首页 / 专利库 / 焊接,钎焊和锡焊 / 熔化极气体保护焊 / 金属活性气体焊接 / 一种基于离线编程的电弧增材制造工艺

一种基于离线编程的电弧增材制造工艺

阅读:952发布:2020-05-14

专利汇可以提供一种基于离线编程的电弧增材制造工艺专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于离线编程的 电弧 增材制造 工艺,包括增材材料为 铝 合金 ,且包括以下步骤:对 机器人 程序进行离线编程;采用交流的冷金属过渡 焊接 法进行增材制造,所述交流的冷金属过渡焊接法为交流MIG/MAG焊与冷金属过渡焊结合的焊接方法。所述交流MIG/MAG焊为使用 焊丝 作为 熔化 电极 ,使用惰性气体或加入少量活性气体的惰性气体作为保护气;所述冷金属过渡焊包括以下步骤:电弧引燃,焊丝向前给进;当熔滴进入熔池,电弧熄灭, 电流 减小;焊丝回抽使熔滴脱落, 短路 电流保持较小值;焊丝回复到进给状态,熔滴过渡依此过程循环往复。本发明仅需机器人和焊机即可实现复杂零件毛胚的增材制造,而无需使用其他外部设备及 硬件 。,下面是一种基于离线编程的电弧增材制造工艺专利的具体信息内容。

1.一种基于离线编程的电弧增材制造工艺,其特征在于,增材材料为合金,且包括以下步骤:
S1.对机器人程序进行离线编程;
S2.采用交流的冷金属过渡焊接法进行增材制造,所述交流的冷金属过渡焊接法为交流MIG/MAG焊与冷金属过渡焊结合的焊接方法。
2.根据权利要求1所述的一种基于离线编程的电弧增材制造工艺,其特征在于,S1包括以下步骤:
S11.将需要打印的零件数模格式转为离线编程软件所支持的格式;
S12.在离线编程软件中构建机器人工作站,添加机器人数模、焊枪工具数模以及零件数模,并调整数模位置
S13.测量机器人焊枪工具坐标,并将数据输入离线编程软件中;
S14.在离线编程软件中根据零件数模,制作工件坐标,并将此坐标作为整个程序的基准坐标;
S15.使用离线编程软件的CAM模,选择零件数模需加工的面及特征,通过分析生成初步加工路径;
S16.使用离线编程软件的路径优化功能与仿真功能,去除路径中的碰撞点、极限点及奇异点,生成最终加工路径;
S17.使用离线编程软件中的后置模块,生成机器人程序,并将程序导入机器人中;
S18.根据实际工件位置,在机器人上制作工件坐标。
3.根据权利要求2所述的一种基于离线编程的电弧增材制造工艺,其特征在于:
在步骤S16中:去除路径中的碰撞点、极限点及奇异点后,先加以验证,后生成最终加工路径;
在步骤S16中:在机器人上制作工件坐标后,试运行机器人程序进行确认。
4.根据权利要求1所述的一种基于离线编程的电弧增材制造工艺,其特征在于:所述交流MIG/MAG焊为使用焊丝作为熔化电极,使用惰性气体或加入少量活性气体的惰性气体作为保护气;所述冷金属过渡焊包括以下步骤:
S21.电弧引燃,焊丝向前给进;
S22.当熔滴进入熔池,电弧熄灭,电流减小;
S23.焊丝回抽使熔滴脱落,短路电流保持较小值;
S24.焊丝回复到进给状态,熔滴过渡依此过程循环往复。
5.根据权利要求1所述的一种基于离线编程的电弧增材制造工艺,其特征在于:当工件逐渐向内收拢,焊缝温度升高导致焊缝下塌时,则减小层间高度,以保证焊丝干伸长度保持一致。
6.根据权利要求1所述的一种基于离线编程的电弧增材制造工艺,其特征在于:在焊接过程中,起弧时的焊接送丝速度为起始值,此后每隔一定层数焊接送丝速度下降一定值,直至焊接送丝速度降低至稳定值,保持焊接送丝速度稳定。

说明书全文

一种基于离线编程的电弧增材制造工艺

技术领域

[0001] 本发明涉及一种3D打印技术领域,特别是一种基于离线编程的电弧增材制造工艺。

背景技术

[0002] 3D打印技术是快速成型技术中的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。
[0003] 在工业制造中,一些具有大量曲面、结构复杂的零件,在传统加工方式中,往往需要浪费大量原材料,以及使用昂贵的加工中心才能完成加工;这样的加工方式往往需要耗费大量的时间、精,大大增加了零件加工的成本。

发明内容

[0004] 为了克服现有技术的不足,本发明提供了一种基于离线编程的电弧增材制造工艺,仅需机器人和焊机即可实现复杂零件毛胚的增材制造,而无需使用其他外部设备及硬件
[0005] 本发明解决其技术问题所采用的技术方案是:
[0006] 一种基于离线编程的电弧增材制造工艺,增材材料为合金,且包括以下步骤:
[0007] S1.对机器人程序进行离线编程;
[0008] S2.采用交流的冷金属过渡焊接法进行增材制造,所述交流的冷金属过渡焊接法为交流MIG/MAG焊与冷金属过渡焊结合的焊接方法。
[0009] 作为上述技术方案的具体优选,S1包括以下步骤:
[0010] S11.将需要打印的零件数模格式转为离线编程软件所支持的格式;
[0011] S12.在离线编程软件中构建机器人工作站,添加机器人数模、焊枪工具数模以及零件数模,并调整数模位置
[0012] S13.测量机器人焊枪工具坐标,并将数据输入离线编程软件中;
[0013] S14.在离线编程软件中根据零件数模,制作工件坐标,并将此坐标作为整个程序的基准坐标;
[0014] S15.使用离线编程软件的CAM模,选择零件数模需加工的面及特征,通过分析生成初步加工路径;
[0015] S16.使用离线编程软件的路径优化功能与仿真功能,去除路径中的碰撞点、极限点及奇异点,生成最终加工路径;
[0016] S17.使用离线编程软件中的后置模块,生成机器人程序,并将程序导入机器人中;
[0017] S18.根据实际工件位置,在机器人上制作工件坐标。
[0018] 作为上述技术方案的具体优选,在步骤S16中:去除路径中的碰撞点、极限点及奇异点后,先加以验证,后生成最终加工路径;
[0019] 在步骤S16中:在机器人上制作工件坐标后,试运行机器人程序进行确认。
[0020] 作为上述技术方案的具体优选,所述交流MIG/MAG焊为使用焊丝作为熔化电极,使用惰性气体或加入少量活性气体的惰性气体作为保护气;所述冷金属过渡焊包括以下步骤:
[0021] S21.电弧引燃,焊丝向前给进;
[0022] S22.当熔滴进入熔池,电弧熄灭,电流减小;
[0023] S23.焊丝回抽使熔滴脱落,短路电流保持较小值;
[0024] S24.焊丝回复到进给状态,熔滴过渡依此过程循环往复。
[0025] 作为上述技术方案的具体优选,当工件逐渐向内收拢,焊缝温度升高导致焊缝下塌时,则减小层间高度,以保证焊丝干伸长度保持一致。
[0026] 作为上述技术方案的具体优选,在焊接过程中,起弧时的焊接送丝速度为起始值,此后每隔一定层数焊接送丝速度下降一定值,直至焊接送丝速度降低至稳定值,保持焊接送丝速度稳定。
[0027] 与现有技术相比较,本发明的有益效果是:
[0028] 本发明所提供的一种基于离线编程的电弧增材制造工艺,通过分析数字模型文件,识别特征,生成加工轨迹,再通过机器人和焊机的配合作业将材料层层堆叠完成堆积;仅需机器人和焊机即可实现复杂零件毛胚的增材制造,而无需使用其他外部设备及硬件。
[0029] 此外,使用电弧作为热源,焊丝作为增材材料,具有高度的柔性、高度的定制性;节省了材料以及加工的成本,非常适用于中小批量的复杂零件生产。

具体实施方式

[0030] 下面结合具体实施例对本发明作进一步地说明。
[0031] 本实施例所提供的一种基于离线编程的电弧增材制造工艺,机器人选用安川MA1440六轴弧焊机器人,搭配安川DX200控制柜,其六轴六个自由度可实现复杂程度更高的加工轨迹;6千克的负载重量可搭载各种伺服焊枪,搭载器,适用于各种弧焊设备;总轴速度提高了80°/S,即从2070°/S提高到2150°/S;通过高速动作,减少节拍,实现了生产作业的高速化,在需要机器人多次往复或需要长距离移动进行焊接的场合,可显著提高生产力;1440毫米的最大平延伸距离,可支持更大尺寸的零件加工焊接;重复定位精度可达到±0.08毫米,对于弧焊工作也较为合适。
[0032] 机器人程序的离线编程作业,主要包括以下步骤:
[0033] 1.首先将需要打印的零件数模格式使用CAD软件转为离线编程软件所支持的格式(一般为STP或IGS)。
[0034] 2.在离线编程软件中,构建MA1440机器人工作站,添加机器人数模,焊枪工具数模,以及零件数模,并调整数模位置,尽量与现实中保持一致。
[0035] 3.测量实际的机器人焊枪工具坐标X,Y,Z,Rx,Ry,Rz,并将数据输入离线编程软件中;使实际与离线编程软件中TCP数据保持一致。
[0036] 4.在离线编程软件中根据零件数模,制作工件(用户)坐标,并将此坐标作为整个程序的基准坐标。
[0037] 5.使用离线编程软件的CAM模块,选择零件数模需加工的面及特征,加以分析,初步生成加工路径。
[0038] 6.使用离线编程软件的路径优化功能与仿真功能,去除路径中的碰撞点,极限点及奇异点等,并加以验证,生成最适于实际加工的加工路径。
[0039] 7.使用离线编程软件中的后置模块,生成机器人程序,并将程序导入机器人中。
[0040] 8.根据实际工件位置,在机器人上制作工件(用户)坐标。
[0041] 9.试运行机器人程序,确认无误后,调节焊接参数,开始打印零件。
[0042] 焊机选用奥地利Founius CMT4000 Advanced,采用CMT(冷金属过渡焊接技术)工艺,在短路过渡的基础上开发,在电弧产生的过程中,焊丝向熔池中运动,当焊丝伸及熔池时,电弧熄灭,焊接电流降低,此时通过焊丝回抽来促进熔滴分离,将熔滴送进熔池;具体地,其工艺过程包括以下步骤:
[0043] 1).电弧引燃,焊丝向前给进;
[0044] 2).当熔滴进入熔池,电弧熄灭,电流减小;
[0045] 3).焊丝回抽使熔滴脱落,短路电流保持较小值;
[0046] 4).焊丝回复到进给状态,熔滴过渡依此过程循环往复。
[0047] 其工艺具有低飞溅、低热输入量、高稳定性的特点,能够达到快速稳定的焊接效果。
[0048] CMT Advanced工艺是将交流MIG/MAG焊技术应用到CMT技术上,实现“交流的冷金属过渡”焊接工艺,在焊接过程中,焊丝的极性处于正负交替,热输入量相比CMT更低,焊接效率与熔覆效率也更高,最为适合铝合金的增材制造。
[0049] 以焊接铝合金4043材质的具有收口结构的花瓶为例,焊接作业的具体工艺参数如下:
[0050] 使用工艺:CMT Advanced,
[0051] 焊丝材料:ER4043铝焊丝,
[0052] 保护气体:Ar 100%,
[0053] 气体流量:15 L/min,
[0054] 层间高度:0.7-1.0mm,
[0055] 焊接速度:130cm/min,
[0056] 送丝速度:3.5-6.5m/min。
[0057] 此外,焊接作业还应注意以下要求:
[0058] 1.层间高度在低层瓶径较大时设置为1.0毫米,当瓶径逐渐向内收拢,焊缝温度升高,导致焊缝下塌,需要减小层间高度为0.7毫米,以保证焊丝干伸长度保持一致,避免由于干伸长度过长引起的焊偏,或是发黑,气孔等缺陷
[0059] 2.起弧时的焊接送丝速度为6.5m/min,此后每隔3层左右需往下降低0.1m/min,直至焊接送丝速度降低至3.5m/min,此时参数较为稳定。
[0060] 以上对本发明的较佳实施方式进行了具体地说明,当然,本发明还可以采用与上述实施方式不同的形式,熟悉本领域的技术人员在不违背本发明精神的前提下所作的等同的变换或相应的改动,都应该属于本发明的保护范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈