首页 / 专利库 / 泵和压缩机 / 活塞式压缩机 / 一种天然气直接膨胀式液化装置

一种天然气直接膨胀式液化装置

阅读:849发布:2021-03-07

专利汇可以提供一种天然气直接膨胀式液化装置专利检索,专利查询,专利分析的服务。并且一种 天然气 直接膨胀式 液化 方法及装置,属节能与环保领域,其由一个 净化 预处理单元,压缩单元,预冷器,膨胀单元,分流器,天然气 过冷 器,气液分离器及液态天然气储罐组成。经过预处理单元过滤净化后的天然气经过压缩单元完成多级压缩中间冷却,形成高压常温天然气,此高压天然气经预冷器预冷降温,进入膨胀单元两级膨胀至中间压 力 后经分流器分流为两部分,一部分进入膨胀机膨胀至低温、低压,形成低温冷量,利用此低温冷量将分流后的另一部分天然气在过冷器内冷却至分流器所对应压力下的液体状态,实现天然气的液化。本装置工艺流程简单,操作方便,安全性高,易于模 块 化撬装,可广泛用于边远零散气田,石油伴生气, 煤 层气等非常规天然气的开采。,下面是一种天然气直接膨胀式液化装置专利的具体信息内容。

1.一种天然气直接膨胀式液化装置,其特征在于:其含有天然气净化预处理单元(1),压缩单元(2),预冷器(3),天然气膨胀单元(4),分流器(5),过冷器(6),天然气气液分离器(7)及液化天然气的储罐(8);其特征在于:
上述各装置都预留有流体通过的进、出口,并通过管道相互连接在一起。
天然气净化预处理单元(1),可除去通过它的气体中分、酸性气体及其他杂质;
天然气压缩单元(2),其入口与天然气净化预处理单元(1)的出口相连;压缩单元由多台压缩机(2-1,2-2,2-3)和冷却器(2-4,2-5,2-6)依次连接组成,每台压缩机后面布置一台冷却器
天然气预冷器(3),包括多股流体进、出口,其一股流体入口与压缩单元(2)出口相连,另一股流体的入口与过冷器(6)的出口相连;
天然气膨胀单元(4),其入口与预冷器的出口相连,由多台膨胀机(4-1,4-2,4-3)依次相连组成,使通过它的天然气压降低,温度降低;
分流器(5),包括1个入口和多个出口,其入口与膨胀单元(4)中某一膨胀机出口相连,其一个出口与过冷器(6)相连,另一出口则与下一台膨胀机入口相连。
过冷器(6),包括多股流体进、出口,一股流体的进口与分流器(5)某一出口相连,出口与气液分离器(7)相连;另一股流体入口与上述的下一台膨胀机出口相连,其出口与预冷器(3)的入口相连;
天然气气液分离器(7),包括1个入口和多个出口,分离液体从下部出口进入液化天然气的储罐(8),分离出来的气体从顶部出口排出。
2.根据权利要求1所述的一种天然气直接膨胀式液化装置,其特征在于:所述的压缩单元是由多级压缩、中间冷却,或由单级压缩后冷却的方式组成,所用的压缩机为离心式压缩机,或活塞式压缩机,或螺杆式压缩机,压缩机压比为3~20。
3.根据权利要求1所述的一种天然气直接膨胀式液化装置,其特征在于:所述的膨胀机为透平膨胀机,或活塞式膨胀机,或螺杆式膨胀机,所述的膨胀机可用节流代替。
4.根据权利要求1所述的一种天然气直接膨胀式液化装置,其特征在于:所述的天然气冷却器(2-4,2-5,2-6)为水冷换热器,或气冷换热器,冷却器可以集成在压缩机内部,或单独外置在压缩机外。
5.根据权利要求1所述的一种天然气直接膨胀式液化装置,其特征在于:所述的压缩单元(2)的压缩机驱动动力为燃气发动机电动机,压缩机可以同轴布置由一台燃气发动机或电动机驱动,也可以单独布置,由各自的动力驱动。
6.根据权利要求1所述的一种天然气直接膨胀式液化装置,其特征在于:所述的天然气预冷器(3)和过冷器(6)通过换热器完成天然气温度的降低,所述换热器可以为双股流换热器,也可以为多股流换热器,换热器形式为管壳式换热器或板式换热器
7.根据权利要求1所述的一种天然气直接膨胀式液化装置,其特征在于:为预冷器(3)和过冷器(6)提供冷量的低温流体,在释放冷量后,可以返流到压缩单元(2)的入口,重新被压缩处理,也可以不返流直接进入燃气发动机,为压缩单元提供动力。
8.根据权利要求1所述的一种天然气直接膨胀式液化装置,其特征在于:当待液化天然气为高压天然气时,所述的系统可以不含有压缩单元(2),分流器(5)可以布置在预冷器(3)入口;进入预冷器(3)和过冷器(6)的冷流体可以来自膨胀单元的膨胀机出口,也可以来自气液分离器顶部出口排出的低温天然气。

说明书全文

一种天然气直接膨胀式液化装置

技术领域

[0001] 一种天然气直接膨胀式液化装置,属节能与环保领域,主要利用天然气的压能实现天然气的液化,达到节能、减排和回收有用资源的目的。
[0002] 实用新型背景
[0003] 天然气与炭、石油并称目前世界一次能源的三大支柱。天然气热值高,对环境污染小,被认为是优质清洁能源。近年来,随着世界经济的发展,石油危机的冲击和煤、石油所带来的环境污染日趋严重,世界上越来越多的国家开始重视天然气资源的利用。天然气在一次能源中的消费比例已经从上世纪50年代初的10%上升到现在的25%。世界多个能源机构预测,21世纪是天然气的时代。
[0004] 目前,我国正在不断加大节能减排力度,进一步推动天然气市场发展。近年来,国内天然气消费量以年均18%的速度递增,远远超出2.5%的世界平均平。但是,由于国内天然气资源相对匮乏,利用海外气源来满足国内快速增长的市场需求成为必然。专家估计,2010年进口天然气可占我国天然气消费总量的20%~30%,到2020年,这一比例有望达到
50%。
[0005] 天然气在大陆上的大规模输送多采用管道方式,而跨大洋的国际贸易和大陆上远离管网的小规模天然气的输送则一般采用液化天然气LNGLiquefied Natural Gas的方式。天然气经低温液化后,体积缩减为原来的大约1/600,这样可以大幅降低储运及建设成本,而且除去了气态形式中所含的H2S、CO2、N2和Hg等众多杂质,因而是全世界公认的一种清洁能源。当今各国均将LNG作为一种低排放的清洁燃料加以推广,LNG已成为当今世界能源供应增长速度最快的领域。近年来全球LNG的生产和贸易日趋活跃,LNG已成为稀缺清洁资源,正在成为世界油气工业新的热点。
[0006] 据统计,2009年中国天然气表观消费量875亿立方米,在一次能源消费构成中占3.7%,而2009年我国天然气的生产量仅为830亿立方米,天然气供需缺口达40多亿立方米,此供需缺口由进口量来补充,2009年中国液化天然气进口量高达76.4亿立方米数据来源于BP2010年世界能源年度统计。
[0007] 据社科院发布的“2009能源蓝皮书”预计,到2010年和2015年,我国天然气消费量将分别达到1200亿立方米和2000亿立方米左右;2010年我国天然气供需缺口为200-300亿立方米,进口占比约20%;2015年缺口为300-700亿立方米,2020年缺口将达到700-1000亿立方米,2015-2020年进口占比有望进一步扩大至30%-40%。
[0008] 但是,实际上,我国却存在着大量的零散气田和边远气田的天然气、煤层气、油田伴生气、水溶气、填埋气、沼气、火炬气等天然气资源,由于具有量小,难以输运等特点,目前却没有被有效利用,而每年的天然气消费缺口却靠进口液化天然气来补充。开发小型撬装式天然气液化装置,充分利用我国的现有资源,不仅可以缓解我国目前的能源紧张现状,还可降低我国天然气消费对外依存度,对于能源安全具有十分重要的意义。
[0009] 由于各种原因,我国天然气液化技术方面的发展还远落后于国际水平。目前国内几乎没有具有自主知识产权的液化工业和实际运行的LNG装置。而国外的天然气液化技术对外进行技术封,因此有必要深入展开可燃气体液化技术研究。
[0010] 目前,天然气的液化工艺主要有三类,分别为阶式液化工艺、混合制冷剂制冷工艺和膨胀机制冷循环工艺。阶式液化工艺复杂,设备多,维护不便。混合制冷剂制冷工艺是目前国外LNG装置最常最常采用的工艺,但混合制冷剂的准确配比比较困难,且压缩机等设备泄露容易使混合组分偏离设计参数,造成系统效率下降,同时,能耗较高比阶式蒸发循环高20%左右。膨胀机制冷循环多用于液化量较小的小型天然气液化工厂,其系统简单,体积小,操作方便,对原料气组分变化适应性强,缺点是能耗高如氮气膨胀制冷比混合制冷剂制冷循环能耗高40%左右。我国在20世纪末开始对天然气液化技术进行研究,起步较晚。目前三种液化流程工艺在我国大型天然气液化工厂中都有运行,如阶式制冷循环上海LNG事故调峰站、中原LNG工厂、膨胀机制冷循环陕北气田液化天然气示范工程和混合制冷剂制冷工艺新疆液化天然气工厂。而对于撬装式的小型液化工艺则主要以膨胀机液化流程为主要研究方向。混合制冷剂循环在国内还没有成熟的技术和设计、运行管理经验,仪表控制系统复杂。因此,开发膨胀式小型天然气液化系统适合我国目前的技术现状,有利于快速实现液化系统的装置化。实用新型内容
[0011] 本实用新型的目的在于提出一种小型天然气直接膨胀式液化流程,该流程系统利用天然气的压力能实现天然气的液化,将大量存在于我国的零散气田和边远气田的天然气、煤层气、油田伴生气、水溶气、填埋气、沼气、火炬气等天然气资源液化再利用,节约了能源,同时减小了目前因直接燃烧或排放而造成的大气环境污染。
[0012] 为达到上述目的,本液化方法提供了一种利用高压天然气的压缩膨胀产生的低温实现天然气液化的装置,其含有天然气净化预处理单元1,压缩单元2,预冷器3,天然气膨胀单元4,分流器5,过冷器6,天然气气液分离器7及液化天然气的储罐8;其特征在于:
[0013] 上述各装置都预留有流体通过的进、出口,并通过管道相互连接在一起。
[0014] 天然气净化预处理单元1,可除去通过它的气体中水分、酸性气体及其他杂质;
[0015] 天然气压缩单元2,其入口与天然气净化预处理单元1的出口相连;压缩单元由多台压缩机2-1,2-2,2-3和冷却器2-4,2-5,2-6依次连接组成,每台压缩机后面布置一台冷却器
[0016] 天然气预冷器3,包括多股流体进、出口,其一股流体入口与压缩单元2出口相连,另一股流体的入口与过冷器6的出口相连;
[0017] 天然气膨胀单元4,其入口与预冷器的出口相连,由多台膨胀机4-1,4-2,4-3依次相连组成,使通过它的天然气压力降低,温度降低;
[0018] 分流器5,包括1个入口和多个出口,其入口与膨胀单元4中某一膨胀机出口相连,其一个出口与过冷器6相连,另一出口则与下一台膨胀机入口相连。
[0019] 过冷器6,包括多股流体进、出口,一股流体的进口与分流器5某一出口相连,出口与气液分离器7相连;另一股流体入口与上述的下一台膨胀机出口相连,其出口与预冷器3的入口相连;
[0020] 天然气气液分离器7,包括1个入口和多个出口,分离液体从下部出口进入液化天然气的储罐8,分离出来的气体从顶部出口排出。
[0021] 所述的天然气净化预处理单元1采用吸附法实现天然气的脱水、脱硫和脱酸等净化功能,吸附剂可以是活性,也可以是胶,还可以是分子筛。
[0022] 所述的压缩单元是由多级压缩、中间冷却,或由单级压缩后冷却的方式组成,所用的压缩机为离心式压缩机,或活塞式压缩机,或螺杆式压缩机,压缩机压比为3~20。
[0023] 所述的膨胀机为透平膨胀机,或活塞式膨胀机,或螺杆式膨胀机,所述的膨胀机可用节流代替。
[0024] 所述的天然气冷却器2-4,2-5,2-6为水冷换热器,或气冷换热器,冷却器可以集成在压缩机内部,或单独外置在压缩机外。
[0025] 所述的压缩单元2的压缩机驱动动力为燃气发动机电动机,压缩机可以同轴布置由一台燃气发动机或电动机驱动,也可以单独布置,由各自的动力驱动。
[0026] 所述的天然气预冷器3和过冷器6通过换热器完成天然气温度的降低,所述换热器可以为双股流换热器,也可以为多股流换热器,换热器形式为管壳式换热器或板式换热器
[0027] 所述的气液分离器7具有气液分离功能,也可以不具有气液分离功能。
[0028] 为预冷器3和过冷器6提供冷量的低温流体,在释放冷量后,可以返流到压缩单元2的入口,重新被压缩处理,也可以不返流直接进入燃气发动机,为压缩单元提供动力。
[0029] 当待液化天然气为高压天然气时,所述的系统可以不含有压缩单元2,分流器5可以布置在预冷器3入口;进入预冷器3和过冷器6的冷流体可以来自膨胀单元的膨胀机出口,也可以来自气液分离器顶部出口排出的低温天然气。
[0030] 本实用新型所提出的天然气液化方法及装置,当待处理的天然气为高压天然气时,压缩单元可以省去,直接对高压天然气进行膨胀冷却,实现天然气的液化。此液化流程通过参数调节,可是现天然气液化率为10~100%。附图说明
[0031] 图1.三级压缩三级膨胀带压低压储存的小型天然气直接膨胀式液化方法及装置示意图;
[0032] 图2.三级压缩三级膨胀带压低压储存带返流的小型天然气直接膨胀式液化方法及装置示意图;
[0033] 图3.三级压缩三级膨胀带压高压储存的小型天然气直接膨胀式液化方法及装置示意图1;
[0034] 图4.三级压缩三级膨胀带压高压储存的小型天然气直接膨胀式液化方法及装置示意图2;
[0035] 图5.三级压缩三级膨胀带压低压储存的小型天然气直接膨胀式天然气液化方法及装置示意图;
[0036] 图6.三级压缩三级膨胀常压储存带返流的小型天然气直接膨胀式液化方法及装置示意图1;
[0037] 图7.三级压缩三级膨胀常压储存带返流的小型天然气直接膨胀式液化流程及装置示意图2;
[0038] 图8.高压天然气两级膨胀常压储存带返流的小型天然气直接膨胀式液化方法及装置示意图;
[0039] 图9.高压天然气两级膨胀常压储存带返流的小型天然气直接膨胀式液化方法及装置示意图1;
[0040] 图10.两级压缩两级膨胀常压储存带返流的小型天然气直接膨胀式天然气液化方法及装置示意图2;
[0041] 图中,1、净化单元,2、压缩单元,3、预冷器,4、膨胀单元,5、分流器,6、过冷器,7、气液分离器,8、LNG储罐,9、燃气发动机或电动机,10、节流阀,2-1,2-2,2-3、分别代表三台压缩机,2-4,2-5,2-6、分别代表三台中间冷却器,4-1,4-2,4-3、分别代表三台膨胀机具体实施方式
[0042] 实施例1
[0043] 如图1所示,本实施例是针对常压的待液化天然气进行液化处理,常压天然气经过净化预处理单元1净化处理后,除去天然气中的杂质及水分,达到液化标准后,进入压缩单元2,压缩单元是由三台压缩机2-1,2-2,2-3,三台中间冷却器2-4,2-5,2-6构成,压缩单元将天然气压缩至29.4MPa后进入膨胀单元4,先经两台单螺杆膨胀机4-1,4-2将天然气温度降至-115.6℃,压力降至6个大气压,然后经分流单元5将膨胀降温后的天然气分为两股,一股继续经螺杆膨胀机膨胀至常压,-145℃,利用此低温在过冷器6中冷却分流后的另一股低温天然气,使其温度降至6大气压对应冷凝温度-133℃以下,使其全部液化。从过冷器6出来的天然气因温度较低,进入预冷器3,对压缩后的天然气进行预冷,使其预冷后膨胀。液化后的天然气进入储罐8储存,待运。
[0044] 本实施例中,压缩机机的驱动是利用燃气发动机9同轴驱动三台压缩机实现天然气的压缩,燃气消耗量为18kg/h,此流程的天然气液化率为33%,液化天然气的日产量为1.82t/天,液化天然气比功耗为18.6kwh/kmol。
[0045] 实施例2
[0046] 如图2所示,具体实施过程同实施例1,所不同的是从预冷器3出来的天然气返流进入压缩单元2入口,重新压缩处理,实现天然气的液化。
[0047] 实施例3
[0048] 如图3所示,具体实施过程同实施例1,所不同的是从压缩单元出来的高压天然气经一级膨胀4-1后,进入分流单元5分为两股,一股继续经两级膨胀至常压低温,来冷却另一股高压天然气,使其温度降至一级膨胀后对应压力下的冷凝温度以下,实现天然气的液化。
[0049] 实施例4
[0050] 如图4所示,具体实施过程同实施例3,所不同的是从压缩单元出来的高压天然气压力更高,经一级膨胀4-1后,得到较高压力天然气,此压力下天然气液化温度更高,可以不需要天然气预冷器,同样可实现天然气的液化。
[0051] 实施例5
[0052] 如图5所示,具体实施过程同实施例1,所不同的是压缩单元2是由两台压缩机2-1,2-2和两个中间冷却器2-4,2-5构成实现天然气的压缩,而膨胀单元则是由两台膨胀机4-1,4-2构成,即两级压缩和两级膨胀实现天然气的液化。
[0053] 实施例6
[0054] 如图6所示,具体实施过程同实施例1,所不同的是液化天然气储存为常压储存,气液分离罐顶部有未液化的天然气分离出来,利用此未液化天然气为预冷器和过冷器提供冷量。为了与返流的天然气进行冷量匹配,从压缩单元出来的高压天然气进入单螺杆膨胀机4-1,4-2,4-3之前,首先经过冷却器3-1,3-2,3-3冷却降温。最终使天然气达到常压、低温状态,膨胀冷却后的天然气进入气液分离器7,液态天然气进入储罐8储存、待运,而未液化的天然气经气液分离器7顶部返流。
[0055] 实施例7
[0056] 如图7所示,具体实施过程同实施例6,所不同的是从气液分离器7顶部返流的天然气,经预冷器3释放冷量后,返流进入压缩单元入口,重新压缩处理。
[0057] 实施例8
[0058] 如图8所示,待处理的天然气为高压天然气,此天然气的液化冷量来自经膨胀单元4膨胀后产生的冷量和从气液分离器7顶部返流的未液化天然气提供的冷量。高压天然气经净化器处理后达到液化的标准,后经分流器5分为2股,一股经两台膨胀机4-1,4-2膨胀降压、降温,产生低温天然气为第二股高压天然气的液化提供冷量,经预冷器3和过冷器6降温后的天然气,通过节流阀10,压力降为1个大气压,温度进一步降低,常压、低温天然气在气液分离器7中实现气液分离,液态天然气进入LNG储罐8储存待运,而顶部未液化的气态天然气则返流为天然气预冷器和过冷器提供冷量。
[0059] 实施例9
[0060] 如图9所示,具体实施过程与实施例8类似,所不同的是,节流阀10用单螺杆膨胀机来代替。
[0061] 实施例10
[0062] 如图10所示,具体实施过程与实施例8类似,所不同的是从膨胀单元4出来的天然气为预冷器3提供冷量后,经压缩单元2压缩至高压,与净化处理后的高压天然气混合后重新进行液化处理,此压缩单元是由两台活塞压缩机实现天然气的压缩。
相关专利内容
标题 发布/更新时间 阅读量
活塞式压缩机 2020-05-11 643
活塞式压缩机 2020-05-13 777
活塞式压缩机 2020-05-13 347
活塞式压缩机 2020-05-13 270
活塞式压缩机 2020-05-14 385
活塞式压缩机 2020-05-15 763
活塞式压缩机 2020-05-15 305
活塞式压缩机 2020-05-17 389
活塞式压缩机 2020-05-17 585
活塞式压缩机 2020-05-11 57
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈