焊接电极

阅读:814发布:2020-05-11

专利汇可以提供焊接电极专利检索,专利查询,专利分析的服务。并且提出一种 电极 (10),电极(10)包括:由延性材料形成的护套(14);包括 助焊剂 材料的外涂层(16);以及包括助焊剂材料和 合金 材料中的至少一种的芯部(12)。延性材料可以是期望的超级合金材料的元素的可 挤压 的子集,并且合金材料可以包括在电极 熔化 时补充延性材料以形成期望的超级合金材料的元素。外涂层可以由柔性粘合材料形成,或者外涂层可以被分段(18,20)以利于将电极弯曲到 线轴 上。可以将电极的任何吸湿性材料包括在芯部中,以防止吸湿性材料暴露在空气的湿气中。,下面是焊接电极专利的具体信息内容。

1.一种电极,包括:
由延性材料形成的护套;
包括设置在所述护套上的助焊剂材料的外涂层;其中,所述外涂层包括所述助焊剂材料的多个离散的区段,其中,所述多个离散的区段包括非平行的弧形端部,所述非平行的弧形端部被形成为与相邻的离散的区段的相应端部协作以利于所述电极的弯曲;以及芯部,所述芯部包括设置在所述护套内的合金材料和助焊剂材料中的至少一种;
其中,所述外涂层包括具有足够柔性的纤维素粘合材料以利于将所述电极弯曲到线轴上;其中,所述粘合材料包括纤维状纤维素;以及
其中,纤维从所述电极的最外表面向内延伸以与所述芯部接触
2.根据权利要求1所述的电极,其中,所述外涂层还包括合金材料。
3.根据权利要求1所述的电极,还包括将所述离散的区段中的相邻区段进行互连的纤维。
4.根据权利要求1所述的电极,其中,所述芯部包括吸湿性材料,而所述外涂层不包括吸湿性材料。
5.一种电极,包括:
护套;
芯部,所述芯部包括设置在所述护套内的合金材料和助焊剂材料;
其中,所述护套包括期望的超级合金材料的元素的可挤压的子集,并且其中,所述合金材料包括与补充所述护套以在所述电极熔化时形成所述期望的超级合金材料的元素;
外涂层,所述外涂层包括多个离散的区段;
其中,所述区段包括非平行的弧形端部,所述非平行的弧形端部被形成为与相邻区段的相应端部协作以利于所述电极的弯曲;
其中,所述外涂层包括具有足够柔性的纤维素粘合材料以利于将所述电极弯曲到线轴上;其中,所述粘合材料包括纤维状纤维素;以及
其中,纤维从所述电极的最外表面向内延伸以与所述芯部接触。
6.根据权利要求5所述的电极,还包括外涂层,所述外涂层包括合金材料和助焊剂材料中的至少一种。
7.根据权利要求5所述的电极,还包括将所述离散的区段中的相邻区段进行互连的纤维。
8.根据权利要求5所述的电极,其中,所述电极的任何吸湿性材料被设置在所述芯部中。

说明书全文

焊接电极

[0001] 相关申请的交叉引用
[0002] 本申请是于2013年1月31日提交的美国专利申请第13/754,983号(代理人案号2012P28299US)的部分继续申请,上述申请通过引用并入本文。

技术领域

[0003] 本发明总体上涉及金属接合领域,更具体地涉及使用含有助焊剂材料的熔化电极的材料的焊接和修复。

背景技术

[0004] 焊接电极通常通过将相对延性的材料从棒材进行多步拉伸而形成。在每个拉伸步骤期间随着材料因冷加工(产生位错)而硬化,进行反复退火以去除这种冷加工、降低强度并改进材料的延性以用于随后的拉伸步骤。即使在非常高的温度下,用于制造燃气涡轮发动机的超级合金材料也具有极高的强度和极低的延性。由于这些特性,退火对改进超级合金材料的延性的能有限。结果,难以由一些超级合金材料,特别是具有较高的含量的γ'强化合金如合金247、738、939等形成焊接电极。
[0005] 术语“超级合金”在本文中的使用如同在本领域中通常使用的那样;即,在高温下表现出优异的机械强度和抗蠕变性的高度抗腐蚀化合金。超级合金通常包含高的镍或钴含量。超级合金的示例包括以下述商标名称和品牌名称销售的合金:哈氏合金(Hastelloy)、因科内尔合金(Inconel alloys)(例如IN738、IN792、IN939)、Rene合金(例如Rene N5、Rene 80、Rene 142)、Haynes合金、Mar M、CM 247、CM 247LC、C263、718、X-750、ECY 768、282、X45、PWA 1483和CMSX(例如CMSX-4)单晶合金。
[0006] 有保护金属极电弧焊(SMAW)是一种手工电弧焊接工艺,其使用助焊剂覆盖的条状熔化电极。使用电流在电极与工件之间形成电弧,从而熔化电极和工件的一部分以形成焊接接头。由于SMAW的简单性和多功能性,SMAW是世界上最流行的焊接工艺之一。SMAW的一个限制是使用刚性条状电极,这种限制通常阻止了将SMAW应用于通常从线轴馈送可弯曲电极的连续或自动的焊接工艺。
[0007] 药芯焊丝电弧焊(FCAW)使用含有助焊剂的管状合金电极。由于助焊剂可以呈粉末状并被收集在管状合金护套内,所以电极可以被弯曲并以线圈形式储存,从而便于连续和自动的焊接。
[0008] 用于焊接的常规电极已由延性材料如不锈形成。例如,美国专利申请公开第US 2004/0173592 A1号公开了一种电极,该电极包括封装芯部的不锈钢护套,其中该芯部包含合金化助焊剂材料。还开发了用于焊接一些较低强度超级合金材料的常规电极。例如,美国专利申请公开第US 2012/0223057 A1号公开了用于某些超级合金的气体保护钨极电弧焊的涂覆电极。该电极包括由超级合金材料形成的实芯以及助焊剂材料的外涂层。
附图说明
[0009] 在下面的描述中参照附图来说明本发明,附图示出:
[0010] 图1是电极的径向截面图;
[0011] 图2是电极的轴向截面图;
[0012] 图3是将图2的电极沿线3-3截取的径向截面图;
[0013] 图4是电极的径向截面图;
[0014] 图5是使用图4的电极和冷金属电弧焊炬的包覆工艺;以及
[0015] 图6是使用图4的电极和能量束的包覆工艺。

具体实施方式

[0016] 本发明人致力于开发用于沉积和修复高强度γ’强化超级合金的改进的技术,该高强度γ’强化超级合金(gamma prime strengthened superalloy)通常用于燃气轮机热气路径部件。人们已经开发出可以用于成功沉积甚至最高强度的超级合金的激光粉末沉积技术。参见例如通过引用并入本文的美国专利申请公开第US 2013/0140279 A1号,其描述了(该申请的图6)难以根据超级合金的铝和钛含量来焊接在本文中称为γ’强化超级合金的超级合金。本发明人还认识到,没有可用于连续或自动焊接这些γ’强化超级合金的常规焊接电极。
[0017] 图1是电极10的径向截面图,电极10包括围绕芯部12的护套14。另外,如图1所示,护套14具有外涂层16。在电极10的各种实施方式中,芯部12和外涂层16包括如下所述的不同材料。在电极10的每个实施方式中,护套14由延性材料形成,例如限定期望的超级合金材料的元素组成的元素的可挤压的子集。在示例性实施方式中,例如,延性材料是纯镍或镍-铬或镍-铬-钴。本文中使用的延性材料是具有百分之十的最小延伸率且能够利用适当的退火重复通过冷挤压拉伸成线材形状的延性材料,通常为不锈钢和锻造的镍基合金(而不是铸造超级合金)。在示例性实施方式中,芯部12包括粉末状合金材料,该粉末状合金材料包括补充延性材料中的元素的元素,以完成限定期望的超级合金材料的元素组成。在示例性实施方式中,合金材料包括Cr、Co、Mo、W、Al、Ti、Ta、C、B、Zr和Hf中的一种或更多种。助焊剂材料可以被包括在外涂层16和/或芯部12中。芯部12中的助焊剂可以是粉末形式,并且外涂层16可以被沉积为整体涂层,或者可以是被保持在粘合材料中的粉末。如本领域技术人员所理解的,助焊剂材料提供熔渣功能,并且当电极10熔化时可以提供覆盖气体。在示例性实施方式中,助焊剂材料是非金属粉末,例如氧化铝、氟化物和酸盐。
[0018] 在电极10的一个实施方式中,芯部12由合金材料形成,护套14由延性材料制成,而外涂层16由助焊剂材料形成。
[0019] 在电极10的另一个实施方式中,芯部12由合金材料形成,护套14由延性材料制成,而外涂层16由合金材料和助焊剂材料形成。
[0020] 在电极10的另一个实施方式中,芯部12由合金材料和助焊剂材料形成,护套14由延性材料制成,而外涂层16由助焊剂材料形成。
[0021] 在电极10的另一个实施方式中,芯部12由助焊剂材料形成,护套14由延性材料制成,而外涂层16由合金材料和助焊剂材料形成。
[0022] 在电极10的另一个实施方式中,芯部12由合金材料和助焊剂材料形成,护套14由延性材料制成,而外涂层16由合金材料和助焊剂材料形成。
[0023] 在电极10的另一个实施方式中,芯部12由助焊剂材料形成,护套14由延性材料制成,而外涂层16由合金材料形成。在示例性实施方式中,使用电在外涂层16中形成合金材料。
[0024] 在电极10的另一个实施方式中,芯部12由助焊剂材料和合金材料形成,护套14由延性材料制成,而外涂层16由合金材料制成。
[0025] 在电极10的另一个实施方式中,外涂层16由用柔性粘合材料如纤维素材料包裹的助焊剂材料形成,使得电极10可以被缠绕在卷轴上。在示例性实施方式中,纤维素材料,例如纤维状编织纤维素的薄涂层用于提供柔性以将电极10卷绕在卷轴上。助焊剂材料和/或合金材料的颗粒可以支撑在具有纤维素材料的外涂层16中,或者可以用外涂层16中的助焊剂材料和/或合金材料涂覆纤维状纤维素材料。除了增强电极10的柔性,纤维素材料可以例如通过生成一种或更多种气体如一氧化、二氧化碳和氢气来有助于保护。
[0026] 在电极10的另一个实施方式中,芯部12包含电极中使用的任何吸湿性材料,而外涂层16不包括吸湿性材料。诸如细粉末状金属合金、凝聚的助焊剂以及粘合剂玻璃(Na2(SiO3))和硅酸钠(Na2(SiO2)nO)的吸湿性材料在暴露于空气中时吸收湿气是已知的,这对于焊接电极来说是有问题的,因为水在焊接温度下会分解形成氢气和氧气。现有技术的涂覆有助焊剂的电极在使用之前通过在高温下储存而保持干燥。本发明可以通过将所有吸湿性材料保持在芯部12内而保护其不受空气的影响,从而消除这种担忧。在示例性实施方式中,在外涂层16中仅提供非吸湿性材料。非吸湿性材料包括诸如熔融的助焊剂成分或者专设计的反应产物的材料,如美国专利第4,662,952号中所教导的那样。
[0027] 在外涂层16由助焊剂材料形成的实施方式中,电极10可以用于γ’强化超级合金的有保护金属极电弧焊(SMAW)。然而,上面讨论的电极10的实施方式不限于在SMAW中使用,并且可以用于任何类型的普通电弧焊接,例如气体保护钨极电弧焊(GTAW)、金属极气体保护电弧焊(GMAW)、埋弧焊(SAW)和药芯焊丝电弧焊(FCAW)。
[0028] 图2是电极10'的轴向截面图。图3是将图2的电极10'沿线3-3截取的径向截面图。电极10'包括延性材料的线材14',线材14'是延性材料的实芯线材。电极10'的线材14'被外涂层16'覆盖,外涂层16'被分成多个助焊剂材料的区段18、20。图2描绘了电极10'的具有被分段的外涂层16'的两个区段18、20的长度部分,因此本领域技术人员将认识到被分段的外涂层16'可以包括两个或更多个区段。
[0029] 外涂层16'的区段18、20可以可选地在相对的端上具有协作的弧形表面,使得凸表面22邻接并且可以接触相邻区段上的凹表面24。弧形的相邻表面有利于将电极10'缠绕在卷轴上,因为弧形的相邻表面使得区段18、20能够相对于彼此旋转,同时使区段18、20之间的间隙最小化。线材14'由能够弯曲而不会裂开的延性材料形成,并且被分段的外涂层16'使得相对脆弱的涂层,例如助焊剂材料的涂层能够弯曲而不会裂开。尽管图2描绘了区段18、20具有相邻的凸表面和凹表面,但是被分段的外涂层不限于这种布置。例如,区段可以是相邻的球形区段(例如珠),其中两个邻接的弧形表面是凸形的。在另一示例中,相邻的区段包括一个凹形的弧形表面以及凸形的并且镶嵌在该凹形表面中的邻接弧形表面。在另一示例中,区段可以是具有彼此平行的或者包括例如彼此镶嵌的相邻的凹形表面和凸形表面的相邻表面的相邻圆柱形区段。区段使得延性芯线材料能够弯曲而不会损坏相对脆弱的涂层材料,但是区段不限于任何特定的形状。
[0030] 当电极10'被缠绕在卷轴上时,电极10'的一端可以不包括区段18、20,从而可以在该端将电源连接到线材14’。可以使用滑环将电源连接到线材14',使得电源不需要随着电极10'在卷轴上转动。
[0031] 如图2至图3进一步所示,电极10'可以包括被分段的外涂层16'内的纤维26,纤维26可选地可以在区段18、20之间延伸。纤维26可以用于加强外涂层16',并且当纤维26从区段18行进到区段20时,纤维26将区段18、20连接在一起,同时仍提供将电极10'弯曲到线轴上的柔性。在一个示例性实施方式中,线材14'的延性材料是限定期望的超级合金材料的元素组成的元素的可挤压的子集,并且纤维26包括在电极熔化时与补充延性材料以形成期望的超级合金材料的金属元素。纤维26可以形成围绕芯线14'的金属丝网,其中助焊剂材料的区段18、20沿着金属丝网的长度布置,使得电极由于在区段18、20之间的丝网的柔性而弯曲时,区段18、20可以相对于彼此位移。在其他实施方式中,纤维26可以是陶瓷纤维,并且该陶瓷纤维的材料可以提供助焊功能。在示例性实施方式中,如图3所示,纤维26'可以在外涂层
16内径向延伸以与线芯14'接触,以实现纤维26与线材14'之间的电连续性。这种布置利于电源(未示出)与线材14'之间的通过纤维26、26'的电连续性。例如,电源可以通过与电极
10'的最外表面接触的电极驱动轮(未示出)与纤维26'电接触,从而与线材14'电连接。这种电连续性消除了在卷轴末端将线材14'裸连接到电源的需要。尽管图3描绘了定位在纤维26与线材14'之间的各种径向位置处的四根金属纤维26',但是实施方式不限于这种布置,而是可以包括可以被定位在与图3中描绘的位置不同的其他径向位置处的少于或多于四根的金属纤维26'。
[0032] 尽管图2至图3描绘了被分段的外涂层16'内的纤维26,但是其他实施方式包括不含强化纤维的被分段的外涂层16',例如不含强化纤维的助焊剂材料的多个区段18、20。此外,强化纤维可以可选地被包括在图1的外涂层16中。在另一示例性实施方式中,线材14'的延性材料是限定期望的超级合金材料的元素组成的元素的可挤压的子集,并且外涂层16'包括合金材料,该合金材料包括在电极熔化时补充延性材料以形成期望的超级合金材料的元素。
[0033] 尽管图2至图3描绘了线材14'包括实芯的延性材料,但是电极10'可以可选地具有带有空芯的延性材料的护套,如图1所示,其中合金材料和/或助焊剂被包含在芯部12内。
[0034] 图4是具有由延性材料形成的护套14的电极10”的径向截面图,所述延性材料例如限定期望的超级合金材料的元素组成的元素的可挤压的子集。在电极10”的该实施方式中,芯部12由助焊剂材料和合金材料形成。在示例性实施方式中,合金材料是粉末状金属材料,该粉末状金属材料包括补充延性材料的元素以完成限定期望的超级合金材料的元素组成。
[0035] 图5示出了下述实施方式:使用冷金属电弧焊炬54将高强度γ’沉淀强化超级合金(gamma prime precipitant strengthened superalloy)材料层50沉积到超级合金衬底52上。焊炬54用于馈送和熔化图4中的电极10”,焊炬54包括填充材料56,填充材料56具有芯线或条带材料的形式,其中填充材料56包括填充有粉末状芯部材料59的中空金属护套57。粉末状芯部材料59可以包括合金材料,例如粉末状金属和/或助焊剂材料。有利地,金属护套57由能够方便地形成为中空形状的材料形成,例如镍或镍-铬或镍-铬-钴,并且粉末状材料
59被选择为使得当填充材料56熔化时形成期望的超级合金成分。护套含有足够的镍(或铬或钴)以实现期望的超级合金成分,因此护套与粉末状芯部材料的固体与固体比例可以被保持在例如3:2的比例。电弧的热量使填充材料56熔化并形成由熔渣层58覆盖的期望的超级合金材料层50。粉末状助焊剂材料可以被设置在填充材料56中(例如芯部体积的25%),或者电极可以涂覆有助焊剂材料,或者这些替选方案的任何组合。还可以通过将补充粉末金属材料预先放置在衬底52的表面上或者通过在熔化步骤期间直接进料而将补充粉末金属材料添加到熔池中。在各种实施方式中,助焊剂可以是导电的(电熔渣)或不导电的(埋弧焊),并且可以是化学上为中性的或者添加剂。填充材料可以被预热以减少所需的工艺能量——在这种情况下来自冷金属电弧焊炬。使用助焊剂将提供保护,从而减少或消除冷金属电弧工艺中通常所需的惰性气体或部分惰性气体的需要。可以使用本文中描述的消耗品和方法论应用的其他工艺包括气体保护金属极电弧焊、药芯焊丝电弧焊、埋弧焊(包括条带和线材)、电渣焊(包括条带和线材)、等离子电弧焊和具有线材的气体保护钨极电弧焊。
[0036] 图6示出了下述实施方式:使用能量束如激光束64熔化包括填充材料66的图4的电极10”,以将γ’强化超级合金材料层60沉积到超级合金衬底62上。如以上参照图5所述,填充材料66包括由能够方便地形成中空形状的材料例如镍或镍-铬或镍-铬-钴构成的金属护套68,并且粉末状材料70被选择为使得当填充材料66被激光束64熔化时形成期望的超级合金成分。粉末状材料70可以包括粉末状助焊剂以及合金材料。激光束64的热量将填充材料66熔化并且形成被熔渣层72覆盖的期望的超级合金材料层60。如前所述,填充材料可以例如用电流预热,以减少所需的(在这种情况下来自激光束的)工艺能量。此外,还设想使用包括例如激光和电弧焊接的组合的混合工艺。
[0037] 上面讨论的电极的一个实施方式被配置成将合金247材料进行如下沉积:
[0038] -护套固体体积约为总金属固体体积的60%并且为纯Ni;
[0039] -芯部金属粉末体积约为包括足够的Cr、Co、Mo、W、Al、Ti、Ta、C、B、Zr和Hf的总金属固体体积的40%;当芯部金属粉末熔化在一起并且与来自护套的纯Ni混合时,产生标称重量百分比为8.3Cr、10Co、0.7Mo、10W、5.5Al、1Ti、3Ta、0.14C、0.015B、0.05Zr和1.5Hf;的合金247成分以及
[0040] -芯部助焊剂粉末体积代表在尺寸上可能大约等于金属粉末体积的额外的基本上为非金属的线材体积,并且芯部助焊剂粉末包括各种氧化物,例如比例为35/30/35的氧化铝、氟化物和硅酸盐。助焊剂的目数范围使得在芯部金属粉末内均匀分布。
[0041] 尽管图5至图6描绘了与图4的电极10”一起使用的焊接技术,但是这些焊接技术可以用于以上关于图1至图4所讨论的电极的任何实施方式。另外,本领域技术人员可以理解的任何普通类型的电弧焊可以与图1至图4的电极(包括例如有保护金属极电弧焊(SMAW))一起使用。
[0042] 对于通过电弧提供熔化的热量的实施方式,通常在助焊剂或保护气体中提供氧气或二氧化碳以保持电弧稳定性。然而,氧气或二氧化碳会与钛反应,而一些钛在熔化过程中会以蒸气或氧化物的形式损失。本发明使得填充材料中包含的钛的量能够超过所沉积的超级合金成分中期望的钛的量,以补偿这种损失。对于上述合金247的示例,芯部金属粉末中包含的钛的量可以从大约1%增加到大约3%。
[0043] 可以理解的是,还可以用类似的工艺来沉积其他合金例如不锈钢,其中有芯进料材料被填充有包括粉末状助焊剂和粉末状金属的粉末状芯部材料。粉末状金属可以用于扩充护套材料的成分以获得具有期望的化学性质的包覆材料。对于在熔化步骤期间由于汽化导致材料损失的实施方式,粉末状金属可以包括过量的损失材料以补偿损失。例如,当在含有氧气或二氧化碳的保护气体下沉积合金321不锈钢护套材料时,或者由惰性保护气体提供不完全的保护时,来自护套材料中的一些钛由于与氧或二氧化碳或者不完全保护气体发生反应而损失。这样的实施方式中的粉末状芯部材料可以包括粉末状助焊剂和粉末状钛或钛合金以补偿损失,由此提供期望的合金321包覆成分。
[0044] 可以使用的助焊剂材料包括市售的助焊剂,例如以下述商品名出售的助焊剂:Lincolnweld P2007、Bohler Soudokay NiCrW-412、ESAB OK 10.16或10.90、特殊金属(Special Metals)NT100、Oerlikon OP76、Sandvik 50SW或SAS1,或者在通过引用并入本文的本发明人的美国专利申请公开第US 2015/0027993 A1号中描述的助焊剂。可以在使用之前将助焊剂颗粒研磨至期望的较小的目数范围。本领域已知的助焊剂材料通常可以包括各种氧化物如氧化铝、氟化物和硅酸盐。本文中公开的工艺的实施方式可以有利地包括期望的包覆材料的金属成分,例如铬氧化物、镍氧化物或钛氧化物。可以用本发明的工艺结合、维修或涂覆通常用于高温应用例燃气涡轮发动机的任何目前可用的、镍或钴基超级合金,包括上述合金。
[0045] 虽然本文已经示出和描述了本发明的各种实施方式,但是能够明白,这样的实施方式仅作为示例提供。在不脱离本文中的发明的情况下,可以进行许多变化、改变和替换。因此,本发明意在仅由所附权利要求的精神和范围来限制。
相关专利内容
标题 发布/更新时间 阅读量
电芯焊接的电极组件 2020-05-12 335
双电极电弧焊接方法 2020-05-12 170
用于电阻焊接的电极 2020-05-12 934
电极块焊接固定装置 2020-05-13 276
一种悬挂焊接电极组件 2020-05-12 67
电芯焊接的电极组件 2020-05-12 57
凸焊焊接的电极 2020-05-11 229
焊接电极头及焊接系统 2020-05-11 202
焊接电极 2020-05-11 730
焊接电极头及焊接系统 2020-05-11 118
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈