首页 / 专利库 / 泵和压缩机 / 压缩机 / 气体压缩机 / 容积式压缩机 / 活塞式压缩机 / 一种深冷分离CO、H2的氮循环甲烷洗涤系统及方法

一种深冷分离CO、H2的氮循环甲烷洗涤系统及方法

阅读:348发布:2021-03-25

专利汇可以提供一种深冷分离CO、H2的氮循环甲烷洗涤系统及方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种深冷分离CO、H2的氮循环甲烷洗涤系统,它包括主换热器、甲烷洗涤塔、氢 汽提 塔、脱甲烷塔、脱氮塔、冷凝 蒸发 器 、甲烷液体 泵 、循环氮气 压缩机 和CO产品压缩机,它还公开了一种深冷分离CO、H2的氮循环甲烷洗涤方法,它具有换热、甲烷洗涤、脱氢、脱甲烷、脱氮、氮气压缩制冷循环和CO产品压缩等步骤。本发明的有益效果是:采用甲烷洗涤法生产H2,大幅降低生产H2的能耗和投资,还可以提高CO和H2的回收率;采用氮气循环压缩、制冷工艺,充分发挥氮压机的高效率和低投资;设置冷凝 蒸发器 将脱甲烷塔和脱氮塔巧妙地连成一体,大幅降低精馏功耗;还可以缩短装置的启动和提纯时间、减少启动阶段的放空量;具有良好的经济效益和环保效益。,下面是一种深冷分离CO、H2的氮循环甲烷洗涤系统及方法专利的具体信息内容。

1.一种深冷分离CO、H2的氮循环甲烷洗涤系统,其特征在于:它包括主换热器(1)、甲烷洗涤塔(2)、侧凝器(3)、氢汽提塔(4)、氢汽提塔塔底蒸发器(5)、脱甲烷塔(6)、脱氮塔(7)、冷凝蒸发器(8)、脱甲烷塔塔顶分离器(9)、脱氮塔塔顶冷凝器(10)、脱氮塔塔顶分离器(11)、甲烷液体(12)、CO产品压缩机(13)和循环氮气压缩机(14),所述主换热器(1)内设置有流道Ia、流道Ib、流道II、流道III、流道IV、流道V、流道VI、流道VII和流道VIII,脱氮塔塔顶冷凝器(10)内设置有流道I、流道II和流道III,冷凝蒸发器(8)设置于脱甲烷塔(6)和脱氮塔(7)之间,氢汽提塔塔底蒸发器(5)设置于氢汽提塔(4)内且位于其底部,主换热器(1)内流道V的出口与甲烷洗涤塔(2)底部的入口端连接,甲烷洗涤塔(2)的气相出口与主换热器(1)内流道IV的入口端相连,甲烷洗涤塔(2)的液相出口经A(19)与氢汽提塔(4)的中部入口端相连,位于甲烷洗涤塔(2)中部的进出口分别与侧凝器(3)的端口D和端口C连接;
所述氢汽提塔(4)的气相出口与主换热器(1)内流道III的入口端相连,氢汽提塔(4)的液相出口经阀门D(22)与位于脱甲烷塔(6)中部的入口端相连;
所述脱甲烷塔(6)的液相出口与甲烷液体泵(12)的入口相连,甲烷液体泵(12)的出口与主换热器(1)内流道VIII的入口端相连,主换热器(1)内流道VIII的上部出口经阀门E(23)与位于脱甲烷塔(6)的底部入口端连接,主换热器(1)内流道VIII的下部出口包括三个支路,第一支路经阀门L(30)连通外部,第二支路经阀门B(20)与位于甲烷洗涤塔(2)顶部的入口端连接,第三支路经阀门C(21)与位于氢汽提塔(4)顶部的入口端连接,脱甲烷塔(6)的气相出口与冷凝蒸发器(8)的入口端相连,冷凝蒸发器(8)的出口端与脱甲烷塔塔顶分离器(9)的入口相连,脱甲烷塔塔顶分离器(9)的液相出口与位于脱甲烷塔(6)顶部的入口端连接,脱甲烷塔塔顶分离器(9)的气相出口经阀门F(24)与脱氮塔(7)的中部入口端连接;
所述脱氮塔(7)的液相出口经阀门G(25)与脱氮塔塔顶冷凝器(10)内流道II的入口端相连,脱氮塔塔顶冷凝器(10)内流道II的出口端与主换热器(1)内流道VII的入口端相连,主换热器(1)内流道VII的出口端与CO产品压缩机(13)的入口相连,脱氮塔(7)的气相出口与脱氮塔塔顶冷凝器(10)内流道I的入口端相连,脱氮塔塔顶冷凝器(10)内流道I的出口端与脱氮塔塔顶分离器(11)的入口端相连,脱氮塔塔顶分离器(11)的液相出口与位于脱氮塔(7)顶部的入口端连接,脱氮塔塔顶分离器(11)的气相出口与主换热器(1)内流道VI的入口端相连;
所述循环氮气压缩机(14)的出口端与主换热器(1)内流道Ia的入口端相连,主换热器(1)内流道Ia的出口包括两个支路,第一个支路与氢汽提塔塔底蒸发器(5)的入口相连,第二个支路经阀门I(27)与氢汽提塔塔底蒸发器(5)的出口相连,阀门I(27)的另一端和氢汽提塔塔底蒸发器(5)的出口均与主换热器(1)内流道Ib的入口端连接,主换热器(1)内流道Ib的出口包括两个支路,第一个支路经阀门H(26)与脱氮塔塔顶冷凝器(10)流道III的入口相连,第二个支路经阀门J(28)与侧凝器(3)的端口B相连,脱氮塔塔顶冷凝器(10)内流道III的出口端与侧凝器(3)的端口A相连,侧凝器(3)的端口A处连接有阀门K(29)减压的液氮混合,侧凝器(3)的端口A还与主换热器(1)内流道II的入口端连接,主换热器(1)流道II的出口端与循环氮气压缩机(14)的入口端相连。
2.根据权利要求1所述的一种深冷分离CO、H2的氮循环甲烷洗涤系统,其特征在于:所述的冷凝蒸发器(8)为内置式或外置式,也可为浸浴虹吸型或膜式蒸发型。
3.根据权利要求1所述的一种深冷分离CO、H2的氮循环甲烷洗涤系统,其特征在于:所述的甲烷洗涤塔(2)与氢汽提塔(4)为同轴上下布置。
4.根据权利要求1所述的一种深冷分离CO、H2的氮循环甲烷洗涤系统,其特征在于:所述的CO产品压缩机(13)和循环氮气压缩机(14)均为电机驱动或汽轮机一拖二驱动。
5.根据权利要求1~4中任意一项所述的系统深冷分离CO、H2的氮循环甲烷洗涤的方法,其特征在于:它包括以下步骤:
S1、含CO、氢气、甲烷和少量氮气、氩气的净化气经主换热器(1)内流道V进入主换热器(1),净化气在主换热器(1)内被冷流体冷却并部分冷凝,冷凝后进入甲烷洗涤塔(2)底部以进行第一次精馏,在甲烷洗涤塔(2)顶部得到氢气产品,氢气产品进入主换热器(1)内流道IV,主换热器(1)将其复热至常温后出界区,而在甲烷洗涤塔(2)底部得到的液体经阀门A(19)减压后送入氢汽提塔(4)的中部以继续精馏,甲烷洗涤塔(2)顶部的回流液为经甲烷液体泵(12)增压的液态甲烷,侧凝器(3)为甲烷洗涤塔(2)提供中部回流液,采用液氮做冷源;
S2、经过氢汽提塔(4)的进一步精馏脱氢,在氢汽提塔(4)顶部得到富含氢气的闪蒸气,闪蒸气进入主换热器(1)内流道III,主换热器(1)对其复热至常温后出界区,在氢汽提塔(4)底部得到的液体经阀门D(22)减压后送入脱甲烷塔(6)中继续精馏,氢汽提塔(4)顶部的回流液为经甲烷液体泵(12)增压的液态甲烷,氢汽提塔塔底蒸发器(5)为氢汽提塔(4)提供上升的蒸发气,采用循环氮气或净化气做热源;
S3、经过脱甲烷塔(6)的进一步精馏脱甲烷,在脱甲烷塔(6)顶部得到的富CO气依次经脱甲烷塔塔顶分离器(9)、阀门F(24)进入脱氮塔(7)中继续精馏,在脱甲烷塔(6)底部得到的甲烷液体经甲烷液体泵(12)增压后泵入主换热器(1)内流道VIII中进行换热,换热后一部分甲烷液体被复热气化后经阀门E(23)减压,并返回至脱甲烷塔(6)的底部,为脱甲烷塔(6)提供上升的蒸发气,另一部分甲烷液体被过冷后分成三股:第一股甲烷液体经阀门L(30)减压后作为LNG产品出界区,第二股甲烷液体经阀门B(20)减压后送入甲烷洗涤塔(2)的顶部,为甲烷洗涤塔(2)提供顶部的回流液,第三股甲烷液体经阀门C(21)减压后送入氢汽提塔(4)的顶部,为氢汽提塔(4)提供顶部的回流液,脱甲烷塔(6)的顶部设有冷凝蒸发器(8),为脱甲烷塔(6)提供回流液,采用脱氮塔(7)底部的CO液体做冷源;
S4、经过脱氮塔(7)的进一步精馏脱氮,在脱氮塔(7)顶部得到的富氮气依次经脱氮塔塔顶冷凝器(10)内流道I、脱氮塔塔顶分离器(11)、进入主换热器(1)内流道VI,最后经主换热器(1)复热至常温后出界区,在脱氮塔(7)底部得到的CO液体经阀门G(25)减压后依次通过脱氮塔塔顶冷凝器(10)内流道II、主换热器(1)内流道VII,主换热器(1)将CO液体复热至常温后送入CO产品压缩机(13)中,经CO产品压缩机(13)增压的中压CO气作为CO产品出界区,冷凝蒸发器(8)为脱氮塔(7)提供上升的蒸发气,采用脱甲烷塔(6)顶部的富CO气做热源,脱氮塔塔顶冷凝器(10)为脱氮塔(7)提供回流液,采用CO液体和液氮做冷源;
S5、从循环氮气压缩机(14)排出的中压氮气依次经主换热器(1)内Ia通道、氢汽提塔塔底蒸发器(5)入口端、氢汽提塔塔底蒸发器(5)出口端、主换热器(1)的Ib通道被冷流体冷却、冷凝并过冷,被过冷的液氮分成两股,一股液氮经阀门H(26)减压后进入脱氮塔塔顶冷凝器(10)内流道III以作为脱氮塔塔顶冷凝器(10)的冷源,另一股液氮经阀门J(28)减压后经端口B进入侧凝器(3)内以作为侧凝器(3)的冷源,低压液氮在脱氮塔塔顶冷凝器(10)和侧凝器(3)中被部分气化,与经阀门K(29)减压的液氮混合,一起经主换热器(1)复热至常温后送入循环氮气压缩机(14)继续增压,从而完成氮气压缩、制冷循环。
6.根据权利要求5所述的系统深冷分离CO、H2的氮循环甲烷洗涤的方法,其特征在于:所述的CO产品压缩机(13)由入口压控制其入口导叶或入口调阀的开度。
7.根据权利要求5所述的系统深冷分离CO、H2的氮循环甲烷洗涤的方法,其特征在于:所述的CO产品压缩机(13)的入口压力为0.01 0.3MPa.G,排气压力为0.5 3.6MPa.G。
~ ~
8.根据权利要求5所述的系统深冷分离CO、H2的氮循环甲烷洗涤的方法,其特征在于:所述的循环氮气压缩机(14)的入口压力为0.05 0.5MPa.G,排气压力为0.6 3.6MPa.G。
~ ~
9.根据权利要求5所述的系统深冷分离CO、H2的氮循环甲烷洗涤的方法,其特征在于:所述的CO产品压缩机(13)和循环氮气压缩机(14)为离心式或活塞式压缩机,也可以为组合式一体机。
10.根据权利要求5所述的系统深冷分离CO、H2的氮循环甲烷洗涤的方法,其特征在于:
所述的甲烷液体泵(12)为立式低温离心泵

说明书全文

一种深冷分离CO、H2的氮循环甲烷洗涤系统及方法

技术领域

[0001] 本发明涉及深冷气体分离领域,特别是一种深冷分离CO、H2的氮循环甲烷洗涤系统及方法。

背景技术

[0002] CO是重要的羰基合成原料气,由CO出发可以制取几乎所有的有机化学品。目前制取CO的合成气主要来自于加压气化天然气/石脑油蒸汽转化或焦炉煤气,在合成气中除了含CO、H2外,还含有少量的甲烷、氮气和氩气,鉴于生产乙二醇、醋酸和二甲基二酰胺等化工产品过程中对原料CO的纯度要求非常高(≥98.5%),因此需要将合成气中的氢气、甲烷、氮气和氩气等脱除。深冷分离技术工艺成熟,操作稳定、处理量大、产品纯度高、收率高,是目前CO分离的首选技术。
[0003] 在乙二醇、乙醇合成装置中,生产CO的同时需要联产高纯度的H(2 H2纯度≥99.9%),通常的做法是将CO深冷分离装置生产的富氢气送入PSA制氢装置中进一步提纯,富氢气中氢的含量越高,H2的回收率就越高、能耗越低。CO深冷分离装置中分离氢的方法主要有冷凝分离法和甲烷洗涤法,当合成气中甲烷含量超过2.5%时,就可采用甲烷洗涤法将富氢气中的氢含量提高至97~99%,从而提高CO和H2的回收率,同时降低装置的能耗。
[0004] 中国发明专利授权号CN 101680713 B“通过低温蒸馏分离包含一、甲烷、氢和可选的氮的混合物的方法”和美国专利US 6578377 B1‘Recovery of hydrogen and carbon monoxide from mixtures including methane and hydrocarbons heavier than methane’均采用纯CO压缩、制冷循环,鉴于CO压缩机和膨胀机的效率较低、技术要求高,采用该种工艺的能耗和投资较大,同时因循环制冷剂CO的纯度问题导致装置启动、提纯的时间长,启动阶段的放空量大。
[0005] 中国发明专利申请号CN 201510014944.9 “一种高效分离合成气制取氢气及一氧化碳的方法及装置”的精馏塔均采用常规的蒸发器和冷凝器,其中蒸发器采用氮气和原料气做热源、冷凝器采用液氮做冷源,该种工艺要求循环氮气的压高、流量大,存在能耗偏高的缺点,且CO产品的压力偏低。

发明内容

[0006] 本发明的目的在于克服现有技术的缺点,提供一种深冷分离CO、H2的氮循环甲烷洗涤系统及方法。
[0007] 本发明的目的通过以下技术方案来实现:一种深冷分离CO、H2的氮循环甲烷洗涤系统,它包括主换热器、甲烷洗涤塔、侧凝器、氢汽提塔、氢汽提塔塔底蒸发器、脱甲烷塔、脱氮塔、冷凝蒸发器、脱甲烷塔塔顶分离器、脱氮塔塔顶冷凝器、脱氮塔塔顶分离器、甲烷液体、CO产品压缩机和循环氮气压缩机,所述主换热器内设置有流道Ia、流道Ib、流道II、流道III、流道IV、流道V、流道VI、流道VII和流道VIII,脱氮塔塔顶冷凝器内设置有流道I、流道II和流道III,冷凝蒸发器设置于脱甲烷塔和脱氮塔之间,氢汽提塔塔底蒸发器设置于氢汽提塔内且位于其底部,主换热器内流道V的出口与甲烷洗涤塔底部的入口端连接,甲烷洗涤塔的气相出口与主换热器内流道IV的入口端相连,甲烷洗涤塔的液相出口经A与氢汽提塔的中部入口端相连,位于甲烷洗涤塔中部的进出口分别与侧凝器的端口D和端口C连接;所述氢汽提塔的气相出口与主换热器内流道III的入口端相连,氢汽提塔的液相出口经阀门D与位于脱甲烷塔中部的入口端相连;
所述脱甲烷塔的液相出口与甲烷液体泵的入口相连,甲烷液体泵的出口与主换热器内流道VIII的入口端相连,主换热器内流道VIII的上部出口经阀门E与位于脱甲烷塔的底部入口端连接,主换热器内流道VIII的下部出口包括三个支路,第一支路经阀门L连通外部,第二支路经阀门B与位于甲烷洗涤塔顶部的入口端连接,第三支路经阀门C与位于氢汽提塔顶部的入口端连接,脱甲烷塔的气相出口与冷凝蒸发器的入口端相连,冷凝蒸发器的出口端与脱甲烷塔塔顶分离器的入口相连,脱甲烷塔塔顶分离器的液相出口与位于脱甲烷塔顶部的入口端连接,脱甲烷塔塔顶分离器的气相出口经阀门F与脱氮塔的中部入口端连接;
所述脱氮塔的液相出口经阀门G与脱氮塔塔顶冷凝器内流道II的入口端相连,脱氮塔塔顶冷凝器内流道II的出口端与主换热器内流道VII的入口端相连,主换热器内流道VII的出口端与CO产品压缩机的入口相连,脱氮塔的气相出口与脱氮塔塔顶冷凝器内流道I的入口端相连,脱氮塔塔顶冷凝器内流道I的出口端与脱氮塔塔顶分离器的入口端相连,脱氮塔塔顶分离器的液相出口与位于脱氮塔顶部的入口端连接,脱氮塔塔顶分离器的气相出口与主换热器内流道VI的入口端相连;
所述循环氮气压缩机的出口端与主换热器内流道Ia的入口端相连,主换热器内流道Ia的出口包括两个支路,第一个支路与氢汽提塔塔底蒸发器的入口相连,第二个支路经阀门I与氢汽提塔塔底蒸发器的出口相连,阀门I的另一端和氢汽提塔塔底蒸发器的出口均与主换热器内流道Ib的入口端连接,主换热器内流道Ib的出口包括两个支路,第一个支路经阀门H与脱氮塔塔顶冷凝器流道III的入口相连,第二个支路经阀门J与侧凝器的端口B相连,脱氮塔塔顶冷凝器内流道III的出口端与侧凝器的端口A相连,侧凝器的端口A处连接有阀门K减压的液氮混合,侧凝器的端口A还与主换热器内流道II的入口端连接,主换热器流道II的出口端与循环氮气压缩机的入口端相连。
[0008] 所述的冷凝蒸发器为内置式或外置式,也可为浸浴虹吸型或膜式蒸发型。
[0009] 所述的甲烷洗涤塔与氢汽提塔为同轴上下布置。
[0010] 所述的CO产品压缩机和循环氮气压缩机均为电机驱动或汽轮机一拖二驱动。
[0011] 所述的系统深冷分离CO、H2的氮循环甲烷洗涤的方法,它包括以下步骤:S1、含CO、氢气、甲烷和少量氮气、氩气的净化气经主换热器内流道V进入主换热器,净化气在主换热器内被冷流体冷却并部分冷凝,冷凝后进入甲烷洗涤塔底部以进行第一次精馏,在甲烷洗涤塔顶部得到氢气产品,氢气产品进入主换热器内流道IV,主换热器将其复热至常温后出界区,而在甲烷洗涤塔底部得到的液体经阀门A减压后送入氢汽提塔的中部以继续精馏,甲烷洗涤塔顶部的回流液为经甲烷液体泵增压的液态甲烷,侧凝器为甲烷洗涤塔提供中部回流液,采用液氮做冷源;
S2、经过氢汽提塔的进一步精馏脱氢,在氢汽提塔顶部得到富含氢气的闪蒸气,闪蒸气进入主换热器内流道III,主换热器对其复热至常温后出界区,在氢汽提塔底部得到的液体经阀门D减压后送入脱甲烷塔中继续精馏,氢汽提塔顶部的回流液为经甲烷液体泵增压的液态甲烷,氢汽提塔塔底蒸发器为氢汽提塔提供上升的蒸发气,采用循环氮气或净化气做热源;
S3、经过脱甲烷塔的进一步精馏脱甲烷,在脱甲烷塔顶部得到的富CO气依次经脱甲烷塔塔顶分离器、阀门F进入脱氮塔中继续精馏,在脱甲烷塔底部得到的甲烷液体经甲烷液体泵增压后泵入主换热器内流道VIII中进行换热,换热后一部分甲烷液体被复热气化后经阀门E减压,并返回至脱甲烷塔的底部,为脱甲烷塔提供上升的蒸发气,另一部分甲烷液体被过冷后分成三股:第一股甲烷液体经阀门L减压后作为LNG产品出界区,第二股甲烷液体经阀门B减压后送入甲烷洗涤塔的顶部,为甲烷洗涤塔提供顶部的回流液,第三股甲烷液体经阀门C减压后送入氢汽提塔的顶部,为氢汽提塔提供顶部的回流液,脱甲烷塔的顶部设有冷凝蒸发器,为脱甲烷塔提供回流液,采用脱氮塔底部的CO液体做冷源;
S4、经过脱氮塔的进一步精馏脱氮,在脱氮塔顶部得到的富氮气依次经脱氮塔塔顶冷凝器内流道I、脱氮塔塔顶分离器、进入主换热器内流道VI,最后经主换热器复热至常温后出界区,在脱氮塔底部得到的CO液体经阀门G减压后依次通过脱氮塔塔顶冷凝器内流道II、主换热器内流道VII,主换热器将CO液体复热至常温后送入CO产品压缩机中,经CO产品压缩机增压的中压CO气作为CO产品出界区,冷凝蒸发器为脱氮塔提供上升的蒸发气,采用脱甲烷塔顶部的富CO气做热源,脱氮塔塔顶冷凝器为脱氮塔提供回流液,采用CO液体和液氮做冷源;
S5、从循环氮气压缩机排出的中压氮气依次经主换热器内Ia通道、氢汽提塔塔底蒸发器入口端、氢汽提塔塔底蒸发器出口端、主换热器的Ib通道被冷流体冷却、冷凝并过冷,被过冷的液氮分成两股,一股液氮经阀门H减压后进入脱氮塔塔顶冷凝器内流道III以作为脱氮塔塔顶冷凝器的冷源,另一股液氮经阀门J减压后经端口B进入侧凝器内以作为侧凝器的冷源,低压液氮在脱氮塔塔顶冷凝器和侧凝器中被部分气化,与经阀门K减压的液氮混合,一起经主换热器复热至常温后送入循环氮气压缩机继续增压,从而完成氮气压缩、制冷循环。
[0012] 所述的CO产品压缩机由入口压力控制其入口导叶或入口调阀的开度。
[0013] 所述的CO产品压缩机的入口压力为0.01 0.3MPa.G,排气压力为0.5 3.6MPa.G。~ ~
[0014] 所述的循环氮气压缩机的入口压力为0.05 0.5MPa.G,排气压力为0.6 3.6MPa.G。~ ~
[0015] 所述的CO产品压缩机和循环氮气压缩机为离心式或活塞式压缩机,也可以为组合式一体机。
[0016] 所述的甲烷液体泵为立式低温离心泵
[0017] 本发明具有以下优点:(1)本发明采用甲烷洗涤法生产H2,大幅降低生产H2的能耗和投资,还可以提高CO和H2的回收率;(2)本发明采用氮气循环压缩、制冷工艺,充分发挥氮压机的高效率和低投资;(3)本发明设置冷凝蒸发器将脱甲烷塔和脱氮塔巧妙地连成一体,大幅降低精馏功耗;(4)本发明能够缩短装置的启动和提纯时间、减少启动阶段的放空量;(5)本发明能耗低、启动快、投资省、排放少,符合节能降耗的大趋势,具有良好的经济效益和环保效益。
附图说明
[0018] 图1 为本发明的实施例一的结构示意图;图2 为本发明的实施例二的结构示意图;
图3 为本发明的实施例三的结构示意图;
图4 为本发明的实施例四的结构示意图;
图5 为本发明的实施例五的结构示意图;
图6 为本发明的实施例六的结构示意图;
图中,1-主换热器,2-甲烷洗涤塔,3-侧凝器,4-氢汽提塔,5-氢汽提塔塔底蒸发器,6-脱甲烷塔,7-脱氮塔,8-冷凝蒸发器,9-脱甲烷塔塔顶分离器,10-脱氮塔塔顶冷凝器,11-脱氮塔塔顶分离器,12-甲烷液体泵,13-CO产品压缩机,14-循环氮气压缩机,15-透平膨胀机,
16-低温预冷机组,17-低温分离器,18-CO液体泵,19-阀门A,20-阀门B,21-阀门C,22-阀门D,23-阀门E,24-阀门F,25-阀门G,26-阀门H,27-阀门I,28-阀门J,29-阀门K,30-阀门L,31-阀门M。

具体实施方式

[0019] 下面结合附图对本发明做进一步的描述,本发明的保护范围不局限于以下所述:实施例一:如图1所示,一种深冷分离CO、H2的氮循环甲烷洗涤系统,它包括主换热器1、甲烷洗涤塔2、侧凝器3、氢汽提塔4、氢汽提塔塔底蒸发器5、脱甲烷塔6、脱氮塔7、冷凝蒸发器8、脱甲烷塔塔顶分离器9、脱氮塔塔顶冷凝器10、脱氮塔塔顶分离器11、甲烷液体泵12、CO产品压缩机13和循环氮气压缩机14,所述主换热器1内设置有流道Ia、流道Ib、流道II、流道III、流道IV、流道V、流道VI、流道VII和流道VIII,脱氮塔塔顶冷凝器10内设置有流道I、流道II和流道III,冷凝蒸发器8设置于脱甲烷塔6和脱氮塔7之间,氢汽提塔塔底蒸发器5设置于氢汽提塔4内且位于其底部,主换热器1内流道V的出口与甲烷洗涤塔2底部的入口端连接,甲烷洗涤塔2的气相出口与主换热器1内流道IV的入口端相连,甲烷洗涤塔2的液相出口经阀门A19与氢汽提塔4的中部入口端相连,位于甲烷洗涤塔2中部的进出口分别与侧凝器3的端口D和端口C连接。
[0020] 本实施例中,所述氢汽提塔4的气相出口与主换热器1内流道III的入口端相连,氢汽提塔4的液相出口经阀门D22与位于脱甲烷塔6中部的入口端相连。
[0021] 本实施例中,所述脱甲烷塔6的液相出口与甲烷液体泵12的入口相连,甲烷液体泵12的出口与主换热器1内流道VIII的入口端相连,主换热器1内流道VIII的上部出口经阀门E23与位于脱甲烷塔6的底部入口端连接,主换热器1内流道VIII的下部出口包括三个支路,第一支路经阀门L30连通外部,第二支路经阀门B20与位于甲烷洗涤塔2顶部的入口端连接,第三支路经阀门C21与位于氢汽提塔4顶部的入口端连接,脱甲烷塔6的气相出口与冷凝蒸发器8的入口端相连,冷凝蒸发器8的出口端与脱甲烷塔塔顶分离器9的入口相连,脱甲烷塔塔顶分离器9的液相出口与位于脱甲烷塔6顶部的入口端连接,脱甲烷塔塔顶分离器9的气相出口经阀门F24与脱氮塔7的中部入口端连接。
[0022] 本实施例中,所述脱氮塔7的液相出口经阀门G25与脱氮塔塔顶冷凝器10内流道II的入口端相连,脱氮塔塔顶冷凝器10内流道II的出口端与主换热器1内流道VII的入口端相连,主换热器1内流道VII的出口端与CO产品压缩机13的入口相连,脱氮塔7的气相出口与脱氮塔塔顶冷凝器10内流道I的入口端相连,脱氮塔塔顶冷凝器10内流道I的出口端与脱氮塔塔顶分离器11的入口端相连,脱氮塔塔顶分离器11的液相出口与位于脱氮塔7顶部的入口端连接,脱氮塔塔顶分离器11的气相出口与主换热器1内流道VI的入口端相连。
[0023] 本实施例中,所述循环氮气压缩机14的出口端与主换热器1内流道Ia的入口端相连,主换热器1内流道Ia的出口包括两个支路,第一个支路与氢汽提塔塔底蒸发器5的入口相连,第二个支路经阀门I27与氢汽提塔塔底蒸发器5的出口相连,阀门I27的另一端和氢汽提塔塔底蒸发器5的出口均与主换热器1内流道Ib的入口端连接,主换热器1内流道Ib的出口包括两个支路,第一个支路经阀门H26与脱氮塔塔顶冷凝器10流道III的入口相连,第二个支路经阀门J28与侧凝器3的端口B相连,脱氮塔塔顶冷凝器10内流道III的出口端与侧凝器3的端口A相连,侧凝器3的端口A处连接有阀门K29减压的液氮混合,侧凝器3的端口A还与主换热器1内流道II的入口端连接,主换热器1流道II的出口端与循环氮气压缩机14的入口端相连。
[0024] 本实施例中,所述的冷凝蒸发器8为内置式或外置式,也可为浸浴虹吸型或膜式蒸发型。所述的甲烷洗涤塔2与氢汽提塔4为同轴上下布置。所述的CO产品压缩机13和循环氮气压缩机14均为电机驱动或汽轮机一拖二驱动。
[0025] 本实施例中,所述的系统深冷分离CO、H2的氮循环甲烷洗涤的方法,它包括以下步骤:S1、含CO、氢气、甲烷和少量氮气、氩气的净化气经主换热器1内流道V进入主换热器1,净化气在主换热器1内被冷流体冷却并部分冷凝,冷凝后进入甲烷洗涤塔2底部以进行第一次精馏,在甲烷洗涤塔2顶部得到氢气产品,氢气产品进入主换热器1内流道IV,主换热器1将其复热至常温后出界区,而在甲烷洗涤塔2底部得到的液体经阀门A19减压后送入氢汽提塔4的中部以继续精馏,甲烷洗涤塔2顶部的回流液为经甲烷液体泵12增压的液态甲烷,侧凝器3为甲烷洗涤塔2提供中部回流液,采用液氮做冷源;
S2、经过氢汽提塔4的进一步精馏脱氢,在氢汽提塔4顶部得到富含氢气的闪蒸气,闪蒸气进入主换热器1内流道III,主换热器1对其复热至常温后出界区,在氢汽提塔4底部得到的液体经阀门D22减压后送入脱甲烷塔6中继续精馏,氢汽提塔4顶部的回流液为经甲烷液体泵12增压的液态甲烷,氢汽提塔塔底蒸发器5为氢汽提塔4提供上升的蒸发气,采用循环氮气或净化气做热源;
S3、经过脱甲烷塔6的进一步精馏脱甲烷,在脱甲烷塔6顶部得到的富CO气依次经脱甲烷塔塔顶分离器9、阀门F24进入脱氮塔7中继续精馏,在脱甲烷塔6底部得到的甲烷液体经甲烷液体泵12增压后泵入主换热器1内流道VIII中进行换热,换热后一部分甲烷液体被复热气化后经阀门E23减压,并返回至脱甲烷塔6的底部,为脱甲烷塔6提供上升的蒸发气,另一部分甲烷液体被过冷后分成三股:第一股甲烷液体经阀门L30减压后作为LNG产品出界区,第二股甲烷液体经阀门B20减压后送入甲烷洗涤塔2的顶部,为甲烷洗涤塔2提供顶部的回流液,第三股甲烷液体经阀门C21减压后送入氢汽提塔4的顶部,为氢汽提塔4提供顶部的回流液,脱甲烷塔6的顶部设有冷凝蒸发器8,为脱甲烷塔6提供回流液,采用脱氮塔7底部的CO液体做冷源;
S4、经过脱氮塔7的进一步精馏脱氮,在脱氮塔7顶部得到的富氮气依次经脱氮塔塔顶冷凝器10内流道I、脱氮塔塔顶分离器11、进入主换热器1内流道VI,最后经主换热器1复热至常温后出界区,在脱氮塔7底部得到的CO液体经阀门G25减压后依次通过脱氮塔塔顶冷凝器10内流道II、主换热器1内流道VII,主换热器1将CO液体复热至常温后送入CO产品压缩机
13中,经CO产品压缩机13增压的中压CO气作为CO产品出界区,冷凝蒸发器8为脱氮塔7提供上升的蒸发气,采用脱甲烷塔6顶部的富CO气做热源,脱氮塔塔顶冷凝器10为脱氮塔7提供回流液,采用CO液体和液氮做冷源;
S5、从循环氮气压缩机14排出的中压氮气依次经主换热器1内Ia通道、氢汽提塔塔底蒸发器5入口端、氢汽提塔塔底蒸发器5出口端、主换热器1的Ib通道被冷流体冷却、冷凝并过冷,被过冷的液氮分成两股,一股液氮经阀门H26减压后进入脱氮塔塔顶冷凝器10内流道III以作为脱氮塔塔顶冷凝器10的冷源,另一股液氮经阀门J28减压后经端口B进入侧凝器3内以作为侧凝器3的冷源,低压液氮在脱氮塔塔顶冷凝器10和侧凝器3中被部分气化,与经阀门K29减压的液氮混合,一起经主换热器1复热至常温后送入循环氮气压缩机14继续增压,从而完成氮气压缩、制冷循环。
[0026] 本实施例中,所述的CO产品压缩机13由入口压力控制其入口导叶或入口调阀的开度。所述的CO产品压缩机13的入口压力为0.01 0.3MPa.G,排气压力为0.5 3.6MPa.G。所述~ ~的循环氮气压缩机14的入口压力为0.05 0.5MPa.G,排气压力为0.6 3.6MPa.G。所述的CO产~ ~
品压缩机13和循环氮气压缩机14为离心式或活塞式压缩机,也可以为组合式一体机。所述的甲烷液体泵12为立式低温离心泵。
[0027] 实施例二:如图2所示,本实施例与实施例一的区别在于:在主换热器1流道Ia的出口增加一股物流,经阀门M31后送入透平膨胀机15的入口,透平膨胀机15的出口与低压氮气总管相连,在系统启动或冷量不足时,利用透平膨胀机15制取冷量。
[0028] 实施例三:如图3所示,本实施例与实施例一的区别在于:主换热器1增加流道IX,并与低温预冷机组16相连,为系统提供温度在-40 40℃等级的冷量。~
[0029] 实施例四:如图4所示,本实施例与实施例一的区别在于:在主换热器1流道V的出口增加低温分离器17,用于当原料气中C2+含量增多时分离液,增强系统的稳定性和适应性。
[0030] 实施例五:如图5所示,本实施例与实施例一的区别在于:主换热器1增加流道X,单独作为脱甲烷塔6底部的蒸发器。
[0031] 实施例六:如图6所示,本实施例与实施例一的区别在于:脱氮塔7的液相出口与主换热器1内流道VII的入口之间增加CO液体泵18,通过液体泵增压代替CO产品压缩机13,进一步降低系统投资和安全险。
[0032] 最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
相关专利内容
标题 发布/更新时间 阅读量
活塞式压缩机 2020-05-11 861
活塞式压缩机 2020-05-11 291
活塞式压缩机 2020-05-11 1015
活塞式压缩机 2020-05-11 875
活塞式压缩机 2020-05-13 363
活塞式压缩机 2020-05-17 697
活塞式压缩机 2020-05-17 748
活塞式压缩机 2020-05-18 523
活塞式压缩机 2020-05-14 728
活塞式压缩机 2020-05-15 290
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈