首页 / 专利库 / 牙科学 / 复合体 / 光催化剂复合体

光催化剂复合体

阅读:334发布:2020-05-13

专利汇可以提供光催化剂复合体专利检索,专利查询,专利分析的服务。并且本 发明 提供光催化剂 复合体 ,上述光催化剂复合体包含涂敷有二 氧 化 钛 的上转换 纳米粒子 (Upconverting nanoparticle,UCNP)及与上述涂敷有二氧化钛的上转换纳米粒子相结合的金 纳米棒 (Gold Nanorod,GNR)。,下面是光催化剂复合体专利的具体信息内容。

1.一种光催化剂复合体,其特征在于,包含:
上转换纳米粒子,利用光催化剂金属化物来涂敷而成;以及
纳米棒
2.根据权利要求1所述的光催化剂复合体,其特征在于,所述光催化剂复合体以所述上转换纳米粒子的数量为所述金纳米棒的粒子数量的2倍至8倍的粒子数量的含量包含上转换纳米粒子。
3.根据权利要求1所述的光催化剂复合体,其特征在于,所述上转换纳米粒子为包含稀土类元素的纳米粒子。
4.根据权利要求1所述的光催化剂复合体,其特征在于,所述光催化剂金属氧化物包含选自二氧化、氧化钨、氧化锌、氧化铌及它们的组合中的至少一种。
5.根据权利要求1所述的光催化剂复合体,其特征在于,所述上转换纳米粒子的平均直径为5nm至40nm。
6.根据权利要求1所述的光催化剂复合体,其特征在于,所述光催化剂金属氧化物以
2nm至20nm的平均涂敷厚度涂敷所述上转换纳米粒子。
7.根据权利要求1所述的光催化剂复合体,其特征在于,所述金纳米棒呈最短直径为
5nm至30nm且长轴的长度为30nm至150nm的杆状。
8.根据权利要求1所述的光催化剂复合体,其特征在于,利用所述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和所述金纳米棒物理结合或化学结合。
9.根据权利要求1所述的光催化剂复合体,其特征在于,利用所述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和所述金纳米棒借助中间化合物来物理结合或化学结合。
10.根据权利要求1所述的光催化剂复合体,其特征在于,利用所述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和所述金纳米棒直接结合或借助中间化合物来间接结合。
11.根据权利要求1所述的光催化剂复合体,其特征在于,使用链霉亲和素和生物素的组合、胺化合物和含羧酸化合物的组合作为所述中间化合物,来分别向所述光催化剂金属氧化物的表面及所述金纳米棒的表面导入之后进行结合。

说明书全文

光催化剂复合体

技术领域

[0001] 本发明涉及由结合金纳米棒粒子、上转换纳米粒子、二纳米粒子来合成的混合型纳米物质和利用上述混合型纳米物质通过近红外线(NIR)光活性化二氧化钛光催化剂。

背景技术

[0002] 当前,利用金属纳米粒子的光催化剂现象作为通常借助光能量引起强氧化还原反应,是指具有电力产生的半导体性质的物质。若半导体在施加规定区域的能量,则从-相应物质的价带向传导带激发。此时,在传导带形成有多个电子(e),在价带形成有空穴+
(h)。以这种方式形成的电子和空穴通过强的氧化作用或还原作用产生分解有机物质等多种反应。利用这种现象,作为对材料表面的附着物质、空气及溶液中的污染物质进行杀菌、抗菌、分解除臭及捕集的用途使用,作为利用其的光催化剂不仅利用于冷却器填充剂、玻璃、瓷砖、外墙、食品、工厂内壁、金属制品、槽、海洋污染净化、防霉菌、阻隔紫外线、水质净化、空气净化、防止医院内感染等多种用途,而且当前多应用于对水分解进行加速化,并从水生产氢等能量领域的多种领域。
[0003] 在作为上述用途使用的光催化剂中,二氧化钛(TiO2)具有优秀的光活性能力及化学、生物稳定性和耐久性,从而最广泛使用。但是,在二氧化钛的情况下,光催化剂的特性2 2
局限于紫外线区域。紫外线区域为在太阳光总量(1004W/m)中,非常小的3%((32W/m),在多或阴天的情况下,由于大气的透射率低,只能更低量的紫外线透射进来。

发明内容

[0004] 本发明要解决的技术问题
[0005] 在本发明的一实例中,提供近红外线应答型光催化剂复合体。
[0006] 技术方案
[0007] 在本发明的一实例中,提供光催化剂复合体,上述光催化剂复合体包含:上转换纳米粒子,利用光催化剂金属氧化物来涂敷而成;以及金纳米棒。
[0008] 上述光催化剂复合体以上述上转换纳米粒子的数量为上述金纳米棒的粒子数量的2倍至8倍左右的粒子数量的含量可包含上述上转换纳米粒子。
[0009] 上述上转换纳米粒子可以为包含稀土类元素的纳米粒子。
[0010] 上述光催化剂金属氧化物可包含选自二氧化钛、氧化钨、氧化锌、氧化铌及它们的组合中的至少一种。
[0011] 上述上转换纳米粒子的平均直径可以为5nm至40nm。
[0012] 上述光催化剂金属氧化物能够以2nm至20nm的平均涂敷厚度涂敷上述上转换纳米粒子。
[0013] 上述金纳米棒可呈最短直径可以为5nm至30nm且的长轴的长度可以为30nm至150nm的杆状。
[0014] 利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和上述金纳米棒能够物理结合或化学结合。
[0015] 利用上述光催化剂金属氧化物来涂敷的上转换纳米粒子和上述金纳米棒可借助中间化合物来物理结合或化学结合。
[0016] 利用上述光催化剂金属氧化物来涂敷的上转换纳米粒子和上述金纳米棒可直接结合或可借助中间化合物来间接结合。
[0017] 使用链霉亲和素和生物素的组合、胺化合物和含羧酸化合物的组合作为上述中间化合物,来可分别向上述光催化剂金属氧化物的表面及上述金纳米棒的表面导入之后进行结合。
[0018] 发明效果
[0019] 上述光催化剂复合体应答于近红外线,并具有优秀的光催化剂效率。附图说明
[0020] 图1为示意性地表示利用上述涂敷有二氧化钛的上转换纳米粒子和上述金纳米棒借助物理结合或化学结合来固定并形成,从而利用于光催化剂反应及光动力疗法。
[0021] 图2示意性地表示在上转换纳米粒子的表面涂敷二氧化钛的方法。
[0022] 图3为利用粒度分析器针对在实施例中合成的上转换纳米粒子(UCNP)进行粒子大小分析的结果。
[0023] 图4为针对在实施例中合成的上转换纳米粒子(UCNP),利用透射电子显微镜(TEM)取得的图像。
[0024] 图5为针对向980nm的近红外线(NIR)二极管激光照射在实施例中合成的上转换纳米粒子(UCNP)来发光的光的光谱结果。
[0025] 图6为利用粒度分析器对在实施例中合成的上转换纳米粒子(UCNP)进行粒子大小分析的结果。
[0026] 图7为针对在实施例中制备的改性金纳米棒(金纳米棒-生物素(GNR-biotin)粒子)及上述光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素(GNR-biotin_UCNP-STA))测定吸收光谱的结果。
[0027] 图8为针对在实施例中制备的光催化剂复合体,利用透射电子显微镜(TEM)取得的图像。
[0028] 图9为针对在实施例中制备的改性涂敷有二氧化钛的上转换纳米粒子(上转换纳米粒子-链霉亲和素(UCNP-STA))及光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)照射980nm的近红外线二极管激光,来表示280nm的紫外线(UV)部分的发光量增加率的图表。
[0029] 图10为在实施例中制备的利用二氧化钛来涂敷的上转换纳米粒子、改性涂敷有二氧化钛的上转换纳米粒子(上转换纳米粒子-链霉亲和素)及光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)分别吸收进行光分解的亚甲蓝溶液的光谱。
[0030] 图11为测定比较例2的涂敷二氧化钛的上转换纳米粒子和比较例1的未涂敷二氧化钛的上转换纳米粒的发光效率来表示的曲线图。

具体实施方式

[0031] 以下,详细说明本发明的实例。但这仅作为例示而提出,本发明并不局限于此,本发明仅根据后述的发明要求保护范围而定义。
[0032] 在本发明的一实例中,提供光催化剂复合体,上述光催化剂复合体包含:上转换纳米粒子(upconverting nanoparticle,UCNP),利用光催化剂金属氧化物来涂敷而成;以及及金纳米棒(gold nanorod,GNR)。
[0033] 上述涂敷上转换纳米粒子的光催化剂金属氧化物作为通过紫外线区域的光具有优秀的光活性能力的物质,是化学稳定性、生物学稳定性和耐久性优秀的光催化剂材料。
[0034] 上述光催化剂金属氧化物可不受限制地使用作为光催化剂公知的物质,例如,上述光催化剂金属氧化物可包含选自二氧化钛、氧化钨、氧化锌、氧化铌及它们的组合中的至少一种。
[0035] 上述光催化剂复合体利用近红外光可以活性化包含于上述光催化剂复合体的二氧化钛等的光催化剂金属氧化物的光催化剂作用。
[0036] 上述上转换纳米粒子作为具有吸收近红外区域的光,在紫外线、可见光区域中放射光的特征的物质,可使用公知的物质,并不局限于特定材料。例如,上述上转换纳米粒子可由将稀土类元素作为主材料的纳米粒子形成。
[0037] 具体地,上述上转换纳米粒子的平均直径为可以为约5nm至约40nm。
[0038] 由于上述上转换纳米粒子的上述特性,利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子,若照射近红外区域的光,则上转换纳米粒子放射紫外线及可视光,并通过从上转换纳米粒子放射的紫外线,上述上转换纳米粒子的涂敷物质的光催化剂金属氧化物可表示光活性。
[0039] 另一方面,上述复合体与金纳米棒一同结合,从而能够更加强烈的活性化二氧化钛的光催化剂反应。上述上转换纳米粒子本身在可见光区域放射很多量的光,紫外线区域的光的放射量非常微不足道,但是,上述金纳米棒与利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子一同相结合,来极大化光催化剂金属氧化物和金纳米棒接收光能量时产生的相互之间的等离子现象,从而可增加光催化剂金属氧化物的光催化剂作用的效率。
[0040] 上述金纳米棒呈杆形状,杆形状的截面的直径,即,金纳米棒粒子的最短直径可以为约5nm至约30nm,杆形状的高度,即,长轴的长度可以为约30nm至约150nm。
[0041] 将上述光催化剂复合体适用于如产生氢之类的利用光催化剂的领域,从而可利用不是相当于太阳光的约3%的紫外线,而是占有太阳光的约50%以上的红外线,并根据在气象状态不好的天气也可使用透射率好的红外线,从而当利用太阳光时,还可减少光催化剂损失。
[0042] 上述光催化剂复合体以上述上转换纳米粒子的数量为上述金纳米棒的粒子数量的2倍至8倍左右的粒子数量的含量可包含上述上转换纳米粒子。由上述范围的含量比形成的上述光催化剂复合体对近红外线进行应答,并且具有优秀的光催化剂效率。
[0043] 上述光催化剂金属氧化物能够以约2nm至约20nm的平均厚度涂敷上述上转换纳米粒子。上述光催化剂复合体对近红外线进行应答,并具有优秀的光催化剂效率,上述光催化剂复合体包含上转换纳米粒子,上述上转换纳米粒子由上述涂敷厚度利用上述光催化剂金属氧化物来涂敷而成。
[0044] 利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和金纳米棒能够相结合,这种结合可指物理结合或化学结合。作为借助上述化学结合的例可例举形成共价键、离子键的情况,作为借助物理结合的例可例举吸附等情况。
[0045] 如上所述,根据结合涂敷有上述光催化剂金属氧化物的上转换纳米粒子和上述金纳米棒可借助物理结合或化学结合来固定,此时,光催化剂金属氧化物和金纳米棒之间可出现等离子(plasmonic)现象。
[0046] 利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和上述金纳米棒借助物理结合或化学结合,还可通过直接结合利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和上述金纳米棒来形成,并还可通过介入中间化合物间接结合来形成。
[0047] 图1为示意性地表示利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和上述金纳米棒借助物理结合或化学结合来固定,从而利用于光催化剂反应及光动力疗法(photo-dynamic theraphy,PDT)。
[0048] 上述光催化剂复合体将上述等离子现象利用于光催化剂作用来可增加光催化剂作用的效率。
[0049] 为了使利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和上述金纳米棒借助物理结合或化学结合来固定,可利用中间化合物。即,还可利用中间化合物,对利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子中的一种或每个表面进行改性,从而实现物理结合或化学结合。
[0050] 在利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和上述金纳米棒直接结合的情况下,当合成上述复合体时,在没有上述中间化合物的情况下,可通过调节制备方法及工序条件等来实现上述物理结合或化学结合。
[0051] 在电子的情况下,上述光催化剂复合体借助用于结合涂敷有上述光催化剂金属氧化物的上转换纳米粒子和上述金纳米棒的中间化合物,来对利用上述光催化剂来涂敷而成的上转换纳米粒子和/或上述金纳米棒的表面进行改性后,上述多个中间化合物进行反应,从而复合体能够以利用上述光催化剂金属氧化物涂敷而成的上转换纳米粒子和上述金纳米棒相结合的复合体来形成。
[0052] 例如,利用胺化合物对上述涂敷有二氧化钛的上转换纳米粒子的二氧化钛涂敷表面进行改性,另一方面,利用巯基乙酸对上述金纳米棒的表面进行改性后,若对分别将表面改性的上述涂敷有二氧化钛的上转换纳米粒子和上述金纳米棒进行反应,则向上述涂敷有二氧化钛的上转换纳米粒子的表面导入的胺基和向上述金纳米棒的表面导入的羧基进行反应,从而形成酰胺基,结果,上述涂敷有二氧化钛的上转换纳米粒子和上述金纳米棒可实现化学结合。
[0053] 利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子的表面为利用光催化剂金属氧化物来涂敷而成的表面,所要导入的如胺之类的化合物可通过上述改性方式导入于光催化剂金属氧化物的涂敷表面。
[0054] 如上所述,在利用上述光催化剂金属氧化物来涂敷而成的上转换纳米粒子和上述金纳米棒的一侧表面导入胺基,另一表面导入羧基,可通过形成酰胺键的反应实现上述化学结合。例如,可在涂敷有改性二氧化钛的上转换纳米粒子和改性金纳米棒中,一同添加1-乙基-3-(3-二甲基基丙基)二亚胺及N-羟基琥珀酰亚胺来进行反应,使得可在这种酰胺键形成中利用1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC,1-ethyl-3(3-dimethyl aminopropyl)carbodiimide)及N- 羟 基 琥 珀 酰 亚 胺 (NHS,N-hydroxysuccinimide)的1-乙基-3-(3-二甲基氨基丙基)碳二亚胺/N-羟基琥珀酰亚胺反应。
[0055] 图2为根据本发明的一实例,示意性地表示在上转换纳米粒子的表面涂敷二氧化钛的方法。
[0056] 例如,利用二氧化钛前体,在通过溶胶凝胶法涂敷的上述上转换纳米粒子的表面,能够以规定的厚度涂敷二氧化钛来制备涂敷有上述二氧化钛的上述二氧化钛。作为上述二氧化钛前体的例可使用钛酸四丁酯(TiOBu4)等。
[0057] 以下,通过具体例说明上述光催化剂复合体的制备,上述光催化剂复合体的制备方法不局限于此。
[0058] 首先,在氮气体条件下,对混合上转换纳米粒子的前体材料和溶剂的混合溶液进行热处理后,照射微波来进行反应,然后在常温条件下,进行冷却来合成上转换纳米粒子。接着,通过溶胶-凝胶法利用声波粉碎机在所合成的上转换纳米粒子上涂敷二氧化钛。
在上述二氧化钛的涂覆表面导入酰胺化合物来进行改性后,与改性为巯基丙酸的金纳米棒一同进行混合,此时,一同混合1-乙基-3-(3-二甲基氨基丙基)碳二亚胺及N-羟基琥珀酰亚胺来进行利用1-乙基-3-(3-二甲基氨基丙基)碳二亚胺/N-羟基琥珀酰亚胺反应的有机合成,从而合成涂敷有二氧化钛的上转换纳米粒子-金纳米棒的光催化剂复合体。
[0059] 上述合成的涂敷有二氧化钛的上转换纳米粒子-金纳米棒的光催化剂复合体可利用能够确认光催化剂反应的亚甲蓝来确认光催化剂反应。
[0060] 以下,记载本发明的实施例及比较例。但是,以下实施例只是用于说明本发明的一实施例,本发明并不局限于以下实施例。
[0061] 实施例
[0062] 比较例1:确认所合成的上转换纳米粒子的特性
[0063] 在5ml的油酸(oleic acid)、5ml的正十八烷(octadecane)混合溶液中添加72g的三氟乙酸钠(Na-TFA)、120g的三氟乙酸钇(Y-TFA)、44g的三氟乙酸镱(Yb-TFA)及4g的三氟乙酸铥(Tm-TFA),在氮气条件且120℃温度下,反应30分钟后,移到微波炉(制造公司:美国CEM公司(US),型号:synthesizer),在290℃温度下,反应5分钟,并在常温条件下进行冷却,由此合成了上转换纳米粒子(UCNP)。利用粒度分析及Zeta电位分析仪(Zeta-potential analyzer)(制造公司:日本Photal大塚电子(Otsuka electronics)(Japan),型号:ELS Z)对所合成的上述上转换纳米粒子(UCNP)进行上转换纳米粒子(UCNP)的粒子大小分析,图3为表示上述分析结果的曲线图。
[0064] 图4为针对上述所合成的上转换纳米粒子,通过透射电子显微镜(TEM)取得的图像。
[0065] 图5为针对向980nm的近红外线(NIR)二极管激光照射上述所合成的上转换纳米粒子来发光的光,使用发光及荧光光谱仪(fluorescence and luminescence spectrometer,制造公司:韩国新科(Shinco)(Korea),型号-FS-2)来得到的光谱结果,并在图5中确认,在紫外线区域放射光的特性。
[0066] 比较例2:确认在上转换纳米粒子上涂敷二氧化钛之后的粒子特性
[0067] 通过溶胶凝胶法利用超声波粉碎机,在上转换纳米粒子表面涂敷二氧化钛,并针对涂敷的粒子使用粒度分析仪来进行分析。图6为利用粒度分析器及Zeta电位分析仪(Zeta-potential analyzer)(制造公司Photal Otsuka electronics(Japan),型号:ELS Z)对涂敷有二氧化钛的上转换纳米粒子(UCNP)进行粒子大小分析的结果,从图3及图6可知相对于上转换纳米粒子,涂敷有二氧化钛的上转换纳米粒子的粒子更变大。
[0068] 图11为确认在比较例2的涂敷二氧化钛的上转换纳米粒子的情况下,相对于比较例1的未涂敷二氧化钛的上转换纳米粒,比较例2的涂敷二氧化钛的上转换纳米粒子的发光效率得到提高的结果。如在上述结果中可确认,在通过等离子现象二氧化钛涂敷于上转换纳米粒子上的情况下,与二氧化钛未涂敷于上转换纳米粒子的粒子上的情况相比,发光效率上升10%至15%左右。
[0069] 实施例1:在金纳米棒表面涂敷上转换纳米粒子来确认特性
[0070] 向金纳米棒(GNR)(最短直径:10nm,长轴的长度:40nm)表面导入生物素(biotin)来进行改性,并制备金纳米棒-生物素粒子,在与比较例2相同的方法制备的涂敷有二氧化钛的上转换纳米粒子(UCNP)表面导入链霉亲和素(streptavidin,STA)来进行改性,从而制备上转换纳米粒子-链霉亲和素(UCNP-STA)粒子后,在常温条件下,对改性的两个粒子,即,金纳米棒-生物素(GNR-biotin)粒子及上转换纳米粒子-链霉亲和素粒子反应1小时左右,从而制备通过生物素和链霉亲和素的高的亲和力来相结合的光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)
[0071] 图7为相对于上述改性金纳米棒(GNR-biotin粒子)及上述光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)使用多级板读数器(Multi-plate reader,制造公司:瑞士帝肯(Tecan)(Swiss),型号:Infinite M200 Pro)来测定吸收光谱的结果。
[0072] 若上述上述金纳米棒粒子表面与其他粒子或物质相结合,则通过局域表面等离子体共振(Localized surface plasmon resonance,LSPR)现象,金纳米棒粒子的固有波长进行移动(shift)。
[0073] 在图7中,可确认通过局域表面等离子体共振(Localized surface plasmon resonance,LSPR)现象,表示与上述改性金纳米棒的吸收光谱相比,上述光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)的吸收光谱向右侧移动的结果,从而在上述光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)中,与金纳米棒-生物素形成上转换纳米粒子-链霉亲和素结合。
[0074] 图8为针对上述光催化剂复合体,通过透射电子显微镜(TEM)得到的图像。在图8的透射电子显微镜图像中,还可通过肉眼观察不同形态的金纳米棒-生物素粒子(杆形状)及上转换纳米粒子-链霉亲和素粒子(球形状)实现结合。
[0075] 实验例1:利用不同形态的涂敷有二氧化钛的上转换纳米粒子/金纳米棒光催化剂复合体来确认光催化剂特性
[0076] 相对于实施例1的上述上转换纳米粒子-链霉亲和素粒子及上述光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)分别照射980nm的近红外线二极管激光,利用发光及荧光光谱仪(fluorescence and luminescence spectrometer,制造公司:Shinco(Korea),型号:-FS-2)分别测定在280nm的紫外线部分的发光量。
[0077] 图9为表示相对于上述上转换纳米粒子-链霉亲和素,在上述光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)的280nm的紫外线部分中的发光量增加量的图表。
[0078] 相对于上述上转换纳米粒子-链霉亲和素粒子的发光量增加量意味着等离子体效果的增加,并确认在紫外线区域的光,即,在280nm的紫外线部分产生等离子现象。
[0079] 为了确认根据金纳米棒的浓度增加的发光量增加量,当制备实施例1的光催化剂11
复合体时,分别制备具有0.05×10 个数量的金纳米棒(GNR)的光催化剂复合体(金纳米
11
棒-生物素-上转换纳米粒子-链霉亲和素)、具有0.1×10 个数量的金纳米棒(GNR)的
11
光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)以及具有0.3×10个数量的金纳米棒(GNR)的光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)后,在280nm的紫外线部分中,使用多级板读数器(Multi-plate reader,制造公司:瑞士帝肯(Tecan)(Swiss),型号:Infinite M200 Pro)来分别测定发光量,并确认相对于上转换纳米粒子-链霉亲和素粒子,发光量分别增加10%、8%及30%。图9为相对于上转换纳米粒子-链霉亲和素粒子表示发光量增加率的图表。
[0080] 从上述结果可确认金纳米棒的浓度越增加,等离子现象越增加,从而在涂敷有二氧化钛的上转换纳米粒子中,发光的光的量增加。
[0081] 实验例2
[0082] 利用通过光催化剂现象分解的亚甲蓝,分别在亚甲蓝溶液中放入比较例1的上转换纳米粒子(UCNP)、利用涂敷有比较例2的二氧化钛的上转换纳米粒子来进行屏蔽双绞线(STP)改性的粒子(上转换纳米粒子-链霉亲和素)及实施例1的上述合成的光催化剂复合体(金纳米棒-生物素-上转换纳米粒子-链霉亲和素)并进行光分解后,为了确认通过光分解来减少的亚甲蓝的减少程度,相对于各光分解的亚甲蓝溶液使用多级板读数器(Multi-plate reader,制造公司:瑞士帝肯(Tecan)(Swiss),型号:Infinite M200 Pro)来测定吸收光谱,图10为这种吸收光谱结果。
[0083] 在图10中可确认在比较例2的涂敷二氧化钛涂敷的上转换纳米粒子的情况下,与比较例1的未涂敷二氧化钛的上转换纳米粒子相比,分解更多的亚甲蓝,但是,与比较例2的涂敷二氧化钛涂敷的上转换纳米粒子相比,在与实施例1的金纳米棒相结合的上述光催化剂复合体粒子的情况下,分解最多的亚甲蓝。
[0084] 以上,详细说明了本发明优选实施例,但本发明的发明要求保护范围并不局限于此,利用在以下发明要求保护范围中定义的本发明的基本概念由本发明所属技术领域的普通技术人员进行的各种变形及改善方式也属于本发明的发明要求保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈