公开的无线传感器102的实施例,其包括温度传感器218和声学呼吸传感器220。图6A是沿着图3C的线A-A截取的示意性截面图,示出了所公开的组装好的包括温度传感器218和声学呼吸传感器220的无线传感器102的实施例。为了更容易看到,电池绝缘件320和电池保持件342未示出。图6B是图6A公开的无线传感器的实施例的示意性仰视图。图6C是图6A和6B所公开的无线传感器102的实施例的示意性分解立体图。
[0149] 结构上,图6A-6C中示出的实施例是图4A-4C和5A-5C中示出的实施例的组合。如图6A-6B所示,将温度传感器218安装在电路板340上。如前所述,温度传感器218的输入端被热接合至位于电路板340中的多个通孔通路410。孔404在通孔通路410下方,其延伸穿过安装框架330并穿过无线传感器102的底部基座310。当病人佩戴无线传感器102时,孔404提供从温度传感器218到病人皮肤的通路。孔404和通孔通路410填充有导热材料402。在操作中,将无线传感器102贴至病人的皮肤。暴露于病人皮肤的导热材料402通过孔404和通孔通路410将来自病人身体的热能传送至温度传感器218的输入端。
[0150] 还如图6A-6B中所示,声学呼吸传感器220安装在电池214下方。尤其是,声学呼吸传感器220包括夹在电池214的底表面和底部基座310之间的边沿221。因此,边沿221用于将声学呼吸传感器220刚性地固定到电池214的底表面。声学呼吸传感器220突出穿过底部基座310中的孔502,超出由底部基座310产生的平面。声学呼吸传感器220被构造成通过无线传感器102的刚性结构传送从病人(例如,从病人的胸部)处感测到的振动运动,使得加速度计210感测到所传送的振动运动。刚性结构包括电池214和电路板340。
[0151] 图6C是图6A和6B所公开的无线传感器的实施例的示意性分解立体图。如图所示,温度传感器218安装在电路板340的顶表面上。孔404延伸穿过安装框架330和底部基座310并与通孔通路410(图4C未示出)竖向对齐。孔404和通孔通路410填充有导热材料402。另外,加速度计210安装在电池214上方的电路板340的顶面上,该电池固定在电路板340的下方。在电池214和底部基座310之间装入声学呼吸传感器220(图6C未示出)。在一些实施例中,声学呼吸传感器220抵靠安装框架330而使声学呼吸传感器220、安装框架330、电池214和电路板340形成刚性结构,其能够机械地将由声学呼吸传感器220感测的振动运动传送到安装在电路板340上的加速度计210。孔502延伸穿过底部基座310并与电池214竖向对齐,使得声学呼吸传感器220固定至无线传感器102的刚性结构。因此,所公开的实施例实现病人皮肤与温度传感器218之间的热连接以及由声学呼吸传感器220将来自病人胸部的振动运动机械地传送至加速度计210的能力。
[0152] 有利地,在图6A-C中公开的实施例尤其能够提供三种生命体征:身体核心温度、脉搏率和呼吸率。生命体征衡量人体最基本的功能并且由医疗服务提供者定期地用于评估和监测病人的状态。病人的身体核心温度可由温度传感器218提供。病人的脉搏率和呼吸率可由声学呼吸传感器220结合加速度计210提供。
[0153] 在图7A-7F中,示出了所公开的无线传感器102的实施例,其包括心电图(ECG)传感器222。适用于安装在电路板上的芯片级和/或部件级ECG传感器在本领域中是已知的。示意性地,作为非限制性例子,仅举几例,固态ECG传感器由德州仪器和普莱思半导体有限公司提供。图7A是所公开的病人佩戴式无线传感器102的实施例的立体图,其具有包括从壳体350延伸出的ECG导线706的ECG传感器222。如图7A所示,使无线传感器102粘附到病人的胸部,例如胸骨上方。ECG导线706从无线传感器102的壳体350延伸至病人胸部上的适合感测由病人心脏产生的电信号的位置。ECG导线706与ECG电极707电连通,在操作中,将ECG电极粘附至病人胸部。在某些实施例中,ECG电极707包括嵌入自粘衬垫的中部的导电凝胶。ECG电极707感测来自病人胸部的电信号,并经由导线706将感测到的信号传送至ECG传感器
222。电极707粘附至病人的皮肤并从此处感测电信号。本领域技术人员将认识到,ECG电极的许多结构、形状和形式在本领域中是公知的并且可用于实现ECG电极707。
[0154] 如图7A所示,ECG导线706延伸到病人胸部的左侧心脏上方定位有无线传感器102。在底部基座310处,在壳体350下方形成也与病人皮肤接触的另一ECG电极702(下文描述)。
因此,在ECG导线电极707和ECG电极702之间形成向量,通过该向量,可感测到病人心脏的电信号。示意性地,当电极702和707如图7A所示定位时,ECG传感器222可以感测形态上类似于标准12导线ECG的导线I或导线II上所检测到的ECG信号的ECG信号。
[0155] 图7B是图7A公开的无线传感器102的实施例的示意性组装立体图。ECG导线706连接到安装在电路板340上的ECG传感器222(示出在图7D中)。如图7B所示,ECG导线穿过壳体350延伸至可锁定的可伸缩卷轴708,该卷轴在不使用时将ECG导线706卷绕地存储。ECG导线
706可从卷轴708延伸出并锁定在期望位置,从而能将ECG导线电极707放置在病人胸部上的期望位置处。在一些实施例中,锁定机构通过在导线706上施加拉力而接合和解除结合。可锁定的可伸缩卷轴的各种形状和形式在本领域中是公知的,并且可用于实现卷轴708。
[0156] 图7C提供了标出截面线B-B的图7A和7B的组装好的无线传感器102的实施例的示意性侧视图。图7D是沿线B-B截取的图7A-C的实施例的截面图。如图7D所示,将ECG传感器222安装在电路板340上。为了执行其感测功能,ECG传感器222与病人皮肤上的至少两个点电接触。提供两个电极702和707来实现该目的。尽管以上已经描述了ECG电极707,但在本文中随后描述ECG电极702。
[0157] ECG电极702位于无线传感器102的底部基座310内。ECG传感器222的输入端电连接到位于电路板340中的多个通孔通路710。如前所述,通孔通路是电路板340中的小的竖向开口或路径,可通过该通孔通路来放置导电材料,从而允许从电路板340的一侧向另一侧传送电信号。孔或开口704在通孔通路710的下方,其延伸穿过安装框架330(以形成安装框架孔)并且穿过无线传感器102的底部基座310。当病人佩戴无线传感器102时,孔704提供从ECG传感器222到病人皮肤的通路。孔704和通孔通路710填充有导电材料以形成ECG电极702。导电材料在本领域中是公知的,并且可包括(作为非限制性示例)导电硅酮、弹性体、聚合物、环氧树脂和树脂等。在操作中,将无线传感器102贴至病人的皮肤,并且暴露于病人皮肤的ECG电极702通过孔704和通孔通路710感测并传送来自病人的皮肤表面的电信号以到达ECG传感器222的输入端。
[0158] 图7E是图7A-7D所公开的无线传感器的实施例的示意性仰视图。示出了底部基座310的底表面。还以虚线(即,点画虚线)示出切口362以及可锁定的可伸缩卷轴708的轮廓,切口的轮廓还表示壳体350相对于底部基座310的底表面的位置。ECG电极702也被示出为其定位成与病人的皮肤接触。在一些实施例中,ECG电极可以涂覆有导电凝胶以改善电极与皮肤的接合。
[0159] 图7F是图7A-7E所公开的无线传感器的实施例的示意性分解立体图。如图所示,ECG传感器222安装在电路板340的顶表面上。孔704延伸穿过安装框架330和底部基座310,并与通孔通路710(未示出在图7F中)竖向对齐。孔704和通孔通路710填充有导电材料以形成电极702。因此,所公开的结构实现病人皮肤和ECG传感器222之间的电连接。
[0160] 图8A是所公开的无线传感器的实施例的示意性分解立体图,其具有温度传感器218、声学呼吸传感器220和ECG传感器222。图8B是图8A所公开的无线传感器的示意性仰视图。在结构上,图8A-8B中描绘的实施例是图4A-4C和5A-5C和7A-7F中描绘的实施例的结合。
如图8A-8B所示,温度传感器218安装在电路板340上。如前所述,温度传感器218的输入段被热接合至位于电路板340中的多个通孔通路410。孔404在通孔通路410下方,其延伸穿过安装框架330并穿过无线传感器102的底部基座310。当病人佩戴无线传感器102时,孔404提供从温度传感器218到病人皮肤的通路。孔404和通孔通路410填充有导热材料402。
[0161] 声学呼吸传感器220安装在电池214的下方,其通过夹在电池214的底表面和底部基座310之间的边沿221被保持在适当的位置。因此,边沿221用于将声学呼吸传感器220刚性地固定到电池214的底表面。声学呼吸传感器220突出穿过底部基座310中的孔502,超出由底部基座310产生的平面。声学呼吸传感器220将从病人(如从病人胸部)处感测到的振动运动传送通过无线传感器102的刚性结构,使得加速度计210感测到所传送的振动运动。传送振动运动的刚性结构包括电池214和电路板340。
[0162] ECG电极702位于无线传感器102的底部基座310内。将ECG传感器222的输入端电接合至位于电路板340中的多个通孔通路710。孔或开口704在通孔通路710下方,其延伸穿过安装框架330并穿过无线传感器102的底部基座310。当病人佩戴无线传感器102时,孔704提供从ECG传感器222到病人皮肤的通路。孔704和通孔通路710填充有导电材料以形成ECG电极702。
[0163] 在操作中,将无线传感器102贴至病人的皮肤。暴露于病人皮肤的导热材料402通过孔404和通孔通路410传送来自病人身体的热能以到达温度传感器218的输入端。声学呼吸传感器220感测来自病人的振动运动并将振动运动机械地传送到安装在电路板上的加速度计210。并且,外露至病人皮肤的ECG电极702和707感测并传送来自病人皮肤表面的电信号以到达ECG传感器222的输入端。
[0164] 图8B是图8A所公开的无线传感器的实施例的示意性仰视图。示出了底部基座310的底表面。还以虚线(即点虚线)示出了切口362和可锁定的可伸缩卷轴708的轮廓。在图8B中示出了三个传感器接入点。导热材料402为安装在电路板340上的温度传感器218提供自病人皮肤传送热能的通路。声学呼吸传感器220与病人皮肤直接接触并且与加速度计210刚性结构地接触以便将由病人发出的所感测到的振动运动机械地传送到安装在电路板340上的加速度计210。并且,ECG电极702提供用于将电信号从病人的皮肤传送到安装在电路板340上的ECG传感器220的路径。
[0165] 在一些情况下,可能需要将无线传感器102与床边病人监护仪106配对或关联以避免来自其它无线装置的干扰和/或将病人特定的信息(例如存储在病人监护仪上的信息)与由无线传感器102收集并传送的传感器数据关联。示意性地,作为非限制性示例,这种病人特定信息可包括病人姓名、年龄、性别、体重、身份证号码(例如社会保障号、保险号、医院标识号等)、入院日期、住院时间、医生姓名和联系信息、诊断、治疗类型、灌注率、水合作用、营养、压力性溃疡形成风险评估、病人翻身规范指令、治疗计划、实验室结果、健康分数评估等。本领域技术人员将认识到,在不脱离本文范围的情况下,可以将多种类型的病人特定信息与所描述的病人佩戴的传感器相关联。另外,可以执行将无线传感器102与病人监护仪106配对以提供数据安全性并保护病人的私密性。一些无线系统要求护理人员对无线传感器102进行编程以与正确的病人监护仪106通信。其它无线系统需要单独的令牌(token)或加密密钥以及将无线装置102与正确的床边病人监护仪106配对的若干步骤。一些系统需要将令牌连接到床边病人监护仪106,然后连接到无线装置102,然后重新连接到床边病人监护仪106。在某些情况下,可以期望在无线传感器102和床边病人监护仪106之间共享无线通信信息而无需单独的令牌或加密密钥。出于安全的目的,可能希望使用安全令牌来确保正确的床边病人监护仪106接收正确的无线传送的数据。除非无线传感器102和床边病人监护仪106共享相同的密码,否则安全令牌防止床边病人监护仪106访问所传送的数据。密码可以是单词、通行码或随机选择的字节数组。
[0166] 图9示出了将无线传感器102与病人监护仪106相关联的示例性方法,其可以称为“配对”。在框902处,无线传感器102被设置为以配对模式操作。在实施例中,用户启动无线传感器102的配对操作模式。这可以包括开启无线传感器102,将无线传感器102切换到特殊配对状态等。例如,在某些实施例中,无线传感器102可以包括在被移除时激活无线传感器102的电池绝缘件320。在激活时,默认的操作模式是配对模式。在一些实施例中,无线传感器102可具有可用于激活无线传感器102并将其置于配对操作模式中的按钮/开关324。例如,可按压的按钮/开关324可位于壳体350的顶部。当按钮/开关324被按下并持续压下时,无线传感器102进入配对操作模式并且只要按钮/开关324被按下时就保持配对操作模式。
[0167] 如框904所反映的,无线传感器102发送配对信号,该配对信号表示其已准备好与病人监护仪106配对或关联。根据一些实施例,无线传感器102的无线收发器206被构造成发出具有有限配对信号传送范围的低功率配对信号。该有限配对信号传送范围有助于防止无线传感器102与可能在无线传感器102附近但不打算与其配对的病人监护仪106的意外或偶然关联。这种情况可能发生在医院、医疗机构、疗养院等,其中病人、传感器102、病人监护仪106位于物理上彼此接近的位置。在某些实施例中,低功率配对信号具有最大约三英寸的配对信号传送范围。在其它实施例中,低功率配对信号具有高最大约六英寸的配对信号传送范围。在其它实施例中,低功率配对信号具有最大约一英尺(即十二英寸)的配对信号传送范围。本领域技术人员将认识到,其它范围可以用于配对信号传送范围。
[0168] 接下来,在框906处,当病人监护仪106在配对信号传送范围内时,其从无线传感器102接收配对信号。在检测到配对信号时,病人监护仪106在框908处与无线传感器102相关联,从而配置无线传感器102和病人监护仪106以彼此通信。一旦完成配对,病人监护仪106发送确认信号以确认病人佩戴的传感器102与病人监护仪106相关联,从而表示配对过程已成功完成,如框910所示。在框912处,无线传感器102接收确认信号。并且在框914处,无线传感器102退出配对操作模式并进入病人参数感测操作模式。在病人参数感测模式的操作中,病人佩戴的传感器102发送具有病人参数感测信号传送范围的病人参数感测信号。无线传感器102将病人参数感测信号传送范围的功率增加到标准操作范围,例如约三米。在一些实施例中,病人参数感测信号传送范围约为10英尺。在一些实施例中,病人参数感测信号传送范围约为30英尺。在某些实施例中,配对信号传送范围在约3到12英寸之间,而病人参数感测信号传送范围约为10英尺。在这样的实施例中,配对信号传送范围与病人参数感测信号传送范围之间至少存在一个数量级差异。因此,配对信号传送范围实质上小于病人参数感测传送范围。一旦无线传感器102进入病人参数感测操作模式,无线传感器102就处于放置在病人身上的状态以执行感测和监测操作。
[0169] 在某些实施例中,扩展器/中继器107被用于与无线传感器102而不是病人监护仪106通信。与放大器/中继器的配对可以以上面关于图9所述的相同方式来执行。
[0170] 根据某些实施例,所公开的病人监护系统100有助于管理处于形成一个或多个压力性溃疡的风险中的病人,尤其通过检测病人的取向的变化以及通过确定病人在当前取向保持多久。有利地,系统100可以检测病人何时重新定位并开始计时病人保持在该新取向的持续时间。因此,如果病人在没有护理人员观察的情况下自己重新定位,则监护系统100可以检测该重新定位事件并重新启动计时器。
[0171] 病人监护系统100可以辅助监督临床医生为病人确定的翻身规程(protocol)。例如,如果病人在一个方向上保持了超出预先确定的、临床医师规定的持续时间,则系统100可以通知病人和/或护理人员病人应该被重新定位。无线传感器102获得表示病人的取向的传感器信息(例如,加速度数据)、预处理所感测的数据,并将其发送到能够处理测得的数据的处理装置,例如病人监护仪106。其它能够处理测得的数据的装置包括但不限于临床医生装置114、护士站系统113、多病人监护系统110、专用处理节点等。为了便于说明,本文的描述将把处理装置描述为病人监护仪106;然而,本领域技术人员将认识到,在不脱离本文的范围的情况下,可以使用大量的处理装置来执行所描述的功能。
[0172] 病人监护仪106存储并进一步处理所接收的数据以确定病人的取向。根据一些实施例,病人监护仪106可以确定病人是站立、坐着还是以俯卧、仰卧方式躺着、躺在左侧或右侧位置。病人监护仪106可存储确定的取向信息并且跟踪病人在每个确定的取向中保持多长时间,从而创建病人位置历史的连续记录。在某些实施例中,从无线传感器102接收的信息可用于创建病人位置历史的时序表示。这种表示可显示在病人监护仪106上或发送到护士站或其它处理节点,以使护理人员能够监测病人在床上的位置。时序表示可以实时查看和/或被访问用于回放。例如,如果警报提醒护理人员病人已经超过了保持当前取向的最大时间量,护理人员可以在该时间段之前和期间访问和检查病人取向的历史顺序以确定病人可以重新定位的下一个取向。在一些实施例中,系统100建议病人可以重新定位到的取向。
[0173] 示意性地,病人监护仪106对病人在床上进行的翻身的次数进行计数,并显示自病人上次翻身以来已经过去的时间量。当经过的时间超过临床医生限定的持续时间(例如两小时),病人监护仪106显示已经超过病人两次翻身之间的最大时间。病人监护仪106还可以经由例如多病人监护系统110、临床医生通知装置114等向负责照顾病人的临床医生发送通知。病人监护仪106还可以确定并显示统计信息,比如对于给定的由临床医生限定的时间段内(例如二十四小时)的两次翻身之间的平均、最小和最大时间量。病人监护仪106还可以确定并显示在临床医生限定的时间段内病人在相同取向上的翻身次数。类似地,病人监护仪106可以显示在临床医生限定的时间段内病人保持在每个特定取向的总时间量。而且,病人监护仪106可以确定病人保持在临床限定的可接受取向的时间段的频率和持续时间。
[0174] 在本文的一些实施例中,病人监护仪106经由网络108访问病人的健康记录和临床医生输入端。示意性地,考虑到病人的健康记录加以分析的病人的位置历史数据可以揭示或建议可能会对特定病人产生有利的临床结果的翻身规程(或其它治疗规程)。因此,病人监护仪106结合分析从无线传感器102接收的信息和访问到的信息,以确定针对病人推荐的病人翻身规范(或其它治疗规范)。
[0175] 根据本文的一些实施例,病人监护仪106评估护理人员和设施对临床医生为病人确定的限定的翻身规程的符合程度。例如,病人监护仪106可以识别病人在大于规定持续时间的时间段内保持在某个位置的次数,以及每个这样的时间过长(over exposure)的长度。病人监护仪106还可以跟踪发布通知、警报或警告之间的时间以及响应于触发临床医生响应时间发出的事件而采取措施。
[0176] 图10示出了根据本文的实施例估计和监测病人在床上的取向的方法1000。方法1000还识别病人何时改变取向并保持跟踪病人在该取向上所度过的时间量。可以确定的病人取向包括但不限于病人是俯卧、仰卧、左侧、右侧、坐着和躺着。在一些实施例中,病人监护仪106确定病人身体的精确取向。例如,病人监护仪106可以确定病人身体竖向地和/或水平地倾斜的程度,从而生成相对于病人所躺的支撑结构(例如床)的病人的取向的精确描述。
[0177] 根据本文的实施例,来自无线传感器102的加速度计210的测量值被用于确定病人的取向。加速度计210测量病人相对于重力的线性加速度。在一些实施例中,加速度计210测量三个轴上的线性加速度。称为“翻滚”的一个轴对应于病人身体的纵轴。因此,使用翻滚参考测量来确定病人是处于俯卧位(即面朝下)、仰卧位(即面朝上)还是侧卧。加速度计210的另一参考轴被称为“俯仰”。俯仰轴对应于关于病人臀部的位置。因此,俯仰测量用于确定病人是坐起来还是躺下。加速度计210的第三参考轴被称为“偏航”。偏航轴对应于病人所在的水平面。在床上时,病人由表面结构支撑,该表面结构通常相对于偏航轴固定病人的取向。因此,在所公开的方法1000的某些实施例中,偏航测量值不用于确定病人在床上时的取向。
[0178] 示意性地,所描述的方法1000基于由加速度计210提供的俯仰和翻滚方向上的测量值来连续地或周期性地(例如每秒)确定病人的取向。在一个时间段内对测量值进行跟踪,并且将当前测量值与一个或多个最近过去(例如前几秒)的测量值进行比较以确定是否发生了取向改变事件。
[0179] 本文关于图10还详细描述了方法1000。方法1000从框1002开始,其中通过能够处理测量数据的装置(例如病人监护仪106)从无线传感器102接收加速度测量数据。能够处理测量数据的其它装置包括但不限于临床医生装置114、护士站系统113、多病人监护系统110、处理节点等。为了便于说明,本文的描述将把处理装置描述为病人监护仪106;然而,本领域技术人员将认识到,在不脱离本文的范围的情况下,可以使用大量装置来执行所描述的方法1000。
[0180] 例如,加速度测量数据可以从无线传感器102直接提供给病人监护仪106,或者测量数据可以通过比如网络108的网络被扩展器/中继器107中继。加速度测量数据可以以适合于提供可接受的精确度的采样率(比如100Hz)进行初始采样。在一些实施例中,为了减少无线传感器102的电池214的功率消耗,在被传送之前,测量的数据由无线传感器102进行子采样。在实施例中,加速度测量数据最初以100Hz被采样并且随后为了传送目的减少到以26Hz的速率采样。在一个实施例中,加速度测量数据最初以在约10Hz和约200Hz之间的范围内采样,并且随后为了传送目的减少到以约5Hz和约40Hz之间的速率采样。本领域技术人员将会理解,可以使用许多其它采样率和子采样率。
[0181] 在框1004处,病人监护仪106确定病人的当前取向。处理接收到的加速度测量数据以确定翻滚轴和俯仰轴的取向值。以度为单位提供范围从-180度到+180度的经处理的加速度测量数据。基于经验数据的查找表提供了成对的翻滚和俯仰测量值与病人取向之间的相关性。示意性地,作为非限制性示例,180度的翻滚测量值可以意味着病人仰卧,并且0度的俯仰测量值可以意味着病人俯卧。因此,180度的翻滚测量值和0度的俯仰测量值的组合可以对应于病人仰卧的取向。类似地,180度的翻滚测量值和90度的俯仰测量值的组合可以对应于病人躺在右侧的取向。
[0182] 图11A示出根据本文的实施例的经处理的加速度计210数据随时间(从0到450秒)的示例性曲线图1100,其用于确定病人的取向。最初,例如50秒,对应于翻滚(即,身体长度)轴1102的数据处于约180度,表示病人仰卧(即仰卧取向)。对应于俯仰(即,臀部旋转)轴1104的数据处于约0度,表示病人正在倾斜。因此,将由加速度计210提供的取向信息相对于翻滚轴1102和俯仰轴1104进行组合,确定病人是在仰卧。在图中约360秒处,由竖线1106表示,我们看到病人改变取向。在短暂过渡期间,数据振荡,如表示在转变点1108处的俯仰轴的数据以及表示在转变点1110处的翻滚轴的数据中所示。振荡尤其可以由病人从一个位置移动到另一个位置的挤压引起。此后不久,数据达到稳定状态,如由相对稳定的曲线1112和
1114所反映的。值得注意的是,表示俯仰轴1102的数据已从约180度移动到约90度。这对应于病人的纵向体轴到病人右侧的90度旋转。表示翻滚轴的数据保持在约零度,表示病人保持在斜躺位置。因此,将由加速度计210提供的取向信息相对于翻滚轴1112和俯仰轴1114进行组合,确定病人躺在右侧。以这种方式,可以创建病人取向改变动作的查找表。该表标识了病人在床上时可以假设的各种可能的取向的概况(例如,在特定公差内的俯仰轴和翻滚轴测量值的组合)。病人取向变化行为的概况表可以基于收集和分析的经验数据。
[0183] 返回参考图10,在框1006处,提取先前的病人确定的取向并将其与当前确定的取向组合以形成病人取向信息的时间窗。例如,该时间窗可以包括表示在时间上与表示病人取向的当前信息非常接近(例如前几秒)的一个或多个时间段的病人的取向信息。当然,可以为时间窗选择任意数量的先前的病人取向。在实施例中,将前两秒的病人的确定的取向与当前的确定取向相结合以创建病人取向的三秒的时间窗。创建时间窗的目的是确定病人最近是否已经重新定位。
[0184] 在框1008处,为了分析而将时间窗分成多个区段。任何数量的区段可以用于时间窗数据的这种分析。在实施例中,将时间窗分成三个区段。在另一个实施例中,时间窗被分成两个区段。如图11A所示,在转变点1108和1110处,用于时间窗的测量数据可能包含多个噪声源,其中一些噪声源可能具有显著幅度的尖峰。为了在分析中降低噪音的影响,确定每个区段的区段值。如框1010所公开,每个区段内的采样数据的中值被用于确定每个区段的区段值。通过取每个区段的中值,可以受潜在的噪声尖峰的影响最小地确定区段值。在某些实施例中,区段值是包括与测量数据的每个轴的值对应的向量。示意性地,作为非限制性示例,每个区段值包括包含翻滚轴区段分量和俯仰轴线区段分量的向量。根据一些实施例,所确定的区段值和/或区段分量以度数为单位(范围从-180度到+180度)。
[0185] 在框1012处,将每个区段的中值成对地进行比较。示意性地,作为非限制性示例,分成三个区段的时间窗将具有三个成对比较:第一区段值与第二区段值比较,第一区段值与第三区段值比较,第二区段值与第三区段值进行比较。
[0186] 在框1014处,分析每次成对比较以确定是否发生取向改变事件。通过将每次成对比较的差异幅值的大小与预定的阈值进行比较来做判断。如果成对比较的差异幅值超过阈值,则认为已经发生了取向改变事件。如果成对比较的差异幅值没有超过阈值,则认为没有发生取向改变。因此,就翻滚尺寸而言超过特定阈值的变化对应于包括绕病人身体的纵轴旋转的取向改变事件。类似地,就俯仰尺寸而言超过特定阈值的变化对应于包括从坐起转变到躺下的取向改变事件,反之亦然。就翻滚尺寸和俯仰尺寸而言都超过特定阈值的变化对应于包括绕病人身体的纵轴旋转以及从坐起转变到躺下的取向改变事件,反之亦然。根据实施例,阈值是45度,并且因此,如果任何两个区段值之间的差异的幅值大于45度,则确定取向改变事件已经发生。在另一个实施例中,在连续的一秒数据段之间进行附加比较以确定是否发生了至少30度的变化。这是为了防止反复的姿势变化,例如当病人处于135度附近的姿势,即恰好在两个姿势之间的正中间。
[0187] 如果确定已经发生取向改变事件,则在框1016处将检测到的事件分类。参考包括一组取向改变动作或活动概况的事件查找表。在实施例中,每个概况包括四个数据点:翻滚轴的“之前”和“之后”测量值以及俯仰轴的“之前”和“之后”测量值。例如,如图11A所示,从仰卧到右侧卧的翻身的取向事件活动的概况可以如下:
[0188]翻身之前 翻身之后 俯仰之前 俯仰之后
180度 90度 0度 0度
[0189] 表1
[0190] 如表1所示,翻滚轴从180度变为90度,表示病人从仰卧转到右侧卧。俯仰轴不改变,因为病人保持倾斜取向。基于对已知取向改变事件的经验数据的分析,离线改进并更新事件表。因此,当成对比较的差异幅值的大小超过预定阈值时,可通过在事件查找表中识别与成对比较的数据匹配的取向事件概况来执行取向改变事件的分类。
[0191] 在框1018处,针对已分类的事件进行投票。示意性地,对于关于表1描述的示例,投票将针对从仰卧翻身到右侧卧的取向改变事件概况。在框1020处,方法1000为每次成对比较重复确定取向改变事件是否发生、对取向改变事件进行分类(如果发生了事件),并对已分类的取向改变事件进行投票(再次,如果发生了事件)的动作。这些框的最大迭代次数将等于时间窗中的区段数。
[0192] 一旦已经分析了所有成对比较,则在框1022处,方法1000对在框1018处记录的选票进行统计。具有最多选票的取向改变事件被确定为发生的取向改变事件。然后将确定的取向改变事件报告为病人的取向。在框1024处,取向持续时间计时器被重置以跟踪病人保持在新取向的时间。方法1000然后返回到框1002以相对于测量数据的下一增量(例如,第二)再次开始分析。
[0193] 如果在框1014处,成对比较中没有得出可检测到的取向改变事件(即,病人在整个时间窗期间保持相同方向),则方法1000前进到框1026以确定病人是否已经在当前取向保持一段时间,这段时间大于预定的最大持续时间,其在本文中也可以被称为预定的持续时间或预定的最大持续时间。如果不是,则方法1000返回到框1002,以相对于测量数据的下一增量集(例如,第二)再次开始分析。如果病人保持在当前取向的时间大于预定最大持续时间,则在框1028处,将警报发送给例如病人的护理人员以通知护理人员病人应该重新定位。方法1000然后返回到框1002,以相对于测量数据的下一增量(例如,第二)再次开始分析。
[0194] 图11B是根据本文的实施例的病人位置监测范例的实施例的示例性曲线图,其用于确定病人的取向何时需要改变。在实施例中,曲线1102B可以是对床边监护仪、多房间监护仪或两者的护理人员进行显示的一部分。该曲线可以以预定的时间间隔实时更新和/或手动更新。在其它实施例中,该范例可以是由信号处理器执行的信号处理的说明,以确定何时启动警报通知护理人员如果病人未被重新定位发生压力性溃疡的可能性。在这些实施例中,范例的每个部分可针对特定病人、病人人口统计、医院规范、单元规范(比如针对外科ICU或其它医院专科病房、家庭护理等的规范)。
[0195] 在所示实施例中,在一段时间内监测病人的位置。竖向轴1105B代表时间,而水平轴1107B代表病人移动事件,比如,在所示实施例中,设置警报以在病人已经处于特定位置3小时或更长时间时提醒护理人员。所示实施例是非限制性示例,因为可以设置警报以在1小时、2小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时和/或者10个或更多小时时提醒护理人员。警报可以包括噪音、颜色和/或将提醒护理人员的其它指示器。在一些实施例中,警报可向护理人员表示病人已经保持在相同位置一阈值时间量(例如,3小时)。阈值时间量可以预先确定或随时间调整。在一些实施例中,警报向护理人员表示病人已经跌倒、移动到不正确的位置、离开床等。在实施例中,可以使用关于特定病人或一组类似病人的经验数据来定制本文讨论的用于警报的一些或全部参数。
[0196] 如图11B所示,当病人处于位置1时(例如,病人仰卧、侧卧、俯卧、稍微坐起来、基本上坐起来等等),监护仪开始监测病人。当病人保持在位置1时,计时机构开始并且线1101B作为其增长线。线1101B的斜率描绘了病人保持在相同位置时的增长率。如示出的实施例所示,可以线性地描绘增长率。在一些实施例中,增长率可以是线性的、非线性的、指数的和/或类似的。在一些实施例中,增长率是预先确定的。在一些实施例中,如下所述,增长率可以实时改变和/或调整为各种生理参数和/或经验数据。增长率可以取决于系统已知和/或确定的多个因素和经验数据,这取决于例如病人的皮肤对保持在一个位置如何反应、多快形成或愈合病人所经历的负作用(例如压疮)、病人躺着的特定位置和/或关于病人的人口统计信息(尤其包括病人的年龄、健康状况、血液灌注率、水合作用和/或营养等)。因此,在一些实施例中,增长率可表示随着病人在一段时间内保持在相同位置(例如位置1)的负作用(例如褥疮)的增长率。
[0197] 如图11B所示,病人在位置1保持约2小时。此时,病人翻身和/或由护理人员翻身到位置2。在所示实施例中,位置2是与位置1不同的位置。当病人翻身和/或被翻身时,计时机构可以重新开始新线1102B并且开始测量、跟踪、监测和/或计算病人保持在位置2的时间量。
[0198] 同时,线1101B转换成其减退线。线1101B的减退线可以包括与褥疮、潜在的褥疮、病人皮肤的特定区域的减退率相关的数据和/或病人或一组类似病人或所有病人的时间量,尤其从剩余的特定位置(例如位置1)中恢复所需的时间量。与增长率类似,减退率尤其可以是线性的、非线性的和/或指数的等等。在一些实施例中,减退率是预先限定的。在一些实施例中,如下所述,减退率可以实时改变和/或适应各种生理参数和/或经验数据。减退率可以取决于许多因素和经验数据,这取决于例如病人的皮肤对保持在一个位置如何反应、多快愈合病人所经历的负作用(例如压疮)的速度、病人多快恢复、病人躺着的特定位置和/或关于病人的人口统计信息(尤其包括病人的年龄、健康状况、血液灌注率、水合作用和/或营养等)。如示出的实施例所示,当病人处于非位置1的一个或多个位置时,位置1的减退线以减退率继续减退。也就是说,在实施例中,位置1的减退线将通过一个或多个其它位置以其减退率继续减退,直到其接近零,只要其它一个或多个位置不包括位置1。在该示例中,减退率或恢复率例如越快接近零,病人不在位置1的时间越长。
[0199] 在所示实施例中,病人在翻身2处翻身和/或再次翻身。翻身2发生在达到阈值时间量之前的时刻,并且因此在警报提醒护理人员为病人翻身之前。在翻身2处,病人翻身/被翻身到位置3。在一些示例中,位置3与位置1相同。在这样的实施例中,因为与先前的位置1相关联的线1101B的减退线已经达到零,作为位置3/1的增长线的线1104B从零开始。然而,在一些示例中,位置3是与位置1不同的位置。在示出的示例中,位置3不同于位置1,并且其线1104B的增长率不同于位置1的增长率。在一些示例中,只要位置3与位置1和位置2不同,当病人翻身和/或被翻身到位置3时,在位置2的减退线继续减退时,位置1也可继续减退。在该示例中,由于在位置1和2两者中的残留作用,病人可继续愈合。在一些示例中,在病人翻身和/或被翻身至多个位置(比如第二、第三、第四和/或第五位置或更多位置)时,位置1继续减退。
[0200] 如示出的实施例所示,病人在相对较短的时间内保持在位置3。在此期间,位置2的任何残留作用开始减退。然而,此后,病人翻身和/或被转回到位置2。有利地,不是在零时间重新启动,系统可以确定病人已经转回到位置2,并且计时机构从线1102B的减退线的当前值开始计时(其对应于点或时间1103B)。在该示例中,时间1103B大于零,但小于阈值时间量。另外,在该示例中,时间1103B小于病人最初保持在位置2的时间量。在一些实施例中,时间1103B可以等于病人自位置2翻身的时间。然而,在示出的实施例中,系统可以考虑减退率和病人从位置2的残留中恢复所度过的时间。因此,在示出的实施例中,时间1103B可以由系统通过多种方法来确定。例如,该系统尤其可以从增长时间中减去恢复时间、和/或从翻身时间(例如翻身2处)起计时。有利地,系统的优选实施例可以确保病人不超过病人在特定位置度过的阈值总时间(考虑到增长率和减退率)。虽然在实施例中,系统在每次翻身时重新启动计时器,而不考虑病人先前在特定位置度过的时间,但是这样的实施例可能在充分地允许恢复由先前位置引起的组织、血液积聚等方面不够精确,因此,病人更可能经历负作用(例如,褥疮)。因此,该系统的优选实施例可以通过确保病人不会在特定位置保持太长时间而更精确地降低病人产生有害影响(比如褥疮)的可能性。考虑到病人的增长率和减退率,一旦在一个位置度过的总时间达到阈值时间(例如,在该示例中为3小时),则警报可以提醒护理人员。
[0201] 在一些实施例中,警报将提醒护理人员直到病人翻身和/或再次被翻身,例如,如图11B中翻身4处所示。在一些实施例中,增长线将继续增长,因此当病人尚未在阈值时间内翻身时,线需要更长的时间来减退。这种持续的增长确保病人不会很快返回到病人度过太多时间的位置并且可以帮助确保相应组织具有足够时间从特定病人位置恢复。在实施例中,调整线的减退率来导致超过阈值极限。如示出的实施例所示,减退率在超过阈值之后降低,这意味着对应于报警位置的线将花费更长时间来归零。
[0202] 如所讨论的,在实施例中,当病人在警报发生之后翻身和/或被翻身时,增长线将超过阈值时间,如图11B的曲线所示。一旦病人翻身和/或被翻身,减退线可以显示在阈值(例如警报)线以上。在一些示例中,当在特定位置度过的时间超过阈值时间时,病人可能需要更长时间才能恢复。在一些示例中,在线继续向零减退并且病人保持在不同位置时,警报可以提醒护理人员减退线已经达到阈值时间。在一些实施例中,警报不提醒护理人员衰退线已经经过阈值时间。
[0203] 根据本文的某些实施例,病人监护仪106确定病人的移动状态,例如病人是否走动、站立、坐着、倾斜或跌倒。无线监护系统100可以包括警报系统以提醒护理人员病人正在跌倒、起床、或以其它禁止的方式移动或以需要护理人员注意的方式移动。警告可以是监护系统上的或被发送给护理人员的可听和/或可视警报(例如,护士站系统113、临床医生装置114、寻呼机、手机、计算机或其它)。示意性地,病人监护仪106可以显示病人的移动状态并发送病人活动并离开床的通知。在一些情况下,病人监护仪106可以确定病人是否违反临床医生的命令,例如保持在床上的指令,或者仅在陪从的协助下步行到卫生间。在这种情况下,可以将通知、警报或警告发送给适当的护理人员。
[0204] 在某些方面,从无线传感器102接收的信息可以用于创建病人移动的时序表示。这种表示可以显示在病人监护仪上或发送到护士站或其它处理节点,以使护理人员能够监测病人。时序表示可以实时查看和/或记录回放。例如,如果警报提醒护理人员病人已经跌倒,则护理人员可以在该时间段之前和期间访问和回顾病人移动的历史顺序。
[0205] 在一些实施例中,病人监护系统100可以基于对病人的移动(例如,步态)和其它信息(比如,例如病人的当前用药方案)的分析来预测病人跌倒的风险。当病人监护仪106确定病人跌倒的风险高于预定阈值时,病人监护仪106可发出警报或警告以通知护理人员所识别的风险,以努力预测并因此防止病人跌倒。另外,病人监护仪106可以确定病人何时已经跌倒并发出适当的警报和警告以召唤护理人员协助。
[0206] 图12示出了根据本文的实施例的确定病人是否已经跌倒的方法1200。方法1200尤其使用由无线传感器102的加速度计210和陀螺仪212感测的信息来确定病人是否已经跌倒。可以由无线传感器102、使用其处理器202和存储装置204来执行方法1200,或者可以通过从无线传感器102接收感测信息的外部处理装置(例如病人监护仪106)来执行方法1200。
[0207] 根据本文的实施例,尤其使用来自无线传感器102的加速度计210和陀螺仪212的测量值来确定病人是否已经跌倒。如上所述,加速度计210测量病人相对于三个轴的重力的线性加速度。加速度计210的三个轴以固定的惯性基准表示。翻滚轴对应于病人身体的纵轴。因此,使用翻滚参考测量值来确定病人是处于俯卧位置(即,面朝下)、仰卧位置(即,面朝上)还是侧卧。俯仰轴对应于病人臀部的位置。因此,俯仰测量用于确定病人是直立还是躺下。有利地,由加速度计210提供的俯仰轴可以是确定病人是否已经跌倒的有用信息源,因为它可以指示病人从站立到躺着(病人跌倒时的经常看到的情况)的取向的改变。偏航轴对应于病人所处的水平面。
[0208] 陀螺仪212响应所感测到的定位在病人身上的无线传感器102在与俯仰、偏航和翻身的测量相对应的三个正交轴上的角速度提供输出。与相对于加速度计210的重力的固定惯性参考系相反,由陀螺仪提供的参考系与移动的病人身体相关。
[0209] 在框1202处,开始方法1200,其中由能够处理测量数据的装置(例如病人监护仪106)从无线传感器102接收加速度测量数据和角速度数据。其它能够处理测量数据的装置包括但不限于临床医生装置114、护士站系统113、多病人监护系统110等。为了便于说明,本文的说明书将把处理装置描述为病人监护仪106。本领域技术人员将会理解,在不脱离本文的范围的情况下,可以使用大量的装置来执行所描述的方法1200。
[0210] 在框1204处,对所接收的数据进行归一化,其也可以被称为“缩放”,以在其它处理之前将在不同比例上测量的值调整为通用比例。根据实施例,训练数据被用于归一化所接收的数据。训练数据可以包括多个跌倒情景以及可能难以与跌倒情景区分的非跌倒情景的经验数据。训练数据被收集和分析以用作建立用于确定病人是否已经跌倒的权重向量(下面关于框1208的讨论)的基础。训练数据可以包括由多个对象执行多次的多个跌倒和非跌倒的情景。示意性地,作为非限制性示例,训练数据可以包括表2中描述的跌倒和非跌倒情景。
[0211]
[0212]
[0213] 表2
[0214] 如同接收到的数据一样,训练数据的每个样本均包括对应于加速度计210数据的三个轴和陀螺仪212数据的三个轴的六个维度的信息。归一化接收到的数据可以使接收到的数据的变量范围标准化。由于原始数据的值范围可能变化很大,所以分析算法可能在没有归一化的情况下无法正常工作。例如,许多分类器计算两点之间的距离。如果其中一个独立变量具有宽范围的值,则该距离将受该特定变量控制。因此,可以对所有变量的范围进行归一化,以便每个特征有助于与最终距离大致成比例。归一化会导致数据中每个变量的值具有零均值(在减去分子中的平均值时)和单位方差。这可以通过计算标准分数来执行。一般的计算方法是确定整组训练数据中每个变量的分布均值和标准方差。接下来,从接收到的数据的相应变量中减去每个确定的均值。然后每个变量的新值(已经减去平均值)除以确定的标准方差。结果是可以由方法1200进一步处理的一组已归一化的值。
[0215] 在框1206处,处理归一化的一组值以确定有用于确定病人是否正在跌倒的特征。根据实施例,该方法确定以下五个特征:加速度数据的大小(由加速度计210提供)、角速度数据的大小(由陀螺仪212提供)、加加速度的大小(即,加速度的变化率);用于表征跌倒开始点和跌倒碰撞点的跌倒持续时间、以及两个连续接收的数据点之间的间距变化。可以使用其它起作用的特征(例如作为非限制性示例,竖向速度)来确定病人是否正在跌倒。
[0216] 通过计算由来自加速度计210的三个轴的测量结果组成的三维向量的欧几里得范数来确定接收到的加速度数据的大小。正如技术人员所理解的,这对应于三个加速度计值(即俯仰、翻滚和偏航)的平方和的平方根。类似地,通过计算由来自陀螺仪212的三个轴的测量结果组成的三维向量的欧几里得范数来确定角速度数据的大小。通过取加速度向量的导数,然后计算导数的欧几里得范数,可以计算出加加速度的大小,其也可以被称为“摇动”、“激增”或“倾斜”。
[0217] 通过在短持续时间内评估病人运动的加速度大小曲线来确定作为标量值的跌倒持续时间。特别是,随着跌倒的开始,病人相对于重力的加速度减小,因为病人正在跌倒。(未跌倒的病人将在与重力相等的上下维度上记录加速度值(即,1g或约9.80665m/s2)。因此,如果加速度的大小低于第一阈值,那么它被认为是跌倒的起点,并且跌倒持续时间的值增加1。如果加速度的大小高于第一阈值,那么跌落持续时间的值减1。在实施例中,第一阈值是0.6g(或者约5.88399m/s2)。第二阈值用于确定跌倒的撞击点。在实施例中,第二阈值是0.8g(或者约7.84532m/s2)。如果加速度的大小低于第二阈值,那么认为它是跌倒的撞击点,并且跌倒持续时间的值增加1。如果加速度的大小高于第二阈值,那么跌倒持续时间的值减1。
[0218] 俯仰变化特征是当前俯仰取向(如由加速度计210数据确定的)与先前一秒确定的俯仰取向相比较的结果。如上所述,加速度计数据的俯仰尺寸在检测跌倒时是有用的,因为它在病人处于直立位置(例如站立或坐起)和倾斜之间进行区分。因此,俯仰从直立到倾斜的变化可以表明跌倒已经发生。框1206的输出是由五个确定的特征组成的五维特征向量。
[0219] 在框1208处,将值的权重向量应用于所确定的特征。根据某些实施例,计算所接收的五维特征向量和权重向量的内积。在某些实施例中,使用机器学习算法来导出权重向量。机器学习是基于人工智能模式识别和计算学习理论研究的计算机科学的一个子领域。它包括开发可以学习和预测数据的算法。通过机器学习开发的算法通过构建来自示例输入的模型来操作,以便进行数据驱动的预测或决策,而不是严格地遵循静态程序指令。机器学习被用于一系列计算任务中,在这些任务中使用明确的计算机程序是不可行的。当在工业环境中使用时,机器学习方法可以被称为预测分析或预测建模。如在本文所用,机器学习系统包括监督式学习,其中机器学习算法被呈现为包含由“教师”给出的示例输入及其已知输出的训练数据,并且目标是学习将输入映射到输出的一般规则。在实施例中,采用费舍尔(Fisher)线性判别公式来导出权重向量。费舍尔线性判别法是一种用于查找表征或分离两个或更多类别的对象或事件的特征线性组合的方法。所得到的组合可以用作线性分类器或在稍后的分类之前用于降维。可与本文一起使用的其它机器学习方法包括但不限于线性判别分析、方差分析、回归分析、逻辑回归和概率回归等等。本领域技术人员将认识到,在不脱离本文范围的情况下,可使用许多其它机器学习算法来确定权重向量。
[0220] 上述训练数据包括从多个跌倒和非跌倒情景收集的经验数据,其可以用于识别病人跌倒的预测指标。示意性地,对于每个训练情景,确定以上关于框1206描述的五个特征并将其作为机器学习系统的输入。此外,为每个训练方案提供输出,以确定方案描述的是跌倒事件还是非跌倒事件。机器学习系统分析训练数据,以导出将输入映射到输出的规则。根据本文的某些实施例,机器学习系统的输出是五维权重向量,其在确定是否发生跌倒时根据它们的相对值对五个特征中的每一个进行加权。权重向量是离线确定的并且作为固定的五维向量提供给方法1200。当然,可以基于对附加经验数据的分析来更新权重向量。
[0221] 接收的五维特征向量和权重向量的内积(也称为“点积”和“标量乘积”)以本领域技术人员很好理解的方式计算。内积产生缩放值,在本文中也称为激活值,其可以是正值或负值。在框1210处,方法1200确定是否检测到跌倒。根据一些实施例,所接收的五维特征向量和权重向量的内积的标志表示是否发生跌倒。如果内积小于零,则没有检测到跌倒,并且该方法返回到框1202以开始分析来自无线传感器102的下一组数据。如果内积大于零,则已经检测到跌倒并且方法1200前进到框1214,其中表示病人已经跌倒的通知、警报和/或警告发送到例如临床医生装置114、护士站系统113、多病人监护系统110等。该方法返回到框1202以开始分析来自无线传感器102的下一组数据。
[0222] 在一些实施例中,系统可以确定病人在病人房间内的空间位置。系统可以监测房间并且在空间上监测和/或计算病人在某个位置待了多久、病人何时处于该位置和/或病人过去处于该位置多久以及其它参数。如上所述,该系统尤其使用由无线传感器102的加速度计210和陀螺仪212感测的信息来跟踪病人。该方法可以由无线传感器102使用其处理器202和存储装置204来执行,或者其可以由从无线传感器102接收感测信息的外部处理装置(例如病人监护仪106)来执行。
[0223] 在一些实施例中,相对于病人房间的某些装置(比如病人的床、卫生间、监护仪、口和/或窗户等房间装置),系统可以确定病人在病人房间内的位置。特别地,使用本文描述的方法,系统可以确定在病人房间中病人的竖向位置、竖向位移、水平位置、水平位移、角位置和/或角位移。例如,加速度计210和/或陀螺仪212可以在病人走遍病人的房间时监测病人的移动。该系统可以确定病人是否正在跌倒、起床、或以其它禁止的方式移动或以需要护理人员注意的方式移动。
[0224] 根据一些实施例,尤其来自无线传感器102的加速度计210和陀螺仪212的测量结果尤其被用于确定病人是否正在向下弯曲和/或已经跌倒和/或病人已经跌倒的位置(例如通过测量病人的竖向位移和/或病人相对于地面的高度)。在病人已经跌倒的一些实施例中,临床医生可以根据本文的实施例确定跌倒的位置。如上所述,加速度计210测量病人相对于三个轴的重力的线性加速度。加速度计210的三个轴以固定的惯性基准表示。陀螺仪212提供响应于定位在病人身上的无线传感器102所感测到的、与俯仰、偏航和翻滚的测量值对应的在三个正交轴上的角速度的输出。基于这些测量值,系统可以根据本文所述的方法确定病人是否已经跌倒。
[0225] 在这样的构造中,系统可以记录病人的位置。在某些方面,从无线传感器102接收的信息可以用于创建病人移动的时序表示。这种表示可以显示在显示器120上或发送到护士站或其它处理点,以使护理人员能够监测病人。时间顺序的表示可以实时查看和/或记录回放。例如,如果警报提醒护理人员病人已经跌倒,则护理人员可以在该时间段之前和期间访问和回顾病人运动的历史顺序。
[0226] 图15A-H示出了显示在病人显示监护仪上的房间显示器的各种构造。如图15A-H所示,护理人员和/或病人可以选择任何数量的房间物品和/或房间物品的配置。护理人员可以选择房间物品,并将其放置在房间显示器上的房间内。护理人员可以旋转和/或将房间物品放置在任何配置中。在一个实施例中,护理人员可以每次选择房间的主要部件的位置。例如,护理人员可以选择床的位置,然后选择卫生间的位置,然后选择门、器材、桌子、椅子、沙发等的位置。在其它实施例中可将各种房间布局约完全呈现在所选屏幕上并且布局的确定是在一个或少数护理人员选择下进行的。
[0227] 图16示出了用于检测和/或预测病人跌倒的示例方法1600,其确定病人房间内病人的特定位置,和/或尤其确定病人是否已经移动到病人的规定移动之外等等。
[0228] 在框1602处,护理人员可以进入房间配置。例如,护理人员可以选择将显示在病人房间显示器内的任何数量配置的房间物品。房间物品可以包括病人的床、卫生间、监护仪、玄关和/或窗户等房间物品。护理人员可以通过选择、拖动和/或拖放房间显示器上周围的每个房间物品来选择房间物品。在一些实施例中,护理人员可以为每个房间物品选择一定尺寸。在一些实施例中,护理人员可以简单选择房间物品并选择房间显示器内的位置以用于定位和显示房间物品。在一些实施例中,房间物品可以在房间显示器中卡入就位。
[0229] 在框1604处,护理人员可以可选地输入移动指示。例如,护理人员可以向病人输入指令,包括留在床上和/或只有在陪从的帮助下走到卫生间的指令。
[0230] 在框1608处,可以激活本文所述的一个或多个传感器。在一些示例中,护理人员手动激活一个或多个传感器。在一些示例中,根据本文所述的方法,系统自动激活一个或多个传感器,以开始跟踪、监测、测量和/或计算某些生理参数。
[0231] 在框1610处,病人监护系统100可以基于病人的移动(例如,步态)和其它信息(比如,例如病人当前的用药方案)的分析来预测和/或检测病人的跌倒和/或跌倒的风险。在框1612处,当病人监护仪106确定病人的跌倒风险高于预定阈值时,病人监护仪106可发出警报或警告以通知护理人员所识别的风险,以努力预期并因此预防病人跌倒。另外,病人监护仪106可以确定病人何时跌倒并发出适当的警报和警告以召唤护理人员协助。警报系统可提醒护理人员病人正在跌倒、起床、或以其它禁止的方式移动或以需要护理人员注意的方式移动。警报可以是在监护系统上可听和/或可视的或可被发送给护理人员(例如,护士站系统113、临床医生装置114、寻呼机、手机、计算机或其它)。
[0232] 如果病人监护系统未检测到病人的跌倒,则病人监护系统100可以可选地确定病人是否已经移动到移动命令之外。例如,如上所述,病人监护仪106可以确定病人的移动状态,例如病人是否走动、站立、坐着、倾斜或跌倒。
[0233] 如果病人监护系统100确定病人违反了护理人员的命令(例如留在床上的指令)或仅在陪从的帮助下走到卫生间,则将通知、警告或警报发送给在框1612的适当的护理人员。
[0234] 如果病人监护系统100确定病人没有违反护理人员的命令,则系统将返回到框1610以检测和/或预测病人是否已经跌倒。
[0235] 图13A-F示出根据本文的实施例的反映病人位置的图标显示器的实施例。根据一些实施例,使用图形图标以可视地描绘检测到的病人的取向。尤其是,在图13A-F中,以线条画形式分别显示病人坐着、站立、躺在仰卧位置(在背上)、躺在俯卧位(在腹部上)、躺在左侧和躺在右侧。
[0236] 图14示出了关于图13A-F的所示的图标如何在病人监护仪106的显示器120上呈现的示例。朝向主显示器120的底部是表明病人位置的一组3个图标1402、1404和1406。最左侧的图标1404显示病人躺在右侧。最左侧图标右侧的两个图标1404和1406显示病人在仰卧。根据某些实施例,病人监护仪106的显示器120可以包括触摸屏界面。触摸屏界面能够用手指控制,包括触摸手势、触摸和移动手势以及轻拂手势。示意性地,临床医生可以在图标
1406上使用触摸手势来扩展显示器120中的图标以包括与该图标1406相关联的附加信息。
例如,与“被触摸”图标1406相关联的附加信息可以包括病人假定特定取向的时间、病人从该取向移动的时间(如果可用)、病人在特定取向度过的总持续时间、病人处于特定取向的离散时间超过规定时间段(例如24小时)的次数、病人在特定方向上超过规定时间(例如24小时)的病人的总持续时间等。临床医生也可以使用轻拂手指手势来左右滚动(适时对应于向前和向后移动)来访问病人的历史位置记录。
[0237] 本文公开的无线传感器102的使用寿命尤其可以根据电池大小以及数据传送特征,比如数据速率、传送频率和传送数据量等而改变。根据一个实施例,无线传感器102被构造为连续或接近连续地操作(例如每秒唤醒以感测和传送病人的生理数据)约两天,之后无线传感器102将被适当丢弃。例如,配备有更大电池的无线传感器102的其它实施例被构造成在丢弃之前运行更长的时间段。一些实施例可以被构造用于消毒和再利用。
[0238] 某些医疗装置制造商实施用于一次性医疗装置(比如所公开的无线传感器102的实施例)的质量控制措施,以仔细控制和管理其一次性装置的性能特征。特别地,存在这样的风险:用过的和丢弃的无线传感器102可以被挽救和翻新或改装以用于超出无线传感器102的限定的和预期的使用寿命的额外使用。特征可以被包括在所公开的病人监护系统100中以帮助防止无线传感器102超出其限定的使用寿命的不当使用。
[0239] 根据病人监护系统100的一个实施例,无线传感器102被构造成在初始激活时在无线传感器102的存储装置204中设置激活标志,表示无线传感器102已被激活以供使用。在一些实施例中,激活标志被设置在信息元件215中,该信息元件被提供用于存储关于无线传感器102的使用的信息以帮助保持质量控制。有利地,激活标志被设置在存储装置204的非易失性存储器中或信息元件215中,从而与电池214的断电不会中断或擦除设置的激活标志。因此,如果无线传感器102被重新调整以使其可以被第二次激活,则激活标志将通过标准传感器102启动程序表示传感器102先前已被激活。在检测到激活标志时,无线传感器102可以发送先前的激活消息和/或警报,其可以用作传感器102的质量可能受损的警告通知。所发送的警告或警报可以由例如病人监护仪106接收,病人监护仪106然后可以提供用户可以响应于所发送的质量警告或警报而采取的行动单。行动单可包括关闭无线传感器102的选项。
在某些情况下,可能期望继续使用无线传感器102。示意性地,有可能建立到无线传感器102到电池214的连接,然后偶然地断开。例如电池绝缘件322可首先从传感器102移除,但然后被重新插入,以再次将电池214与无线传感器102的电子电路隔离。第二次移除电池绝缘件
322将导致如上所述的传送质量警告或警报。在这种情况下,用户意识到导致质量警告的情况可以选择继续使用无线传感器102。
[0240] 根据另一个实施例,无线传感器102被构造成在无线传感器已经处于激活状态达预定时间段(例如,四小时)之后设置延长的服务标志。延长的服务标志可以用于在启动时表示传感器102先前已经在延长的持续时间内活动。在另一个实施例中,无线传感器102在存储装置204上跟踪并记录传感器102已经活动的持续时间。有利地,传感器102可以向用户发出通知和/或警告,即传感器102接近使用寿命的终点,为用户提供机会在无线传感器102停止运行之前采取措施进行更换。另外,所记录的传感器102已经活动的持续时间可用于检测传感器102何时已经翻新而超出其预期使用寿命进行操作。然后可以将适当的警告传送给用户。根据一些实施例,一旦无线传感器已经活动了与最大使用寿命持续时间相等的时间段,传感器102在存储装置204中设置标志,或者以其它方式构造其自身以禁止传感器102进一步操作。
[0241] 在其它实施例中,无线传感器102向病人监护仪106发送唯一标识符,例如在无线传感器102的一个硬件部件编码的产品序列号。一旦无线传感器102与病人监护仪或扩展器/中继器107配对并且可操作,病人监护仪106或扩展器/中继器107可以将传感器102的唯一标识符传送到中央储存库,该中央储存库列出已知已经运行的传感器102的唯一标识符。示意性地,在配对操作期间,病人监护仪106或扩展器/中继器107可以检查中央储存库以确定试图配对的无线传感器102是否已经列在中央储存库中,由此表示无线传感器102可能有质量问题。
[0242] 在其它各种实施例中,无线传感器102包括传感器信息元件215,其可以通过有源电路,比如晶体管网络、存储器芯片、EEPROM(电可擦除可编程只读存储器)、EPROM(可擦除可编程只读存储器)或其它识别装置(比如,多触点单线内存器或其它装置(比如可从达拉斯半导体等商购的那些装置))来提供。传感器信息元件215可以有利地存储多种信息中的一些或全部,包括例如传感器类型名称、传感器配置、病人信息、传感器特性、比如脚本或可执行代码的软件、算法升级信息、软件或固件版本信息或许多其它类型的数据。在优选实施例中,传感器信息元件215还可以存储表示某些或全部传感器部件是否已经过期的有用寿命数据。
[0243] 根据本文,除了本文所描述的那些内容以外的许多其它变型将是显而易见的。例如,取决于实施例,本文描述的任何算法的某些行为、事件或功能可以以不同的顺序执行、可以被添加、合并或完全省略(例如,并非所有描述的行为或事件对于算法练习是必需的)。此外,在某些实施例中,动作或事件可以例如通过多线程处理、中断处理或多个处理器或处理器核心或者在其它并行体系结构上同时而不是串行地执行。另外,不同的任务或过程可以由可一起运行的不同机器和/或计算系统来执行。
[0244] 结合本文公开的实施例描述的各种示意性逻辑、模块和算法步骤可以实施为电子硬件、计算机软件或两者的组合。为了清楚地说明硬件和软件的这种可互换性,上面已经按照其功能一般性地描述了各示意性部件、块、模块和步骤。这种功能是以硬件还是以软件来实现取决于特定的应用和对整个系统施加的设计制约。所述功能性可以以用于每个特定应用的不同方式实施,但是这样的实施决定不应被解释为导致背离本文范围。
[0245] 结合本文公开的实施例描述的各种示意性逻辑块和模块可以由机器来实现或执行,比如通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑、分立硬件部件、或其设计用于执行本文所述功能的任何组合。通用处理器可以是微处理器,但是可选地,处理器可以是控制器微控制器或状态机、其组合或类似物。处理器可以包括被构造成处理计算机可执行指令的电路。在另一个实施例中,处理器包括执行逻辑操作而不处理计算机可执行指令的FPGA或其它可编程装置。处理器也可以实现为计算装置的组合,例如,DSP和微处理器的组合、多个微处理器的组合、一个或多个微处理器与DSP内核结合的组合,或者任何其它这样构造的组合。计算环境可以包括任何类型的计算机系统,包括但不限于基于微处理器的计算机系统、大型计算机、数字信号处理器、便携式计算装置、设备控制器或器械内的计算引擎,仅举几例。
[0246] 结合本文公开的实施例描述的方法、过程或算法的步骤可直接体现在硬件中,体现在存储在一个或多个内存器中并由一个或多个处理器执行的软件模块中,或者二者的结合。软件模块可以驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或任何其它形式的非暂时性计算机可读存储介质、媒介或本领域已知的物理计算机存储。示例存储介质可以耦合到处理器,使得处理器可以从存储介质中读取信息并将信息写入存储介质。或者,存储介质可以集成到处理器中。存储介质可以是易失性或非易失性的。处理器和存储介质可以驻留在ASIC中。
[0247] 除非另外明确说明,或者在所使用的上下文中以其它方式理解,否则本文中使用的条件性语言,例如“可以”、“可能”、“可”、“例如”等等通常是旨在表达某些实施例包括,而其它实施例不包括某些特征、元件和/或状态。因此,这样的条件性语言通常不旨在暗示特征、元件和/或状态以任何方式为一个或多个实施例所需、或者一个或多个实施例必然包括用于在有或者没有发明者输入或提示的情况下决定这些特征、元件和/或状态是否包括在或将在任何特定实施例中执行。术语“包括”、“包含”、“具有”等是同义的,并且以开放式的方式包含性地使用,并且不排除附加的元件、特征、行为、操作等等。另外,术语“或”以其包含性含义(而不是其独有含义)使用,使得例如当用于连接元件列表时,术语“或”表示列表中的一个、一些或全部的元件。此外,如本文使用的术语“每个”除了具有其普通含义之外,可以表示术语“每个”被应用于的一组元件的任何子集。
[0248] 尽管以上详细说明已经示出、描述并且指出了应用于各种实施例的新颖特征,但将理解的是,在没有背离本文的精神的情况下,可以对示出的系统、设备或方法的形式和细节进行各种省略、替换和改变。如将认识到的,由于一些特征可以与其它特征分开使用或实施,所以本文所述的某些实施例可以在不提供本文阐述的所有特征和优点的形式下实施。
[0249] 本文中的术语“和/或”具有其最宽的、最小限度的含义,其是本文包括A单独、B单独、A和B一起或A或B交替,但不需要A和B两者或需要A或B中的一个。如本文所使用的,短语A、B“和”C中的“至少一个”应该被解释为意为逻辑A或B或C,使用非排他性逻辑或。
[0250] 本文描述的装置和方法可由一个或多个处理器执行的一个或多个计算机程序来实施。计算机程序包括存储在非暂时性有形计算机可读介质上的处理器可执行指令。计算机程序还可包括存储的数据。非暂时性有形计算机可读介质的非限制性示例是非易失性存储器、磁存储器和光存储器。
[0251] 尽管已经按照某些优选实施例描述了前述公开内容,但是从本文的公开内容中,其它实施例对于本领域的普通技术人员来说将是显而易见的。此外,考虑到本文的公开内容,其它组合、省略、替换和修改对于本领域技术人员将是显而易见的。因此,本发明并不旨在通过对优选实施例的描述而被限制,而是通过参考权利要求书进行限定。
相关专利内容
标题 发布/更新时间 阅读量
新型心电图机 2020-05-11 502
心电图电极消毒器 2020-05-13 962
心电图检查机 2020-05-11 800
心电图肢体导联固定器 2020-05-13 549
简明心电图诊治卡 2020-05-13 93
心电图导联装置 2020-05-12 610
心电图机用桌 2020-05-12 961
一种心电图电极消毒器 2020-05-13 346
心电图机转运装置 2020-05-14 661
心电图检查床 2020-05-12 676
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈