首页 / 专利库 / 驱动系统 / 谐波驱动 / 用于轮式车的导航系统

用于轮式车的导航系统

阅读:339发布:2023-02-12

专利汇可以提供用于轮式车的导航系统专利检索,专利查询,专利分析的服务。并且公开了用于 定位 可移动物体例如推车(例如,购物推车)的系统和方法的示例。这种系统和方法能够使用航位推算技术来估计可移动物体的当前 位置 。公开了用于提高位置估计的 精度 的各种技术,其包括涉及使用磁 力 计和 加速 度计 对各种误差源的补偿,并且使用振动分析来推导 车轮 旋转速率。各种技术结合或代替航位推算技术利用工作环境的特性,包括例如地面纹理的环境特性、来自包括精确定位源的射频(RF)发射器的 信号 的可用性。导航技术可以包括导航历史记录和回溯、双万向轮的运动方向检测、 陀螺仪 的使用、确定推车重量、多级导航、多级磁测量、照明标志的使用、多个 导航系统 的使用或用于不同推车配置的硬 铁 /软铁补偿。,下面是用于轮式车的导航系统专利的具体信息内容。

1.一种用于人推动的推车的防盗系统,所述防盗系统包括:
被配置为用于测量所述人力推动的推车振动数据的振动传感器
被配置为用于与所述人力推动的推车的车轮通信的通信系统,所述车轮包括被配置为响应于信号的接收来抑制所述车轮的旋转的制动系统;和
硬件处理器,所述硬件处理器被编程为用于:
分析所述振动数据以确定所述推车已接收到脉冲;
分析所述振动数据以确定表示所述推车响应于所述脉冲的振铃的振动信号;
至少部分地基于对所述振动数据的所述分析,估计所述推车是负载或空载;
确定所述推车是否已越过限制边界;
至少部分地基于对所述推车是负载或空载的所述估计以及所述推车是否已越过所述限制边界,确定将防盗指令传达给所述制动系统或传达给外部监控系统;以及传达所述指令。
2.如权利要求1所述的防盗系统,其中所述振动传感器包括加速度计。
3.如权利要求1所述的防盗系统,其中为了分析所述振动数据以确定所述推车已接收到脉冲,所述硬件处理器被编程为识别加速度的幅度超过0.5g并且持续时间小于10ms的垂直分量。
4.如权利要求1所述的防盗系统,其中为了分析所述振动数据以确定表示所述推车响应于所述脉冲的振铃的振动信号,所述硬件处理器被编程为识别在10ms的脉冲之内发生的频率大于1kHz的加速度的平分量,所述水平分量在推车运动的方向上。
5.如权利要求1所述的防盗系统,其中为了确定对所述推车是负载或空载的估计,所述硬件处理器被编程为确定在推车运动的方向上的振动信号是否高于或低于阈值振动幅度。
6.如权利要求1所述的防盗系统,其中所述防盗指令包括用于在所述推车被估计为负载时驱动所述制动系统的指令。
7.如权利要求1所述的防盗系统,其中所述防盗指令包括驱动所述制动系统的指令,其中所述指令还包括所述制动系统将以何种速度或力被用于使所述推车减速的指示,并且其中所述速度或力的所述指示至少部分地取决于对所述推车是负载或空载的所述估计。
8.如权利要求1所述的防盗系统,其中所述防盗指令包括用于在所述推车被估计为空载时不驱动所述制动系统的指令。
9.如权利要求1所述的防盗系统,其中所述防盗指令包括用于在所述推车被估计为负载时驱动所述外部监控系统的指令。
10.如权利要求1所述的防盗系统,还包括被配置为确定所述推车的位置导航系统
11.如权利要求10所述的防盗系统,其中所述导航系统包括:
被配置为确定所述推车的航向的磁力计;
所述硬件处理器进一步被编程为用于:
至少部分地基于来自所述振动传感器的所述振动数据,估计所述推车的速度;和至少部分地基于被估计的速度和所述推车的所述航向,估计所述推车的位置。
12.如权利要求11所述的防盗系统,其中为了估计所述推车的速度,所述硬件处理器被编程为用于:
分析所述振动数据的频谱
识别所述振动数据的所述频谱中的第一峰,所述第一峰与和所述推车的向前运动或向后运动相关联的振动的振动数据相关联;将所述车轮的旋转速率确定为所述振动数据的所述频谱中的所述第一峰的频率的谐波频率;和
基于所述旋转速率和所述车轮的周长,估计所述速度。
13.一种用于确定人力推动的推车是负载或空载的方法,所述方法包括:
用振动传感器,测量代表在垂直Z方向上对所述推车的脉冲的Z振动信号;
用所述振动传感器,测量代表响应于所述脉冲的所述推车的振铃的X振动信号,所述X振动信号在平行于所述推车的运动方向的水平X方向上;以及
至少部分地基于所述X振动信号确定所述推车是负载或空载。
14.如权利要求13所述的方法,其中所述Z振动信号包括在所述Z方向上的幅度大于1g并且持续时间小于10ms的加速度。
15.如权利要求13所述的方法,其中所述X振动信号具有大于1kHz的频率并且在所述脉冲的10ms之内发生。
16.如权利要求13所述的方法,其中估计所述推车的所述重量包括将与所述X振动信号相关联的加速度的幅度与阈值进行比较。
17.如权利要求13所述的方法,其中所述阈值是1g。
18.如权利要求13所述的方法,还包括至少部分地基于所述X振动信号估计所述推车的重量或所述推车负载的重量。
19.如权利要求13所述的方法,还包括:响应于确定了所述推车为负载状态,驱动被配置为抑制所述推车的运动的制动系统。
20.如权利要求19所述的方法,还包括提供所述制动系统将以何种速度或力被用于使所述推车减速的指示,其中所述速度或力的所述指示至少部分地取决于对所述推车负载的确定。
21.如权利要求13所述的方法,还包括:
至少部分地基于来自振动传感器的振动数据,估计所述推车的速度;和至少部分地基于被估计的速度和所述推车的航向,估计所述推车的位置。

说明书全文

用于轮式车的导航系统

相关申请的交叉引用

[0001] 本申请主张2017年03月08日提交的名称为“NAVIGATION SYSTEMS FOR WHEELED CARTS(用于轮式车的导航系统)”的美国临时专利申请No.62/468,913的优先权的权益,在此通过引用将其全部内容并入本文。

背景技术

技术领域

[0002] 本公开一般地涉及用于定位可移动物体的系统和方法,并且更具体地涉及使用航位推算技术来定位可移动物体例如轮式车的系统和方法。相关技术描述
[0003] 已经使用各种方法来确定跟踪区域中物体的位置。例如,射频(RF)发射器或标签能够被附接在物体上,跟踪区域中的一个或多个接收器能够监控标签传输以确定物体位置。然而,如果跟踪区域很大,这种方法是不利的,其要求安装许多的接收器,或者如果跟踪区域包括使标签传输减弱结构。其他方法利用全球导航卫星系统(GNSS,例如,全球定位系统(GPS))来确定位置。然而,如果GNSS信号受阻或者如果卫星的可见性中断,则GNSS方法可能失败。而且,GNSS系统以及RF标签和接收器系统两者都很昂贵且难以实施。发明内容
[0003] 公开了用于定位可移动物体例如推车(例如,购物推车)的系统和方法的示例。这种系统和方法能够使用航位推算技术来估计可移动物体的当前位置。公开了用于提高位置估计的精度的各种技术,其包括涉及使用磁计和加速度计对各种误差源的补偿,并且使用振动分析来推导车轮旋转速率。还公开了结合或代替航位推算技术利用工作环境的特性的各种技术,包括例如地面纹理的环境特性、来自包括精确定位源的射频(RF)发射器的信号的可用性。
[0004] 导航系统和方法可以包括导航历史记录和回溯、双万向轮的运动方向检测、陀螺仪的使用、确定推车重量(例如,是负载或空载)、多级结构中的多级导航(例如,具有多个楼层的建筑物)、多级磁测量(例如,使用多个磁力计在推车上的不同高度执行航向测量)、使用照明标志来确定推车位置(例如,单独或与航位推算相结合)、使用多个导航系统(为了提高准确性或防备其中一个系统发生故障)或者针对不同推车配置的硬/软铁补偿(例如,儿童座椅打开与儿童座椅关闭的购物车)。
[0005] 这些系统和方法能够被应用于室内外场景和例如零售、运输(例如,机场、火车、地铁、公共汽车站)、医疗(例如,医院或诊所)或仓库场景中。
[0006] 本说明书中所描述的主题的一种或多种实施方式的细节在下面的附图和描述中进行了陈述。通过说明书、附图和权利要求,其他的特征、方面和优点将变得显而易见。本发明内容和以下详细描述都不旨在限定或限制本发明主题的范围。

附图说明

[0007] 图1是零售商店和相关联特性的透视图,示出了作为推车围护系统的一部分的导航系统的部件;
[0008] 图2示出了具有导航系统和一个或多个智能车轮的购物车;
[0009] 图3示出了一个推车围护系统的实施例的部件;
[0010] 图4示出了一个智能定位系统的实施例的部件;
[0011] 图5示出了一个与智能定轮协同工作的航位推算系统的实施例的状态转换图;
[0012] 图6A和图6B是一个具有旋转检测智能车轮的航位推算系统的实施例的更新循环流程图
[0013] 图7示出了航位推算场景;
[0014] 图8示出了在购物车上测得的加速度与时间关系的示例图表;
[0015] 图9示出了一种在如图8所示的相同情况下测得的示例车轮旋转速率与时间的关系;
[0016] 图10A示出了图9中所示的数据的功率谱密度频率的关系;
[0017] 图10B示出了相同的功率谱密度与频率数据的关系的不同范围;
[0018] 图11A和图11B示出了在混凝土表面上滚动的购物车上测得的垂直加速度与时间的关系;
[0019] 图12A示出了一种使用航位推算系统的用于航向估计的示例方法;
[0020] 图12B示出了一种使用航位推算系统的用于位置估计的示例方法;
[0021] 图13示出了一种受助于接收信号确定指示器(RSSI)的航位推算的场景;
[0022] 图14示出了一个购物车围护系统安装的平面图的示例;
[0023] 图15A和图15B示出了航位推算系统的两个示例的部件;
[0024] 图16A示出了一个具有智能定位系统的购物车的实施例,该智能定位系统具有被安装在推车的把手上的显示器。在这个图中,推车具有处于关闭位置(儿童座椅向上)的儿童座椅;
[0025] 图16B示出了图16A的儿童座椅在打开位置(儿童座椅向下)的购物车;
[0026] 图17示出了一个智能定位系统的实施例的侧视图;
[0027] 图18示出了在不同运动方向上的具有四个万向轮的购物车;
[0028] 图19示出了使用照明标志在户外导航的推车的示例系统;
[0029] 图20示出了(至少部分地)使用照明标志在室内导航的购物车的示例系统;
[0030] 图21A示出了空载的架购物车的时域三轴加速度的示例输出;
[0031] 图21B示出了负载的钢架购物车的时域三轴加速度的示例输出;
[0032] 图22示出了商店中航位推算的示例场景,其中导航系统使用回溯来改进位置估计;
[0033] 图23示出了多个导航系统协同作用的系统的示例。
[0034] 在整个附图中,附图标记可以被重复使用以指示参考元素之间的对应关系。附图被提供来说明本文中所描述的示例实施例,并且不旨在限制本公开的范围。

具体实施方式

I.综述
[0035] 随着物体在整个跟踪区域内移动而常常需要追踪其位置。例如,设施例如零售商店、医院、机场或仓库可能希望监控例如车辆、推车、运输工具、交通工具等物体的位置。该设施能够使用物体位置信息来例如,跟踪库存移动,改进对物体的取用和取回,识别聚集、排队或交通模式,和/或防止物体的错位、丢失或被盗。在一个示例中,零售商店可能希望跟踪购物车的位置,以防止推车从有界区域例如停车场被移走或被盗,或者以确保购物车在退出商店之前已经通过结账通道。在另一个示例中,一个设施可能希望通过使用轮式物体来测量各种地标的位置以绘制建筑物的建筑结构。
[0036] 可能需要例如通过整合物体随时间推移的估计航向和纵向行程(例如,距离或速度),经由航位推算(DR)来估计轮式物体的运动轨迹和/或当前位置。在一些情况下,可能需要通过直接地计数车轮的旋转来估计纵向行程(例如,用霍尔效应传感器、旋转编码器声波音叉来计数,其中相关传感器能够功率高效地和/或低延时地连接至执行航位推算计算的处理节点)。在一些情况下,可能需要通过其他技术来估计纵向行程。轮式物体可能是非机动化的(例如,人力推动的)轮式物体,包括但不限于推车(例如,购物车、仓库车、行李车或辎重车、工业用推车或实用车、药房推车或医院推车等)、轮椅、医院病床、婴儿车、步行器等。
[0037] 因此,本文中所描述的系统和方法的各种实施例通过航位推算来提供对轮式物体的运动的估计。一些实施例能够通过远程的旋转检测或加速度感测来估计轮式物体的速度,在一些情况下结合对轮式物体在表面(例如,地板、停车场等)上移动的振动频谱的分析。一些实施例能够通过对车轮旋转计数的低功率机制,例如通过车轮中的超声波音叉来估计轮式物体的速度。一些实施例能够通过低功率RF技术来估计轮式物体的当前位置。这样的实施例能够找到特定的应用以将购物车围护在零售环境中,而不受限于这些应用。
[0038] 下文描述了各种示例实施例和实施方式。这些实施例和实施方式旨在说明本公开的范围,并且不旨在限制。II.示例场景
[0039] 美国专利No.8,046,160(Navigation Systems and Methods for Wheeled Objects(用于轮式物体的导航系统和方法))中能够找到针对购物车围护问题的航位推算导航的示例实施方式,其全部公开内容通过其整体引用并入本文。美国专利No.9,731,744(Estimating Motion of Wheeled Carts(轮式车的运动估计))描述了用于轮式车的运动估计的系统和方法的其他示例,其全部公开内容通过其整体引用并入本文。
[0040] 为了说明目的,将参考图1呈现本文中所公开的导航系统和方法的实施例可以使用的样例场景。这种样例场景旨在帮助理解实施例,并且不旨在限制所公开的和要求保护的发明的范围。
[0041] 在图1中所示的样例场景中,零售商店110将导航系统用作丢失预防系统的部分,以减少购物车122从跟踪区域114被盗。跟踪区域114可以包括例如停车场邻近商店110的部分。丢失预防系统的目的是为了防止或至少减少推车122越过停车场114的边界(或周界)118的未经许可运输。在丢失预防系统的一个实施例中,每个推车122可以包括防盗系统,该防盗系统包括例如警告器或抑制推车122运动的机构。推车运动能够通过为推车122的至少一个车轮提供制动机构来抑制,该制动机构被配置来制动或锁定车轮,该制动机构例如是
2005年9月20日发布的名称为“ANTI-THEFT VEHICLE SYSTEM(防盗车辆系统)”的美国专利No.6,945,366中所公开的制动机构,其全部公开内容通过其整体引用并入本文。在其他实施例中,能够通过其他车轮制动器、车轮锁或车轮旋转抑制器抑制推车运动。
[0042] 为了防止丢失,如果推车122被移动越过停车场边界118,则激活防盗系统(例如,触发警报器和/或制动器)。在一些丢失预防系统中,如果推车122检测到来自被放置在停车场边界118附近的外部发射器的信号,则激活防盗系统。例如,信号可以是从埋置在边界118处的电线所传输的甚低频(VLF)电磁信号,例如2000年10月03日发布的名称为“ANTI-THEFT VEHICLE SYSTEM(防盗车辆系统)”的美国专利No.6,127,927中所描述的信号,其全部公开内容通过其整体引用并入本文。这种丢失预防系统需要安装外部部件(例如,埋置电线)。
[0043] 本文中所公开的导航系统可以有利地结合丢失预防系统使用,因为导航系统能够自主地确定推车122的位置。如果导航系统确定推车122的位置在停车场边界118的外面,则能够激活防盗系统。在一个实施例中,导航系统在推车122离开商店出口126时开始监控推车位置。将初始推车位置设置为出口的位置,并且导航系统随着推车122在停车场114中的移动更新其位置。在一些实施例中,导航系统被提供为具有停车场边界118的位置,例如作为一组坐标。通过将推车122的当前位置与边界118的位置进行比较,系统能够确定推车122是否在停车场114之内。如果导航系统确定推车122移动越过边界118,则导航系统能够激活推车的防盗系统。在各个实施例中,导航系统能够包括防盗系统的特征,反之亦然。可以预期导航、防盗、车轮锁定等功能的许多组合,并且各种系统可以选择以不同的组合来体现这些功能中的一些或全部。
[0044] 在其他实施例中,导航系统向中央处理器控制器138传达推车122的位置或其他信息,这确定了推车122是否已离开停车场114以及是否应当激活防盗系统。在某些实施例中,推车122包括使适当的信息能够在推车122和中央控制器138(或其他适当的收发器)之间传达的双向通信系统。美国专利No.8,463,540(Two-Way Communication System for Tracking Locations and Statuses of Wheeled Vehicles(用于跟踪轮式车的位置和状态的双向通信系统))进一步讨论了适合于与导航系统一起使用的双向通信系统,其全部公开内容通过其整体引用并入本文。
[0045] 在这个样例场景中零售商店110能够有利地使用其他设备和部件。例如,能够在整个停车场114的各个位置处布置一个或多个标记物130a-130c以充当参考位置、地标或信标。标记物130a-130c能够标记或指示例如商店出口126(例如,标记物130a)的位置、停车场114的周界(例如,标记物130c)和/或其他适当的参考位置(例如,标记物130b)。在各个实施例中,标记物130a-130c通过例如磁性方法或其他电磁方法将信息传达给导航系统。导航系统可以使用来自标记物130a-130c的信息以重新设定推车的位置(例如,减少累积的航位推算误差),以确定停车场边界118在附近,或用于其他目的。在一些实施例中,可以在停车场
114的入口/出口142的位置附近布置一个或多个标记物(例如标记物130c)。
[0046] 在某些实施例中,标记物130a-130c被配置为指示参考方向或其他信息。例如,可以将标记物130a放置在出口126处并且定向为使得其参考方向向外指向,朝向停车场114。导航系统能够检测参考方向并且确定推车是否正在进入或离开商店110。同样地,标记物
130c能够指示在停车场114的周界处的向外方向。在一些实施例中,能够如下文中所进一步讨论的,将一些或所有的标记物130a-130c配置为向导航系统传达其他类型的信息。
[0047] 在一个实施例中,将一个或多个发射器134布置在整个停车场114中,并且配置为向推车122中的导航系统传输信息。在实施例中,发射器134还接收信息(例如,它们是收发器)。在各个实施例中,标记物130a-130c(例如,发射器134和/或接入点136)经由单向(去往推车或来自推车)或双向(去往推车和来自推车)通信协议与推车122通信。例如,可以将标记物130、发射器134和/或接入点136配置为使用电磁信号以与推车122进行通信。这些信号可以包括磁信号和/或射频(RF)信号或VLF信号。如本文中所使用的,RF信号包括频率在约300GHz以下的电磁信号,VLF信号包括频率在约20kHz以下的RF信号。
[0048] 在其他实施例中,使用一个或多个接入点(AP)136以创建与推车122的双向通信链接。在图1中,接入点136被示为放置在商店110的出口126上面,这有益于允许AP与位于整个停车场114中的推车122进行通信。在其他实施方式中,能够使用不止一个AP,并且AP能够位于整个跟踪区域中。接入点136能够与推车122中的收发器(例如,RF收发器)通信,该收发器被连接至导航系统(和/或其他部件)用于检索、交换和/或生成推车状态信息,包括指示或反映推车位置的信息。可以被取回和监控的推车状态信息类型包括,例如,是否已激活防盗系统(例如,是否锁定或解锁车轮制动器);推车122是否移动和在哪个方向上移动;车轮的平均速度;推车122是否已检测到特定类型的位置相关信号,例如VLF信号、电子防盗系统(EAS)信号、RF信号或磁信号;推车是否打滑;推车的功率级;以及推车每个单位时间所经历的锁定/解锁周期的数量。接入点136还能够与导航系统交换与边界118的位置有关的信息。在一些实施例中,推车122使用接收信号强度指示器(RSSI)来测量从接入点136接收到的信号的强度,以帮助确定从推车122到接入点136的距离以及推车是否向商店110或远离商店
110移动。在其他实施例中,接入点136使用RSSI来测量从推车122接收的信号的强度,以确定推车122的位置和运动。
[0049] 商店110可以使用导航系统来用于预防丢失之外的或不同于预防丢失的目的。在一些实施例中,零售商店110可能希望收集与推车122的位置和所采用的路径相关的信息。例如,零售商店可能希望确定顾客在停车场114中的哪里留下推车122以便改善推车取回操作。在其他实施例中,导航系统能够与其他设备例如机械化的推车取回单元通信。
[0050] 虽然已经参考用于在零售商店110外面的停车场114中的购物车122的丢失预防系统描述了样例场景,但在一些实施例中,将导航系统配置为确定推车122在商店110内的位置。例如,可以使用该系统来确定推车122是否已经穿过结账通道或推车122是否已经穿过选定走道。此外,可以使用导航系统来跟踪推车位置以便收集与推车在商店110里面或外面的某些位置处的聚集或排队有关的信息。导航系统可能有许多用途,本文中的样例场景的讨论并不旨在限制。
[0051] 在一些实施例中,将导航系统布置在推车122中或推车122上,而在其他实施例中,导航系统的功能中的一些通过远离推车122的部件(例如,中央控制器138)来执行。在实施例中,将导航系统的大小设计为适合于在推车122的车轮、推车的车架或推车的把手内。在某些这种实施例中,车轮是购物车车轮(前轮或后轮)。在一些实施例中,车轮的直径是约五英寸,而在其他实施例中,车轮的直径小于约五英寸或大于约五英寸。在其他实施例中,能够将导航系统的部分布置在物体的车轮的一个(或多个)车轮中,而能够将其他部分布置在推车122的其他位置中,例如,在将车轮附接至推车122的车轮组件(例如,万向轮或音叉)中,或在推车122中或推车122上的其他位置中(例如,在车把或车架中)。
[0052] 导航系统能够由各种电源供电。例如,导航系统可以使用电化学电源(例如,一次性电池或可充电电池)、光伏电源(例如,太阳能电池)、燃料电池、机械动力源、或任何其他适当的电源。在一些实施例中,导航系统由将车轮的旋转动能的部分存储为电能的发电机供电,例如美国专利No.8,820,447(Power Generation Systems and Methods for Wheeled Objects(用于轮式物体的发电系统和方法))中所公开的车轮发电机,其全部公开内容通过其整体引用并入本文。
[0053] 电源可以与导航系统集成或远离导航系统。例如,在将系统布置在车轮中的实施例中,可以将电源布置在车轮中和/或推车122中或推车122上的其他位置(例如,在车轮组件、车把或车架中)。在一些实施例中,例如那些有助于丢失预防系统的实施例中,仅在推车122已经离开商店110时激活导航系统,以在推车122位于商店110内时避免功率损耗,推车在这里的被盗可能性更小。
[0054] 可以在其他环境和背景中使用导航系统和方法的实施例,例如仓库、工业厂房、办公楼、机场、医院或其他设施。额外地,导航系统和方法的实施例不限于与购物车一起使用,而是旨在与任何其他可移动物体一起使用,别地与任何其他轮式物体一起使用。在不脱离本文中所公开的原理的范围的情况下,上面所讨论的样例场景的许多变型是可能的。III.航位推算系统
a.航位推算的基本概念
[0055] 航位推算系统能够用开始位置的信息、根据时间函数的方向或航向以及根据时间函数的行进速度或行进距离,提供对物体的当前位置的估计。这将在通过引用被合并的美国专利No.8,046,160中作进一步描述。
[0056] 图7示出了简单的航位推算场景地图700。物体从位置705处开始并以45°(0°指向北方,角度测量值顺时针递增)和1.4m/s行进,一秒钟后到达位置710。然后物体以120°角和1m/s行进,一秒钟后到达位置715。最后,物体以15°角和1m/s行走,一秒钟后到达位置720。航位推算能够从初始位置(例如,705)通过积分(在连续时间域中)或从初始位置开始的速度(例如,方向和速度)求和(在离散时间域中)来计算当前位置(例如,720)。
[0057] 例如,航位推算能够通过由附接至轮式移动物体的磁力计和车轮旋转计数器所提供的数据来执行。磁力计提供关于航向或方向的数据。旋转计数器提供能够推导出速度的数据。轮式物体的瞬时航向能够经由沿着该物体所处位置的地磁场的已知矢量分量的两轴或三轴磁力计而得到。能够将磁力计安装在待被跟踪的物体的主体上并且起指南针的作用。能够使用加速度计来在轮式物体行走的表面不平的情况下进行调节。
[0058] 轮式物体的纵向速度能够通过测量车轮中的一个或多个车轮的旋转速率来估计。该速度能够计算为旋转速率(例如,每单位时间内旋转的车轮的角速度)乘以车轮的周长。
能够使用用于测量车轮或轴的增量旋转的多种技术,例如霍尔效应传感器和轴角编码器。
在通过引用被合并的美国专利No.8,046,160中描述了这样的技术。
b.示例购物车
[0059] 图2示出了一种具有根据本公开的特征的示例购物车205的特征。购物车205包括安装在把手上的智能定位系统210、一个或多个防盗轮215(其能够制动、锁定或抑制车轮的旋转)和一个或多个可选的超声振动增强车轮220。一个或多个防盗轮215能够是智能锁定轮,例如是除锁定机构之外,还具有传感器、通信系统和/或处理器的车轮。导航系统和防盗系统的功能能够在智能定位系统210和智能锁定轮215之间分布。例如,智能定位系统210和智能锁定轮215中的一个或两者能够具有离开/进入事件检测能力;车轮锁定的防盗功能能够位于智能锁定轮215中,而使用者警告的防盗功能能够位于智能定位系统210中。下文中描述了这些部件。图2还示出了能够被用于导航计算的坐标系230,其中x轴处于推车运动的向前方向上,y轴垂直于x轴并且在水平方向上,z轴垂直向上指向。
[0060] 在本公开中,术语“使用者”指在特定时间使用特定推车的个体。术语“顾客”指组织以及其中被适当授权的个体,其能够拥有购物车围护系统的特定安装,并且能够确定购物车围护系统的特定安装实施的策略。例如,顾客能够是需要导航和购物车围护系统的零售商店,而使用者能够是在零售商店购物的顾客或(例如,从停车场)取回购物车的商店雇员。c.示例智能定位系统/智能锁定轮实施方式
[0061] 图3示出了示例推车(例如,购物车)跟踪系统的部件集300。该示例部件集包括以下部件:(1)智能定位系统210;(2)智能锁定轮215;(3)与商店出口和/或入口相关联的固定特征385;(4)系统配置和控制装置390;(5)RF信标或RF特征395。
[0062] 智能定位系统210包括(1)传感器元件315,其用于确定推车的航向和速度(例如,磁力计和/或加速计),以及可选地确定系统的温度(例如,温度传感器);(2)可选传感器320,其提供可以推断出车轮旋转速率的数据(例如,传感器不接近车轮);例如,振动传感器;(3)处理器和存储器325;(4)通信系统330,其(例如,经由RF链路)与智能锁定轮315、系统配置和控制装置390和/或RF信标或其他RF特征395进行通信;(5)可选检测器310,其被配置为确定推车正在通过商店的出口/入口(离开/进入事件),并且在一些实施例中,确定运动是否是正在离开商店或进入商店。在一些实施例中,车轮中的电路系统执行实际的检测功能;智能定位系统与车轮中的检测电路系统进行通信以获得离开/进入信息。某些实施例可以将检测器360作为主要检测器和将检测器310作为次要检测器;(6)指示器335(例如,可视的和/或可听的),其向使用者提供通知以表示推车在警告区域和/或即将锁定。指示器可以包括被配置为输出文本或图片的显示器(例如,向使用者输出围护边界就在附近并且如果轮式物体移动到围护边界之外则车轮将锁定的警告)。指示器可以包括作为对使用者的通知而照亮或闪烁的灯(例如,发光二极管(LED))。指示器可以包括可听警报或通知。在一些实施例中,指示器包括语音合成器,该语音合成器能够输出人类可理解的消息例如“推车接近界限并且即将锁定”。在一些这种实施例中,顾客和/或使用者能够选择合成的声音的特性(例如,合成的语言(例如,英语、西班牙语、德语、法语、中文等)、语音说话者的性别(男或女)、说话者的年龄(例如,青年、年轻成年人、成年人、老年人))。语音合成器能够包括用于这些特征中的每一个特征的一种或多种语音类型(例如,具有不同音高、音调、音区、音色等的语音)。指示器可以提供选择接口(例如,下拉菜单、选择框等),通过该选择接口顾客和/或使用者能够选择(或听取)想要的语音的样本。指示器能够包括用于输出可听通知的扬声器。智能定位系统210还可以包括光检测器333用于检测环境光特征以供导航使用,或垂直位置检测器337(例如,压力传感器)用于确定智能定位系统位于多层结构中的哪一层。
下面将进一步描述这些部件的功能。
[0063] 智能锁定轮215包括(1)锁定机构(例如,制动器)380,其被配置为当锁定机构被激活时抑制车轮的旋转;(2)车轮旋转检测器375,例如,音叉和撞针(例如,随着车轮旋转撞击音叉的零件);(3)处理器和存储器370;(4)通信系统365,其被配置为与智能定位系统210、系统配置和控制装置390和/或RF信标或其他RF特征395进行通信;(5)可选检测器360,被配置为检测离开/进入事件,并且在一些实施例中,检测运动是否是正在离开商店或进入商店;和(6)可选的航向/万向轮角度检测器383,其被配置为检测(万向)车轮的航向。
[0064] 固定的特征385能够与商店的出口和入口相关联。这些特征的接近程度能够通过智能定位系统或智能锁定轮中的检测器来检测。该固定的特征能够被用于向智能定位系统提供准确的参考位置(例如,用于重置任何累积的航位推算位置误差)。
[0065] 系统配置和控制装置390能够执行内务处理任务例如配置和控制。装置390能够与智能定位系统中的通信系统330和/或智能锁定轮中的通信系统365进行通信。系统配置和控制装置390能够是中央处理器或控制器138。
[0066] RF信标或其他RF特征395能够传输RF信号用于进入/离开检测和/或精确定位确定。
[0067] 实施例可以用比以上所描述的更多或更少的特征/部件来实施。而且,实施例可以用与上述不同的配置来实施,例如,旋转检测器可以在智能定位系统和智能锁定轮中的一个中实施,RF信标可以与通信系统330和365中的一个通信系统进行通信,而不是与这两者都通信。此外,图3中的部件的功能能够不同于所示的进行组合、重新布置、分开或配置。
[0068] 智能定位系统能够被布置在轮式物体中的一个或多个位置。例如,一些或所有的智能定位系统能够被布置在推车的把手、车架、万向轮、车轮等中。本文中所描述的智能定位系统能够被用在不同于推车围护的应用中。例如,该系统能够被用于估计轮式物体的位置、路径或速度。而且,在推车围护应用中,推车能够包括被配置为在被激活时抑制推车移动的一个或多个车轮,例如通过包括车轮制动器。例如,当激活制动器时,车轮能够锁定或阻止旋转。美国专利No.8,046,160、No.8,558,698和No.8,820,447描述了能够抑制推车移动的推车车轮的示例,所有这些专利的全部公开内容通过其整体引用并入本文。
[0069] 图4示出了用于导航系统的示例架构400,其包括被用于执行航位推算和/或精确定位的传感器和处理元件。这个架构能够表示智能定位系统210和智能锁定轮215。
[0070] 处理器/存储器单元425为系统提供了处理和数据存储功能。存储器能够包括非易失性和/或易失性存储器件。例如,非易失性存储器能够被用于存储在断电时存留的程序指令、程序数据和/或状态变量。
[0071] 航向传感器405能够包括三轴磁力计。航向传感器额外地可以包括陀螺仪。在一些实施方式中,三轴磁力计功能能够通过分开的两轴磁力计(例如,用于局部磁场的水平分量)和单轴磁力计(例如,用于局部磁场的垂直分量)来提供。在一些实施例中,能够使用两轴磁力计,可能比用三轴磁力计的实施方式具有更低的精度。
[0072] 加速度计410能够是各种技术,例如微机电系统(MEMS)加速度计、压电加速度计等。一些实施方式可以使用三轴加速度计;而一些其他实施方式可以使用两轴或单轴加速度计,例如在轮式物体在外部被限制在水平表面的情况下。
[0073] 振动传感器415能够包括例如通过引用被合并的美国专利No.8,558,698中所描述的振动传感器等任何适当的振动传感器,扰动开关,运动开关,加速开关等。在一些实施例中,振动感测功能由加速度计410执行并且振动传感器415不是单独的部件。
[0074] 旋转检测部件420能够提供可以推导出车轮旋转速率的数据。如上文中结合图3所描述的,这个部件能够位于智能定位系统210和/或智能锁定轮215中。在旋转检测部件420在智能锁定轮中(例如,420被映射为375)的实施例中,智能定位系统中的处理器325能够通过通信系统330和365以及处理器370与旋转检测部件375通信。一个旋转检测器的示例是如上文中在远程车轮旋转传感器320的描述中所述的振动传感器。
[0075] 在一些实施例中,旋转检测部件420能够利用其它技术。例如,旋转检测车轮可以包括分别在其非旋转/旋转部分中的电子/非电子部件。一个这种实施例能够具有包括在其非旋转部分中的霍尔效应传感器和在其旋转部分中的磁体的旋转检测车轮。处理器425能够被配置为将检测阈值和/或占空比作为参数发送至旋转检测霍尔效应传感器420。在一些实施例中,该参数可以包括车轮的速度的有效范围。旋转检测部件420能够在向处理器425发送测量结果之前基于这个范围过滤结果。这可以有利地减少整个系统功率消耗。在一些实施例中,旋转检测部件420可以不需要任何来自处理器425的参数。在一些实施例中,旋转检测部件420包括音叉和撞针。
[0076] 运动检测传感器450能够检测其所附着的物体例如轮式物体的运动或移动。运动检测能够被用于将智能定位系统从低功率(例如,休眠)状态唤醒。这能够帮助维持智能定位系统的能量消耗。
[0077] 精确位置/航位推算重置接口435能够接收精确位置定位输入。这种输入能够是任何外部刺激,例如RF信标395、入口/出口固定特征385等,这能够被用于显著地减少推车的估计位置中的误差。在接收精确位置定位输入后,接口435能够根据输入中的位置重置轮式物体的位置。这能够清除在通过航位推算的位置估计中可能积累的任何误差。可替换地或额外地,精确位置接口435能够通过不同于航位推算或结合航位推算的技术例如半径定位、双曲线定位、RSSI辅助航位推算等来提供位置估计。
[0078] 在一些实施方式中,参考点(例如,在如图14中所示的以及下面标题为“示例安装和校准”的章节中所讨论的坐标系中的坐标)的位置能够被预先装载在智能定位系统中,例如在站点配置文件中。在一些实施例中,参考点和智能定位系统是时间同步的。在一些实施例中,精确位置定位输入能够区分按需参考点和固定参考点。
[0079] 按需参考点能够响应于来自智能定位系统的请求,传输例如信标信号。智能定位系统能够向按需参考点传输位置定位请求以获得定位,例如用于通过航位推算来重置累积的误差。智能定位系统能够被配置为根据需要从按需参考点请求精确位置定位。这能够减少按需参考点和/或智能定位系统的与精确位置定位有关的能量消耗,并且能够对这两个单元中的一个或两者能量受限时的安装有利。参考点能够被配置为仅在某些时间间隔期间接收位置定位请求。智能定位系统能够被配置为在需要时,在参考点能够接收请求的时间间隔期间发送请求。站点配置文件能够包括参考点的位置、收听时间间隔和电源类型(例如,线路供电或电池供电)。智能定位系统能够在确定发送精确位置定位请求时将这些信息合并,例如对于对电池供电/线路供电的参考点的请求分别具有较高/较低的航位推算估计误差的阈值。为了减少来自不止一个智能定位系统的位置定位请求之间的冲突的可能性,智能定位系统能够执行冲突避免/退避协议,例如伪随机退避、指数退避。
[0080] 固定参考点能够周期性地广播其位置。智能定位系统能够例如从被下载并存储在其存储器中的站点配置文件中导出广播时间。智能定位系统能够仅在广播时间时激活其精确定位部件。这能够减少由智能定位系统所遭受的接收精确位置定位输入的能量消耗。
[0081] 精确位置定位输入的示例包括已知位置处的射频(RF)信标和与推车集成在一起的GNSS接收器(例如,在智能定位系统中)。
[0082] 使用者通知接口440能够向智能定位系统的使用者提供信息、消息和/或警告等。使用者通知接口440能够包括音频部件例如蜂鸣器、音频放大器等,和/或可视化部件例如LED显示器、LCD显示器等。
[0083] 配置/状态接口445能够向保修人员和/或维修人员提供配置信息和/或状态信息。在一些实施例中,配置/状态接口445能够与使用者通知接口440共享硬件部件。在一些实施例中,可以将配置/状态接口445远程地实现在例如系统配置和控制装置390上。
[0084] 电源供应器430向智能定位系统供应电力。电源供应器430能够包括例如一个或多个电池。
[0085] 示例架构中单独示出的功能不一定对应于实现中的单独的硬件组件;例如,振动感测415功能和运动检测450功能可以由单个硬件组件执行,或者任一功能可以由加速度计410执行。
d.示例航位推算系统/锁定智能轮操作
[0086] 图5示出了购物车围护系统的实施例中的航位推算系统逻辑的状态图500和智能锁定轮逻辑的状态图560。航位推算系统能够是使用航位推算作为位置估计的主要技术的智能定位系统的示例。在图5中,虚线箭头表示由其他单元启动的转换(例如,由智能锁定轮启动的航位推算系统中的状态转换,反之亦然)。实线箭头表示各单元其自身内启动的转换。
[0087] 为了说明目的,状态转换图500和560并不覆盖室内导航:航位推算导航过程在推车离开商店时开始,并且在推车重新进入商店时停止。根据本公开的实施例能够具有室内导航模式(例如,参见下文中标题为“室内模式”的章节)。这种实施例能够具有不同的状态转换图。
[0088] 航位推算系统的状态图500开始于状态505,其中购物车在室内,航位推算系统处于非活动模式。为了说明目的,而不是限制,选择状态505作为初始状态。航位推算系统的实现可以从另一个运行状态通过状态图进行工作。用于出口/入口/限制线检测的传感器例如传感器310能够监测出口标记物的存在。直至传感器检测到出口标记物为止,航位推算系统能够保持在状态505。在传感器检测到出口标记物后,航位推算系统能够转换至状态510。
[0089] 出口标记物能够位于建筑物的出口处或其附近(例如,在框中、在门的门槛中等)。出口标记物能够使用2.4GHz发射器、磁条形码、EAS等。由于出口标记物的发射器功率可能需要足够高以使得购物车能够始终且可靠地检测到离开事件,所以比用于检测离开事件所需的,有时可以在建筑物内部(例如,商店)更远处接收来自出口标记的传输。这种高功率级能够导致离开检测器310和/或360有时检测到出口标记物而推车仍然在商店内部(例如,顾客拿起沿着商店前沿的商品)。在状态510中,导航系统能够随时间分析或学习标记物的RSSI以减少假阳性检测的可能性。例如,一个实施例能够将RSSI的增长水平,之后是RSSI的降低水平(介于中间的峰值可能指示距离出口标记物的近距离)与振动信号的同时变化(例如,从平滑室内地板上的振动到混凝土上的振动,指示离开事件)进行关联。正相关能够增加离开事件的真阳性检测的置信度。如果未发现RSSI峰值,则逻辑转换返回至状态505。如果发现RSSI峰值,则逻辑转换至状态515。
[0090] 该逻辑还可以经由两个机制直接地从状态505进入状态515。第一个,航位推算系统的精确离开检测能够导致逻辑从状态505直接转换至状态515(由实线表示)。如本文中所描述的,航位推算系统能够包括特征例如能够被用于检测离开事件的信标检测。其次,来自智能车轮的唤醒信号能够导致逻辑从状态505直接转换至状态515(由虚线表示)。单个商店内推车跟踪系统的装置可以使用一种或多种技术用于进入/离开标记物,例如2.4GHz发射器、8kHz发射器、磁条形码等。因此,可以通过智能车轮或航位推算系统来检测离开/进入事件,其能够通知其所检测到的事件的对应方。
[0091] 在状态515中,航位推算系统开始航位推算导航模式。该系统能够使其状态与智能车轮同步并且转换至状态520。在实施例中,当推车不处于航位推算导航模式中时,为了内务管理目的,智能车轮和航位推算系统能够具有周期的双向通信。这种通信的周期在延迟和功率消耗之间折中产生,并且能够是例如1至2秒,例如1.8秒。当推车处于航位推算导航模式中时,可以减少这种通信的周期,例如减少至少于1秒。当推车在警告区和/或围护边界之中或且附近时,可以减少该周期,例如减少至少其最低运行值,例如小于0.75秒或0.5秒(或一些其他值)。在商店的营业时间之外,或者如果购物车长时间未活动(例如,30分钟、1小时等),则可以增加该周期,例如增加到几分钟或几十分钟。在航位推算导航模式开始时,为了导航目的,可能在智能车轮和航位推算系统之间突然爆发通信。该通信的爆发能够使两个单元的状态同步。
[0092] 在状态520处,该系统能够在航位推算功能的稳态下从智能车轮接收旋转数据。如果车轮旋转数据和/或加速度数据可用并且可靠,则系统能够直接从这些数据执行速度估计(状态520)。额外地或可替换地,如果车轮旋转数据不可用或者不可靠,则该系统能够通过数据分析(例如,频谱分析和/或加速度数据分析)来执行车轮旋转速率或速度估计(状态540)。下面描述频谱分析。
[0093] 如果航位推算系统或智能车轮检测到进入事件(例如,移动推车通过入口进入商店),则该逻辑能够从状态520转换返回至状态505。如果检测到推车已经进入警告区,则该逻辑能够转换至状态525。该系统能够例如通过来自使用者警告部件335的音频输出和/或视觉输出播报警告。如果检测到推车已经离开警告区去往商店,则该逻辑能够终止警告并且转换返回至状态520。另一方面,如果检测到推车已经超出围护边界,则该逻辑能够转换至状态530。在状态530中,航位推算系统能够启动智能车轮的锁定序列。当智能车轮向该系统传达锁定序列已经完成时,则该逻辑能够转换至状态535。
[0094] 当将推车从停车场移动回至商场时,有时可能没有检测到进入事件,并且系统并不转换回至状态505(DR非活动)。这可能是由于错误条件导致推车错过检测门标记物。例如,出口/入口/限制线检测器310和360可能未检测到商店入口/出口处的标记物。在这种情况下,当推车在商店内时,航位推算系统可以继续活动。这可能是不利的,因为智能定位系统将继续处理航位推算导航数据,其消耗电池电力并且缩短电池需要充电或更换的时间。此外,推车可以在商店周围进行多次行进(在退出停车场之前),并且商店内的累积导航错误可能导致智能定位系统错误地推断推车靠近锁定周界。这可能导致假性过渡到智能车轮在商店内锁定的状态530、535,这可能给购物者或商店员工带来不便。
[0095] 为了减少无意中的店内操作的可能性,商店可以包括被布置在商店中的一个或多个RF信标395。例如,图14(下面进一步描述)示出了被布置在商店内部1410中的RF信标1411(例如,朝向商店的中心)。可以设置RF信标1411的信号强度或定向天线方向图,使得信标的RF输出具有智能定位系统210或智能锁定轮215的通信系统330、365实际上仅在商店内部1410内而不是在商店外(例如,在相邻商店或停车场内)可感知的水平。如果智能定位系统检测到来自RF信标1411的信号,则系统逻辑可以假设推车实际上在商店内(因为RF信号没有延伸到商店边界之外),并且系统状态从状态520(稳态DR)转换到状态505(DR系统不活动),即使没有检测到进入事件。因此,RF信标1411有点像用于关闭商店内的航位推算的切断开关。因为信标的RF信号强度或天线方向图可以被调整为不超出商店边界,所以信标
1411的这种切断开关行为将不会无意中关闭商店外(例如,在停车场中)的航位推算。在锁定状态535中,如果系统检测到推车已经例如通过被拖回被移动回至围护边界内,则该逻辑可以转换至状态545。该逻辑还可以在接收到取回命令后从状态535转换至状态545。取回命令能够来自(例如,在商店雇员手中的)手持单元例如CartKey远程控制器,或来自CartManager电动取回单元,这两者都可以从Gatekeeper Systems(Irvine,CA)获得。无论哪种方式,取回信号能够解锁车轮并且能够在取回信号停止后在一定的时段(例如,几秒钟至几分钟)内保持车轮解锁,即使推车仍然可能在围护边界外面。推车能够在其被取回时继续执行航位推算导航。
[0096] 在状态545中,该系统能够启动智能车轮的解锁序列。当智能车轮向该系统传达解锁序列已经完成时,则逻辑能够转换至状态520。
[0097] 可以将状态图560应用于智能锁定轮215。对于具有多个智能锁定轮的推车,可以选择一个作为主轮。然后可以将状态图500应用于该主轮。状态图560开始于状态565,其中购物车处于室内非活动模式。类似于上文中对状态图500的陈述,为了说明目的,选择状态565作为初始状态,而不是作为限制。
[0098] 在状态565,用于出口/入口/限制线检测的传感器例如传感器360能够监测出口标记物的存在。直至传感器检测到出口标记物为止,智能锁定轮能够保持在状态565。在传感器检测到出口标记物后,智能锁定轮能够转换至状态570。
[0099] 状态510的上述描述能够适用于状态570,包括转换至该状态和从该状态转换出的原因。实施例可以具有在航位推算系统、智能锁定轮或这两者中用于出口/入口/限制线检测的传感器。根据系统配置,例如这种传感器的数量和/或位置,各图中可以省略状态510或状态570。
[0100] 该逻辑可以通过智能车轮经由精确离开检测直接地从状态565进入状态575。如上文中结合图3所描述的,智能车轮能够包括特征,例如能够被用于检测离开事件的信标检测。实施例能够在智能车轮和/或航位推算系统中具有这种特征。根据系统配置,例如这种特征的数量和/或位置,各图中可以省略从状态565到状态575的直接转换或从状态505到状态515的直接转换(实线)。在状态575中,智能车轮能够启动旋转计数功能。对于能够检测进入事件的智能车轮(例如,具有传感器360的智能车轮),一旦检测到进入事件,则逻辑能够从状态575转换返回至状态565。若未检测到进入事件,或根据来自航位推算系统的同步请求(例如,在从状态515转换至状态520期间),则智能车轮能够使其状态与航位推算系统同步并且转换至状态580。
[0101] 一旦从航位推算系统接收开始对旋转计数的命令,智能车轮还可以直接从状态565转换至状态580。该系统的实施例能够结合这个命令在航位推算系统和智能车轮之间执行同步,使得在状态580开始时,这两个单元同步。一旦从航位推算系统接收停止对旋转计数的命令,智能车轮可以退出状态580返回至状态565。
[0102] 一旦从航位推算系统接收锁定命令,则智能车轮能够转换至状态585,其中使用智能车轮的锁定机制。一旦从航位推算系统接收解锁命令或取回命令,则智能车轮能够从状态585转换返回至状态580。
[0103] 如上所述的,在一些情况下,智能锁定轮可能在推车进入商店时错过入口标记物的检测。为了避免在商店内的航位推算(例如,这可以减少电池寿命或导致无意中锁定车轮),车轮的通信系统365能够检测到来自RF信标1411的RF信号,并且车轮能够在位于商店内时转换至状态565(室内非活动)。e.示例航位推算系统处理
[0104] 图6A和图6B示出了在车轮中可靠地检测到的旋转的情况下的基础更新循环的示例。左侧的方框包括航位推算系统中的过程;右侧的方框包括旋转检测智能车轮中的过程。
[0105] 为了说明目的而不是限制,该循环开始于方框604。在方框604中,航位推算系统和/或智能车轮检测到离开事件。在方框608中,航位推算系统能够确定发出警告的最小可能距离和/或时间。在方框612中,航位推算系统能够将车轮旋转计数和/或超时(timeout)参数发送给智能车轮。可以至少部分地基于如在方框608中所确定的最小可能距离和/或时间来确定超时参数。例如,如果该最小可能距离较小,则超时期能够较短,反之亦然。一种超时期的选择可能是在最差的情况条件和/或设想下的时段对于推车穿过最近的围护边界而言仍然太短。
[0106] 在方框616中,航位推算系统能够累积磁数据、加速度数据和/或振动数据。时间序列可以从所累积的数据来形成,如方框620中所表示的。该时间序列能够通过信号处理技术进行处理以导出有用的信息。例如,能够将加速度数据用于估计车轮旋转的频率,如下面在标题为“经由振动分析的纵向速度估计”的章节中所描述的。
[0107] 在方框624中,航位推算系统确定是否检测到进入或再次进入商店。如果是,则流程返回至方框604并且从此处重复。如果否,则流程进行到方框628。在方框628中,航位推算系统确定精确位置定位是否已经通过例如图4中的精确位置接口435被接收。如果是,则过程进行到方框644。否则过程进行到方框632。
[0108] 在方框632中,航位推算系统确定磁数据、加速度数据和/或振动数据中的一个或多个特征是否异常。如果是,则航位推算系统能够继续基于所检测到的特定异常执行频谱处理,如方框636中所示的。在完成频谱处理后,流程能够从适当的方框继续,例如当在处理中使用车轮旋转数据时从方框640继续,当不使用车轮旋转数据时从方框644继续。如果否,则过程进行到方框640,其中航位推算系统能够确定自最后一次循环后是否已经从智能车轮接收到旋转数据。如果否,则过程返回到方框616。否则过程进行到方框644。
[0109] 例如,当磁力计在车辆例如大型运动型多用途车辆附近时,可能产生异常的磁力计特征。该车辆可以使磁力计读数失真,使得读数的矢量幅度显著地偏离该位置的预期地磁场。这种偏离能够产生磁力计数据中的异常特征。
[0110] 作为另一个示例,异常特征可以由万向轮颤动(例如,万向轮快速地来回摆动)产生。正常地,车轮磁力计可以输出与反正切2的本地磁北极(Y轴磁场,X轴磁场)有关的标称的万向轮角度,其中坐标轴与推车的那些坐标轴相匹配。在下文图12A中所描述的航向估计处理之后,智能定位系统磁力计能够提供相对于本地磁北的推车的航向。实施例可以通过通带为例如0.5Hz到25Hz、0.1Hz到50Hz的带通滤波器来处理万向轮轴线测量值和推车航向两者。当存在万向轮颤动现象时,滤波后的万向轮轴残差平方和(RSS)值可以大于每秒三到七(例如,五)度且大于在同一时期内的推车航向变化率的2.5到3.5(例如,3)倍。
[0111] 万向轮颤动的特殊处理能够包括:1)为了航位推算目的,忽略来自车轮的旋转数据;2)使用频谱分析来估计车轮旋转速率;3)可选地将陷波滤波器应用于推车X轴振动数据,其中中心陷波频率能够位于万向轮振荡的中心频率处或其附近。
[0112] 当旋转指示轮与地面接触不良时,会出现第三种异常的示例,例如,车轮以相当恒定的速度旋转并且由于轴承中的摩擦而快速停止旋转。在这种情况下,通过低通滤波的加速度计输出所测得的推车X坐标中的加速度可以以显著比率小于旋转计数所暗示的加速度,例如小于一半、三分之二等。对于在至少两个旋转周期内的连续旋转检测之间的间隔指示超过1m/sec2(=0.1gee)的加速度或减速度的情况,实施例可以施加附加要求。作为示例,如果在例如3至5Hz的低通滤波时,推车的X轴加速度(例如,由智能定位系统中的加速度计旋转至推车参考车架所测得的)指示为比1m/sec2小得多的数,例如小于0.5m/sec2,则可以推断为车轮与地面接触不良的异常特征。另外,实施例可以将由加速度计所报告的加速度的符号(例如,负的意思是减速度)与车轮比较。如果符号相反,则该实施例能够推断出不良的轮对地接触。
[0113] 对于车轮与地面不良接触的特殊处理能够包括:1)为了航位推算目的,忽略来自车轮的旋转数据;2)使用频谱分析来估计车轮旋转速率;3)监控该旋转数据以确定良好的地面接触是否已恢复或良好的地面接触何时已恢复。例如,由旋转间隔所暗示的车轮加速度/减速度为:a)具有相同符号且在如上所述的低通滤波的推车X轴加速度的幅度的两倍内;或,b)对于一些程序化的间隔(例如,五至十秒),幅度小于0.3至0.7m/sec2(例如,0.5m/sec2)。
[0114] 在方框644中,航位推算系统能够更新估计的位置、速度和/或其他状态变量。如果该过程直接从方框628进入方框644,则位置更新能够包括至少部分地基于来自精确位置定位的数据,重置对位置和其他状态变量的估计。如果过程从方框640或636进入方框644,则更新对位置和其他状态变量的估计能够包括完全地或部分地基于航位推算进行估计。
[0115] 在方框648中,航位推算系统确定推车是否处于推车围护边界的警告距离内,例如是否在警告区内。如果否,则过程返回到方框608。如果是,则航位推算系统能够进行至方框652,其中该系统能够启动锁定序列和/或警告序列,例如如图5中通过状态525至535所示的。
[0116] 如图6A右侧所示的,在方框664中,旋转检测智能车轮能够等待来自航位推算系统(在框612处发送)的旋转计数和/或超时参数。在方框668处,智能车轮能够累积时间戳记的旋转和/或有效性指示符。有效性指示符表明旋转计数是否有效,例如,如果所测得的数据显示不良的轮对地接触,则有效性指示符例如经由低态表明无效计数。时间序列可以从所累积的旋转数据来形成,如方框672中所表示的。
[0117] 在方框676中,智能车轮确定是否设置锁定场(例如,为1)。当推车已超过围护边界时,能够在智能锁定轮中设置锁定场。图6描述了其中智能车轮能够确定用于锁定推车的条件是否满足的实施例。图5描述了其中航位推算系统能够做出这种确定的替代实施例。如果是,则智能车轮能够与航位推算系统通信,航位推算系统在方框652处可以转而启动锁定序列。否则,智能车轮处理可以进行到方框680。
[0118] 在方框680中,智能车轮能够确定累积的时间戳旋转和/或有效性指示符是否显示颤动、跳跃等的证据。如果是,则智能车轮能够与航位推算系统通信,航位推算系统能够转而在方框632处执行异常特征的检测。如果否,则智能车轮处理能够进行到方框684,其中智能车轮能够确定是否已经达到了旋转计数限制或超时。这能够帮助降低从智能车轮到航位推算系统的通信频率,从而可能减少能量消耗。如果已达到了旋转计数限制或超时,则智能车轮能够预处理旋转数据并且将预处理后的数据发送至航位推算系统。预处理能够帮助降低传输至航位推算系统的数据量,从而可能减少能量消耗。例如,如果使用RF通信,预处理能够包括数据压缩以减少例如无线电传输的能量成本。如果还没有达到旋转计数限制或超时,则该处理能够返回到方框668,其中数据累积继续。
[0119] 在一些实施例中,车轮在其本地存储器中累积时间戳记的旋转数据。也可以捕获可选的附加数据例如磁力计值和/或加速度计值,以用于评估旋转值的可靠性(例如,用于确定万向轮是否颤动)。
[0120] 如上文结合中方框684所描述的,在已经检测到一定数量的旋转或经过了给定的时间量之后,智能车轮能够将累积的数据发送到航位推算系统。例如,可以将车轮电连接到航位推算系统,或者可以使用有线或无线技术与航位推算系统通信。
[0121] 当车轮在累积旋转数据时,航位推算系统累积原始磁力计数据、加速度计数据和振动数据。能够将实施例配置为仅收集这些类型的数据的子集,或者收集另一类型的数据,例如陀螺仪数据。数据类型的某些组合能够有利地提高航位推算估计的准确性。例如,如下面标题为“稳态速度估计更新环”的章节中所描述的,能够使用旋转数据来导出加速度计偏移量。作为另一个示例,来自前万向轮和后轴轮两者的车轮旋转数据能够与磁力计数据结合用于航向估计。
[0122] 在一些实施例中,在稳态航位推算导航中,车轮累积旋转时间戳(例如,从某个参考时间到车轮的第N次旋转的检测的时间偏移,其中N是整数);航位推算系统累积能够被处理以产生姿态和航向信息的数据(例如,磁力计和加速计数据)。IV.航位推算方法
[0123] 一些购物推车围护实施例可能具有约束,这些约束可能会使实际方案的实现具有挑战性或不切实际。其中一些约束也能够适用于其他环境或应用。这些约束包括:车轮的航向估计精度;航位推算系统与智能车轮之间的不对称能量约束;旋转传感器和航位推算系统之间缺乏可行的连接。使这些约束所导致的影响最小化是有利的。a.减少航向估计中的误差
[0124] 若干因素可以使得难以从被放置在购物车车轮内的磁传感器获得准确航向,例如后倾稳定效应(caster effect),50/60Hz耦合和/或埋置的铁磁物体。
[0125] 典型的购物车前轮是围绕垂直轴后倾的。如果万向轮背离垂直方向,那么车轮通常能够绕万向轮轴快速振荡,例如频率为约0.5Hz至小于10Hz。振荡能够是拟周期性的,但不完全如此。如果使用低通滤波器来抑制万向轮振荡对航向估计的影响,则低通滤波器的截止频率(cutofffrequency)将小于0.5Hz,远低于如美国专利No.8,046,160中所述的数Hz的截止频率。因此,磁力计加低通滤波器对推车航向的实际变化的响应性可能对于精确航位推算而言太慢。
[0126] 埋地电力线上的电力线频率或其谐波(例如通过荧光照明被驱动的二次谐波、来自电动机起动的多极谐波)的大电流能够在车轮上产生大量的磁场。尽管能够用带阻滤波器大量地过滤掉这些磁场,但推车上的感应场可能足够强,以在推车上安装的低功率磁力计中引起显著的非线性。在一些实施方式中,这些非线性可能对于滤波掉有挑战性并且可能导致航向估计中的不准确性。
[0127] 大型铁磁物体例如结构钢管或铁管可能会在表面上方几厘米处产生明显的软铁畸变。车轮上的感应场可能足够强以在车轮上安装的磁力仪中产生显著的非线性。
[0128] 使用以下的一种或多种技术能够提高航向估计的准确性:(1)对于包括刚性安装到轮式物体的主体的三轴磁力计和与该磁力计成固定角度关系安装的三轴加速度计的实施例,可以补偿磁力计的倾斜。地面倾斜可能影响磁力计的准确性。倾斜坡度越高,导致地磁场的垂直分量就越大地投射到与(倾斜的)地面平行的推车的参考水平车架上。这可能导致磁力计输出中的更大的不准确性。(2)对安装在轮式物体的主体上的磁力计执行其硬铁和软铁校准。这是标题为“Magnetometer and Accelerometer Calibration for Cart Navigation System(用于推车导航系统的磁力计和加速度计校准)”的美国专利公布No.2017/0067981的客体,其整体通过引用并入本文中。(3)对原始的磁力计输出应用数字滤波算法以减少噪声,特别是消除本地电力线频率(例如,根据地理位置为50或60Hz)及其谐波。(4)经由滤波器例如卡尔曼滤波器将磁力计输出与陀螺仪输出(例如,MEMS陀螺仪)组合。陀螺仪能够提供可以结合或代替磁力计数据使用的航向信息。由于陀螺仪能够直接地输出转弯角速度,所以陀螺仪可以比磁力计或加速度计对快速的航向改变和/或急转弯半径提供更好的响应时间。该更好的响应时间能够导致更准确的航位推算跟踪。陀螺仪能够提供数据来证实其他传感器的输出。例如,磁力计与陀螺仪不一致的数据可能是异常的指示。对于停车场中的推车,过往车辆可能会使磁力计数据和由此产生的航向估计的失真。一个航位推算系统的实施例能够使用陀螺仪数据来确认基于磁力计数据的航向估计,或者在航向估计中将磁力计数据与陀螺仪数据结合。可以将另一个航位推算系统的实施例配置为当该系统处于繁忙的停车场时,例如在高峰购物时间期间,仅基于陀螺仪数据来执行航向估计。
[0129] 在更常见的购物车类型中,万向轮上的前轮旋转环和后轮的车轴被刚性地固定在车架上;因此,推车的瞬时运动矢量(例如,由推车的质量中心随时间形成的相对于轨道的时间的导数)与两个后轮之间的线垂直。
[0130] 在纵向俯仰运动和轴向滚动运动的状态估计器中的显式隐藏变量可能对于航位推算估计是有用的。在推车的坐标系中,认为偏航运动能够通过前旋转轮进行了补偿。推车运动的状态估计器的隐藏变量包括以车架为中心的坐标系中的瞬时3-D航向和瞬时速度。在例如由于旋转检测车轮与地面接触不良,振动数据可能是噪声的情况下,可以使用一个或多个隐藏状态变量来提高振动分析的准确性。例如,具有平坦表面部分但与地面接触良好的车轮可以产生具有开始与地面的接触和结束与地面的接触的平坦表面的规则时域特征的数据。例如,实施例能够使用这样的数据来从振动数据中过滤滚动分量。这可以提高振动分析的准确性。可以配置另一个实施例为使用这种隐藏状态变量中一个或多个,而不是在航位推算中执行振动分析。这在能量受限的系统中可以具有优势,因为与相应的振动数据相比,从更少噪声的隐藏状态变量中抽取特征,可能需要更少的样品、更低的采样率和/或更少的计算。
[0131] 产生不可靠的旋转信息的物理效应有时能够影响振动信号。作为反例,完全不与地面接触的车轮(例如,因为推车车架已弯曲)可能对振动信号没有太大影响。作为另一个反例,例如由于地面上的或沙子而具有非常差的附着摩擦力的车轮可能对振动信号没有太大影响。另一方面,接触到地面但具有强的万向轮颤动的车轮能够在万向轮颤动的频率处造成振动信号,并且可能在其谐波处造成振动信号。一个实施例能够将万向轮颤动频率与旋转频率区分开来。该频率能够通过以下方式来区分:1)认识到万向轮颤动频率典型地可能大于旋转频率;以及2)使用振动峰值搜索算法中由车轮中的磁力计提供的颤动频率的估计——不将峰值与和具有旋转频率的颤动频率估计相匹配的特征相关联。
[0132] 人力推动的购物车的实际可达到的偏航率(朝向或方向上的改变)可能小于每秒九十度。具有包括校正的三轴磁力计读数和简单的重力矢量的可观测量的卡尔曼滤波器,能够足以将航向信息输出到足够的精度。航向估计器的潜在变量可能是三轴航向矢量和航向速率矢量。b.减少纵向速度估计中的误差
[0133] 如上所述的,轮式物体的纵向速度能够通过测量车轮中的一个或多个车轮的旋转速率来估计。然而,在一些情况下,通过除计数车轮旋转之外的技术来估计轮式物体的纵向速度可能是有利的。例如,在零售商店购物车的情况下,可能期望将基于磁力计的罗盘刚性地安装到推车把手上。此外,由于成本和物流便利的原因,可能期望将整个电子组件安装到推车把手上。类似的考虑适用于例如在机场、火车站等所使用的行李车以及其他轮式物体的其他应用。
[0134] 然而,在很多情况下,将车轮旋转的直接测量值提供给不安装在车轮上(例如,安装在推车把手上)的电子组件,同时实现可接受的低成本(包括相对容易的安装,操作使用中的稳固性和寿命等)以及车轮的电池寿命长,可能是个挑战。有利地,对于纵向速度估计,可以使用不基于车轮旋转数据的状态估计器,例如基于加速度计数据的估计器。
[0135] 然而,低成本、低功率的MEMS加速度计可能没有此种性能,使得加速度计输出能够简单地以可接受的精度直接二重积分(首先积分成速度,然后将速度积分成位置)以确定轮式物体的位置。
[0136] 例如,可从Kionix公司(Ithaca,NY)获得的KMX62三轴磁力计/三轴加速度计在25milligee或0.25m/sec2校准后,具有标称加速度计直流偏移误差。加速度计垂直(z)轴相对于推车纵向(x)轴的对准中的一度误差或变化,例如由放置在篮中的重负载而产生的推车车架可逆弯曲所引起的误差或变化,导致纵向加速度中的17milligee误差。具有最高垂直分量的加速度计轴的线性误差能够根据加速度计轴相对于推车纵轴的安装方式容易地为纵向误差贡献更多milligee。通过加速度的简单二重积分,纵向加速度为0.25m/sec2的未校正误差在仅十秒后将会产生12米的定位误差。显然,这不是估算轮式物体位置的可行解决方案。
[0137] 如本公开中所描述的纵向速度状态估计器能够使用振动数据来补偿这种低成本、低功率加速度计的精度限制。c.示例约束
[0138] 对于基于振动的状态估计器的某些实施例,以下约束中的一个或多个可以适用:(1)轮式物体具有近似刚性的车架以在所需的运动估计精度内。(2)轮式物体所行走的表面(例如,地板或停车场)中的拟随机粗糙度具有比轮式物体的轴距小得多的尺寸(并且可能比车轮的直径或周长小得多)。例如,推车的轴距能够是约一米或更多(和,车轮直径是几厘米至20厘米),并且中等严重磨损的柏油停车场的拟随机粗糙度大约在一至五毫米均方根(RMS)的量级。许多停车场(柏油或混凝土)的表面粗糙度(RMS)的范围可以从约0.1mm到
10mm、0.5mm到8mm、1mm到5mm或其他一些范围。在一些情况下,许多停车场(柏油或混凝土)的表面粗糙度(RMS)的范围能够相对于车轮直径(D)进行测量,并且可以在约0.001D至
0.1D、0.01D至0.05D或一些其他范围内。(3)从与地面连续的非滑行接触的车轮获得可靠的旋转数据可能是不切合实际的。在能够获得可靠的车轮旋转数据的一些实施方式中,能够额外地或可替换地将该可靠的车轮旋转数据用于下面描述的技术。
[0139] 为了改善车轮与地面之间的连续的非滑行接触,车轮可以包括悬挂装置,例如加载弹簧的万向轮。这种装置可能在地面不平坦时、在车轮磨损时和/或推车车架弯曲时特别有用。d.经由振动分析的纵向速度估计
[0140] 图8示出了在购物车把手处所测得的示例滤波加速度计时间序列(一秒时间)。图8中的曲线图800示出了加速度的三个分量的根据时间(以秒为单位)的加速度(以“g”为单位,其中g是标准重力),其中x是在水平面中的向前的(或等同地,向后的)推车移动方向,y是在水平面中垂直于x,z在垂直方向上(垂直于推车行走的表面),如图2中的坐标系230所示。曲线图800中的数据使用主篮中装载有约15kg的典型杂货店购物车在有点粗糙的柏油表面上测得。采样速率为使用6kHz带宽三轴压电加速度计(Measurement Specialties(Hampton,VA)型号832M1加速度计)的20,000个样本每秒(sps)。所应用的过滤算法是1-D中值滤波器,然后是Savitsky-Golay平滑(阶数3,窗口长度7)并且在所显示的宽度上进行趋势剔除。这个特定信号的均方根(RMS)振幅在x轴是约1.4g,z轴约1.2g,y轴约0.7g。
[0141] 图9示出了在相同情况下相同购物车的车轮旋转速率与时间关系的示例。车轮速度是通过以1600sps(原始速度,如细线905所示)采样的精密霍尔效应传感器的输出的抛物线内插法来测量的。在实施例中,为了信号处理的目的,振动数据传感器的采样率能够大致是系统带宽的5到10倍。现实的系统带宽能够是最大车轮旋转速率的10至20倍(例如,对于10转每秒的最大车轮旋转速率为100-200Hz)。内插速度(1秒移动平均数)由粗线910示出。
在频率为几十赫兹(Hz)内的原始速度数据中的速度的快速振荡是由柏油表面中的小尺寸粗糙度引起的。在这个示例中,估计的(例如,内插的)车轮速度在约3.2转每秒到约3.7转每秒的范围内。如本文中所讨论的,车轮(和推车)的线速度是以每秒转数乘以车轮的周长的速度。
[0142] 图10A示出了相同数据集的功率谱密度(PSD),但是使用在 信号处理工具箱pmtm函数中实施的汤姆逊多窗口法(Thomson's multitaper method)来计算。可能由于原始速度数据中的快速振荡(参见例如图9中的线905),用于计算PSD的其他传统方法(例如,韦尔奇方法(Welch's method))可能不会提供合适的PSD数据。横轴表示以Hz为单位的频率。垂直轴以对数刻度的g2/Hz表示PSD,常用于测量振动振幅的单位。
[0143] 参考图10A,X轴处于推车的运动方向上,Y轴垂直于该运动方向并且平行于推车行走的表面(例如,在水平面上),并且Z轴垂直于推车行走的表面(例如,在垂直平面中)。频率f0是推车车轮的标称旋转速率(假定所有车轮的直径如通常情况一样是相同的;具有多种车轮直径的推车可能需要额外的处理),在数据采集间隔的长度上取平均值。换句话说,对于在时间间隔T内的N次总旋转数,f0=N/T。在图10A中,f0是约3.9Hz,这对于直径为5英寸的购物车车轮而言转化为速度是1.6米/秒或3.5英里/小时。当然,f0的值取决于车轮的速度。
[0144] 5dB宽度是以f0为中心的旋转频率范围,使得频率的68%(正态分布的1个标准偏差)落入[f0-0.5*BW5dB,f0+0.5*BW5dB]的范围内。旋转频率能够计算为两次连续旋转中同一相位点之间的间隔的倒数。
[0145] 图10B示出了与图10A中所显示的相同的数据,但是在1.5Hz到6.5Hz频率范围内,使得靠近f0/2的光谱特征更加明显。标称旋转速率能够通过在PSD中存在强峰和/或弱峰来确定。能够将强峰定义为比与给定加速度轴PSD的正或负距离范围内的任何值至少大例如5dB,该正或负距离是例如旋转频谱的5dB带宽的3倍,其中5dB带宽如上所述计算。例如,对于图10B中的数据,f0信号的5dB带宽是约0.3Hz,因此认为X轴中约1.9Hz处的f0/2峰是“强”的,因为它比1.9+/-0.9Hz范围内的任何其他峰大5dB以上。能够将弱峰描述为相对于其PSD空间(正或负3倍的驱动频率的5dB带宽)中的局部区域具有小于例如5dB但大于例如2dB的振幅。根据推车和/或安装场地特性,不同的实施例可以针对振幅和/或带宽参数使用不同的值。例如,一种安装可以使用5dB带宽、2dB带宽和3倍的如上所述的5dB带宽。另一种安装可以代替地使用6dB带宽、3dB带宽和4倍的6dB带宽。又一种安装可以使用4dB带宽、2dB带宽和3倍的4dB带宽。典型地,增加搜索带宽可以使其更容易捕获振动频谱中的相对较低的峰值(例如,这可能在推车急剧加速或减速时发生,将该峰“涂抹”掉),但也可能增加假阳性的险(例如,识别不是由车轮旋转引起的峰值,例如由于具有恒定间距的柏油中的某些特征所引起的伪谐波)。能够在设计阶段或场地安装时确定这些参数的值。
[0146] 对于对应于图10B的推车设计,用于检测f0的最可靠的判别式是在X轴加速度谱中f0/2处存在强峰,并且Y轴和Z轴加速度谱中没有峰(实际上,Z轴加速度谱中有局部次最小值),如方框1070中所示。候选f0值能够通过Y轴加速度谱中f0处和X轴加速度谱中1.5*f0处存在弱局部峰来验证(例如,f0/2处的基本驱动频率的第一个奇次谐波)。
[0147] 在实施例中,一旦航位推算系统确定f0,则推车的前进速度能够通过f0乘以车轮的圆周来确定。例如,对于直径为5英寸的美国购物车车轮,周长是15.7英寸(例如,直径的π倍),并且对于由图9和图10中的示例PSD所确定的示例值f0=3.94Hz,则估计的推车前进速度为61.9in/s=5.16ft/s=3.52英里/小时=1.57m/s。
[0148] 因此,航位推算系统的实施例可以利用振动传感器数据来估计轮式物体(例如,推车)的车轮的旋转速率,并且基于估计的旋转速率和车轮的周长估计推车的前进速度。振动传感器数据能够包括在一个方向、两个方向或三个方向上的短时间序列的加速度数据。短时间能够是在从约1/2车轮旋转周期到5至10个旋转周期(或更多)的范围内。例如,对于某些推车而言,该短时间是在约0.1至约5秒的范围内。在其中有效旋转数据间歇可用的情况下,实施例能够使用车轮处于良好地面接触中的时段来更新振动信号。加速度数据的方向能够包括轮式物体的第一(前向)方向、垂直于第一(前向)方向的第二方向和/或垂直于第一方向和第二方向的第三方向。例如,第二方向能够处于水平面(轮式物体正在移动的平面)中,并且第三方向可以处于垂直平面中。水平面可能通常地平行于轮式物体行走的表面。
[0149] 航位推算系统能够至少部分地基于识别与加速度数据相关联的加速度谱中的峰来估计车轮旋转速率。该峰能够是轮式物体的运动方向上的关联加速度数据。估计的车轮旋转速率能够是该峰的频率的两倍。一些实施方式能够通过确定在1.5倍的估计的车轮旋转速率下的加速度谱中的第二峰值的存在来验证估计的车轮旋转速率。额外地或可替换地,一些实施方式能够通过确定在估计车轮旋转速率下与轮式物体的垂直于轮式物体的运动方向的水平加速度相关联的加速度谱中的第三峰的存在来验证估计的车轮旋转速率。
[0150] 对于不同的购物车构造(例如,不锈钢线车架车篮与塑料推车篮)以及对于不同应用或购物车移动的不同表面,从振动频谱中所提取出的具体特征可能不同。图8、10A和10B中的振动信号是特定场景的示例。
[0151] 可用于特征提取以获取鲜明特征的算法包括:(1)在高频谱分辨率下的批量快速傅立叶变换(FFT),搜索清晰的谐波含量;(2)在对应于车轮瞬时角速度的合理范围的频率范围内的离散傅里叶变换(DFT),在合理的谐波峰中寻找最大能量迁移。对于许多购物车应用来说,车轮角频率的范围从约1Hz至约5Hz或约1Hz至约10Hz。(3)寻找(例如,与车轮上的平点相关联的)脉冲峰的时域窗口方法。
[0152] 对于批量FFT,所需的最小频谱分辨率能够从要解析的特征的频谱宽度中导出。例如,图10B中的f0/2峰(1070)的频谱宽度是约0.1Hz宽。对于所需的0.016至0.25Hz(例如,0.02Hz)频谱分辨率,为了清楚地解析该峰可能需要约四至六个(例如,五个)不同的频点。
[0153] 能够根据峰值及其谐波比来定义批量FFT内容中的清晰谐波含量。回头参考图10A,可以将候选峰定义为在候选峰的中心处或附近的三个连续频点具有比该候选峰值为中心的四分之一倍频程范围内的任何其他值大3dB以上(例如,从候选峰中心频率除以二的四次方根至候选峰中心频率乘以二的四次方根)并且比半个倍频程范围上的RSS值大5dB以上的振幅的一个峰。
[0154] 候选峰的标称中心频率能够经由在候选峰内的最高频点以及紧随其后的较低频点和较高频点的对数振幅中的抛物线内插法来定义。如果候选峰的中心频率的比例是整数,例如2或3,在二至三倍设置的频谱分辨率的精度内,则该候选峰能够处于谐波比中。对于室外表面(例如,柏油),实施例可能不会考虑高于三次谐波的谐波成为候选,因为较高次谐波可能太嘈杂。对于光滑的室内表面(例如,油地毡),实施例可以考虑更高次谐波作为候选。
[0155] 在一些情况下,可以通过差振动轴之间的候选峰中的关系来额外地限定候选峰。回头再次参考图10B,f0/2峰(1070)的特点在于X轴上的高突起峰与相同频率下Y轴或Z轴上不存在峰的组合,而f0峰(1080)的特点在于Y轴中的峰并且X轴和Z轴中不存在所定义的峰。
由于在3.77Hz处的-27.4dB(g2/Hz)的峰值振幅仅比在4.16Hz处的峰值振幅高2.8dB,所以可能不认为f0处的Y轴中的峰是上述标准的候选峰。可以使用更详尽的寻峰算法。这种算法能够在f0处定位Y轴上的峰,例如通过将该峰的峰值振幅与四分之一倍频程范围中的两个最高值的RSS振幅进行比较,而不是与最高值的RSS振幅进行比较;通过该标准,能够识别f0处的Y轴的峰。
e.经由加速度分析的纵向速度估计——混凝土连接实例
[0156] 图11A和图11B中示出了在混凝土地板上滚动的购物车上测得的示例加速度计时间序列。测量中的推车包括约15公斤的有效载荷。推车横跨两条混凝土伸缩接缝以相当直的线条滚动。曲线图1100示出了垂直轴(例如,Z轴)中对时间的加速度。在t=1.0和t=1.5,然后在t=5.8和t=6.3时的垂直加速度爆发是前轮和后轮分别碰撞伸缩接缝的结果。第二次爆发(在t=1.5和6.3时)的较大振幅是由于这个推车上的后轮不是万向轮,因此没有前轮上的万向轮的减震效果。以显著角度横跨伸缩接缝的推车可能具有多达四个不同的事件,四轮推车的每个车轮一个事件。在了解混凝土伸缩接缝之间的间距以及推车横跨连续接缝所花费的时间(例如,在曲线图1900中6.3-1.5=4.8秒)的情况下,能够估计推车的速度。
[0157] 图11B示出了对应于图11A的t=6.3秒周围的放大曲线图。t=6.3秒对应于后轮撞击第二个混凝土伸缩接缝的时间。曲线图1150示出了在t=6.319时Z加速度变为负值。这相当于后轮落在伸缩缝的第一个边缘上。t=6.323处的强峰对应于车轮撞击该缝底部的时间。曲线图1150示出了Y轴上的峰值加速度滞后Z和X中的同时峰约1毫秒。这种滞后可能是由于推车没有完全笔直地撞击伸缩缝而导致车摇摆。f.示例状态估计器
[0158] 实施例能够实现是线性二次估计器(LQE—一种标准卡尔曼滤波器)的状态估计器。然而,本公开并不限于LQE。其他实施方式可以涉及隐尔可夫模型和连续潜变量估计(例如,扩展卡尔曼滤波器、无迹卡尔曼滤波器等)的组合。
[0159] 连续估计器的可用观测值能够包括:
[0160] 推车车身框架的三轴加速度,其能够被耦合到电子系统,通过中等带宽(例如,高达约100Hz)直流耦合的三轴加速度计来测量。一种示例加速度计是可从飞思卡尔半导体(Freescale Semiconductor)公司获得的FXOS8700CQ数字传感器和3D加速度计的加速度计系统。另一个示例是KMX62三轴磁力计/三轴加速度计的3D加速计系统,可从Kionx公司(其是罗门集团公司(Kyoto,Japan))获得。
[0161] 三轴磁力计读数,能够与加速计在相同的参考车架中。一种示例磁力计是被包括在FXOS8700CQ数字传感器和3D加速度计中的磁力计。另一种示例磁力计是被包括在KMX62三轴磁力计/三轴加速计中的磁力计。在一些实施例中,加速计和磁力计能够是分开的部件。
[0162] 能够将从推车车架的高频交流耦合振动频谱中所提取的特征耦合到电子系统,但不一定经由与加速度计相同的电路系统进行耦合。这些特征能够包括估计的车轮旋转速率f0。振动测量的独立轴的数量能够取决于推车的机械结构。例如,假设三个笛卡尔轴在高频时是独立的,这可能并不准确。
[0163] 可能适合于本公开的用于测量振动的各种传感器包括(1)具有可选点质量的以调谐响应谱的悬臂压电梁;(2)非磁性材料(例如,不锈钢)的悬臂梁上的小磁体,其在梁的弹性极限内操作,具有可选的点质量以例如通过诱导线圈中的电磁力(EMF)以调谐响应谱;(3)悬臂磁体加感应线圈,其可以是用于高带宽振动传感器的小型便宜低功率组件;(4)高带宽MEMS加速计,例如KX123(可从Kionix获得(Ithaca,NY))。
[0164] 如标题为“经由振动分析的纵向速度估计”的章节以及图10A和图10B中所示,在一些实施方式中,振动传感器的带宽可能并不关键。例如,在图10A中的示例数据中,关注的分量没有超过约15Hz。然而,能够使用高采样率来在相当短的时间段内例如当推车的旋转速度变化时提供足够的频率分辨率。g.航向估计
[0165] 图12A示出了示例方法流程图1200,通过该流程图,航位推算系统的实施例能够在轮式物体的坐标系(例如,坐标系230)中确定估计航向。
[0166] 流程图1200可以在方框1206处开始,其中磁力计/加速度计能够补偿由多个因素引起的偏移/误差。校准数据能够包括每个传感器轴根据温度1210的增益、偏移和非线性。实施例可以校准加速计和磁力计两者的所有轴。另一个实施例可能不校准加速度计的水平轴(例如,坐标系230中的x轴和y轴)。例如,对于Kionix KMX62,航位推算解决方案的准确性可能不会受到加速度计误差的显著影响。另一方面,磁力计轴的偏移和增益随温度的变化可能会显著影响航位推算估计的精度。因此,实施例能够单独地随温度校准磁力计的每个轴。具有特性随温度没有显著变化的磁力计或具有的工作温度在狭窄范围内的装置的系统,可以不需要单独校准磁力计的每个轴。
[0167] 对于包括Kionix KMX62在内的一些传感器类型,在暴露于回流焊过程的高温(例如,根据IPC/JEDEC J-STD-020C为约260℃)后,磁力计偏移能够显著变化。因此,传感器能够优选地在组装PCBA之后,例如在组装后的生产测试过程期间进行校准。在校准期间,可以创建数据库“校准(对温度的增益+偏移+非线性)”1210。数据库能够存储在处理器的闪速存储器中,例如图4的存储器425中。当在方框1206处实施校准时,温度传感器能够提供温度数据1202,磁力计/加速度计能够提供其原始测量值1204,并且数据库1210能够提供校准数据。原始测量值1204能够在加速度计/磁力计传感器封装的坐标系中。
[0168] 磁力计典型地对在关注的场强度(例如,从-100至+100μT)以上所施加的磁场具有非线性响应。以KMX62为例,该场范围内的最差情况误差是约2%。工厂校准过程能够基于每个磁力计提供每个轴的实际曲线,例如,输出电压=偏移+增益*外加场+F_非线性误差(外加场)。
[0169] 实施例可以将非线性误差函数转换成查找表并且将该表存储在存储器中作为工厂校准程序中的一部分。在运行时,系统能够根据磁力计输出和温度传感器输出两者来查找真实场。因此,方框1206的输出能够是温度补偿的和线性化的磁力计/加速计读数。
[0170] 在方框1208处,该系统能够将温度补偿的和线性化的读数旋转到推车的坐标系,例如坐标系230。这种旋转提供了在推车车身框架坐标系中的测量值。例如通过将推车放在已知的水平表面上并且读出加速度计的DC值,能够在将航位推算系统安装到推车期间或之后填充数据库“PCBA到推车车架角度”1212。
[0171] 在方框1214,该系统能够应用数字滤波器来产生经过滤波的降噪测量值。所应用的数字滤波器能够具有随当前估计的推车速度或车轮旋转速率1218而变化的频率响应曲线。在一些实施例中,所应用的数字滤波器可以具有固定的频率响应曲线。在实施例中,每个滤波器(例如,每个旋转轴)能够是两极低通切比雪夫滤波器,具有低于旋转速率的一半的截止频率以抑制f0/2处的振动噪声(参见例如图10B中的附图标记1070),但不是太低而导致对实际转向的推车的缓慢响应(例如,截止频率太低可能导致航向估计滞后于真实航向,这反而可能导致航位推算误差)。示例截止频率能够是当前旋转速率乘以0.375、0.4、0.425等。
[0172] 在方框1216处,该系统能够结合磁力计数据和加速度计数据,在地磁场坐标例如北东地(NED)坐标中给出推车航向。在购物车上安装航位推算系统之后,可以创建数据库“硬铁和软铁补偿”1220。一种生成数据库1220的方式是使推车围绕其垂直轴(例如,坐标系230中的z轴)旋转几次。另一种生成数据库的方法是使用适合于此目的的一些固定装置。
[0173] 代替图12A中所示的流程,实施例能够实施用于航向估计的替代流程。例如,处理单元例如处理器425能够从一个或多个加速度计读取数据。该实施例能够将加速计数据转换到推车车架坐标,例如坐标系统230。这能够提供当前位置处的倾斜估计以及磁力计输出的参考车架。该系统能够从一个或多个磁力计读取数据。该实施例能够校正硬铁和软铁的畸变。该校正能够至少部分地基于存储在与处理器相关联的存储器中的铁畸变校正常数来计算。该系统还可以进行过滤,以消除或减少由本地电力线频率所引起的噪声,如上面标题为“减少航向估计中的误差”章节中所述的。该航向能够与轮式物体所在位置的地磁场有关。估计的加速度计对齐和偏移的校正能够减少这种转换中的误差。h.稳态速度估计更新环
[0174] 图12B示出了示例方法流程图1224,通过该流程图,航位推算系统能够确定轮式物体(例如,购物车)的估计位置。
[0175] 图12B可以从方框1228开始,其中处理器能够获得NED坐标中的推车航向数据。推车航向数据可以从图12A中的流程图1200、上述可替换的实施例或其他一些方法导出。在方框1232处,处理器能够根据一个或多个加速度计更新速度矢量估计,如数据方框1272所示。在方框1236处,处理器能够从加速度计数据更新偏航估计。在方框1240处,处理器能够搜索振动数据的功率密度谱来获得谱峰,以确定车轮旋转的最可能频率并因此确定车轮的速度。例如,这能够使用上面在标题为“经由振动分析的纵向速度估算”的章节中所描述的方法来完成。如数据方框1276所示的振动数据的时间序列可以被存储在环形缓冲区中,使得旧数据被新数据自动覆盖。该环形缓冲区的大小能够取决于振动分析所需的时间序列数据的长度。
[0176] 在方框1244处,处理器能够例如通过找到X轴加速度数据在第一频率处的谱峰和找到Y轴加速度数据在第一频率的三次谐波处的另一个谱峰来确定是否通过分析发现了车轮旋转的合理频率,如上面在标题为“经由振动分析的纵向速度估计”的章节中所述的。如果发现合理频率,则过程直接进行到方框1252。否则,该过程通过方框1248进行到方框1252,其中能够扩宽旋转速率搜索边界来进行下一次迭代,以提高找到合理频率的可能性。
[0177] 在方框1252处,处理器能够更新速度估计和加速度计偏移。该速度估计能够基于在方框1228中所确定的估计航向和在方框1252之前确定的速度估计。该速度估计能够用来更新数据方框1272。该加速度计可以具有随时间变化的偏移。这些偏移能够缓慢地变化,并且能够在环1224的一次迭代的持续时间内被推导为常数。例如,实施例能够使用一个时间间隔内的车轮旋转数据来确定在相同的时间间隔期间的加速度计偏移,这提供了速度的测量值并且因此提供了加速度的测量值,例如当前迭代中所测得的速度与上次迭代之间的差异。一些实施例可以对其中良好的车轮旋转数据可用的时间间隔更新加速度计偏移,而对其中车轮旋转数据有噪声的时间间隔不更新偏移。
[0178] 在方框1256处,处理器能够传播速度估计以产生位置估计,例如数据方框1280。这个传播能够包括例如速度数据的时间序列的总和以及速度矢量估计1272。在方框1260处,处理器能够确定是否需要位置依赖的步骤。如果是,则过程通过方框1264进行到方框1268,其中处理器能够执行位置依赖的步骤。否则,过程直接进行到方框1268。在方框1268处,处理器能够等待,直到下一次迭代开始并且从方框1228重复该过程。例如,位置依赖的步骤能够包括,当推车处于警告区域时启动警告序列。
[0179] 为了说明和简单解释的目的,将图12绘制为顺序过程。在一些实施例中,一些操作,例如输入/输出(I/O)操作如读取加速计和磁力计,能够重叠或并行执行。i.持续的磁力计校准
[0180] 从航位推算系统的磁力计读数导出的推车航向中至少有三个误差源:1)磁力计传感器其本身的误差。有了这样的误差,传感器读数不是传感器精确位置处的真实磁场值(例如,其可以由在与航位推算系统中的实际磁力计完全相同的时间和位置处进行采样的无限精确的磁场传感器输出);
2)传感器处的真实磁场如何与已知的地磁场关联的估计中的误差,例如由磁力计附近的磁性活性材料所引起的失真。对此情况,标准术语是硬铁和软铁误差,硬铁是在没有外部施加的磁场的情况下具有永久磁矩的材料,软铁是没有永磁矩但在外加场存在时磁化的材料;以及,3)磁力计坐标系与推车车架坐标系的关系的估计误差。
[0181] 对于某些特定的磁力计类型,包括在Kionix KMX62内的实施方式,在温度和所施加的磁场的某些限制内,对于任何给定的单个磁力计(例如,给定的PCBA上的特定KMX62)在PCBA回流之后,误差1)基本上能够是固定的。对于KMX62,增益和偏移不会永久改变的暴露限值是>125℃和500,000μT,这是推车在运行时不会遇到的情况。误差1)的校正对应于图12A中的方框1206。下面标题为“示例脱机校准”的章节包括其他的有关描述。
[0182] 误差3)例如可能是由于推车把手经由滥用而弯曲引起,或者航位推算系统绕推车把手轴的旋转角度被改变引起。图12A中的方框1208能够提供校正来旋转传感器输出以匹配推车坐标系,但是方框1208使用的数据库(方框1212)正常地在系统安装之后设置一次,然后在运行时不进行更新。如果方框1212中的数据由于例如上述滥用而变得不准确,则航位推算系统的精度可能会降低。
[0183] 实施例能够通过以下事实来检测方框1212中可能发生的显著变化情况:当推车在已知水平表面上完全停止时,旋转的加速度计读数预计为1gee向下和0gee向北或向东。如果它们不是,则实施例能够校正旋转矩阵1212以产生正确的输出。
[0184] 航向精度的其余问题是误差2)可以并且确实随时间变化,例如由于大型车辆经过而动态地变化。特别是,许多购物车由铁磁材料(例如,低钢)制成。这种材料的剩余磁化强度能够随时间变化(例如,如果推车以特定方向长时间储存,则磁畴能够根据推车经受的磁场缓慢对齐)。推车的变化的磁化强度能够导致估算航向中的误差,因为磁力计所测得的磁场可能与地磁场不同。
[0185] 对于这个普遍问题的标准解决方案是,当需要高精度罗盘时(例如,在GNSS之前的时期内用于船舶或航空器导航的),定期地将安装罗盘的事物(船舶或航空器)对齐至一系列的预先调查过的已知航向,观察在每个预先调查过的航向中的罗盘读数,并注意在每个航向中的罗盘误差。在第二次世界大战期间及之前,对此情况,标准术语是罗盘自差卡,这是一个手写的、经常更新的罗盘误差列表。
[0186] 智能手机等设备的标准解决方案是强制使用者在所有三个轴上多次旋转设备,并一直测量三轴磁力计输出。如果磁力计是完美的并且没有误差2),那么由三轴磁力计输出所描述的点图将全部在一个球体的表面上。然而,实际上,由于误差1)和2),点云图形成偏移椭球。能够对该云图进行处理来形成对误差1)和2)的估计。对此,标准术语是硬铁和软铁校正。在本领域中描述了该过程,例如在飞思卡尔应用笔记AN4246,“Calibrating an eCompass in the Presence of Hard and Soft-Iron Interference(在硬铁和软铁干扰的存在下校准电子罗盘)”中。
[0187] 然而,将这个标准解决方案应用于安装在轮式物体例如购物车上的磁力计存在一些困难:1)它要求所安装的磁力计在三个大致正交的轴上旋转。用购物车做三轴旋转可能并不容易;2)由于这个标准解决方案不涉及温度补偿,因此校准仅在较小的温度范围内有效。对于像智能手机这样的设备,这可能不会引起什么问题,因为即使是最佳的智能手机罗盘校准也很少会产生可能受到适度的温度范围内短时漂移所导致的小误差影响的精度。但是对于基于本公开的使用应用来说,在宽的环境温度范围例如-15至50℃内需要更高程度的罗盘精确度;3)如果外部磁影响(误差#2)改变,则该过程必须重复,如上所述,这能够是动态的。
[0188] 有利地,根据本公开的实施例能够克服这些困难。根据本公开的航位推算系统能够具有系统安装位置处的地磁场的真实值(例如,来自标题为“示例站点配置文件”的章节中表1的索引2),并且能够单独地补偿如上所述的误差1)。
[0189] 购物车正常地仅能围绕其Z轴旋转,而Z轴通常地有几度倾斜。为了在图12的方框1220中初始填充数据,安装者能够在可以相信磁场非常接近地磁场的区域中,例如在室外并且不太靠近任何大的铁磁物体(例如,距大型运动型多功能车至少三至五米远,离汽车二至三米远)处,刻意围绕Z轴旋转推车。安装者可以将推车旋转一次、两次、三次或更多次。从图12A中的方框1214输出的点集能够在椭球的中纬线附近形成薄层(例如,如果推车完全水平并且没有误差2),则这些点将形成完美的圆形)。利用关于地磁场的水平分量的实际值的信息,实施例能够解决推车的XY平面上的软铁效应和硬铁效应两者。在理论上,通过刻意地在非水平面上旋转推车来解决所有三个轴上的硬铁和软铁问题是可能的,但实际上,在航向估算中其他的潜在准确性可能不值得这么做。
[0190] 在所述方框1220如上所述地被填充之后,推车能够投入使用。在操作中,实施例能够在系统知道购物车在外面(因为地磁场在建筑物内通常非常失真)的期间内连续地(例如,周期性地)监控过程1214的输出。如果在任何时候,系统在足够短的时间段内(例如,几分钟、少于30分钟、少于1小时)获得足够数量(例如,5、10或更多)的充分分散的航向点(这些点已经通过方框1214严格地进行了低通滤波),则系统能够在初始安装之后重新执行上述过程。
[0191] 如果由这个操作过程计算的硬铁和软铁校准与方框1220中存储的值显著不同,则系统能够更新1220的值。更新过的值使系统能够补偿可以随时间变化的误差2)。
[0192] 系统设计人员可以自行决定什么可以构成在足够短的时间内“充分分散的”“足够数量”的不同的航向点。一种示例实施方式具有以下内容:
[0193] 该系统检查过去10-20秒(例如,16秒)的滑动窗口的有价值点,并将这些点放入水平面中的四个磁性象限(+X+Y,-X+Y,-X-Y,+X-Y)中。如果至少10%至15%(例如,12.5%)的点位于每个象限中,并且至少两个象限各包括至少25%的点,则可以认为该系统中点充分分散。
[0194] 使用硬铁和软铁补偿矩阵1220的现有值,如果与任何这些点相关联的地磁场的矢量值与已知的地磁场显著不同,则该点能够由于其可能是靠近一些使其失真的外部铁磁物体所取得的而被拒绝。这是一个自举过程——填充1220的初始校准过程应当优选地发生在已知磁场(例如,推车位置处的地磁场)中,但是之后系统能够使用方框1220中的现有数据值来了解系统何时获得用于重新校准的有效数据。
[0195] 另一个实施例可能不尝试重新校准硬铁和软铁,除非某些数量的点(例如,除了在样例10-20秒内处于或低于阈值比如0%、1%等的那些点以外所有的点)指示不存在外部失真——因与已知磁场明显不同而被拒绝的点数少于阈值。1.具有可调节儿童座椅的购物车
[0196] 一些购物车包括使用者可调节的儿童座椅,该儿童座椅可在儿童座椅关闭的位置和儿童座椅打开的位置之间移动,从而允许购物者将儿童(或其他物品)放置在座椅部分上。参考图16A(下面进一步描述),该图示出了推车1600的示例,其中儿童座椅1620处于关闭位置(由于儿童座椅部分基本竖直,所以有时被称为儿童座椅向上)。在许多推车中,购物者可以将儿童座椅1620的金属框架推离推车1600的把手1610,从而使座椅部分移动到水平位置(例如,座椅部分从图16A的垂直位置向下旋转到水平位置)。因此,打开位置有时被称为儿童座椅向下。图16B示出了儿童座椅1620处于打开位置或儿童座椅向下位置的购物车1600。在一般用途中,已经发现大多数购物者在儿童座椅朝下的情况下操作推车,这允许将儿童、钱包或购物袋或商店物品放置在水平座椅部分上。此外,已经发现,在购物者的单次导航行程中,儿童座椅的位置(例如,向上或向下)典型地不会改变。
[0197] 当儿童座椅向上时(在关闭位置,例如图16A),儿童座椅的金属框架(通常为钢)相对靠近推车1600的把手1610,因此可能相对靠近被安装在推车把手1610上的智能定位系统1605的磁力计。儿童座椅向下时(在打开位置,例如图16B),儿童座椅的很大一部分距离被安装在把手上的智能定位系统1605的磁力计更远。因此,磁力计上的部分磁化的金属儿童座椅的磁干扰量通常地在儿童座椅的上下位置之间显著不同的。如果未校准儿童座椅上下位置之间不同的电磁干扰量,则导航过程中可能会引入几度到几十度甚至更高的航向误差,从而导致航位推算位置不正确。
[0198] 对于许多购物车而言,航向误差典型地约为正弦曲线,最大航向误差约为90度和270度。金属座典型地由铁磁线构成,其中各根线大多例如沿根据图2所示的推车坐标系230的Y轴从左到右对齐。因此,当推车沿那些方向之一前进时(例如,90度或270度磁航向),地磁场在金属座中引起最大的磁场畸变。对于强烈磁化的推车,航向误差正弦曲线的幅度可能高达90度,但更典型的值约为20至30度(因此,对于均匀分布的真航向,误差的平方和的平方根(RSS)值为约0.5*航向为90/270度时的最大误差)。
[0199] 下面描述用于校准具有可调节儿童座椅的推车中的磁力计的技术示例。一些这样的技术可以利用两种不同的硬/软铁校准:一种用于儿童座椅向上时的校准,另一种用于儿童座椅向下时的校准。这些技术的使用可以将与座椅向上并靠近磁力计相关联的推车航向误差减小到约2至3度。
[0200] 以下是具有可调节儿童座椅的购物车的双校准实现示例。在安装时(或在其他校准时间),安装人员可以使推车绕Z轴旋转两次(或更多次):在儿童座椅向上的情况下至少一次,以及在儿童座椅向下的情况下至少一次。从原始数据到为图12A的方框1220填充硬/软铁补偿数据的数据减少可以基于在推车的每次旋转期间儿童座椅是向上还是向下。因此,在方框1220,可以生成并存储两组硬/软铁补偿数据:一组用于儿童座椅向上位置,而另一组用于儿童座椅向下位置。如果推车具有两种以上的运行配置,则可以在方框1220存储用于一些或所有这些配置的补偿数据。
[0201] 在导航期间,可以如下执行图12A的方框1216。当推车导航时,系统可以使用有关儿童座椅位置的默认假设进行运行。在一些实施方式中,默认假设是儿童座椅是打开的(儿童座椅向下)。随着推车开始在出口处导航(例如,状态图500的状态520),系统可以将基于当前儿童座椅位置假设计算出的航向与基于否定的假设计算出的航向进行比较。
[0202] 在离开出口时,(通常)已知推车的航向在通过出口的直接路径的180度弧度内(例如,如将参考图14进一步描述的,平面图1400可以包括每个出口的指南针方位)。在许多情况下,只有一个儿童座椅位置假设会与合理的推车方向一致(例如,通过硬铁和软铁补偿转换后的所测得的磁场矢量,然后将其投影到推车的局部水平面上)。如果两种座位位置假设都是合理的,则系统可以对每个座位位置假设执行两次导航算法,每次使用一种座位位置假设,直到一个假设失败(例如,如果推车的航向变化很大,例如,超过约60度,则这两个位置假设其中之一典型地变得不可能,也就是说,该磁力计的测量值与推车在给定的一种座位位置假设下的任何可能的航向都不对应。
[0203] 在一些实施例中,系统可以使用前述过程来动态地估计儿童座椅是处于向上位置还是处于向下位置。例如,如果导航算法执行两次,并且对于一种假设的座位位置失败,则另一种假设的座位位置必须为真,并且系统可以相应地动态更新导航以反映所推断的儿童座位的真实位置。
[0204] 这些技术不限于具有可在上下位置之间调节的儿童座椅的购物车。这些技术通常适用于具有多种操作配置的任何类型的推车,其中推车材料对磁力计的磁影响在不同的操作配置中可能不同。可以为某些或所有操作配置生成不同的软铁/硬铁校准,用于减少磁力计在不同配置下受到的不同磁干扰所引起的航向误差。j.RSSI-辅助的航位推算
[0205] 随着误差通过连续估计而累积,绝对位置的航位推算估计可能变得越来越不准确。另一方面,在用具有足够精度的传感器来正确执行该方法时,通过航位推算估计的增量位置变化能够相当准确。如上所述,通过航位推算的绝对位置估计的精度,能够通过使用精确位置定位例如使用来自出口标记物和/或RF信标的信号进行位置重置而被提高。还可以通过在估计过程中合并其他可观测量例如RSSI来提高通过航位推算法的绝对位置估计的精度。
[0206] RSSI能够提供发射器例如接入点136与接收器例如航位推算系统之间的距离的估计。参考图13中,单个RSSI测量值可以指示航位推算系统位于远离接入点特定半径(由RSSI测量值所指示的距离)处的圆例如1310上的某处。一系列RSSI测量值能够指示航位推算系统在每个测量时间都位于同心圆中的一个圆上。
[0207] 图13示出了这个概念。如图所示,一系列的四个RSSI测量值可以指示航位推算系统在第一次测量时在圆1305上,在第二次测量时在圆1310上等。航位推算系统可以计算第一次测量和第二次测量之间的增量位置变化是X度处的D1米(从1325到1330)。航位推算系统可以进一步计算第二次测量和第三次测量之间的增量位置变化是在Y度处的D2米(从1330到1335),以及在第三次测量和第四次测量之间的增量位置变化是在Z度处的D3米(从
1335到1340)。在同心圆上可能仅有一个(或多个——不太可能具有更长的列)点集满足一系列测得的距离/角度变化。因此,理论上,能够使用增量位置变化的估计加上由RSSI所指示的距离或半径来确定航位推算系统的绝对位置。通过消除航位推算中累积的误差,这种估算可能比单独通过航位推算的绝对位置估算更准确。
[0208] 实际上,RSSI和航位推算估计两者都可能有误差和范围(例如,具有正态分布置信水平的范围)。因此,增量位置变化的估计加上RSSI所指示的距离或半径可能无法提供具有高精确度的绝对位置估计。然而,由于RSSI能够增加估计中的可观测量的数量(或可能对估计施加附加约束),所以仍然能够使用这种估计来提高通过航位推算法的绝对位置估计的精度。
[0209] 能够使用由航位推算系统提供的航向估计连同例如来自站点配置文件的关于接入点位置的信息,来提高RSSI的精度。例如,接收接入点信号的天线可能不具有半球形天线方向图。能够使用航向估计和位置信息来补偿天线的方向增益,从而提高RSSI的准确性。
[0210] 通过使用其他可观察量也可以实现类似的提高。所公开的概念不限于RSSI的应用。增加的位置估计的精度能够提供位置重置点例如RF信标能够被更远地间隔开的益处。这能够降低总体系统成本,或者改善对给发射器的安装和/或位置施加限制的当地法规(例如,地方政府法令和/或房东规则)的遵守。
V.示例系统实施方式——购物车围护
a.示例系统场地
[0211] 图14示出了一个零售商店系统安装的底层平面图1400的示例。该底层平面图包括以下项:(1)在购物车的导航行为能够不同的区域(“商店内部”)1410(例如,除了检测到推车已经进入或离开商店内部之外,根本没有跟踪位置;跟踪停留时间(消费者花费很多或很少时间的商品群岛/货架));(2)推车可能不允许越过的围护边界1420。围护边界依次由一组顶点(图14中的六个顶点1425)的有序集合之间的一组边来定义,并且可以形成开放或闭合的多边形;(3)入口和出口(在这个特定示例中,两个出口1415也用作入口)。物理障碍能够防止推车进出商店,除非通过出入口;和,(4)识别出例如混凝土的区段1430,其区别于不同的表面类型例如柏油1440。如上所述,购物车围护是所公开技术的一种可能的应用,但是其他应用也是相关的(例如,跟踪或监控行李推车或仓库推车、公用推车等)。为了说明,而不是限制,图14使用了购物车围护应用。此外,如下文中所描述的,能够生成除地面以外的楼层平面图,并且将其用于多层结构中的推车围护和导航目的。
[0212] 为简单起见,坐标系能够参考商店的主轴。在这个具体示例中,能够相对于商店的正面的中心点1405确定每个相关特征的坐标。在一些实施例中,坐标系的选择能够是为了便于安装设计(例如,参考能够确定一些围护边界的建筑计划或所有权边界)。
[0213] 商店出口1415在这个特定示例中是双向的,也就是说,允许推车通过出口/入口进入和离开商店。在一些实施例中,可以将商店的内部设计成使得仅允许某些大门是入口或仅允许其是出口。b.示例站点配置文件
[0214] 下面示出的表1包括与示例底层平面图1400对应的站点配置文件的示例版本。在一些实施例中,站点配置文件的原版拷贝能够保存在场地控制器1435中。在一些实施例中,站点配置文件能够经由它们的通信系统,例如无线RF技术比如低功耗蓝牙(BLE),被传输到导航系统。
[0215] 在一些实施例中,该配置文件能够在安装设计过程期间被创建,如标题为“示例安装和校准”的章节中所描述的。在一些实施例中,运行系统的配置文件能够基于初始安装之后的改变进行更新。配置版本和/或配置时间戳(例如,日期)能够被包括在站点配置文件中。一个导航系统的实施例能够基于与导航系统的本地版本相对的场地控制器的版本中的配置版本和/或时间戳字段(统称为“版本号”)的值来确定是否从场地控制器请求下载当前版本的站点配置文件。场地控制器能够定期地广播其主版本号。这能够有利地减少与更新站点配置文件相关联的能量消耗。在另一个实施例中,主站点配置文件中的每个参数能够具有相关联的版本号。导航系统能够将其本地版本的站点配置文件的版本号传输给场地控制器。场地控制器能够通过主站点配置文件进行解析,并且能够向导航系统传输仅版本号晚于导航系统版本号的那些参数。这也能够有利地减少与更新站点配置文件相关联的能量消耗。
[0216] 在表1中,斜体字的属性是在这个示例中在学习过程期间可以检测到的和/或更新的属性。例如,在场地安装期间或在运行期间,导航系统可以检测与某些坐标处的混凝土伸缩接缝相关联的振动信号。导航系统能够使用其经由例如航位推算和/或精确位置定位所获得的估计位置来导出与伸缩接缝相关联的参数,例如间距和/或宽度。作为另一个示例,导航系统可以在某些坐标处检测与柏油相关联的振动信号。导航系统能够导出参数,例如与柏油表面相关联的边界的粗糙度或坐标。导航系统可以用这种更新的信息更新其例如在站点配置文件中的存储。
[0217] 这个学习过程可能会随着时间而发生。例如,在某些坐标处例如混凝土连接段1中检测伸缩缝,可能是学习过程的开始。随着时间的推移,当导航系统已穿过混凝土连接段1的整个区域时,它能够确定缝之间的间距。在一些实施例中,导航系统能够将在学习过程期间获取的信息上传至用于该场地的中央处理单元。例如,如图3中所示的,实施例能够通过通信系统330向系统配置和控制装置390传输信息。中央处理单元能够被配置为处理新信息并且将其与其主版本的底层平面图和/或站点配置文件整合在一起。中央处理单元能够被配置为将新信息下载到其他导航系统。上传/下载能够发生在预计购物车将通过的瓶颈处,例如入口和/或出口。不同的实施例可以包括在学习过程期间待检测和/或待更新的不同属性组。
[0218] 一个导航系统的实施例能够根据站点配置文件中所描述的底层平面图来改编其处理算法。例如,导航系统可以对不同的表面类型(例如,混凝土、柏油、室内等)和/或对特定表面类型的不同粗糙度因子使用不同的振动分析算法。表1-示例站点配置文件内容
[0219] 在安装中,站点配置可能会在正常运行期间随时间而改变。例如,停车场布置的改变可能导致围护顶点的改变。场地控制器能够通过例如更新系统广播的“配置版本”字段来传播更改。推车,例如推车的智能定位系统和/或智能锁定轮——能够经由近场通信(NFC)或者从闪存卡的下载等进行无线地更新。站点配置文件或底层平面图1400能够通过智能定位系统被存储在非暂时性存储器325中。c.示例购物车模式
[0220] 示例系统内的购物车能够在任何给定时间处于几种模式中的一种模式中。主要运行模式包括但不限于:(1)室外,航行(标准表面,例如柏油);(2)室外,航行(具有阶段性特征的混凝土、瓷砖或其他特殊表面);(3)室内,不航行;(4)室内,航行;(5)室外,锁定,检测返回方向;和/或(6)由有动力装置的购物车取回器如可从Gatekeeper Systems(Irvine,CA)获得的CartManager XD取回。
[0221] 除了运行模式之外,还能够有多种脱机或维护模式,例如用于固件更新。在一些实施例中,航位推算系统能够被配置为动态地改变航位推算计算模式,例如,如果振动信号保持相对不变并且指示推车正在相对平滑的表面上行走(例如,在室内),则航位推算系统可假定推车速度大致恒定,直到振动信号大幅度改变以指示推车正在改变速度或在实质上更粗糙的表面上移动(例如,柏油停车场)。振动信号中的变化能够经由振动传感器信号(例如,以“g”计)的增加、振动功率谱(例如,PSD)中的振动功率的增加等来检测。d.出口检测和出口身份辨别
[0222] 预计购物车可能穿过零售商店的入口和/或出口。在一些实施例中,入口和出口能够是可互换的,例如,商店顾客能够将推车推入商店中或通过相同的物理开口将推车推出商店。在其他实施例中,能够使用专用的入口(仅允许进入)或出口(仅允许离开)。
[0223] 对于具有单个出口的商店,检测到推车正在经过出口就足够了,在这种情况下,这个出口是唯一出口。对于具有多个出口的商店,离开检测方法能够识别推车正在经过哪个特定出口。确定推车正在经过哪个出口的功能可以称为出口身份辨别。如果一个实施例的定位不确定性小于每个出口与其他出口的形心之间的最小距离,则其能够支持出口身份辨别。
[0224] 本公开提供了几种不同的辨别出口的方式。用单个特征同时提供检测和辨别功能的方法包括:
[0225] 信标,其优选地具有受控的和相对窄的波束宽度,为RF(例如,2.4GHz)信标或超声波信标,被放置在出口附近使得能够在与整体所需的系统准确性(例如,在几码或几米的精度内)兼容的空间精度下确定推车是否在波束中,其中信标广播编码特定出口的身份。也能够使用定向天线,例如在通过引用被并入本文的美国专利No.8,558,698中所描述的实施例。信标可以但不一定是实施信标协议例如Apple Computer(Cupertino,CA)的iBeacon或Google(Mountain View,CA)的Eddystone的低功耗蓝牙(BLE)信标。
[0226] 地板中的磁结构,例如在通过引用被并入本文的美国专利No.8,046,160(参见例如图9和图10以及相关说明书文本)中所描述的磁编码地板垫。
[0227] VLF场,其中VLF场用识别特定出口的唯一代码进行调制。VLF代码能够与通过引用被并入的美国专利No.6,127,927中所描述的那些相似。
[0228] 将精度检测功能与辨别功能分开可能是有利的。例如,在合并低成本方法以高空间精度确定推车正在经过出口而不是推车正在经过哪个出口的实施例中,实施的总成本可以通过单独地实施辨别功能被降低。e.入口检测
[0229] 在一些实施例中,导航过程可以不在室内使用,例如不在零售商店内。在一些这样的实施例中,入口检测终止航位推算导航过程(直到推车再次离开商店)。可能不需要以特别高的空间精度确定进入事件。
[0230] 入口能够通过与罗盘/磁力计结合使用的就在上面章节中列出的相同特征来检测。例如,如果所有入口和出口沿着商店的同一面,则沿着航向检测入口/出口的标记物中的一个就足够了。f.重置累积的航位推算误差
[0231] 航位推算系统中可能会累积误差。一些实施例能够使用外部参考(其位置是精确已知的)来向推车的航位推算系统提供参考位置。航位推算系统能够将参考位置用作后续航位推算确定的新起始位置。这能够减少或消除先前所累积的航位推算误差。本文中所描述的用于入口/出口检测或辨别的信标、定向天线、磁结构或VLF场中的任何一种都能够用于向推车提供参考位置。g.示例智能定位系统实施方式
[0232] 图15A示出了一个用于购物车应用的智能定位系统的实施例的框图1500。微控制器1530能够为系统提供处理功能。微控制器能够访问非易失性和/或易失性存储器。可选的GNSS接收器能够向系统例如向微控制器1530提供GNSS位置定位。可替换地或额外地,可选的EAS场检测器1515能够向系统提供EAS位置定位。如果可用,GNSS位置定位和/或EAS位置定位能够被用于将位置重置为精确的GNSS定位和/或EAS定位,并且能够被用于通过航位推算清除任何累积的估计误差。一种安装能够在系统处于室外例如在GNSS卫星无遮挡的视野中时使用可选的GNSS接收器,并且当在室内中在例如EAS发射器所在的位置处时使用可选的EAS场检测器。另一种安装可以具有位于室内以及室外的EAS发射器,并且能够在室内和室外都使用可选EAS场检测器。又一种安装可以具有室内GNSS伪卫星,并且能够在室内和室外都使用可选的GNSS场检测器。
[0233] 加速度计/磁力计1510能够提供在航向估计中使用的数据。加速计/磁力计能够向微控制器输出唤醒信号。当加速度计/磁力计检测到运动时,唤醒信号能够被激活以使微控制器进入活动状态。有利地,微控制器能够在缺乏激活的唤醒信号的情况下保持交互式的低功率状态,从而降低系统的功耗。
[0234] 可选的超声耦合器1520和振动传感器1535能够向系统提供车轮旋转信息。这在下面标题为“增强的旋转指示车轮”的章节中进行了描述。
[0235] 收发器1525能够经由低功率蓝牙提供通信功能。系统信息例如站点配置文件能够经由收发器传达给系统。收发器还能够通过接收由在已知的固定位置处的源所产生的信号来提供位置定位。收发器还能够用于特征的广告,例如基于位置的广告。
[0236] 使用者通知接口1540能够向智能定位系统的使用者提供信息、消息和/或警告等。使用者通知接口1540能够包括音频部件例如蜂鸣器、声共振器(例如,发声仪器)等,和/或可视化部件例如LED显示器、LCD显示器等。
[0237] 电源供应器部件能够包括主电池例如CR123A锂电池,和DC/DC电源转换器例如TI TPS62740。使用电池作为输入,DC/DC电源转换器能够输出系统的各种部件所需的多种DC供电电压。
[0238] 表2示出了图4的抽象架构中的功能在图15A中的示例实施例中的特定硬件实现的映射:表2-示例抽象功能到实现的映射
[0239] 低成本、高采样率、低功耗的振动传感器能够用类似于在商用低带宽MEMS加速度计中所使用的MEMS工艺来构建。具有高采样率的加速计的合适示例是Kionix KX123加速度计(可从Kionix(Ithaca,NY)获得),具有每轴25.6千个样本/秒(ksps)。在一些实施例中,振动传感器和加速度计是同一装置。这样的实施例能够过滤设备的输出以获得振动数据和加速度数据。例如,振动数据可以通过对输出进行高通滤波来获得;加速度数据可以通过对输出进行低通滤波(包括DC分量)来获得。
[0240] 图15B示出了另一个用于购物车应用的智能定位系统的实施例的框图1550。在这个实施例中,所有部件都与图15A中所示的实施例相同,并且用相同的附图标记来表示。但是,这些部件的连接与图15A所示的实施例不同。特别地,加速度计/磁力计1510和可选的EAS场检测器1515被连接至2.4GHz收发器1525中的次级处理器。加速度计/磁力计1510能够具有被连接到次级处理器的附加运动检测唤醒输出。次级处理器(例如,KW31Z)能够周期性地唤醒,以监测例如车轮旋转、EAS场接收等事件。如果检测到事件,则次级处理器能够唤醒主处理器以执行其功能。有利地,由于与主处理器例如微控制器1530相比次级处理器的功耗较低,所以这个实施例能够具有较低的功耗。h.示例购物车实施方式
1.智能定位系统安装
[0241] 图16示出了包括智能定位系统1605的推车1600的示例,智能定位系统1605具有呈现车轮即将锁定的通知的显示器。例如,将智能定位系统,例如如图16中所示的(例如,靠近把手的中心),安装至购物车的把手1610能够是有利的。优点包括:(1)使用者警告接口的可视部分的视角能够方便于各种不同的使用者身高;(2)对于2.4GHz收发器和可选的GNSS接收器,相对畅通的天线路径;(3)在例如机械化的推车取回等事件期间,把手安装位置能够比在推车上的其他位置更加受到保护以免受到冲击。
[0242] 图17示出了一个智能定位系统1605的实施例的侧视图1700。条纹1705示出了PCBA的平面的方向(PCBA本身在外壳内部)。具有突起1710的半圆形结构是用于将智能定位系统放置在购物车的把手上的安装机构。在安装时,购物车的把手能够被放置在靠近系统中心的空心圆形部分中。该突起是能够将系统固定在把手上的锁定夹。2.示例锁定轮
[0243] 在一些实施例中,代替万向前轮或除了万向前轮之外,后轮可以是智能锁定轮。在一些实施例中,前轮和后轮都是万向的,这在下面标题为“前万向轮和后万向轮”的章节中进行了描述。一个能够与购物车一起使用的智能锁定轮的示例是可从Gatekeeper Systems,Inc.(Irvine,CA)获得的 2.0QS车轮。
[0244] 返回参考图3,示例智能锁定轮215能够具有以下能力和性能中的一个或多个:(1)使用有线的或无线链路,例如经由2.4GHz RF链路,与智能定位系统进行通信365的能力;(2)响应于由智能定位系统发送的命令而锁定和解锁380的能力。在一些实施方式中,“锁定”包括锁定车轮以防止旋转和抑制车轮围绕其轴线旋转。例如,锁定的车轮可能比在解锁(例如,单向转动)状态下实际上更难以旋转,而不是被刚性地锁定。锁定的车轮或锁定轮能够包括具有能够抑制或防止车轮围绕车轮的旋转轴旋转的制动器的车轮;(3)检测和时间戳记车轮的旋转375的能力;(4)检测运动或不存在运动的能力,以使车轮可以在车辆不移动时进入低功率“睡眠”状态;(5)检测和解码甚低频(VLF,典型地从3kHz延伸到30kHz,例如
8kHz)场例如在美国专利No.6,127,927中所描述的那些场360的能力。VLF场的检测能够在VLF场的辐射电缆位于推车围护的边界处时被智能定位系统用来(例如,当车轮移动经过围护边界时)驱动车轮的锁定机构以防止购物车被盗,或者VLF场的检测也可以用作例如由从Gatekeeper Systems获得的 系统所执行的防止入店行窃的措施;(6)检测磁标
记物360例如美国专利No.8,046,160中所描述的磁标记物(参见例如图6至图10和相关说明书文本)的能力。特定的锁定轮实施方式可能不会提供所有这些能力或可能提供其他的或不同的能力。
3.车轮/万向轮配置
[0245] 在一些实施例中,锁定轮能够安装在前面的例如万向轮位置中。在一些实施例中,第一锁定轮能够安装在前面位置中,并且第二锁定轮能够安装在后面位置中。尽管因为继续推动仅在后部具有锁定轮的推车可能更容易,可能认为不希望仅在后部具有一个或多个锁定轮,但是一些实施例可以被配置为具有被安装在后面位置中锁定轮。标题为“前万向轮和后万向轮”的章节描述了推车的所有四个车轮都是万向轮的实施例。
[0246] 一个根据本公开的实施例可以具有推车上的车轮和万向轮的至少四种不同配置中的一种:
[0247] 一,推车具有非万向的后轮。后轮中的至少一个能够是有旋转检测和计算/逻辑处理能力的智能车轮。万向前轮能够被配备有锁定机构。具有锁定前轮能够是有利的,因为能够很容易地推动仅锁定后轮的推车;购物车围护可能因此而难以实现。这种配置是本公开的默认配置。然而,本公开并不限于这种配置。
[0248] 一种需要位置跟踪能力而不是通过车轮锁定的推车围护功能(例如,仅跟踪购物车的运动,或仅使用来自航位推算系统的音频/视觉警告)的安装能够具有非锁定的前轮,例如没有电子器件和/或锁定机构的车轮。
[0249] 在第二种配置中,智能锁定轮能够是前轮。智能车轮能够执行本公开中所描述的所有功能,例如旋转计数、车轮相关检测以及锁定和解锁。
[0250] 在第三种配置中,所有四个车轮是万向的(例如,这在欧洲可能是常见的)。因此,推车能够“侧航(crab)”——不向前或向后直行。在这种配置中,前轮和后轮两者都能够具有各种检测功能。在这种配置中,主轮的角色能够相对于状态转换图560在前部和后部之间改变。一个实施例可以使用后智能车轮作为默认主轮并且根据需要将其转换成前智能车轮作为主轮,例如,当推车一直向后移动,例如通过把手被拉动而不是被推动时。另外的描述,请参阅下面标题为“前万向轮和后万向轮”的章节。
[0251] 在第四种配置中,后轮向智能定位系统发送表示旋转的信号而在后轮中不具有任何智能,例如,通过车轮中的超声音叉被击中来发信号。下面将立即描述这种配置。4.增强的旋转指示车轮
[0252] 车轮的一个实施例使用音叉作为将旋转信息传送给航位推算系统的方法。音叉和撞针能够被放置在车轮中,以在车轮每次旋转时产生对音叉的撞击。例如,可以将音叉放置在车轮的静止部分中,例如附接到车轮轴。可以将撞针放置在车轮的旋转部分中。在一些实施例中,该放置可以颠倒,例如音叉旋转并且撞针静止。这种增强的旋转指示车轮能够检测车轮旋转而不需要车轮中的电能。这能够通过例如超声传感器航位推算系统来实现。超声传感器航位推算系统能够检测与引起对音叉的撞击的车轮旋转相关联的超声脉冲。超声能量能够通过空气或通过轮式物体的结构从车轮传播到超声传感器。
[0253] 音叉的谐振频率由式(1)给出:其中,f是谐振频率,l是齿的长度,E是材料的杨氏模量,I是齿的截面惯性矩,ρ是材料的密度,A是齿的横截面积。
[0254] 例如,具有1.1mm宽度和5mm长度的矩形齿的由308不锈钢制成的音叉,具有高于人类听觉范围的22kHz的谐振频率。
[0255] 轮式物体的一个或多个车轮能够是具有音叉的车轮。具有音叉和撞针的车轮能够具有低的部件成本和低的能量成本(例如,不需要电力来产生超声脉冲),使得多个增强的旋转指示车轮成为便宜且实用的解决方案。通过使用不止一个这种车轮能够获得更准确的车轮旋转数据。例如,通过比较来自不同车轮的数据,能够识别由于车轮与地面之间的不良接触而可能产生的不良数据。作为另一个示例,改变推车航向意味着前万向轮的旋转比轮轴上的后轮更多。来自前轮和后轮两者的旋转数据能够用于对变化航向的估计。
[0256] 在不止一个车轮具有音叉的情况下,由于制造变化,每个音叉可以由于其物理特性上的差异而具有不同谐振频率。每个车轮的谐振频率能够在推车制造/安装期间进行表征并且被存储在存储器中。能够在制造过程中测量整个运行温度范围内谐振频率的校准数据并且将其存储在存储器中。航位推算系统能够通过脉冲的谐振频率来区分超声脉冲的来源,并且根据需要进行温度补偿。
[0257] 在一个实施例中,轮轴能够刚性地固定到万向轮叉上;车轮的旋转部分(例如,轮毂和盖)能够绕具有一对防水轴承的车轴旋转。在其中音叉被刚性地耦接至车轴的结构中,来自音叉的超声能量能够向整个万向轮叉耦合。能够将撞针模制在旋转部件的其中一个之中,无论是轮毂还是盖。
[0258] 对于具有非万向的后轮的推车,能够将万向轮叉直接地焊接到推车车架上。在这个实施例中,超声能量能够通过推车的整个车架耦接。根据推车把手结构的细节(例如,一些推车把手是直接机械地连接到车架其余部分的焊接钢管;其他是塑料或玻璃纤维,这两者都能够在超声频率下严重阻尼),超声能量将直接地向智能定位系统耦合,或者将经由智能定位系统附近的空气耦合。
[0259] 对于全是万向轮的推车来说,经由非旋转车轴硬耦接至音叉的后万向轮叉能够提供相当大的面积,约30至40平方厘米,以将声能耦合到空气(能量因此向智能定位系统中的超声接收器耦合)。实施例能够使用后部而不是前部,因为空气中的到智能定位系统(例如,在把手单元上)的较短声学路径能够在接收器处提供更强的信号。5.示例警告/锁定/解锁行为
[0260] 推车的行为(例如,向使用者发送通知,以及在何种情况下车轮锁定和解锁)能够进行调整以满足顾客的需求。在一些实施例中,当推车接近围护边界时的行为包括以下项:(1)当推车的估计位置在围护边界的最近点的一定距离内时,例如,该距离由当前现行配置的字段警告距离(WarningDistance)(例如,见表1)给出。
[0261] 导航系统能够警告使用者锁定事件即将发生。多种警告距离可能对于使用者会有不同的通知,例如不同的LED颜色或闪烁频率、蜂鸣器上不同的工作周期等。(2)当推车的估计位置越过围护边界时,则导航系统能够命令锁定轮锁定。(3)车轮能够保持锁定,直到例如其由商店雇员使用例如为车轮生成特定无线命令(例如,RF 2.4GHz命令)的手持设备进行解锁。
[0262] 在一些实施例中,当已经推动或拖拽推车从围护边界后退一定距离(例如,朝向商店后退)时,可以解锁车轮。由于车轮被锁定,推车的振动频谱可能与车轮在同一表面上滚动的情况不同。能够在安装前或安装过程中分析振动频谱。站点配置文件能够包括其他参数以支持这种使用模式。
[0263] 为了防止有人试图通过向后拖动(远离围护线)来偷盗推车,在被向内推回或拖拽时需要解锁行为的系统能够包括万向轮,该万向轮包括磁力计/罗盘,并且使用车轮中的磁力计/罗盘而非航位推算系统中的磁力计/罗盘作为锁定状态期间的航向源。位于推车把手上的磁力计可能根据推车是向前还是向后移动而不会指示两个不同的航向。另一方面,由于万向轮根据推车的移动方向转向,所以位于万向轮上的磁力计能够在推车向后移动而不是向前移动时指示不同朝向。i.示例安装和校准
[0264] 例如如表1所示的示例站点配置文件能够通过安装设计过程来创建。安装设计过程能够脱机地,使用工具例如使用地图提供者的应用程序接口(API)(例如,Google Maps API)的定制应用程序进行,以识别关注的空间特征(例如,出口、入口、围护顶点、混凝土段等)。在安装设计过程中,这些特征的相对坐标能够从过顶图中获得。所获得的信息可能会与顾客的命令进行交叉参考和验证。在场地安装过程中,在设计过程中所获得的信息可以通过场地处的实际观察来确认。
[0265] 系统的一些实施例能够允许将智能车轮和智能定位系统安装到现场的现有购物车上。智能车轮在推车上的物理安装很好理解(例如,现有的Gatekeeper  Systems2.0QS)。智能定位系统安装能够取决于推车把手的实施方式。对于是推车
的刚性车架的一部分的把手,智能定位系统能够包括在印刷电路板组件(PCBA)上的磁力计和加速度计。各种校准程序能够如下面所描述地来执行。
1.示例脱机校准
[0266] 在一些实施例中,航位推算系统能够包括服务技术人员能够通过其来启动服务/维护模式的机制,校准能够是其子模式。
[0267] 一种触发服务/维护模式的示例方法是将永磁体保持在航位推算系统旁边并且在特定的方向上。DC磁场能够被磁力计检测到,并且航位推算系统能够将具有适当强度和方向的场理解为进入服务模式的命令。
[0268] 一旦启动服务,航位推算系统能够经由低功耗蓝牙与手持设备例如智能手机或平板电脑(例如,iOS或Android设备)进行通信。手持设备能够包括应用软件,以在校准过程中辅助安装技术人员。
[0269] 为了能够与各单元进行通信,车轮和航位推算系统能够在其RF(例如,2.4GHz)链路上具有唯一的介质访问控制(MAC)地址。
[0270] 将加速度计的3个轴线定向到推车的车身框架可以是有利的。图2的系统230中表明了一个推车的刚性车身坐标系的示例:x向前,y向左,z向上。通过手持设备上的校准应用程序,安装技术人员能够在推车处于水平的任何时候确定加速度计方向。在知道购物车是水平的情况下,加速度计在xz平面中的方向能够从引力场如何分解成加速度计的x轴和z轴来确定。加速度计相对于推车车身在xy平面中的定向,如果是由于推车把手相对于y轴的位移而需要的,其能够通过沿直线推动推车(使其加速)来执行。
[0271] 磁力计相对于加速度计的定向能够在制造航位推算系统PCBA时确定。三个磁力计轴的偏移和增益的校准能够作为航位推算系统制造过程的一部分来执行,例如通过经由Helmholtz或Maxwell线圈向磁力计施加一系列已知的磁场来执行。磁力计对已知的施加的磁场的响应能够被用于生成校准模型,该校准模型可用于将原始磁力计读数转换为磁场。
[0272] 磁力计常常可能需要硬铁和/或软铁校准,特别是在推车把手材料是铁磁性的例如低碳钢时,或在推车具有可调节儿童座椅并且磁力计被布置在推车的把手中或其上时。服务技术人员可以仅沿z轴旋转推车来进行针对某些目的的足够准确的硬铁和软铁校准(可以使用1、2、3或更多次旋转):尽管不完全准确,但只要购物车被限制在接近水平的表面,这也是通常情况,使用这种方法能够获得约2至5度的校正后航向精度。
[0273] 如上面在标题为“降低航向估计中的误差”的章节中所述的,地面的倾斜可能影响磁力计的精度。在地磁场的垂直分量是其水平分量的约两倍的位置处,例如在北美和欧洲,实现一度的航向估计精度可能需要对超过两度的表面倾斜(与水平的偏差)进行校正。在具有不同地磁场分布的位置处,可能需要对不同的倾斜程度进行校正。
[0274] 一个实施例可以具有1度航向精度的设计目标以支持具有几百英尺长度的场地。对于小型场地例如带状商业区来说,较低的航向精度可能就足够了。为了好于一度以上的航向精度,能够执行更准确的硬铁和软铁补偿。该方法能够例如通过将一系列已知的磁场施加到磁力计来执行,而航位推算系统经由Helmholtz或Maxwell线圈被附接到推车的把手。磁力计对已知的施加的磁场的响应能够被用于生成校准模型,该校准模型可用于将原始磁力计读数转换为磁场。由于航位推算系统在校准过程中附着在推车把手上,因此这种校准方法能够补偿推车把手中的铁磁材料。
2.磁力计的示例温度补偿
[0275] 在零售商店环境中工作的航位推算系统可能经历很宽范围的温度,例如在长期来看从严冬到炎热的夏季天气,以及在短期来看从气候控制的商店内部到外部天气要素。磁力计可能对温度敏感,并且可能需要在整个工作温度范围内进行补偿。这种补偿能够帮助航位推算系统在整个工作温度范围内达到所需的精度。磁力计的单位可能需要单独进行校准。这能够在制造期间例如在PCBA之后(例如,在能够改变磁力计的温度曲线的回流过程之后)完成。磁力计数据能够在三个或更多的温度点进行测量。校准数据能够被存储在存储器中。在运行中,航位推算系统中的温度传感器(例如,物理上靠近磁力计,例如在磁力计裸片上或其附近,或在磁力计的1cm至5cm的距离内)能够感测工作温度。处理器能够基于所测得的温度通过例如校准数据的多项式内插法来计算温度补偿因子。处理器能够使用这个计算到的因子来补偿磁力计的温度敏感度。
[0276] 为了提供具体的示例,在工厂中,每个单独的磁力计都能够进行校准(每个轴)以获得在多个温度下在约±50μT磁场值下的偏移和增益。需要校准的温度的数量能够取决于温度校准需要多准确,和取决于对于磁力计的特定实施例,增益和偏移与温度曲线是怎样的非线性关系。例如,对于购物车应用中的KMX62,在15℃至50℃的工作温度范围内0.1μT的温度补偿后的残留误差能够作为校准目标。KMX62的磁力计在最低噪声模式下的最小输出噪声电平是约0.2μT。因此,根据传感器的固有噪声,0.1μT的校准目标是合理的。在工厂校准过程中在三个温度(例如,-15℃、25℃和50℃)下测量每个轴的增益和偏移,并且对结果进行线性插值能够产生约10nT的RSS误差。VI.示例应用
a.技术挑战
[0277] 以下实施方式限制能够适用于购物车围护问题,并且在某些情况下可能会使其他实际解决方案的实施具有挑战性或不切实际。这些限制中的一些也能够适用于其他环境或应用。
[0278] 在制造时,将车轮的电池密封在车轮内部对于购物车锁定车轮可能是有利的。因此,电池可能无法更换。相反地,安装有航位推算系统的把手能够被设计来支持可更换电池(参见图17中的示例)。
[0279] 一些实施例可以包括具有能量收集系统的车轮,例如美国专利No.8,820,447中所描述的。在这种实施例中,智能定位系统和智能锁定轮之间的能量不对称能够颠倒(例如,智能定位系统变得比车轮更受能量限制)。智能定位系统中的能量成为节约的量。在这种实施例中,主处理功能能够从智能定位系统迁移到智能锁定轮,并且智能定位系统能够累积航向和姿态信息以传达到智能锁定轮进行处理。b.前万向轮和后万向轮
[0280] 在一些实施例中,轮式物体的全部四个车轮都是万向的。在这样的实施例中,购物车的以车身为中心的速度矢量所采取的路径指向“向前”例如垂直于两个对应万向轮轴线之间的线的约束可能是不适用的。
[0281] 图18示出了这个现象。在图1800中,购物车1805正在向前方向上移动,例如在垂直于推车的轮轴的方向上。四个车轮1815在推车运动的方向对齐,该方向平行于x轴。智能定位系统1810内的磁力计基于推车的方向(例如,x轴)生成航向。
[0282] 在图1830中,购物车1805顺时针转向。车轮1815根据每个单独车轮处的运动方向对齐。然而,由于推车的前部和推车的后部没有朝相同的方向转向,所以四个车轮可能不会彼此对齐。航位推算系统1810内的磁力计基于推车的方向例如在转向开始时的x轴和在90°转向结束时的y轴生成航向。尽管有转向,磁力计仍能够生成正确的航向数据。
[0283] 在图1860中,购物车1805平行于y轴侧航,例如向侧向移动。四个车轮1815旋转以在平行于y轴的推车运动的方向上对齐。但是航位推算系统1810内的磁力计未检测到推车航向的变化。磁力计输出可以与图1800中的输出基本相同。基于磁力计输出的航位推算能够产生错误的位置估计。如图1890中所示的,除了向前方向以外,所有方向上的四个万向轮都会出现类似的误差。
[0284] 不存在该约束的一个解决方案是在至少一个车轮中包括磁力计,例如航向/万向轮角度检测器385。航位推算系统能够将车轮中的磁力计读数与智能定位系统中的磁力计读数结合起来以估计推车的航向。例如,当来自两个磁力计的读数具有较大差异时,能够检测到侧航运动(例如,如图1860或1890所示的),并且随后智能定位系统中的磁力计的航向估计没有后续变化。对于这样的运动,系统能够使用来自车轮中的磁力计的数据而不是来自智能定位系统中的磁力计的数据。作为另一个示例,当来自两个磁力计的读数具有较大差异时,能够检测到转向运动(例如,如图1830所示的),并且随后智能定位系统中的磁力计的航向估计有后续变化。然而,除了智能定位系统中的磁力计之外仅用一个车轮中的磁力计来将转向运动与其他类型的运动例如侧航运动区分开可能计算量很大。
[0285] 对与前万向轮和后万向轮相关联的推车运动不存在约束的另一种解决方案是,在至少一个前轮和一个后轮中包括磁力计。推车车身的航向能够被估计为例如近似前轮和后轮的航向的平均值。在这样的实施例中,车轮至少能够存储原始磁力计读数和时间戳记的旋转检测;这些原始磁力计读数能够与智能定位系统磁力计和加速计时间序列数据一起进行处理,以产生推车的航向历史。通过至少一个前轮和一个后轮中的磁力计,系统能够通过比较来自前轮的磁力计读数与来自后轮的同时读数来区分转向运动和侧航运动。
[0286] 额外的或可替换的解决方案是提供传感器,车轮能够通过传感器直接地确定其万向轮角度,例如车轮运动方向与推车车身之间的角度。c.室内模式
[0287] 能够将室内航位推算用于多种功能,包括但不限于:(1)跟踪购物者行为(例如,在整个商店中的停留时间和移动),用于后处理分析,或用于实时行为例如向购物者发送有针对性的广告(其可以输出在附接至推车把手的智能定位系统的显示器上),估计大量购物车正在前往结账区域(例如,以增加结账人员的数量)等;(2)使用航位推算估算来推断入店行窃,例如行走通过(并且可能暂停在)具有高价值的易被盗物品(例如酒或化妆品)的商店区域,随后推车运动朝向出口而没有通过结账台。室内航位推算能够有利地提供方向和速度信息两者。这增强了推断入店行窃的正确性的可能性。例如,当推车在其朝向离开商店的入口/出口时比推车在其朝向进入商店的入口/出口时更匆忙,则更有可能涉及入店行窃。作为另一个示例,缓慢通过结账台(例如,并且走走停停)的购物车比起快速通过结账台(例如,不停止)的购物车更不可能涉及入店行窃。
[0288] 基于航位推算的商品损失预防的实现能够基于从航位推算估计得出的使用者或购物车行为。对于这种应用,使用航位推算系统的位置跟踪能够使用例如美国专利No.8,570,171(System for Detecting Unauthorized Store Exit Events Using Signals Detected by Shopping Cart Wheels Units(使用由购物车车轮单元检测到的信号用于检测未授权的商店离开事件的系统))中所公开的双向通信来代替位置跟踪。有利地,使用航位推算系统的位置跟踪可以不需要固定位置处的信号源例如电子物品监视塔、接入点等,从而降低监视系统的基础设施成本。美国专利No.8,570,171的全部公开在此通过引被用全部并入本文中。
[0289] 相对于室外应用的实施例,一个适合于执行这些示例室内功能的实施例可以包括以下修改中的一项或两项:(1)从磁力计读数到地理参照航向的转换函数的修改。(2)被优化用于比柏油平滑得多的瓷砖或油毡地板的旋转估计算法。
[0290] 建筑物(例如,商店)内的磁场可能与建筑物位置处的地磁场比严重失真。该失真可能主要由建筑物的铁磁元件(例如,结构钢)中的感应磁化引起。实施例能够向建筑物内所测得的所有磁场矢量添加单个恒定的校正矢量以校正失真的磁场。校正矢量能够是商店内不同点处测得的实际磁场与商店位置处的地磁场之间的差异的空间平均值。平均能够在与可能预计推车要经过的商店内的位置相对应的位置集合上进行。
[0291] 一些实施例可以执行包括以例如对应于前一段落中提及的集合的各个点的稀疏网格来存储磁场校正矢量的地图的校正方案。例如在航位推算系统上运行的导航算法能够基于当前的航位推算位置插入瞬时校正矢量。修正矢量能够被存储在航位推算系统的存储器中(例如,作为查找表)。
[0292] 在地面具有规则间隔的接缝例如瓷砖的场地中,航位推算算法能够使用振动分析来检测推车正在穿过瓷砖接缝。接缝交叉路之间行走的距离能够简单地是瓷砖的尺寸。航向估计能够提供在推车不沿直线行走并且不以直角越过瓷砖接缝时的距离估计中所需要的调整。瓷砖尺寸能够作为参数存储在站点配置文件中。
[0293] 检测和计数混凝土中的伸缩接缝的基本思想能够适用于室内瓷砖交叉路的计数。环境振动水平能够远远低于室内(由于与室外表面相比室内地板表面更平滑),并且来自瓷砖接缝的耦合脉冲的振幅能够比混凝土伸缩接缝的振幅低得多。
[0294] 具体地,一个用于跟踪室内购物车的位置的实施例能够如下所述起作用:
[0295] 在进入商店时,例如通过图1中的商店出口126或图14中的商店出口1415去向商店内部时,配备有航位推算系统的推车可以使用入口(出口)位置作为航位推算的初始位置开始室内跟踪。这个位置可以或不可以通过商店内已知点的特定精确定位(例如,磁特征)的读数来加强。同样在进入商店时,推车可以接收开始室内导航信号。这个开始室内导航信号也可以向推车提供运行参数。运行参数信息能够用于识别商店内的关键位置以及与触发防盗逻辑相关联的区域。例如,当购物车进入商店时,能够给其商店中的结账通道和/或支付点的坐标。还可以给其触发防盗逻辑的坐标。通过系统中的这些信息,如果或在推车穿过其中一个防盗区域的边界时,系统能够被触发以防止推车在不访问支付点或结账登记的情况下离开商店。
[0296] 室内时,推车能够通过航位推算识别其是否通过登记通道或是否在商店中的支付交易发生的位置处。例如,通过结合推车的位置和利用运动信息例如航向和速度,实施例能够确定购物车是否在登记通道或支付点附近并且展示与为商品付款的购物者相关联的运动轨迹。如果是,则系统能够登记推车被授权离开商店(例如,通过将离开授权的状态设置为授权状态),在离开商店的路上不锁定车轮和/或触发警报。在购物车离开建筑物后,系统能够终止室内导航模式,清除离开授权的状态,并且在被触发来如此做时开始进行室外导航。
[0297] 另一方面,如果在推车在商店内并且试图离开商店的任何时候都不符合购买商品的条件,则系统能够经由航位推算逻辑确定推车正试图离开但还没有被授权离开商店。系统能够锁定车轮和/或触发警报。警报可以在推车上和/或在推车外部,例如在能够与智能定位系统通信的电子物品监视塔上。触发防盗系统能够在与高价值和/或高风险的商品例如酒、健康和美容商品等区域相关时完成。可替换地或额外地,触发防盗系统能够基于推车通过例如在商店的出口附近的边界线来完成。
[0298] 为了增加航位推算算法的精度,实施例能够将其读取的实际磁场与先前记录的商店的磁场绘图进行比较。商店中的关键点能够在系统安装阶段进行调查;这些关键点的磁特征可以被存储在表格中。当系统经由航位推算导航检测到其靠近这些特征点之一时,它能够将其实际读数与所存储的读数进行比较,并且能够确定它实际何时位于所存储的磁场读数点附近。这能够用于重置航位推算算法中的误差。d.经由半径定位或双曲线定位的位置估计
[0299] 代替航位推算或除了航位推算之外,实施例可以使用RF信号通过半径定位来完成位置估计。例如,单个协作的RF信标/定位点,例如图3中的395,能够位于导航系统已知的位置处。RF信标或导航系统能够作为半径定位的发射器;另一个设备是接收器。
[0300] 在发射器和接收器都能够改变频率而不改变各频率合成器下面的锁相环(PLL)的相位的装置(具有这种能力的RF芯片包括NXP MKW31Z和微芯片AT86RF215)中,发射器能够在几个不同的频率上进行传输。路径的相位差能够从接收到的信号中进行估计。这个相位差可以被计算为该特定频率下的半径(例如,发射器和接收器之间的距离)模波长。用在几个频率处推导出的相位差,能够计算出半径的单一值,例如通过模运算方法来找到能够匹配所有不同的测量相位值的半径值。实际上,在噪声和其他问题的情况下,模运算方法能够与最佳拟合估计器一起使用。
[0301] 在RF和超声发射器和接收器都可用的安装中,半径定位能够通过使用RF信号和超声信号被计算出来。固定单元,例如信标,能够是超声发射器。这能够是优选实施例,因为超声传输比超声接收消耗更多的电量,并且因为固定单元典型地能够具有线电源。然而,轮式物体也可以用作超声发射器。在请求半径定位(例如,其来自轮式物体或固定单元,例如其由中央处理系统发起)时,发射器能够同时发送RF传输和超声脉冲串。半径可以被计算为接收时间的差除以声速。
[0302] 代替航位推算或除了航位推算之外,安装可以提供经由双曲线定位的位置估计。这样的安装能够在固定侧具有两个天线(例如,900MHz或2.4GHz),例如在固定位置处的RF接收器。这两个天线中的每个天线能够经由已知长度的同轴电缆连接到RF相位检测器的输入端。RF相位检测器能够输出两个输入之间的相位差。具有智能定位系统的轮式物体能够在几个不同的频率上顺序传输。这个操作能够类似于上述半径定位的第一个示例,除了没有要求发射器能够改变频率而不改变下面的PLL的相位。固定侧能够根据频率获得一系列相位差。使用与半径定位的第一个示例中所述的相同方法,能够从相位差中推导出有符号的差别距离。该有符号的差别距离能够定义双叶双曲面的一半。如果轮式物体被限制在平面上,如在购物车的情况下,该平面和该双曲面的交叉是双曲线。推车的位置能够被估计为是在该双曲线上。半径定位或双曲线定位能够与航位推算位置估计结合使用,以提高位置定位的精度。
VII.其他改进
a.导航历史记录和回溯
[0303] 一些室内导航和回溯算法可能需要大量计算。例如,通过将结构楼层平面图(例如,参见参考图14的描述)包括为对位置估计的约束,使用具有粒子滤波器的回溯的室内导航可以提高位置精度。但是,室内导航和回溯算法的高功率要求可能不适用于那些对功率要求高度敏感的某些应用,例如购物车的导航系统。因此,在一些实施例中,可以将计算密集型导航计算的某些部分从购物车上的导航系统分发到执行计算并且将结果返回到购物车导航系统的远程计算系统(例如,在“云端”)。远程计算系统(有时称为基站)可以经由无线技术(例如,LAN、WAN或连接至互联网的蓝牙连接等)连接到推车导航系统。在一些这样的实施例中,可以使用在美国专利公开No.2016/0259061(Low-Energy Consumption Location of Movable Objects(可移动物体的低能消定位))中所描述的低能耗技术的实施例来管理推车导航系统和远程计算系统之间的通信(以及将处理空载到基站),该专利其全部内容通过引用被合并在本文中。
[0304] 推车上的智能定位系统210(例如,如关于图2所描述的)可以实现对粒子过滤器算法的计算强度较低的替代。定位系统可以处理这些计算中的一些或全部(或者,如上所述,将一些计算空载到远程基站处理设备)。计算量较少的算法可以帮助在存在许多阻碍购物车自由移动的障碍(例如杂货店的货架)的室内环境中给购物车导航。可以执行图形遍历方法,其中图形中的每个节点都表示一个推车的运动不受限制的区域,例如特定的过道,图形的边缘表示连接节点的路径,例如过道两端处的区域,其中该区域将过道连接到一个较宽的连接区域(每个较宽的连接区域也是一个节点,以边缘通向每个过道)。可以基于例如推车的估计位置的置信度来加权图的节点,并且如果(如参考图22所描述的)智能定位系统210确定估计位置中存在错误,则可以对节点进行重加权并且重新计算估计位置(例如,经由回溯)。
[0305] 将参考图22讨论回溯场景的示例,图22示出了具有单组平行过道的商店的一部分,在每一端具有连接过道。商品货架用交叉影线表示。图22所示的部分可以是参考图14所描述的商店内部1410的一部分。在图22中所示的左右两侧可能还存在其他类似的过道。为了便于描述,主要通道为南北朝向,但是这仅是为了说明,而不是限制。节点可以布置在过道内或沿过道布置,并且当推车经过节点时,这些节点可以向智能导航系统提供位置(例如,假定准确地知道节点的位置)。节点的示例包括参考图3所描述的RF信标395或固定特征385。导航系统可以使用来自节点的这些位置“定位”以增加航位推算位置估计的准确性。一个智能定位系统210的实施例可以存储(或传达给基站以进行存储)先前的推车位置的历史记录、从节点接收的位置估计的历史记录或其他导航数据(例如,磁力计测量、车轮旋转估计等)的历史记录,并且,如下面说明性回溯场景中所描述的,使用历史记录数据来提高推算航位推测的准确性。
[0306] 在示例性回溯场景中,推车205在图22中的位置1处开始。在这个讨论中(其是智能定位系统1605通常位于的位置),推车把手的中心被用作所有位置的参考基准点。
[0307] 实际的推车轨迹是如图22中所示的通过位置2、3和4,在过道A中结束。但是,在这种情况下,磁力计读数中的严重瞬时误差会导致估计的航位推算路径出现偏离,跟随点划轨迹从位置2到(错误的)位置3'和4'。
[0308] 位置3'实际上是不可能的,因为购物车无法占据与商品货架相同的空间,因此具有回溯功能的航位推算算法将为该航位推算位置分配非常低的置信度。但是,根据航位推算算法,在位置3'处,最可能的物理现实情况是,推车未能达到航位推算指示的那样向前行走,并且实际位置差不多是3",即在过道B中但不在架子里。继续行走到航位推算的位置4',直接穿过商品货架,其可能性足够低,使得触发回溯。在这种情况下,航位推算算法会重新检查存储的传感器测量的历史记录,该历史距离可追溯到最后一个可靠已知的位置2,并且找到从位置2可以到达的最有可能的节点,以减少或降低关于传感器误差的假设。
[0309] 在这个示例性场景中,假定航位推算算法没有理由怀疑从位置2继续进行的旋转计数(例如,没有隐含的车轮转速变化与测得的x轴加速度不相符),因此该算法可以假设在离开位置2后的某个时刻存在未知持续时间和幅度的航向误差。在航向上具有减少的或最小错误假设的情况下可以到达的节点是节点4,在这个场景中,这是正确的,然而航位推算算法对其推车的南北位置的估计具有非常低的置信度,直到另一个节点转换,例如转到节点1或节点2上,可以限制南北误差。b.确定各种双万向轮实施例的运动方向
[0310] 例如通过航位推算来跟踪推车可以涉及确定推车的运动方向。具有不同万向轮实施方式的推车可以以不同方式确定运动方向。
[0311] 一些推车可以具有是万向轮的一个或多个车轮以及一个或多个与车轴连接的车轮。例如,两个前轮可以是万向轮,而车轴将两个后轮刚性地固定在推车车架上(使得后轮始终指向平行于推车的方向,例如垂直于车把的方向)。在这样的示例中,推车的瞬时运动矢量垂直于两个后轮之间的线。方向传感器,例如磁力计,可以放置在各种位置以确定推车方向。例如,磁力计可以耦接到后轮或推车车身(例如,车把)上相对于后轮的方向刚性固定的任何位置。
[0312] 对于所有四个车轮都装有万向轮的推车(例如,如标题为“前万向轮和后万向轮”的章节中所描述的),确定推车移动的角度可能会更加困难。例如,如参考图18所示的和所描述的,平面图1800、1830、1860和1890示出了具有四个万向轮的推车可以移动的不同方向。刚性安装在推车的车架或车身上的磁力计不一定指示推车的运动方向。因此,可以使用传感器来确定车轮的指向航向,而与推车车身的指向航向无关。在一些实施例中,磁力计或其他方向传感器可以被放置在旋转轮或万向轮中的至少一个中,并且车轮的方向可以用于确定推车的方向。在一些实施例中,可以使用传感器来确定相对于推车的车身的万向轮角度。
[0313] 用于推车车轮的旋转计数的低成本、低待机功率和抗冲击系统往往涉及在旋转的轮毂内部的旋转永磁体。旋转的永磁体激活非旋转底架中的传感器,例如簧片开关(例如,Standex-Meder Electronics(Cincinnati,OH)的MK22-B-2)、霍尔效应传感器(例如,Texas Instruments(Dallas,TX)的DRV5023)或磁阻传感器(例如,来自Coto Technology(North Kingstown,RI)的RR120)。这样的旋转磁体可能在磁力计检测的磁场中产生干扰,并且可能降低依赖于磁力计的导航系统的精度。
[0314] 在一些实施例中,磁力计可以远离移动磁体,从而减小旋转磁体对磁力计的影响。第一车轮,例如后智能锁定轮(例如图3的智能锁定轮215),其可以固定或可以不固定(例如,它可以是万向的),可以包括旋转计数器,该旋转计数器包括旋转永磁体。磁力计可以通过位于第二车轮中,例如前轮或与具有旋转磁体的后轮对角线相对的前轮中,或在推车的把手上,与旋转永磁体保持一定距离。如果磁力计在第二车轮中,则第二车轮可以没有旋转磁体。
[0315] 除了可以指示速度的第一车轮(例如,后轮)中的旋转永磁体和可以指示指向航向的远处磁力计之外,导航系统还可以确定推车是向前还是向后移动。有不同的方法可以这样做。作为一个示例,第一车轮中的磁体可以经过相对于推车的方向刚性定位的第一传感器和第二传感器,并且可以基于是首先触发第一传感器还是第二传感器来确定第一车轮的旋转方向。作为另一个示例,使用在车轮PCBA中不同角位置处的两个磁场传感器来估算旋转磁体的角位置。考虑到旋转磁体的已知矢量磁矩,可以基于两个不同磁场传感器处的磁场矢量确定旋转磁体的可能角位置。在一些实施例中,第一车轮可以用于基于旋转磁体来确定速度,同时通过读取在第一位置(例如,在把手上)的磁力计和在第二位置(例如,在第二车轮中)的磁力计来确定向前/向后运动。
[0316] 在一些实施例中,估计由旋转磁体在磁力计处产生的磁场并且将其从磁力计所测量的总场中减去。做到这一点的便宜方法是外插法处理旋转磁体的角运动(例如,从旋转检测的时间戳来估计角速度与时间的关系),并且相对于从最近的旋转检测到当前时间的时间对该函数进行积分。如本文所述,运动检测可以用于将智能定位系统从低功率(例如,睡眠)状态唤醒。这可以帮助节省智能定位系统的能耗。在一些实施例中,第二车轮(例如,前轮)还可以包括不依赖于旋转检测唤醒处理器(例如,图3的处理器370)的系统。例如,运动系统检测可以使用例如STMicrosystems NV(Geneva,Switzerland)的LIS2DE等加速度计来确定车轮已经移动。另一个不依赖于旋转检测唤醒处理器的示例系统包括经由内部计时器周期性地唤醒处理器370并且激活第二车轮的通信系统(例如,图3的通信系统365)以从另一个车轮(例如,后轮)(例如,图3的智能锁定轮215)收听消息,表示后轮已经检测到旋转(在这一点上,推断整个推车都在运动)。c.车轮或导航模中的陀螺仪
[0317] 推车可以包括陀螺仪,以用于导航和提高航位推算导航精度,例如,如先前在标题“车轮或导航模式中的陀螺仪”章节中所描述的。陀螺仪可以确定瞬时运动和方向。一种示例陀螺仪是MEMS陀螺仪,例如来自STMicrosystems(Geneva,Switzerland)的LSM6DSL。但是,陀螺仪会使用相对大量的电能,而不断为陀螺仪供电可能不适用于某些对电池寿命高度敏感的应用,例如智能锁定轮。
[0318] 一些系统可以通过在有限的时间段内选择性地操作陀螺仪而不是连续操作陀螺仪来提高电池寿命。可以响应于确定一个或多个其他导航系统未正确运行来激活陀螺仪。例如,磁力计引导的导航系统(例如,如针对具有前后万向轮的推车所描述的)可以检测到地磁场的畸变。例如,手机中的磁体、过往的汽车或卡车中的金属以及其他磁体或金属可能靠近推车中的磁力计放置,并且引起这种畸变。在已经执行了硬铁和软铁磁力计补偿之后(例如,如先前关于图12A中的方框1220和1216所描述的),在导航系统在地磁场坐标中产生推车航向之后,经常可以检测到磁力计读数的失真。
[0319] 一个或多个因素可以指示磁力计工作不正常或遇到磁场畸变。一个因素包括确定磁力计输出的垂直分量是否正在显著变化或正在变化超过阈值垂直量(例如,变化大于0.5%、1%、3%、5%、10%、20%或更多)。另一个因素包括确定磁力计输出的矢量幅度是否正在显著变化或正在变化超过阈值幅度量(例如,变化大于0.5%、1%、3%、5%、5%、10%、
20%或更多)。另一个因素包括确定磁力计的输出是否表示不对应于低通滤波后的y轴加速度的偏航角速度(例如,偏离超出阈值量,例如偏离大于0.5%、1%、3%、5%、5%、10%、
20%或更多)。另一个因素包括在推车静止时检测磁力计输出的变化(例如,与测得的或预期的静止值偏离超过阈值量,例如偏离大于0.5%、1%、3%、5%、5%、10%、20%或更多)。
适当的数值改变可以取决于特定的使用场景。例如,当推车在室内时,由于接近铁磁货架和类似结构,预计会有更大的变化,但变化幅度为约百分之几。
[0320] 作为可能并不总是正常工作的导航系统的另一个示例,基于光的导航系统中的光传感器(例如,如参考图19和图20进一步描述的)可以被遮盖(例如,购物者在光电传感器上放置了纸质购物清单)。作为另一个示例,两个或更多个导航系统可以指示冲突的位置。
[0321] 响应于一个或多个导航系统不能正常工作或指示冲突的位置或某些其他错误,可以为陀螺仪接通电源并且将其用于提高航位推测系统或其他导航系统的准确性。否则,陀螺仪可以被切断电源或进入睡眠模式,从而降低功耗。
[0322] 通电后,陀螺仪可以提供一种替代的且更可靠的偏航角速度的来源。如果陀螺仪未安装在推车的运动平面上,则可以使用三轴陀螺仪来得到推车的偏航角速度,根据标准坐标旋转将三个单独的陀螺仪轴组合在一起(例如关于图12A的方框1208所描述的)。如果将陀螺仪安装在运动平面上,则可以使用单轴陀螺仪来得到推车的偏航角速度。
[0323] 陀螺仪可以一直保持通电状态,直到经过了足够长的时间,在此期间,磁力计读数未指示受到除了地磁场之外的其他事物的影响。d.从振动信号确定推车重量
[0324] 确定对推车的重量的估计,例如确定推车的购物篮是负载还是空载可能是有利的。推车防盗逻辑(例如,参见参考图6所描述的示例出口检测流程图600)可以至少部分地取决于估计的推车重量(或估计重量高于空载的推车重量),其可以用作一个代理,指示使用者是否试图携带装有未购买商品的购物车离开零售商店(潜在的盗窃情况),或者使用者是否要离开商店以将空载的购物车返回购物车围栏(非盗窃情况)。在潜在的盗窃情况下,可以锁定车轮(例如,参见流程图600的方框652),而在非盗窃情况下,可以指示不锁定车轮。作为另一个示例,在潜在的盗窃情况下,由于推车的负载可能是顾客的孩子(其可能坐在推车中)而不是未购买的商品,则代替锁定车轮的是,方框652的逻辑可以启动外部安全监视系统拍摄顾客离开商店的照片或视频。作为又一个示例,在与跟踪区域114的边界处(例如,停车场的边界处),无论推车是否负载,都可能希望防止被盗。因此,出口检测逻辑可以将推车车轮锁定在跟踪区域边界处,而与对推车是否负载的确定无关(或者在这样的区域中可以省略对推车负载的确定)。
[0325] 推车的重量可能会影响其他特征。例如,如先前在段落[0287]中所描述的,当确定购物车正在离开商店而没有经过结账通道或在结账通道停留时,购物车可以锁定其车轮。但是,如果推车的重量指示推车为空的,则可以允许其离开商店而不锁定其车轮。作为另一个示例,制动器接合以停止推车的速度或力可以取决于推车的重量。重载的推车可能会施加较大的速度或力来制动,以减慢负载的推车的动量。空载的推车可能会更慢地施加或施加较小的力来制动,以使推车不会突然改变动量。
[0326] 可以基于推车的振动响应来确定推车的重量。例如,负载的推车在穿过不连续处(例如,瓷砖接缝、出口隆起等)之后以与较轻的推车(例如,空载的推车)不同的振动信号振动。通过测量由不连续处所引起的振动信号,智能定位系统可以估算推车的质量或推车的负载,或仅仅确定推车是否负载(或空载)。因为空载的推车的质量是已知的,所以在一些实施例中可以估计推车中的负载的质量。在一些实施例中,由于本文描述的防盗逻辑或导航逻辑可以只需要有关购物车是否负载(而不是负载的量)的信息,所以系统会从振动响应中确定推车是负载或空载,都是并不估计负载的量(或推车的重量)。
[0327] 推车205中是否存在明显的负载(例如,大于2kg,大于5kg,大于10kg,大于15kg,大于20kg,大于25kg,大于30kg,大于50kg等)通常可以至少部分地基于购物车响应于冲击脉冲的振动信号,特别是响应于沿着图2所示的坐标系230的Z轴的脉冲的振动信号来确定。
[0328] 篮筐中的等于或大于空车质量的负载将表现出类似于悬臂的质量,尤其是在Z轴上。包括负载质量和推车篮所产生的(半)刚性臂的振铃振荡器的能量大部分集中在Z轴上。但是,加速度/振动/振铃的最高振幅在X轴上,主要是因为推车相对于地面在X轴上移动的顺从性更高。例如,推车的整个车架在轮轴上少量摇摆。因此,参考图21A和图21B所描述的实验的令人吃惊和出乎意料的结果是,振动信号在X轴振动数据中表现得最为强烈,而不是Z轴振动(脉冲冲击最初发生的方向)。
[0329] 因此,振动信号应在Z轴正向脉冲后显示振铃。例如,可以通过推车205的把手处的如图2所示的智能定位系统210来测量振动信号。因此,可以基于推车的振动响应来确定推车的重量。在经过不连续处(例如,瓷砖接缝)之后,负载的推车以与空载的推车不同的振动信号振动。
[0330] 图4所示的硬件,其包括三轴加速计410、其他振动传感器415和处理器425,用于处理振动以推断车轮旋转,可以用于测量沿Z轴的脉冲和沿Z轴、X轴或Y轴的振铃(后脉冲)。如将要描述的,X轴振动数据可以提供有用的特征,以帮助确定推车是否负载。
[0331] 图21A示出了空载的钢构架的53磅的购物车(来自Unarco Industries(Wagoner,OK)的M90Z型购物车)以约1.0米/秒的速度越过瓷砖接缝的时域三轴加速度的示例。使用与图11B中的数据相同的实验设置来测量数据。经过初始脉冲后,推车经历沿X轴的明显振铃,和沿Z轴的快速振铃(基本上同时)。
[0332] 图21B示出了与图21A相同的推车以相同的速度经过相同的瓷砖接缝的时域三轴加速度的示例,但是在篮筐的前部具有5kg的负载。经过初始脉冲后,推车经历沿X轴的较小振铃,和沿Z轴的缓慢振铃。
[0333] 对照图21A和图21B中所示的振动信号,与负载的推车中低得多的X轴振铃的程度相比,空载推车中X轴加速度的明显的振铃发生在车轮掉入接缝的Z轴脉冲不久以后(例如,约1至3ms)。例如,空载的推车中X轴振铃的振幅最初约为2-3g(例如,衰减几毫秒),并且振铃发生的时间为零点几毫秒(频率为1-2kHz)。相反,负载的推车在X轴上有较小的振铃,其初始振幅小于约0.5g(例如,振幅比空载的推车低4至6倍)。因此,在一些实施例中,分析振动传感器数据以在X轴数据中发现振动信号,并且从X轴振动信号中确定推车是负载或空载。例如,空载的推车的振动信号可以包括具有大于约1kHz(直到约5kHz)的频率和大于约1g(或大于2g或大于3g)的振幅的X轴振动。负载的推车的振动信号可以包括具有大于约
1kHz(直到约5kHz)的频率和小于约0.5g(或小于0.2g)的振幅的X轴振动。在测量Z轴脉冲(在约0.5g到约3g的范围持续少于约10ms的时间)后,负载或空载的推车的X轴振动信号可能会出现在约1ms至约5ms(或1ms至10ms)的时间段。因此,在一些实施例中,空载的推车的X轴加速度的幅度高于振动阈值(例如,约1g),并且负载的推车的X轴加速度的幅度低于振动阈值。
[0334] 考虑到购物车机械设计的巨大差异,其他特定的振动信号可以表征负载和空载的推车,并且特征中可能会发生变化。然而,图21A和图21B中所示的数据表明,对于普通的推车设计,可以从振动传感器数据中容易地检测到负载和空载的推车之间的振铃特征。例如,带有塑料(例如,ABS的或ABS聚碳酸酯混合物的)篮筐(和金属车架)的推车的振铃要小于带有金属篮(和金属车架)的推车,因为从瓷砖接缝到车架的初始脉冲的耦合会导致耦合(例如,金属与塑料)散开(例如,具有随机分布相的多个机械接触点)并且具有一定的吸收性。预期两层篮筐式推车具有两个自然的振铃频率,每个篮筐一个。
[0335] 因此,对振动传感器数据的分析可以确定推车是否负载(或空载),其中负载可能是几公斤或更大。可以使用其他购物车特征(额外地或可替换地)来确定购物车是负载还是空载。例如,推车的速度特征可以取决于推车的负载。与负载的购物车相比,购物者推动空载的购物车可以更容易地使购物车达到典型速度(质量增加,需要购物者加速)。通过检查购物者使用统计信息,可以确定对于负载推车与空载推车的典型的加速/减速时间、速度、推车上的人为推力和距离,并将其与相应的测量值(在特定情况下的)进行比较,以确定推车是负载或空载。作为示例,购物者使用统计信息可以用于建立典型的人类购物者能够施加一定量的力来推动推车达到典型的终端推车速度(例如,类似于步行速度)。假设人的力F和终端推车速度v无论推车是负载还是空载时都大致相同,推车质量M的估计值为M=(F/v)t,其中t是(从静止状态)达到终端速度的时间。由于比率(F/v)大致与推车是负载或空载无关,因此可以使用时间的测量值t来推断推车的近似质量M,或者至少推断出推车可能负载或空载。
[0336] 额外地或可替换地,可以如下所述的来确定与特定购物者相关联的空载推车的典型初始加速度a0。从推断推车可能是空的初始状态开始,例如从外面进入商店开始,或者从已经静止了特定时间例如一小时的推车开始,或者在已知典型地仅容纳空推车的位置例如推车围栏中,可以优选地从室内停留开始,从推车的第一次向前运动开始测量初始空载加速度a0。
[0337] 可以从静止到特定的推车速度v0来测量加速度a0,该特定的推车速度小于典型的终端推车速度,例如是0.5m/sec。可以将加速度确定为a0=v0/t,其中t是从静止到最终速度的时间。从购物者启动负载的购物车的观察中,已经注意到,在靠近加速过程的开始时,负载的购物车的加速度典型地比空载的购物车的加速度小得多(例如,小于其75%、50%、25%等)。在某些情况下,购物者可能会“倾斜”到负载的推车中,以使其更快地移动,这可能会增加加速度。因此,(特别是在加速过程的早期)a0的测量可以清楚地表明购物车是负载还是空载。
[0338] 在一些实施方式中,在每次从室内停留开始时,可以将平均加速度a和与推车/购物者组合相关联的特定a0进行比较,并且如果a基本上小于a0,例如小于a0的75%或50%或25%,则暂时推断购物车负载。空载的推车的初始加速度在向前和向后方向上可能不同。同样,负载的和空载的推车的减速度也可能不同,特别是,负载推车从v0到静止的平均减速度d可能在幅度上比空载推车大得多(例如,大于125%、150%、175%等),因为随着购物车放慢购物者可能会本能地朝购物车向后旋转。
[0339] 如上所述,响应于确定推车是否负载,推车出口检测逻辑(例如,从图6的方框604开始)可以例如通过锁定负载推车的车轮,但不锁定空载推车的车轮,和启动监视成像系统(作为锁定推车车轮的补充或替代)等,来修改锁定序列(例如,方框652)。e.多级导航(3-D导航)
[0340] 确定和使用推车的当前高度可能是有利的。例如,推车可以在多楼层结构中运转,其中不同楼层具有不同的购物车围护边界(例如,图1的边界118)、支付点(例如,先前在段落[0287]中所描述的或如美国专利No.8,463,540中所描述的结账通道)、楼层地图、过道、磁场配置、访问权限(例如,可以允许购物者将购物车带到建筑物的停车位,但不允许到达建筑物的住宅层或办公层)等。因此,不同的推车围护逻辑可以用于结构的不同级。例如,围护系统的配置文件可以包括该结构的多级地图(类似于参照图14所描述的底层平面图1400)。
[0341] 多级地图可以包括与多个表面例如建筑物的楼层有关的信息,并且可以包括在不同楼层之间的坡道、自动扶梯电梯或其他垂直运输路径的信息。可以为多层结构中的多个楼层提供例如图14的底层平面图1400之类的底层平面图,并且访问权限可以取决于例如楼层、运输路径(例如,可以允许推车进电梯,但不允许上自动扶梯)等。
[0342] 可以使用各种垂直位置检测器来确定推车的垂直位置。垂直位置检测器可以是如图3所示的智能定位系统210的一部分。垂直位置检测器的示例包括大气压力传感器、高度计、加速度计、信标等。在一些实施例中,推车可以包括垂直位置检测器337(如图3所示),例如大气压力传感器(例如,NXP(Eindhoven,the Netherlands)的MPL3115A2),其可以用于确定推车的高度(或高度上的变化)。压力传感器的差分精度可以为约10cm。在固定参考点处(例如,在一楼的前门处,其他楼层的电梯门处,自动扶梯的顶部和/或底部等)的一个或多个大气压力传感器可以提供温度补偿的参考压力。可以将参考压力传达给推车中的处理器,处理器可以将来自推车上的大气压力传感器的大气压力读数与参考压力进行比较,以相对于参考压力的高度确定推车的高度。
[0343] 在一些实施例中,推车可以包括加速度计(例如,图4的加速度计410)。由加速度计指示的垂直加速度可以用于确定各种情况下的垂直行程。例如,在第一种情况下,当推车同时垂直地和水平地移动时,例如在楼层之间的倾斜坡道上移动,推车加速度的垂直分量可以进行积分(二次,从加速度到速度再到位移)以产生垂直位移。在第二种情况下,结合从几秒钟内相当大且相对平稳的垂直加速度(幅度典型地为百分之几到十分之几g),然后平稳减速(与垂直加速度相比具有相反的符号,并且具有相当的幅度)和检测到很少的或没有检测到旋转或横向运动(在垂直于垂直方向的方向上),可以推断出在电梯中的推车行程。可以对垂直加速度时间序列积分,以产生可以与最接近的楼层高度匹配的标称垂直行程。通过假设电梯停在定义的楼层上,通常可以忽略任何积分误差,并且可以将气压计重新校准到已知的楼层高度。
[0344] 在一些实施例中,可以使用各标记物来确定推车的垂直位置。一些建筑物具有购TM物车输送系统,例如Pflow Industries(Milwaukee,WI)的Cartveyor ,用于在各楼层之间移动推车。这种输送机也称为行进器(travelator)。这种输送机通常在推车在输送机中时抑制推车车轮滚动或旋转。这些输送机有入口和出口。这些入口和出口可以被包括在安装地图中(例如,参见底层平面图1400,其可以被改编为呈现除了建筑物中的地平面之外的一个或多个楼层)。智能定位系统可以通过结合靠近输送机的入口之一的航位推算位置和紧接着的振动(来自输送机)和基本不存在的车轮旋转,来确定推车在这种输送机中。在一些实施例中,特定位置信标(例如,图3中的RF信标395)和/或进入/离开标记物(例如,图3中的固定特征385)可以用于在配置文件(例如,如表1所示的)中发信号,指示这些信标和/或标记物位于哪一楼层。
f.多级磁测量
[0345] 可以使用多级磁场地图来确定推车的位置。可以例如通过使用磁力计来记录例如图1的零售商店110内部或停车场中的区域的磁特征来生成磁场地图。例如,这可以包括沿着零售商店的各个过道往下。如参考段落[0290]-[0291]所描述的,导航系统的一些实施例可以使用校正矢量来补偿由建筑物里面的金属结构或磁结构所引起的地磁场中的畸变。校正矢量可以至少部分地补偿商店中的水平或垂直分层的磁异常。
[0346] 在一些实施例中,推车能够使用磁力计(例如,2个、3个、4个、6个或更多)来提升磁导航准确性。磁力计能够被用于检测与磁场地图上的特定位置处的磁场相匹配的磁场。磁力计能够被用于确定推车的指向航向,该指向航向能够被用于航位推算。由于磁力计典型地在地面上方特定高度处固定在推车的车架上或固定在推车车轮内的固定(或旋转)位置处,因此磁力计可以提供与结构物内的相应高度处的磁场有关的信息。因此,多个磁力计提供了与楼层水平上方不同高度处的磁场垂直分层有关的信息,并且当推车在结构物周围水平地移动时,磁力计会检测磁场的水平分层。导航系统可以存储与结构物的磁特征有关的信息(例如,本地地存储在智能定位系统中或存储在远程计算基站的存储器中)。
[0347] 在一些实施例中,推车包括两个(或更多个)智能定位系统210,它们彼此(经由有线或无线技术)进行通信,并且每个都包括刚性地耦合到推车车架的磁力计。例如,一个磁力计可以安装在推车的把手(例如,图16的把手1610)上,而第二个磁力计可以安装在推车的篮筐的前横杆上。
[0348] 在一些实施例中,单个智能定位系统210被安装在推车上,例如被安装在把手、篮筐上等。另外,一个或多个磁力计可以被包括在车轮或万向轮中的一个或多个中。车轮上安装的磁力计可以是智能锁定轮例如图2的智能锁定轮215的一部分,或是独立的磁力计组件的一部分,该磁力计组件至少包括与处理器、通信链路和电源(但没有锁定机构)相关联的磁力计。
[0349] 这种车轮的实现方式可以包括Rohm Kionix(Kyoto,Japan)的KMX62六轴磁力计/加速度计,NXP(Eindhoven,the Netherlands)的带有2.4GHz收发器的MKW31Z MCU,以及电池,被模制在车轮内并且被配置为随车轮旋转。KMX62的加速度计功能可以被用于推断磁力计的当前角位置,因此磁力计输出可以被转换为本地水平参考系。这种旋转磁力计在对应于其圆形路径的直径的高度范围内对局部磁场进行采样。
[0350] 为了获得更高的精度,推车可以(可选地)在推车车身中的不同位置具有多个磁力计,并且在一个或多个车轮或万向轮中具有磁力计。一个或多个车轮或万向轮可以包括通信系统,以将磁力计的测量传递给智能定位系统,例如图3的智能定位系统210。
[0351] 磁力计导航可以在室内或室外与航位推算法导航(或其他导航系统(例如,用照明标志的)一起使用)。例如,当地磁场明显畸变时,可以主要依靠航位推算系统。例如,在建筑物附近的室外位置,地磁场可能会明显畸变。中型建筑物在建筑物外约3米内可能会有畸变的地磁场,而由更多金属制成的大型建筑物会使地磁场畸变达到10米或更远。但是,在没有明显的地磁畸变的情况下,磁力计可以在大约0.3度或小于1度的范围内进行校准,并且磁力计导航可以在航向误差的约1或2度范围内是准确的。在没有明显地磁畸变的其他情况下,磁力计校准和磁力计导航可以基于其他因素,例如组件设计、温度等,实现不同级别的精度。
[0352] 磁场图可以是多层图。可以在可能放置导航推车上的磁力计的不同高度处记录不同的层。例如,如果磁力计位于推车车轮中离地面2-3英寸的位置,则第一磁场图层可以包括离一楼地面2-3英寸处的磁特征。作为另一个示例,第二磁场图层可以包括在推车的把手上的磁力计的高度处的离一楼地面3或4英尺处的磁特征。可以为建筑物的地下室、二楼、三楼和其他楼层设置附加磁场图层。可以记录各层之间的过渡区域的附加磁场图,例如沿着推车自动扶梯或在电梯内部的。磁场图可以包括在楼层平面图1400或站点配置文件中。
[0353] 如本文所述,多级磁场图可以包括在不同位置的不同高度处的磁特征,航位推算系统可以被配置为在检测到一个磁场图中的位置的磁特征时将其位置设置该位置。
[0354] 基于映射的磁特征所确定的位置可以与一个或多个其他导航系统结合使用。例如,航位推算系统可以用于确定推车处于第一位置,并且基于映射的磁特征的第二位置可以用于确认第一位置的准确性。
[0355] 在一些实施例中,每个导航系统确定位置和推车处于该位置的置信度。例如,航位推算系统可以用于以90%的置信度确定推车处于第一位置,并且基于映射的磁特征以90%的置信度确定第二位置。如果第一位置和第二位置匹配,则置信度可以增加到大于90%(例如,95%或100%)的数字。因此,推车的位置可以确定为第一位置和第二位置的结合,并且可选地由置信度加权。如果第一位置和第二位置不匹配,则在一些实施例中,能够以较低的置信度来确定第一位置和第二位置之间的第三位置(例如,第一位置和第二位置的(加权)平均值)。如果第一位置和第二位置不匹配,则在一些实施例中,第一导航系统可以使用来自第二导航系统的数据来回溯并且重新计算结果。在一些实施例中,如果位置的置信度下降到阈值以下,则可以使用其他导航系统来增加置信度,例如通过消耗额外的功率来开启和使用陀螺仪。回溯的示例参考图22进行了描述。
[0356] 区域的磁指纹可能会改变。例如,金属货架可以在商店中重新布置,这可能会影响磁力计检测到的磁指纹。磁指纹和导航历史数据可以被传输给计算机,计算机可以分析沿着推车路径收集的磁指纹并且检测指纹的变化。可以生成新的磁场图,将其传达给推车(例如,从远程基站),并且存储在推车的存储器中。可以使用各种机器学习人工智能或神经网络来分析随时间变化的磁场图数据(磁历史)以了解结构中的磁特征。g.使用照明标志的导航
[0357] 除了在其他地方所描述的磁特征和RF特征之外,或者作为其替代,已知位置处的光源的特征可以用来帮助确定推车的位置或指向航向。光特征的测量可以用来补充航位推测位置信息。一个已知位置的固定光源的示例包括位于建筑物内部的灯(例如,商店中的顶部荧光灯)。另一个示例包括停车场中的灯,其可以在晚上打开。可以将包括光源的地图或位置以及光源的特性的数据提供给智能定位系统例如图3的智能定位系统210。光源的地图或位置(和可选地,其属性,例如光检测器平面上方的高度、光功率或光功率的角度依赖性)可以是楼层平面图1400的一部分,或可以被包括在表示购物车所在的环境的站点配置文件中(例如,请参见表1)。楼层平面图1400或站点配置文件可以被存储在智能定位系统中的非暂时性存储器中。
[0358] 图19示出了使用照明标志在户外导航推车的的示例系统1900。在图19中,从点光源1910例如停车场灯射出的光到达推车1905。推车1905与点光源隔开隔开径向距离r,包括水平距离d和垂直距离h的分量。在图19中还示出了极角θ(从垂直向上的方向测量)。
[0359] 推车1905可以包括围绕光传感器的不透明外壳和被放置为穿过不透明覆盖物的孔的光管,使得光传感器被配置为检测通过光管的环境光。外壳、光传感器和光管可以用作图3所示的智能定位系统210中的光检测器333。例如,可以在图16所示的智能定位系统1605的表面上形成光管(例如,透光材料,例如聚碳酸酯),并且将光引导至被包括在系统内部的PCBA1705上的光传感器。
[0360] 示例性光源1910在水平距离d处被安装在水平光管孔的平面上方的高度h处,因此为径向距离是 示例光源在向下的半球中均匀地发射光,使得与光源相关联的辐照度Ee与关注的角度,极角θ和方位角 (例如,从图19中的页面出来)无关。为了更好地帮助理解这些概念,图19中的示例示出了没有其他光源对通过光管孔的光通量有显著贡献,并且所有其他光源组合贡献均小于通过光管孔的光通量的几个百分点(例如,1%、3%、
5%)。通过孔A接收的光功率P为
其中,P0是光源的总光功率。可以使用光传感器,例如Broadcom,Limited(San Jose,California)的APDS-9008来测量在光管孔处所接收的光功率P。
[0361] 在以下示例中,购物车的坐标是在XL、YL笛卡尔坐标系中测量的,该坐标系在商店中是固定的(请参见图20,其中YL平行于过道,XL垂直于过道)。这些坐标不同于本文所述的可以被智能定位系统用来执行航位推算位置估计的以推车为中心的笛卡尔坐标。
[0362] 示例推车1915开始于位置x1,y1(在以商店中心的坐标系中),其中接收的光功率是P1,并且航位推算系统估计推车1915的位置为 当推车1915行走至第二位置x2,y2时,航位推算系统确定推车1915沿估计的方向ρ行走了距离d,到达点 在第二位置x2,y2,接收到的光功率为P2。
[0363] 在某些情况下,ρ和d中的误差相对于被包括在 中的累积航位推算误差可能很小,并且与,使用照明标志的导航可能比没有照明标志的航位推算更为精确。最可能的真实起始位置能够通过减少或降低查找式3中的∈x和∈y时的误差项来确认,式3减少或降低了式4中的误差项,受式5约束。P1(x12+y12)3/2-P2(x22+y22)3/2     (4)
x2=x1+d cos ρ和y2=y1+d sin ρ     (5)
[0364] 可以通过解析求解式3-5或使用数值优化法(例如,线性或非线性编程、最小二乘法、顿法、梯度下降法等)来减少或降低误差项。
[0365] 如所讨论的,除分析方法之外或代替分析方法,一些实施例可以使用数值最小化法。在一些情况下,数值最小化法例如梯度下降法可以对测量误差更具抵抗力。当光源输出与极角θ和方位角 无关时,只要据等式4给出角度依赖性的函数f1(θ)和 在数值上已知并且在关注的角度范围内是单峰的,可以使用梯度下降法,其中接收到的光功率为:
[0366] 给定一组在已知的x-y位置的点光源,这些光源的高度(例如,在光检测器的平面上方或在地板上方)、光功率或光功率的角度依赖性、起始点和沿着推车行走的路径的各个点所测量的光功率能够被用来再次通过优化算法例如梯度下降法,通过减小或降低总误差函数来找出推车在该路径上某个点的绝对位置。误差函数中待减少或降低的各个项的权重可以取决于各个光源位置的准确性、光功率和光功率的角度依赖性。
[0367] 对光传感器输出的时间历史进行额外校核可能对于从光源到光管孔的路径没有阻塞的确认很有价值,例如,光传感器输出的时间变化率应与推车的已知速度或运动方向一致。可以确定与此类一致性的偏差,并且可以在优化计算中忽略或减少不一致期间所获取的数据的权重。
[0368] 这些类型的计算可以由图3中的处理器和存储器325执行。但是,处理这些类型的计算可能使用大量能量。可能希望在外部计算系统(例如,基站)处执行计算,同时智能定位系统经由图3的通信系统330传达原始测量或预处理过的测量,然后接收更新的位置估计。当一个或多个车轮的旋转指示有运动时,也可以执行这些类型的计算,而当车轮的旋转指示推车处于静止状态时,处理器可以停止执行此类计算。
[0369] 图20示出了使用照明标志在室内导航购物车2005的的示例系统2000。购物车2005包括智能定位系统210(例如,如相对于图2和图3所描述的)。智能定位系统210包括光检测器333,光检测器333包括光管孔和光传感器。推车在示例杂货店内移动,该杂货店包括照明器材2015A、2015B、2015C,例如是荧光灯或LED灯管。在这个示例中,示例照明器材包括以很小的间隔(例如,小于10cm)平行地安装在每个过道的轴线上方并且与之平行的两个灯管。商品货架排列在过道的两侧。在一些实施例中,光管孔可以在约1mm2至100mm2的范围内,以获取用于足够的光传感器信号的光。图20示出了三个照明器材,例如Progress Commercial Lighting(Greenville,South Carolina)的P7137-30STR型照明器材,每个包括两个17W的T8荧光灯管,中心隔开122cm(48英寸),位于灯管孔上方2米的高度处。
[0370] 当购物车的光传感器通过器材的中心线下方时,购物车在这些器材之一下方通过的运动能够在光传感器输出中产生峰值,而与交叉角无关。峰值可能相对尖锐。可以预期,根据孔XL坐标的峰锐度将与交叉角无关,尽管峰锐度通常可能会根据在YL坐标中中心线相交的距离增加而有所下降(例如,在孔越过沿中心线三个照明器材串的中间向下延伸的中心线时,孔距离器材的中心越远)。峰的“模糊”程度可能取决于照明器材的特定特征(例如,荧光灯与相同标称亮度的LED管),实际上在某些情况下,随着显著偏离中心的相交,可能无法检测到峰的显著增宽。照明标志的可靠特征是峰值的存在。
[0371] 请注意,如果光传感器以相对于水平交叉速度较高的速率采样,例如,每秒大于约100个样本且穿越速度为1米/秒,则有时可能会分辨出两个单独的峰,第一个峰在孔通过双灯管器材的第一个灯管正下方时,第二个峰在孔通过双灯管器材的第二个灯管正下方时。
由于灯管中心典型地相距不到十厘米,因此只有非常高的采样率才能分辨出双峰。
h.多导航系统协同作用
[0372] 多个导航系统的联合使用可以产生超出单个部分总和的协同作用。作为协同作用的一个示例,一个导航系统可以用于确定另一个导航系统是否无法正常运行,并且可以使用起作用的导航系统。例如,航位推算系统可以与使用照明标志的导航结合使用,以确定光传感器是否被挡住。如果航位推算系统确定移动而光传感器未检测到照明变化,则这可能表示光传感器和/或光管被遮盖、关闭或发生故障。光传感器输出的时间变化率应当与推车的已知速度和运动方向一致。不同的导航系统可以确定位置、航向和速度,并且可以基于已知的错误率对不同系统之间的细微差异进行加权平均,以确定平均的估计位置、航向和速度。较大的差异可能表明导航系统无法正常工作,例如如果光管被遮盖了一段时间,并且当有差异的导航系统恢复工作时,它可以使用来自其他导航系统的最新位置、速度和指向信息来再次开始导航。
[0373] 图23示出了协同作用的另一示例,其中可以使用多个导航系统来以提高的置信度确定推车的更准确的位置。推车2305可以如标题为“RSSI辅助的航位推算”的章节中所讨论的,使用航位推算导航系统和RSSI两者。
[0374] 推车2305开始于第一位置2310。航位推测系统估计推车移动到第二位置2315。但是,航位推算系统可能会以已知的速率累积错误,以使第二位置的第一置信度水平可能相对较低(50%的置信度,4米以内可信等)。不同的实施例可以使用不同的置信度系统。
[0375] 例如先前相对于图13所描述的接入点136,可以向推车2305广播信号。基于RSSI计算,推车可以以第二置信水平确定其位于距接入点136为固定的径向距离2320的圆弧上。
[0376] 基于来自航位推算系统的结合信息,可以确定推车在估算位置2315和弧2320上或其之间的某处。例如,可以结合数据以确定推车2305在位置2325。此外,推车在位置2325处的置信水平可以高于第一置信水平和/或高于第二置信水平。例如,导航系统可以以90%的置信水平或在+/-1米内确定推车2305在位置2325处。
[0377] 当确定位置的最小置信度阈值时,可以执行某些功能,例如在怀疑有入店行窃时激活购物车上的制动器。
[0378] 尽管相对于航位推算和RSSI描述了图23,但是将理解,这些概念可以应用于导航系统的其他组合。其他方面
[0379] 任何导航系统功能能够与本文中所描述的任何其他功能一起使用例如,用于使用导航历史记录和回溯的技术、双万向轮、陀螺仪、确定推车重量或确定推车是负载或空载、多级(3D)导航、多级磁传感器、具有照明标志的导航、RF数据(例如,RSSI)、磁力计数据或振动数据中的任何一个可以单独使用,或彼此组合或与其他导航(例如,磁航位推算)技术或防盗技术组合使用。例如,以下任何方面的任何元素能够与任何其他方面组合。本文提出了方面1-108的所有可能的组合和子组合的设想。
[0380] 在第1方面中,一种用于轮式物体的导航系统,该导航系统包括:振动传感器;以及用可执行指令编程的硬件处理器,分析来自振动传感器的振动数据以确定轮式物体的车轮的旋转速率。
[0381] 在第2方面中,如方面1所述的导航系统,其中硬件处理器被编程为分析振动数据的频谱。
[0382] 在第3方面中,如方面2所述的导航系统,其中硬件处理器被编程为识别频谱中的第一峰,该峰与和轮式物体的向前方向或向后方向中的振动的振动数据相关联。
[0383] 在第4方面中,如方面3所述的导航系统,其中硬件处理器被编程为将车轮的旋转速率确定为第一峰的频率的谐波频率。
[0384] 在第5方面中,如方面4所述的导航系统,其中硬件处理器被编程为通过分析频谱在第一峰的谐波频率处是否存在第二峰来验证所确定的旋转速率。
[0385] 在第6方面中,如方面5所述的导航系统,其中硬件处理器被编程为分析频谱在第一峰的第一奇次谐波频率处是否存在第二峰。
[0386] 在第7方面中,如方面1至6中任一所述的导航系统,其中硬件处理器被编程为基于所确定的车轮旋转速率和车轮周长,估计轮式物体的向前或向后速度。
[0387] 在第8方面中,如方面1至7中任一所述的导航系统,其中该导航系统被配置为接收与参考位置有关的信息,并且硬件处理器被编程为至少部分地基于该参考位置重置轮式物体的位置。
[0388] 在第9方面中,如方面1至8中任一所述的导航系统,其中硬件处理器被进一步编程为对轮式物体行走的表面上的规则的边界进行计数。
[0389] 在第10方面中,如方面9所述的导航系统,其中硬件处理器被编程为在垂直轴上分析振动数据的时域序列。
[0390] 在第11方面中,如方面1至10中任一所述的导航系统,其中硬件处理器被编程为对地磁场应用校正映射以补偿由于存在磁性元素对地磁场的扰动。
[0391] 在第12方面中,如方面1至11中任一所述的导航系统,其中硬件处理器被进一步编程为至少部分地基于振动数据动态地改变DR位置估计方法的模式。
[0392] 在第13方面中,如方面1至12中任一所述的导航系统,其中轮式物体包括人力推动的推车。
[0393] 在第14方面中,如方面13所述的导航系统,其中DR系统被安装在推车的把手上。
[0394] 在第15方面中,一种用于人力推动的推车的导航系统,该导航系统包括:磁力计;加速度计;振动传感器;被配置为与人力推动的推车的车轮通信的通信系统,该车轮包括被配置为响应于接收到锁定信号而抑制车轮旋转的制动器;以及硬件处理器,其被编程为:至少部分地基于来自振动传感器的振动数据来估计人力推动的推车的速度,并且至少部分地基于推车的被估计的速度来估计人力推动的推车的位置。
[0395] 在第16方面中,如方面15所述的导航系统,其中硬件处理器被编程为至少部分地基于估计位置确定推车是否已经越过围护边界,并且响应于该确定传达锁定信号给车轮。
[0396] 在第17方面中,如方面15或16所述的导航系统,还包括被配置为检测分别表示推车是否进入或离开商店的进入信号或离开信号的检测器。
[0397] 在第18方面中,如第17方面所述的导航系统,其中检测器通过搜索进入信号或离开信号的接收信号强度指示器(RSSI)中的峰来确定推车是否正在进入或离开商店。
[0398] 在第19方面中,如方面15至18中任一所述的导航系统,还包括被配置为向推车的使用者提供通知的可听或可视指示器。
[0399] 在第20方面中,如方面15至19中任一所述的导航系统,其中推车包括把手,并且导航系统被安装在把手上。
[0400] 在第21方面中,如方面15至20中任一所述的导航系统,其中加速度计是振动传感器。
[0401] 在第22方面中,如方面15至21中任一所述的导航系统,还包括温度传感器。
[0402] 在第23方面中,如方面22所述的导航系统,其中温度传感器在物理上接近磁力计。
[0403] 在第24方面中,如方面1至23中任一所述的导航系统,其中硬件处理器被进一步编程为接收站点配置数据,站点配置数据包括与以下项中的一项或多项相关联的信息:(1)围护边界,(2)入口或出口,(3)场地的室内区域,(4)场所的室外区域,(5)具有带特殊特性的表面的区域,(6)地磁场,(7)由于场所处或其附近的磁结构对地磁场的校正,(8)参考位置的定位,或(9)与围护边界相关联的警告距离。
[0404] 在第25方面中,一种用于轮式物体的导航方法,该导航方法包括:从固定的已知位置处的发射器获得轮式物体的初始位置;从磁力计获得轮式物体的航向;通过来自车轮旋转计数器的数据获得轮式物体的速度,其中车轮旋转计数器包括音叉和撞针;和,至少部分地基于初始位置、航向和速度来估计轮式物体的当前位置。
[0405] 在第26方面中,如方面25所述的方法,还包括:从磁力计获得万向轮的航向;至少部分地基于轮式物体的航向和万向轮的航向的比较来检测万向轮颤动。
[0406] 在第27方面中,如方面26所述的方法,还包括:当速度数据与万向轮颤动相关联时,省略当前位置步骤。
[0407] 在第28方面中,一种用于轮式物体的导航方法,该导航方法包括:从固定的已知位置处的发射器获得轮式物体的初始位置;从磁力计获得轮式物体的航向;通过来自振动传感器的数据获得轮式物体的速度;和,至少部分地基于初始位置、航向和速度来估计轮式物体的当前位置。
[0408] 在第29方面中,如方面28所述的导航方法,还包括:使用温度传感器测量磁力计的温度;以及,补偿温度对磁力计的影响。
[0409] 第30方面中,如方面29所述的导航方法,其中补偿温度对磁力计的影响包括:在组装包括磁力计的印刷电路板组件后,测量三个或更多温度点的磁力计输出;创建包括测量数据的校准数据库;和,至少部分地基于校准数据的基于所测得的温度的多项式内插法来计算温度补偿因子。
[0410] 在第31方面中,如方面28至30中任一所述的导航方法,还包括:补偿磁力计处的真磁场和已知地磁场之间的对准变化。
[0411] 在第32方面中,如方面31所述的导航方法,其中:磁力计处的真磁场和已知地磁场之间的初始对准,是通过在远离任何大型铁磁性物体的室外位置围绕垂直轴旋转轮式物体而获得;以及,磁力计处的真磁场和温度场与已知地磁场之间的当前对准,是通过足够短的时间段内足够数量的充分分散的航向读数而获得;并且补偿对准改变包括:将当前对准与初始对准进行比较;如果初始对准和当前对准明显不同,则用当前对准取代初始对准;和,至少部分地基于初始对准或当前对准来计算轮式物体的航向。
[0412] 在第33方面中,如方面32所述的导航方法,其中足够数量的充分分散的航向读数包括:至少10%至15%的读数在水平面中的四个磁性象限的每个象限中,并且至少25%的读数在四个磁性象限的两个象限中。
[0413] 在第34方面中,如方面32或33中所述的导航方法,其中足够短的时间段是10至20秒。
[0414] 在第35方面中,一种用于检测未经许可购物车离开商店的系统,该系统包括:附接到购物车的航位推算系统,该航位推算系统有权使用站点配置文件中的商店布局,该商店布局包括出口和结账台的位置;附接到购物车的锁定轮;其中航位推算系统被配置为:使用航位推算在多个时间估计购物车的位置;检测购物车的离开事件;至少部分地基于位置估计来确定购物车在离开事件之前是否已经通过结账台;和,在确定购物车在离开事件之前未通过结账台时,向锁定轮传达锁定命令;和其中,锁定轮被配置为在从航位推算系统接收锁定命令时啮合锁定机构。
[0415] 在第36方面中,如方面35所述的系统,其中商店布局还包括高价值商品区域的位置,并且航位推算系统被配置为确定购物车在离开事件之前已经通过高价值商品区域而没有通过结账台时,传达锁定命令。
[0416] 在第37方面中,如方面35或36所述的系统,其中航位推算系统被进一步配置为确定购物车在离开事件之前已经通过结账台而没有购物时,传达锁定命令。
[0417] 在第38方面中,如方面35或37中任一所述的系统,其中航位推算系统被配置为至少部分地基于对购物车的振动数据或垂直加速度数据的分析来估计购物车的速度。
[0418] 在第39方面中,如方面35或38中任一所述的系统,其中商店布局还包括磁场校正矢量,并且其中航位推算系统被配置为使用磁场校正矢量来校正航向估计。
[0419] 在第40方面中,如方面35或39中任一所述的系统,其中商店布局还包括磁场校正矢量图,并且其中航位推算系统被配置为使用磁场校正矢量图和购物车的当前位置来校正航向估计。
[0420] 在第41方面中,如方面35至40中任一所述的系统,其中航位推算系统被配置为触发音频警报,结合向锁定轮发送锁定命令。
[0421] 在第42方面中,如方面35至41中任一所述的系统,其中商店布局还包括磁场地图,磁场地图包括商店中的位置和这次位置的磁性特征,并且其中航位推算系统被配置为在检测到与磁性地图中的一个位置对应的磁性特征时,将其位置设置为该位置。
[0422] 在第43方面中,提供了一种用于人力推动的推车的导航系统。该导航系统包括被配置为确定人力推动的推车的航向的磁力计;被配置为测量人力推动的推车的振动数据的振动传感器;被配置为与人力推动的推车的车轮通信的通信系统,车轮包括被配置为响应锁定信号的接收而抑制车轮旋转的制动器;以及硬件处理器,其被编程为:至少部分地基于来自振动传感器的振动数据,估计人力推动的推车的速度;和至少部分地基于被估计的速度和人力推动的推车的航向,估计人力推动的推车的位置。
[0423] 在第44方面中,如方面43所述的导航系统,其中为了至少部分地基于来自振动传感器的振动数据估计人力推动的推车的速度,硬件处理器被编程为分析振动数据的频谱。
[0424] 在第45方面中,如方面44所述的导航系统,其中为了分析振动数据的频谱,硬件处理器被编程为识别振动数据的频谱中的第一峰,第一峰与和人力推动的推车的向前运动或向后运动相关联的振动的振动数据相关联。
[0425] 在第46方面中,如方面45所述的导航系统,其中为了估计人力推动的推车的速度,硬件处理器被编程为:将车轮的旋转速率确定为振动数据的频谱中的第一峰的频率的谐波频率;以及,基于旋转速率和车轮的周长,估计速度。
[0426] 在第47面中,如方面46所述的导航系统,其中硬件处理器被编程为通过分析振动频谱在第一峰的谐波频率处是否存在第二峰来验证所确定的旋转速率。
[0427] 在第48方面中,如方面47所述的导航系统,其中硬件处理器被编程为分析频谱在第一峰的第一奇次谐波频率处是否存在第二峰。
[0428] 在第49方面中,如方面43至48中任一所述的导航系统,其中硬件处理器被编程为分析振动数据以对人力推动的推车行走的表面上的规则的边界进行计数。
[0429] 在第50方面中,如方面43至49中任一所述的导航系统,其中硬件处理器被编程为至少部分地基于估计位置确定推车是否已经越过围护边界,并且响应于该确定传达锁定信号给车轮。
[0430] 在第51方面中,如方面43至50中任一所述的导航系统,还包括被配置为检测分别表示人力推动的推车是否进入或离开商店的进入信号或离开信号的检测器。
[0431] 在第52方面中,如方面43至51中任一所述的导航系统,还包括接收信号强度指示器(RSSI)检测器,其中硬件处理器被编程为至少部分地基于所测得的RSSI信号,更新推车的估计位置。
[0432] 在第53方面中,如方面43至52中任一所述的导航系统,还包括被配置为从外部射频(RF)发射器接收RF信号的RF接收器,其中硬件处理器被编程为至少部分地基于所接收到的RF信号,更新推车的估计位置。
[0433] 在第54方面中,如方面53所述的导航系统,其中硬件处理器被编程为至少部分地基于使用RF信号估计的RF相位差,估计距外部RF发射器的距离。
[0434] 在第55方面中,如方面43至54中任一所述的导航系统,还包括被配置为测量磁力计的温度的温度传感器,其中硬件处理器被编程为至少部分地基于温度,补偿磁力计的温度灵敏度。
[0435] 在第56方面中,如方面43至55中任一所述的导航系统,其中磁力计被配置为提供多个磁读数,并且硬件处理器被编程为至少部分地基于该多个磁读数和硬铁或软铁校准模型,校准磁力计。
[0436] 在第57方面中,如方面43至56中任一所述的导航系统,其中硬件处理器被进一步编程为接收站点配置数据,站点配置数据包括与以下项中的一项或多项相关联的信息:(1)围护边界,(2)入口或出口,(3)场地的室内区域,(4)场所的室外区域,(5)具有带特殊特性的表面的区域,(6)地磁场,(7)由于场所处或其附近的磁结构对地磁场的校正,(8)参考位置的定位,或(9)与围护边界相关联的警告距离。
[0437] 在第58方面中,如方面43至57中任一所述的导航系统,其中振动传感器包括加速度计。
[0438] 在第59方面中,如方面43至58中任一所述的导航系统,其中人力推动的推车包括把手,并且导航系统被安装在把手上。
[0439] 在第60方面中,如方面59所述的导航系统,其中人力推动的推车包括购物车。在另一方面中,购物车包括方面43至60中任一所述的导航系统。
[0440] 在第61方面中,提供了一种用于人力推动的推车的导航方法。该方法包括:用磁力计测量人力推动的推车的磁航向;测量人力推动的推车其在一个表面上行走时所经历的振动频谱;分析该振动频谱以确定人力推动的推车的车轮的旋转速率;至少部分地基于车轮的旋转速率和车轮的周长,估计人力推动的推车的速度;和至少部分地基于被估计的速度和所测得的人力推动的推车的磁航向,估计人力推动的推车的位置。
[0441] 在第62方面中,如方面61所述的导航方法,其中分析振动频谱包括识别与人力推动的推车的向前运动或向后运动相关联的振动频谱中的第一峰。
[0442] 在第63方面中,如方面62所述的导航方法,其中车轮的旋转速率被确定为振动数据的频谱中的第一峰的频率的谐波频率。
[0443] 在第64方面中,如方面62或63所述的导航方法,还包括通过分析振动频谱在第一峰的谐波频率处是否存在第二峰来验证所确定的旋转速率。
[0444] 在第65方面中,如方面61至64中任一所述的导航方法,其中分析振动频谱包括对在人力推动的推车行走的表面上的规则的边界进行计数。
[0445] 在第66方面中,如方面61至65中任一所述的导航方法,其中车轮包括被配置为抑制车轮旋转的制动器,该方法还包括:至少部分地基于估计位置,确定人力推动的推车是否已经越过围护边界;和响应于确定推车已经越过围护边界,传达制动信号以驱动车轮中的制动器。
[0446] 在第67方面中,如方面61至66中任一所述的导航方法,还包括:测量磁力计的温度;和,至少部分地基于所测得的温度,补偿磁力计的温度灵敏度。
[0447] 在第68方面中,如方面61至67中任一所述的导航方法,还包括:用磁力计测量人力推动的推车在表面上行走时的多个磁读数;和,至少部分地基于该多个磁读数和硬铁或软铁校准模型,校准磁力计。
[0448] 在第69方面中,人力推动的轮式推车包括被配置为执行如方面61至68中任一所述的导航方法的导航系统。
[0449] 在第70方面中,如方面69所述的人力推动的轮式推车,其中导航系统被安装在推车的把手或被包括在推车的把手中。
[0450] 在第71方面中,如方面69或70所述的人力推动的轮式推车,其中推车包括购物车。
[0451] 在第72方面中,一种用于人力推动的推车的防盗系统,该防盗系统包括:振动传感器,其被配置为测量人力推动的推车的振动数据;通信系统,其被配置为与人力推动的推车的车轮通信,车轮包括被配置为响应于接收到锁定信号而抑制车轮旋转的制动系统;和,硬件处理器,其被编程为:分析振动数据以确定推车已经接收到脉冲;分析振动数据以确定表示推车的响应于脉冲的振铃的振动信号;至少部分地基于对振动数据的分析,估计推车是负载还是空载;确定推车是否已越过围护边界;至少部分地基于对推车是负载或空载以及推车是否已经越过围护边界的估计,确定传达给制动系统或外部监控系统的防盗指令;和,传达指令。
[0452] 在第73方面中,如方面72所述的防盗系统,其中振动传感器包括加速度计。
[0453] 在第74方面中,如方面72或73所述的防盗系统,其中为了分析振动数据以确定推车已经接收到脉冲,硬件处理器被编程为识别加速度的幅度超过0.5g并且持续时间小于10ms的垂直分量。
[0454] 在第75方面中,如方面72-74中任一所述的防盗系统,其中为了分析振动数据以确定表示推车响应于脉冲的振铃的振动信号,硬件处理器被编程为识别在10ms的脉冲之内发生的频率大于1kHz的加速度的水平分量,水平分量在推车运动的方向上。
[0455] 在第76方面中,如方面72-75中任一所述的防盗系统,其中为了确定对推车是负载或空载的估计,硬件处理器被编程为确定在推车运动的方向上的振动信号是否高于或低于阈值振动幅度。
[0456] 在第77方面中,如方面72-76中任一所述的防盗系统,其中防盗指令包括用于在推车被估计为负载时驱动制动系统的指令。
[0457] 在第78方面中,如方面72-77中任一所述的防盗系统,其中防盗指令包括驱动制动系统的指令,其中指令还包括制动系统将以何种速度或力被用于使推车减速的指示,和其中速度或力的指示至少部分地取决于对推车是负载或空载的估计。
[0458] 在第79方面中,如方面72-78中任一所述的防盗系统,其中防盗指令包括用于在推车被估计为空载时不驱动制动系统的指令。
[0459] 在第80方面中,如方面72-79中任一所述的防盗系统,其中防盗指令包括用于在推车被估计为负载时驱动外部监控系统的指令。
[0460] 在第81方面中,如方面72-80中任一所述的防盗系统,还包括被配置为确定推车的位置的导航系统。
[0461] 在第82方面中,如方面81所述的防盗系统,其中导航系统包括:被配置为确定推车的航向的磁力计,其中硬件处理器进一步被编程为:至少部分地基于来自振动传感器的振动数据,估计推车的速度;和至少部分地基于被估计的速度和推车的航向,估计推车的位置。
[0462] 在第83方面中,如方面82所述的防盗系统,其中为了估计推车的速度,硬件处理器被编程为:分析振动数据的频谱;识别振动数据的频谱中的第一峰,第一峰与和推车的向前运动或向后运动相关联的振动的振动数据相关联;将车轮的旋转速率确定为振动数据的频谱中的第一峰的频率的谐波频率;和基于旋转速率和车轮的周长,估计速度。
[0463] 在第84方面中,一种用于确定人力推动的推车是负载或空载的方法,该方法包括:用振动传感器,测量代表在垂直Z方向上对推车的脉冲的Z振动信号;用振动传感器,测量代表推车响应于脉冲的振铃的X振动信号,X振动信号在平行于推车的运动方向的水平X方向上;和至少部分地基于X振动信号确定推车是负载或空载。
[0464] 在第85方面中,如方面84所述的方法,其中Z振动信号包括在Z方向上的幅度大于1g并且持续时间小于10ms的加速度。
[0465] 在第86方面中,如方面84或85所述的方法,其中X振动信号具有大于1kHz的频率并且在脉冲的10ms之内发生。
[0466] 在第87方面中,如方面84-86中任一所述的方法,其中估计推车的重量包括将加速度的与X振动信号相关联的幅度与阈值进行比较。
[0467] 在第88方面中,如方面87所述的方法,其中阈值是1g。
[0468] 在第89方面中,如方面84-88中任一所述的方法,还包括至少部分地基于X振动信号估计推车的重量或推车负载的重量。在第89-A方面中,如方面84-89中任一所述的方法,还包括:响应于确定了推车负载,驱动被配置为抑制所述推车的运动的制动系统。在第89-B方面中,如方面89-A中所述的方法,还包括提供制动系统将以何种速度或力被用于使推车减速的指示,其中该速度或力的指示至少部分地取决于对推车负载的确定。在第89-C方面中,如方面84-89、89-A或89-B中任一所述的方法,还包括:至少部分地基于来自振动传感器的振动数据,估计推车的速度;和至少部分地基于被估计的速度和推车的航向,估计推车的位置。
[0469] 在第90方面中,一种用于人力推动的轮式车的导航系统,该导航系统包括:光检测器,其被配置沿着推车行走路径检测环境光数据;非暂时性存储器,其被配置为存储表示推车环境的照明信号数据;和硬件处理器,其与光检测器和非暂时性存储器通讯,硬件处理器被编程为:分析环境光数据和照明信号数据以确定推车在推车环境中的位置。
[0470] 在第91方面中,如方面90所述的导航系统,其中光检测器包括感光器。
[0471] 在第92方面中,如方面90或91所述的导航系统,其中对于环境光源,光特征数据包括以下项中的一个或多个:光源的水平位置、光源的高度、光源的光学功率或光源的光学功率的角关系。
[0472] 在第93方面中,如方面90-92中任一所述的导航系统,其中为了分析环境光数据和照明信号数据以确定推车在推车环境中的位置,硬件处理器被编程为至少部分地基于先前的推车位置、环境光数据和照明信号数据来降低或减少误差函数。
[0473] 在第94方面中,如方面90-93中任一所述的导航系统,其中硬件处理器进一步被编程为检查环境光数据的时间历史以确定该时间历史是否与所测得的推车运动速度或方向一致。
[0474] 在第95方面中,如方面90-94中任一所述的导航系统,还包括被配置为至少部分地基于对车轮旋转和推车航向的测量估计推车的位置的航位推算系统。
[0475] 在第96方面中,如方面95所述的导航系统,其中为了分析环境光数据和照明信号数据以确定推车在推车环境中的位置,硬件处理器被编程为利用通过航位推算系统所估计的推车位置。
[0476] 在第97方面中,一种人力推进的轮式车包括:被配置为记录第一磁数据的第一磁力计,第一磁力计被布置在第一高度;被配置为记录第二磁数据的第二磁力计,第二磁力计被布置在不同于第一高度的第二高度;和被配置为接收第一磁数据和第二磁数据的导航系统,导航系统被进一步配置为至少部分地基于第一磁数据、第二磁数据或第一磁数据和第二磁数据两者来确定推车的位置。
[0477] 在第98方面中,如方面97所述的人力推进的轮式车,其中:第一磁力计被安装在推车的把手上;第二磁力计被安装在推车的篮筐的栏杆上,该栏杆被布置在推车的把手下面。
[0478] 在第99方面中,如方面97或98所述的人力推进的轮式车,其中:第一磁力计被布置在导航系统中,导航系统被安装在推车的把手上;第二磁力计被布置在推车的车轮中。
[0479] 在第100方面中,如方面97-99中任一所述的人力推进的轮式车,其中:导航系统被配置为至少部分地基于第一磁数据确定推车的第一位置,第一位置与第一置信度相关联;导航系统被配置为至少部分地基于第二磁数据确定推车的第二位置,第二位置与第二置信度相关联;导航系统被配置为至少部分地基于第一位置、第二位置、第一置信度和第二置信度确定推车的位置。
[0480] 在第101方面中,如方面97-100中任一所述的人力推进的轮式车,其中导航系统被配置为存储推车的环境的磁场图,该磁场图包括具有对应于第一高度的第一磁特征和对应于第二高度的磁特征的多层地图。
[0481] 在第102方面中,如方面101所述的人力推进的轮式车,其中导航系统被配置为至少部分地基于磁场图确定推车的位置。
[0482] 在第103方面中,一种用于人力推进的推车的定位系统,该导航系统包括:垂直位置检测器;非暂时性存储器,其被配置为存储包括与推车可以移动的环境内的多个水平有关的信息的多级地图;与垂直位置检测器和非暂时性存储器通信的导航系统,导航系统被配置为至少部分地基于来之垂直位置检测器的测量值和多级地图中的信息确定推车的位置,推车的位置包括环境内的水平位置和对推车处于多个层级中的哪一个层级的识别。
[0483] 在第104方面中,如方面103所述的定位系统,其中垂直位置检测器包括压力传感器、高度计或加速度计。
[0484] 在第105方面中,如方面103或104所述的定位系统,其中导航系统包括航位推算系统。
[0485] 在第106方面中,如方面103-105中任一所述的定位系统,其中垂直位置检测器包括压力传感器,并且导航系统被配置为:接收通过位于环境内的参考压力传感器所测得的参考压力;相对于参考压力传感器的高度确定推车的高度。
[0486] 在第107方面中,如方面103-106中任一所述的定位系统,其中垂直位置检测器包括加速度计,并且导航系统被配置为对来自加速度计的加速度数据进行积分以确定推车的垂直位移。
[0487] 在第108方面中,如方面103-107中任一所述的定位系统,还包括:振动传感器;和车轮旋转检测器;其中导航系统被配置为使用来自振动传感器的振动数据、未检测到车轮旋转和对于推车在推车输送系统的入口附近的位置估计,来确定推车的位置。其他信息
[0488] 本文中所描述的各种说明性的逻辑块、模块和过程可以由机器来实现或执行,例如计算机、处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立门或晶体管逻辑、分立硬件组件、或被设计为执行本文中所描述的功能的任何组合。处理器可以是微处理器、控制器、微控制器、状态机、其组合等。处理器还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器或处理器内核、一个或多个图形或流处理器、一个或多个微处理器与DSP的组合,或者任何其他这样的配置。
[0489] 此外,例如由于所涉及的计算(例如,分析振动数据和执行航位推算导航计算)的量或复杂性或者为了基本上实时地提供结果(例如,关于物体位置的统计信息),本公开的物体定位系统的某些实施方式在数学上、计算上或技术上是足够复杂的,以致可能需要专用硬件(例如,FPGA或ASIC)或者一个或多个物理计算设备(利用适当的可执行指令)来执行功能。
[0490] 本文中所描述的过程的方框或状态可以直接被包含在硬件中,体现在被存储在非临时性存储器中并由硬件处理器执行的软件模块中,或体现在这两者的组合中。例如,上述每个过程还可以被包含在由一个或多个机器例如计算机或计算机处理器执行的软件模块(其被存储在非临时性存储器中)中并且通过该软件模块被完全自动化。模块可以存在于例如RAM、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、光盘、能够存储固件的存储器等非暂时性计算机可读介质中,或者任何其他形式的计算机可读介质(例如,存储)介质。计算机可读介质能够被耦合到处理器,使得处理器能够从计算机可读介质读取信息并且将信息写入计算机可读介质。或者,计算机可读介质可以被集成到处理器中。处理器和计算机可读介质可以在ASIC中。计算机可读介质可以包括非瞬态数据存储器(例如,硬盘、非易失性存储器等)。
[0491] 过程、方法和系统可以在网络(或分布式)计算环境中实现。例如,中央控制单元或基站可以在分布式的联网计算环境中实现。网络环境包括企业范围的计算机网络、内联网、局域网(LAN)、广域网(WAN)、个域网(PAN)、云计算网络、众包计算网络、因特网和万维网。网络可以是有线的或无线的网络、地面或卫星网络或任何其他类型的通信网络。
[0492] 根据实施例,本文中所描述的任何过程或方法的某些动作、事件或功能能够以不同的顺序执行,可以被添加、合并或完全省略。因此,在某些实施例中,并非所有描述的动作或事件对于过程的实践都是必需的。此外,在某些实施例中,可以例如通过多线程处理、中断处理或经由多个处理器或处理器核心来同时地而不是顺序地执行动作或事件。在任何装置、系统或方法中,没有元素或动作对于所有实施例是必需的或不可或缺的,并且所公开的装置、系统和方法能够以不同于所示的或所描述的来布置。
[0493] 除非另有明确说明,或者在上下文中以其他方式理解,否则本文中所使用的条件语言,例如“能够”、“可能”、“可以”、“例如”等通常旨在传达某些实施例包括某些特征、元素和/或状态,而其他实施例不包括某些特征、元素和/或状态。因此,这样的条件语言通常地不旨在暗示一个或多个实施例以任何方式需要特征、元素和/或状态,或者一个或多个实施例必然包括用于在有或者没有作者输入或提示的情况下决定这些特征、元素和/或状态是否被包括在任何特定实施例中在或将在任何特定实施例中执行的逻辑。术语“包括”、“具有”等是同义词,并且以开放式的方式包含性地使用,并且不排除其他的元素、特征、动作、操作等等。此外,术语“或”以其包含性含义(而不是其排外含义)使用,因此当被用于例如连接一系列元素时,术语“或”意思是列表中的一个、一些或全部元素。
[0494] 除非另外特别说明,否则连接语言例如短语“X、Y和Z中的至少一个”是通常根据所使用的环境中进行理解的,用于表达条款、术语等可以是X、Y或者Z。因此,这样的连接语言通常地并不旨在暗示某些实施例要求存在X中的至少一个、Y中的至少一个和Z中的至少一个中的每一个。冠词“一”或“该”在提及元素时意指一个或多个元素,除非上下文另有明确指示。
[0495] 尽管以上详细描述已经示出、描述并且指出了应用于各种实施例的新颖特征,但是将理解的是,可以不脱离本公开的精神对所示出的逻辑块、模块和过程的形式和细节作出各种省略、替换和更改。如将认识到的,由于一些特征可以与其他特征分开使用或实施,本文中所描述的本发明的某些实施例可以在不提供本文中所阐述的所有特征和益处的形式内实施。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈