首页 / 专利库 / 救援与安全 / 压载水 / 浮于水面的船礁群及控制方法

浮于面的船礁群及控制方法

阅读:86发布:2021-07-27

专利汇可以提供浮于面的船礁群及控制方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种浮于 水 面的船礁群及控制方法,包括由若干行倒扣于水面上的木船构成的一体式结构,相邻行的各个对应木船之间均设有若干条连通管,每行木船的相邻木船之间均设有若干条连通管,相邻木船之间均设有连接板;本发明具有可浮于水面上,在靠近水面的水域中给水 生物 提供阴凉的庇护所,并且可以给水生物补充 氧 气,有利于水生物健康成长并形成藻场;使废弃的木船发挥了更好的利用价值,减少了资源的浪费的特点。,下面是浮于面的船礁群及控制方法专利的具体信息内容。

1.一种浮于面的船礁群,其特征是,包括由若干行倒扣于水面上的木船(1)构成的一体式结构,相邻行的各个对应木船之间均设有若干条连通管(2),每行木船的相邻木船之间均设有若干条连通管(2),相邻木船之间均设有连接板(3);
一体式结构上设有电机(6)、风速传感器(16)、太阳能电池板(7)、蓄电池(8)、控制壳体(9)和N个制机(10);所述控制壳体内设有控制器(11)、无线发送器(4)、存储器(17)和电源管理芯片(12);一体式结构下部设有分别用于检测不同参数的若干个水质传感器(5);所述控制器分别与无线发送器、存储器、电源管理芯片、风速传感器、各个制氧机和各个水质传感器电连接,风力发电机、太阳能电池板和各个波浪发电机通过电源管理芯片与蓄电池电连接;制氧机的氧气出口通过输气管依次与设于各个木船上的若干个出气管(13)相连接,每个出气管下端均伸入水面之下,输气管上部设有气体单向
2.根据权利要求1所述的浮于水面的船礁群,其特征是,一体式结构下部还设有水温传感器(18),所述一体式结构上设有热水器(19)和水(20);各个木船内侧均设有喷头,各个喷头通过出水管与热水器的出水口相连通,水泵与伸入水中的进水管相连接,进水管上端与热水器进水口相连通;水温传感器、热水器和水泵均与控制器电连接。
3.根据权利要求1所述的浮于水面的船礁群,其特征是,各条木船下部均设有若干条便于藻类附着的绳索(14),各个绳索一端均与 对应的木船相连接,各个绳索自由端伸入水中。
4.根据权利要求1所述的浮于水面的船礁群,其特征是,各条木船下边缘内侧均设有相适配的压载水箱(15)。
5.根据权利要求1或2或3或4所述的浮于水面的船礁群,其特征是,各个出气管下端与水面之间的均距离大于2.6米;各个出气管下端均设有过滤网。
6.一种适用于权利要求1所述的浮于水面的船礁群的控制方法,其特征是,包括如下步骤:
(6-1)存储器中设有风速信噪比SNR′和制氧机数量之间的对应关系表TB1,风速信噪比SNR′和水质检测数据发送间隔T2之间的对应关系表TB2;风速传感器每隔时间间隔T1检测当前的风速,得到风速电信号S(t),各个水质传感器循环检测水质参数;
(6-2)当控制器得到新的风速电信号S(t),则将S(t)分别输入二阶线性系统随机共振模型
中;并使二阶线性糸统随机
共振模型共振;
其中,x(t)是振动质点的位移,Ω为频率,r和ω分别是设定的衰减系数和线性振
2
动质点的频率,c是设定的信号调解系数,b是设定的二次噪声ξ(t)的系数,ξ(t)为三歧噪声,ξ(t)∈{-a,0,a},a>0,噪声的歧化过程遵循泊松分布,其概率分布为ps(a)=ps(-a)=q,ps(0)=1-2q,其中0<q<0.5;
2 -λτ
噪声均值与相关性遵循<ξ(t)>=0,<ξ(t)ξ(t+τ)>=2qae ;
其中λ为相关率,三歧噪声ξ(t)的平直度为
控制器利用公式 计算并得到输出信噪比SNR′;
(6-3)控制器控制制氧机工作
(6-3-1)控制器利用SNR′检索对应关系表TB1,检索到对应关系表TB1中与SNR′最接近的输出信噪比SNR′m,并得到与SNR′m相对应的制氧机数量M,M≤N;
(6-3-2)控制器控制M个制氧机工作,制氧机产生的氧气通过输气管及各个出气管进入水中;
(6-4)控制器控制发送水质数据
(6-4-1)控制器利用SNR′检索对应关系表TB1,检索到对应关系表TB1中与SNR′最接近的输出信噪比SNRt′,并得到与SNR′t相对应的发送间隔T3;
(6-4-2)控制器控制无线发送器每间隔时间T3发送当前的水质数据。
7.根据权利要求6所述的浮于水面的船礁群的控制方法,所述一体式结构下部还设有水温传感器,所述一体式结构上设有热水器和水泵;各个木船内侧均设有喷头,各个喷头通过出水管与热水器的出水口相连通,水泵与伸入水中的进水管相连接,进水管上端与热水器进水口相连通;水温传感器、热水器和水泵均与控制器电连接;其特征 是,包括如下步骤:
(7-1)存储器中设有与检测的水温相关的出水温度对应表TB′和加热阈值L,控制器控制水泵工作,使热水器中始终保持固定的容量的水;
(7-2)水温传感器检测水温V且V≤L,控制器在当前时刻T0根据检测的水温查询对应表TB′,得到与水温V对应的Wv,控制器调节热水器的加热温度至Wv;
(7-2-1)当热水器中的水温达到Wv,控制器控制热水器放水;
(7-2-2)当热水器中的水温达到Wv′时,控制器控制热水器停止放水,其中(7-3)经过时间间隔T后,返回步骤(7-2)。
8.根据权利要求6所述的浮于水面的船礁群的控制方法,其特征是,所述对应关系表TB1中,风速信噪比SNR′和制氧机数量之间呈反比。
9.根据权利要求7所述的浮于水面的船礁群的控制方法,其特征是,所述出水温度对应表TB′中检测的水温与出水温度之间成反比。
10.根据权利要求7或9所述的浮于水面的船礁群的控制方法,其特征是,时间间隔T为7至11分钟,

说明书全文

浮于面的船礁群及控制方法

技术领域

[0001] 本发明涉及鱼礁技术领域,尤其是涉及一种利用废弃的木船制成的浮于水面的船礁群及控制方法。

背景技术

[0002] 人工鱼礁是人为在海中设置的构造物,其目的是改善海域生态环境,营造海洋生物栖息的良好环境,为鱼类等水生物提供繁殖、生长、索饵和庇敌的场所,达到保护、增殖和提高渔获量的目的。目前国内外已经广泛开展人工鱼礁建设,进行近海海洋生物栖息地和渔场的修复,而且取得了较好的效果。
[0003] 为有效压减严重过剩的海洋捕捞强度,保护海洋生态环境,修复振兴渔场,渔政部正在开展渔场“一打三整治”专项执法行动,涉渔“三无”船舶(指用于渔业生产经营活动,无船名号、无船籍港、无船舶证书的船舶)将被取缔,因此,会出现大量需要处理或者拆解的渔船;如何合理利用废弃的船舶是当前迫切需要解决的问题。
[0004] 中国专利授权公开号:CN201509499U,授权公开日2010年6月23日,公开了一种人工鱼礁,由混凝土预制件拼接而成,包括:礁体,由多个拼接件拼接而成,每一个拼接件在顶部具有第一连接装置,在底部具有第二连接装置,通过所述第一连接装置和第二连接装置,所述多个拼接件逐层拼接形成所述礁体;底座,用于支撑所述礁体,所述底座的顶部具有第一连接装置,用于与所述礁体中的最下层拼接件底部的第二连接装置相连接;顶部件,覆盖在所述礁体中最上层的拼接件之上,所述顶部件的底部具有第二连接装置,用于与所述礁体中的最上层拼接件顶部的第一连接装置相连接。该发明的不足之 处是,建造人工鱼礁没有利用现有的废弃物,造成了资源的浪费。

发明内容

[0005] 本发明的发明目的是为了克服现有技术中的人工鱼礁没有利用现有的废弃物,造成了资源浪费的不足,提供了利用废弃的木船制成的浮于水面的船礁群及控制方法。
[0006] 为了实现上述目的,本发明采用以下技术方案:
[0007] 一种浮于水面的船礁群,包括由若干行倒扣于水面上的木船构成的一体式结构,相邻行的各个对应木船之间均设有若干条连通管,每行木船的相邻木船之间均设有若干条连通管,相邻木船之间均设有连接板;
[0008] 一体式结构上设有电机、风速传感器太阳能电池板、蓄电池、控制壳体和N个制机;所述控制壳体内设有控制器、无线发送器、存储器和电源管理芯片;一体式结构下部设有分别用于检测不同参数的若干个水质传感器;所述控制器分别与无线发送器、存储器、电源管理芯片、风速传感器、各个制氧机和各个水质传感器电连接,风力发电机、太阳能电池板和各个波浪发电机通过电源管理芯片与蓄电池电连接;制氧机的氧气出口通过输气管依次与设于各个木船上的若干个出气管相连接,每个出气管下端均伸入水面之下,输气管上部设有气体单向门。
[0009] 各行相互连接的倒扣于水面上的木船用于提供本发明浮于水面上的浮力;各条连通管用于将各条木船连通,从而使水生物可以在各个木船覆盖的水域中自由穿梭;风力发电机和太阳能电池板用于产生 电能,蓄电池用于储存电能,电源管理芯片用于电源管理,制氧机用于将空气中的氧气分离出来,将氧气通过输气管输入浮于水面的船礁群下方的水域中;风速传感器用于检测风速。各个水质传感器用于检测水质参数,无线发送器用于发送检测的水质参数数据。
[0010] 存储器中设有风速信噪比SNR′和制氧机数量之间的对应关系表TB1,风速信噪比SNR′和水质检测数据发送间隔T2之间的对应关系表TB2,控制器根据风浪强度的变化控制不同数量的制氧机工作,从而控制输入船礁群所覆盖的水域中的氧气浓度,使水中的氧气含量始终满足水生物的生存需要。控制器可以根据风浪强度的变化调整发送水质参数数据的时间间隔,从而节省电能。
[0011] 可以使用定位结构将本发明固定在预定的水域中,也可以拖动本发明移动到另外的水域中,然后进行固定;克服了传统的人工鱼礁移动困难的问题。
[0012] 本发明将废弃木船连接起来浮于水面上,在靠近水面的水域中给水生物提供阴凉的庇护所,并且可以根据风强变化给水域中补充不同量的氧气,有利于水生物健康成长并形成藻场;本发明使废弃的木船发挥了更好的利用价值,减少了资源的浪费,为海洋资源的改善和恢复提供了有力支持。
[0013] 因此,本发明具有可浮于水面上,在靠近水面的水域中给水生物提供阴凉的庇护所,并且可以给水域补充氧气,有利于水生物健康成长并形成藻场;使废弃的木船发挥了更好的利用价值,减少了资源的浪费,为海洋资源的改善和恢复提供了有力支持;便于移动的特点。
[0014] 作为优选,一体式结构下部还设有水温传感器,所述一体式结构上设有热水器和水;各个木船内侧均设有喷头,各个喷头通过出水管与热水器的出水口相连通,水泵与伸入水中的进水管相连接,进水管上端与热水器进水口相连通;水温传感器、热水器和水泵均与控制器电连接。
[0015] 水温传感器、热水器和水泵的设置,是本发明可以根据水温的变化而调节船礁群所覆盖的水域温度,给水生物提供更好的生存环境。
[0016] 作为优选,各条木船下部均设有若干条便于藻类附着的绳索,各个绳索一端均与对应的木船相连接,各个绳索自由端伸入水中。
[0017] 藻类可以附着在各个绳索上,水生物可以在藻类上产卵,使藻类成为活性卵的卵基。
[0018] 作为优选,各条木船下边缘内侧均设有相适配的压载水箱。压载水箱的设置增强了本发明的稳定性
[0019] 作为优选,各个出气管下端与水面之间的均距离大于2.6米;各个出气管下端均设有过滤网。
[0020] 一种浮于水面的船礁群的方法,包括如下步骤:
[0021] (6-1)存储器中设有风速信噪比SNR′和制氧机数量之间的对应关系表TB1,风速信噪比SNR′和水质检测数据发送间隔T2之间的对应关系表TB2;风速传感器每隔时间间隔T1检测当前的风速,得到风速电信号S(t),各个水质传感器循环检测水质参数;
[0022] 风力发电机将风能转化为电能和太阳能电池板将太阳光转化为电能,电能存储到蓄电池中;蓄电池用于给各个器件供电;
[0023] (6-2)当控制器得到新的风速电信号S(t),则将S(t)分别输入二阶线性系统随机共振模型
[0024] 中;并使二阶线性系统随机共振模型共振;
[0025] 其中,x(t)是振动质点的位移,Ω为频率,r和ω分别是设定的衰减系数和线2
性振动质点的频率,c是设定的信号调解系数,b是设定的二次噪声ξ(t)的系数,ξ(t)为三歧噪声,ξ(t)∈{-a,0,a},a>0,噪声的歧化过程遵循泊松分布,其概率分布为ps(a)=sp(-a)=q,ps(0)=1-2q,其中0<q<0.5;
[0026] 噪声均值与相关性遵循<ξ(t)>=0,<ξ(t)ξ(t+τ)>=2qa2e-λτ;
[0027] 其中λ为相关率,三歧噪声ξ(t)的平直度为
[0028] 控制器利用公式 计算并得到输出信噪比SNR′;
[0029] (6-3)控制器控制制氧机工作
[0030] (6-3-1)控制器利用SNR′检索对应关系表TB1,检索到对应关系表TB1中与SNR′最接近的输出信噪比SNR′m,并得到与SNR′m相对应的制氧机数量M,M≤N;
[0031] (6-3-2)控制器控制M个制氧机工作,制氧机产生的氧气通过输气管及各个出气管进入水中;
[0032] (6-4)控制器控制发送水质数据
[0033] (6-4-1)控制器利用SNR′检索对应关系表TB1,检索到对应关 系表TB1中与SNR′最接近的输出信噪比SNR′t,并得到与SNR′t相对应的发送间隔T3;
[0034] (6-4-2)控制器控制无线发送器每间隔时间T3发送当前的水质数据。
[0035] 因为风速是经常变化的,风速变化会导致水中的含氧量变化,因此,本发明首先检测风速的变化,当风速大时,水中含氧量增高,使参与制氧气的制氧机数量减少,从而节省电能;当风速小时,水中含氧量较低,使参与制氧气的制氧机数量增多,从而给水下输入更多氧气,确保水生物健康成长。
[0036] 作为优选,所述一体式结构下部还设有水温传感器,所述一体式结构上设有热水器和水泵;各个木船内侧均设有喷头,各个喷头通过出水管与热水器的出水口相连通,水泵与伸入水中的进水管相连接,进水管上端与热水器进水口相连通;水温传感器、热水器和水泵均与控制器电连接;包括如下步骤:
[0037] (7-1)存储器中设有与检测的水温相关的出水温度对应表TB′和加热阈值L,控制器控制水泵工作,使热水器中始终保持固定的容量的水;
[0038] (7-2)水温传感器检测水温V且V≤L,控制器在当前时刻T0根据检测的水温查询对应表TB′,得到与水温V对应的Wv,控制器调节热水器的加热温度至Wv;
[0039] (7-2-1)当热水器中的水温达到Wv,控制器控制热水器放水;
[0040] (7-2-2)当热水器中的水温达到Wv′时,控制器控制热水器停止放水,其中[0041] (7-3)经过时间间隔T后,返回步骤(7-2)。
[0042] 本发明可以根据水中温度的变化而调整补充到水中的热水的温度,热水是喷淋到水面上的,不会对水生物造成危害,并且热水可以调节水温,从而使水生物在寒冷的季节也愿意来到船礁群所覆盖的水域休养生息。
[0043] 作为优选,所述对应关系表TB1中,风速信噪比SNR′和制氧机数量之间呈反比。
[0044] 作为优选,所述出水温度对应表TB′中检测的水温与出水温度之间成反比。
[0045] 作为优选,时间间隔T为7至11分钟,
[0046] 因此,本发明具有如下有益效果:
[0047] (1)可浮于水面上,在靠近水面的水域中给水生物提供阴凉的庇护所,并且可以给水域补充氧气及调节水温,有利于吸引水生物来到浮船礁下方,有利于水生物健康成长并形成藻场;
[0048] (2)使废弃的木船发挥了更好的利用价值,减少了资源的浪费,为海洋资源的改善和恢复提供了有力支持;
[0049] (3)便于移动。附图说明
[0050] 图1是本发明的一种结构示意图;
[0051] 图2是本发明的各个木船的一种连接结构示意图;
[0052] 图3是本发明的一种原理框图
[0053] 图4是本发明的实施例1的一种流程图
[0054] 图中:木船1、连通管2、连接板3、无线发送器4、水质传感器5、风力发电机6、太阳能电池板7、蓄电池8、控制壳体9、制氧机10、控制器11、电源管理芯片12、出气管13、绳索14、压载水箱15、风速传感器16、存储器17、水温传感器18、热水器19、水泵20。

具体实施方式

[0055] 下面结合附图和具体实施方式对本发明做进一步的描述。
[0056] 实施例1
[0057] 如图1、图2所示的实施例是一种浮于水面的船礁群,包括由2行倒扣于水面上的木船1构成的一体式结构,相邻行的各个对应木船之间均设有6条连通管2,每行木船的相邻木船之间均设有15条连通管2,相邻木船之间均设有连接板3;
[0058] 如图1、图3所示,一体式结构上设有风力发电机6、风速传感器16、太阳能电池板7、蓄电池8、控制壳体9和8个制氧机10;控制壳体内设有控制器11、无线发送器4、存储器
17和电源管理芯片12;一体式结构下部设有分别用于检测不同参数的3个水质传感器5;
控制器分别与无线发送器、存储器、电源管理芯片、风速传感器、各个制氧机和各个水质传感器电连接,风力发电机、太阳能电池板和各个波浪发电机通过电源管理芯片与蓄电池电连接;制氧机的氧气出口通过输气管依次与设于各个木船上的4个出气管13相连接,每个出气管下端均伸入水面之下,输气管上部设有气体单向阀门。
[0059] 各条木船下部均设有4条便于藻类附着的绳索14,各个绳索一端均与对应的木船相连接,各个绳索自由端伸入水中。各条木船下边缘内侧均设有相适配的压载水箱15。
[0060] 各个出气管下端与水面之间的距离为3米;各个出气管下端均设有过滤网。
[0061] 木船上设有6条用于与设于水底的固定结构连接的牵引绳。本实施例中的固定结构为设于水底的混凝土立柱。
[0062] 可用船将本发明移动至预定的水域;向压载水箱中注入适量的水,使本发明浮于水面上;将4条定位绳与混凝土立柱连接;水生物在藻类上产卵;当需要移动本发明时,断开4条定位绳与混凝土立柱的连接,利用船将本发明移动至新的水域,并将4条定位绳与新的固定结构连接即可。
[0063] 如图4所示,一种浮于水面的船礁群的方法,包括如下步骤:
[0064] 步骤100,检测风速和水质:
[0065] 存储器中设有风速信噪比SNR′和制氧机数量之间的对应关系表TB1,风速信噪比SNR′和水质检测数据发送间隔T2之间的对应关系表TB2;风速传感器每隔时间间隔T1检测当前的风速,得到风速电信号S(t),各个水质传感器循环检测水质参数;T1为6分钟。
[0066] 步骤200,数据处理
[0067] 当控制器得到新的风速电信号S(t),则将S(t)分别输入二阶线性系统随机共振模型 中;并使二阶线性系统随机共振模型共振;
[0068] 其中,x(t)是振动质点的位移,Ω为角频率,r和ω分别是设定的衰减系数和线2
性振动质点的频率,c是设定的信号调解系数,b是设定的二次噪声ξ(t)的系数,ξ(t)为三歧噪声,ξ(t)∈{-a,0,a},a>0,噪声的歧化过程遵循泊松分布,其概率分布为ps(a)=ps(-a)=q,ps(0)=1-2q,其中0<q<0.5;
[0069] 噪声均值与相关性遵循<ξ(t)>=0,<ξ(t)ξ(t+τ)>=2qa2e-λτ;
[0070] 其中λ为相关率,三歧噪声ξ(t)的平直度为
[0071] 控制器利用公式 计算并得到输出信噪比SNR′;
[0072] 步骤300,控制器控制制氧机工作
[0073] 步骤310,控制器利用SNR′检索对应关系表TB1,检索到对应关系表TB1中与SNR′最接近的输出信噪比SNR′m,并得到与SNR′m相对应的制氧机数量M=4;
[0074] 步骤320,控制器控制M个制氧机工作,制氧机产生的氧气通过输气管及各个出气管进入水中;
[0075] 步骤400,控制器控制发送水质数据
[0076] 步骤410,控制器利用SNR′检索对应关系表TB1,检索到对应关系表TB1中与SNR′最接近的输出信噪比SNR′t,并得到与SNR′t相对应的发送间隔T3;
[0077] 步骤420,控制器控制无线发送器每间隔时间T3发送当前的水质数据。
[0078] 风速越大,得到的风速信噪比SNR′越大;对应关系表TB1中SNR′越大M值越小,反之,SNR′越小,M值越大。
[0079] 风速越大,得到的风速信噪比SNR′越大;对应关系表TB2中SNR′越大T3值越小;反之,SNR′越小,T3值越大。
[0080] 风速大时,水质变化较快,需要将发送间隔变小,以便水质监控部门及时发现水质的变化;风速小时,水质变化较慢,可以将发送间隔变大,以便减少电能的损耗。
[0081] 实施例2
[0082] 实施例2包括实施例1的所有结构及步骤,还包括如下的结构及步骤:
[0083] 如图3所示,一体式结构下部还设有水温传感器18,一体式结构上设有热水器19和水泵20;各个木船内侧均设有喷头,各个喷头通过出水管与热水器的出水口相连通,水泵与伸入水中的进水管相连接,进水管上端与热水器进水口相连通;水温传感器、热水器和水泵均与控制器电连接。
[0084] 步骤500,存储器中设有与检测的水温相关的出水温度对应表TB′和加热阈值L,控制器控制水泵工作,使热水器中始终保持固定的容量的水;L为15摄氏度。
[0085] 步骤510,水温传感器检测水温V且V≤L,控制器在当前时刻T0根据检测的水温查询对应表TB′,得到与水温V对应的Wv,控制器调节热水器的加热温度至Wv;
[0086] 步骤511,当热水器中的水温达到Wv,控制器控制热水器放水;
[0087] 步骤512,当热水器中的水温达到Wv′时,控制器控制热水器停止放水,其中[0088] 步骤600,经过时间间隔T后,返回步骤510。
[0089] 当检测的水温较低,则控制器使Wv增大,从而向水中输出较高温度的热水,使水域中的水温升高;反之,当检测的水温较高,则控制器使Wv降低,从而向水中输出较低温度的热水,使水域中的水温达到合适的温度。
[0090] 本实施例中,时间间隔T为10分钟,Wv′=0.6Wv。
[0091] 应理解,本实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈