首页 / 专利库 / 表面处理和涂层 / 表面处理 / 微细加工 / 刻蚀 / 湿蚀刻 / 反应器表面的选择性蚀刻

反应器表面的选择性蚀刻

阅读:0发布:2020-10-02

专利汇可以提供反应器表面的选择性蚀刻专利检索,专利查询,专利分析的服务。并且本 发明 提供组合物、方法及系统,其允许选择性蚀刻反应器金属部件(例如 钛 及/或钛 合金 )上的金属 氧 化物。所述蚀刻组合物包括 碱 金属氢氧化物及五倍子酸。所述方法适用于清洁用于沉积诸如氧化 铝 的金属氧化物膜的反应室。,下面是反应器表面的选择性蚀刻专利的具体信息内容。

1.一种用于选择性蚀刻半导体反应器的金属部件上的金属化物的方法,所述方法包括:
使所述金属部件的表面与性蚀刻剂接触,其中所述金属氧化物存在于所述金属部件的所述表面上,所述碱性蚀刻剂能有效蚀刻所述金属氧化物,以及所述金属部件易受所述碱性蚀刻剂的化学侵蚀;
使所述金属部件的所述表面与抑制剂接触,所述抑制剂能有效抑制所述碱性蚀刻剂对所述金属部件的化学侵蚀。
2.如权利要求1所述的方法,其中所述金属氧化物包括氧化铪以及氧化锆中的至少一种。
3.如权利要求1所述的方法,其中所述金属部件包括不锈、镍以及镍合金中的至少一种。
4.如权利要求1所述的方法,其中所述金属部件包括以及钛合金中的至少一种。
5.如权利要求1所述的方法,其中所述碱性蚀刻剂包括碱金属氢氧化物。
6.如权利要求5所述的方法,其中所述碱金属氢氧化物包括氢氧化钠以及氢氧化中的至少一种。
7.如权利要求1所述的方法,其中所述抑制剂包括聚羟基苯化合物。
8.如权利要求7所述的方法,其中所述抑制剂包括五倍子酸。
9.如权利要求1所述的方法,还包括使所述金属部件的所述表面与稳定剂接触,所述稳定剂能有效稳定所述抑制剂。
10.如权利要求9所述的方法,其中所述稳定剂包括酸根物种。
11.如权利要求1所述的方法,其中至少一部分接触步骤是在约0℃至约100℃下进行。
12.如权利要求1所述的方法,其中所述金属氧化物为氧化,以及使所述金属部件的所述表面与所述碱性蚀刻剂及所述抑制剂接触的步骤包括以至少约2微米/小时的蚀刻速率蚀刻所述氧化铝。
13.如权利要求12所述的方法,其中所述氧化铝的所述蚀刻速率为至少约8微米/小时。
14.如权利要求12所述的方法,其中使所述金属部件的所述表面与所述碱性蚀刻剂及所述抑制剂接触的步骤包括以小于1微米/小时的蚀刻速率蚀刻所述金属部件。
15.如权利要求1所述的方法,其中使所述金属部件的所述表面与所述碱性蚀刻剂及所述抑制剂接触的步骤包括选择性蚀刻所述金属部件上的所述金属氧化物,其中蚀刻选择性为至少20∶1。
16.如权利要求15所述的方法,其中所述蚀刻选择性为至少30∶1。
17.如权利要求1所述的方法,其中所述金属部件是用于氧化铝沉积的化学气相沉积反应室或原子层沉积反应室的组件的内表面。
18.如权利要求1所述的方法,还包括通过氧化处理从所述金属部件移除所述抑制剂。
19.一种用于离位湿式清洁沉积反应器的钛或钛合金表面上的氧化铝的方法,其中所述沉积反应器用于沉积氧化铝,所述方法包括:
使蚀刻剂与上面沉积有氧化铝层的所述沉积反应器的钛或钛合金表面接触,其中所述蚀刻剂包括氢氧化钠以及氢氧化钾中的至少一种;
使所述钛或钛合金表面与包括聚羟基苯化合物的抑制剂接触;以及
使所述钛或钛合金表面与包括硼酸根物种的稳定剂接触。
20.如权利要求19所述的方法,其中所述抑制剂包括五倍子酸。
21.一种用于选择性清洁金属部件上的金属氧化物的蚀刻组合物,包括:
有效量的碱性蚀刻剂,其能有效地蚀刻所述金属部件上的所述金属氧化物;以及有效量的抑制剂,其能有效地抑制所述碱性蚀刻剂对所述金属部件的蚀刻。
22.如权利要求21所述的蚀刻组合物,其中所述金属氧化物为氧化铝。
23.如权利要求21所述的蚀刻组合物,其中所述金属氧化物选自由氧化铪、氧化锆及其混合物组成的组。
24.如权利要求21所述的蚀刻组合物,其中所述碱性蚀刻剂包括碱金属氢氧化物。
25.如权利要求24所述的蚀刻组合物,其中所述碱金属氢氧化物包括氢氧化钠以及氢氧化钾中的至少一种。
26.如权利要求21所述的蚀刻组合物,其中所述碱性蚀刻剂的浓度为约0.1摩尔浓度至约10摩尔浓度。
27.如权利要求26所述的蚀刻组合物,其中所述碱性蚀刻剂的浓度为约0.5摩尔浓度至约1摩尔浓度。
28.如权利要求21所述的蚀刻组合物,其中所述抑制剂包括聚羟基苯化合物。
29.如权利要求21所述的蚀刻组合物,其中所述抑制剂与所述碱性蚀刻剂的摩尔比为至少约1∶10。
30.如权利要求21所述的蚀刻组合物,其中所述金属部件包括钛以及钛合金中的至少一种。
31.如权利要求21所述的蚀刻组合物,其中所述金属部件包括不锈钢、镍以及镍合金中的至少一种。
32.如权利要求21所述的蚀刻组合物,还包括稳定所述抑制剂的有效量的稳定剂。
33.如权利要求32所述的蚀刻组合物,其中所述稳定剂包括硼酸根物种。
34.如权利要求32所述的蚀刻组合物,包括:
约0.5摩尔浓度至约1摩尔浓度的所述碱性蚀刻剂,其包括氢氧化钠以及氢氧化钾中的至少一种;
所述抑制剂,其包括五倍子酸,所述抑制剂与所述碱性蚀刻剂的摩尔比为至少1∶10;
以及
所述稳定剂,其包括硼酸根物种,所述稳定剂与所述抑制剂的摩尔比为约1∶10至约
10∶1。

说明书全文

反应器表面的选择性蚀刻

技术领域

[0001] 本申请通常涉及薄膜制造,特别涉及清洁用于沉积薄膜的反应器。

背景技术

[0002] 在制造整合装置时,例如藉由化学气相沉积(CVD)或原子层沉积(ALD),将薄膜沉积或形成于反应室或反应器中的基板上。在这些沉积制程中,亦会将膜材料沉积于其它表面上,例如反应室内壁及其它暴露表面上,由此污染这些表面。随时间变迁,这些材料堆积并积累起来,最终使反应室表面有颗粒剥脱、脱落及/或分层等现象发生。落在基板表面上的颗粒,例如落到表面上或携带于气流中,会为制造过程带来问题,例如降低制程的产率及/或再现性。定期清洁反应室中的污染物可减少这些问题。
[0003] 一种清洁反应室的方法为使用合适蚀刻剂进行一或多次清洁循环的原位蚀刻循环。原位清洁减少了对于移除、更换及/或重新鉴定(requalify)受污染的反应室的需求。在蚀刻速率较高的情况下,可以在必要时就进行原位蚀刻,而不会明显地影响工具的处理量。但较低的蚀刻速率则会降低处理量。此外,在一些情况下,原位蚀刻有一或多个缺点,例如,显著地蚀刻反应室的一或多个组件,造成基板污染,及/或引起环境、健康与安全(EHS)问题。因此,在一些情况下,原位清洁是不可行的。
[0004] 清洁反应室的另一选择是离位清洁,其中将受污染的组件自工作中移出以便清洁。“珠粒喷击(Bead blasting)”是利用机械研磨进行离位清洁的一种形式,其中例如使用高压流体流,使一股磨料(例如、氧化锆、玻璃、二氧化化硅(SiC)或其它合适材料)碰撞待清洁的表面。珠粒喷击具有若干缺点,诸如清洁过程会对反应室组件造成破坏,由此缩短其使用寿命。珠粒喷击是一种“视线(line of sight)”方法,导致难以清洁具有高纵横比的组件。由于无法目视监测污染物的移除,故当移除污染物并到达底层材料时,终点并不明显;亦有可能漏掉受污染的区域。珠粒喷击亦会引起磨料污染清洁过的部分。珠粒喷击不易移除与磨料一样坚硬或比磨料更坚硬的污染物。此外,珠粒喷击需要高成本且具有低再现性。
[0005] 发明概述
[0006] 组合物、方法及系统,其允许选择性蚀刻金属室表面上的金属氧化物。所述方法适用于清洁用于沉积金属氧化物膜的反应室。
[0007] 在一个实施例中,提供一种用于选择性蚀刻半导体反应器的金属部件上的金属氧化物的方法。所述方法包含使金属部件的表面与性蚀刻剂接触。金属氧化物存在于所述金属部件的所述表面上。所述碱性蚀刻剂能有效地蚀刻金属氧化物。尽管金属部件易受碱性蚀刻剂所化学侵蚀,但金属部件的表面也部分与抑制剂接触,所述抑制剂能有效抑地制碱性蚀刻剂对金属部件的化学侵蚀。
[0008] 在另一实施例中,提供一种用于离位湿式清洁用于沉积氧化铝的沉积反应器的或钛合金表面上的氧化铝的方法。所述方法包含使上面沉积有氧化铝层的沉积反应器的钛或钛合金表面与蚀刻剂接触,其中蚀刻剂包括氢氧化钠及氢氧化中的至少一种。所述方法还包括使钛或钛合金表面与包括聚羟基苯化合物的抑制剂接触。此外,使钛或钛合金表面与包括酸根物种(borate species)的稳定剂接触。
[0009] 在另一实施例中,提供一种适于选择性清洁金属部件上的金属氧化物的蚀刻组合物。组合物包含能有效蚀刻金属部件上的金属氧化物的量的碱性蚀刻剂。组合物也包含能有效抑制碱性蚀刻剂对金属部件的蚀刻的量的抑制剂。
[0010] 附图简述
[0011] 图1是说明选择性蚀刻金属室部件上的金属氧化物的方法的一个实施例的流程图
[0012] 图2示意说明适用于评估对钛上的氧化铝的蚀刻的测试样品的一个实施例。
[0013] 图3A是测试样品的区域1在不存在五倍子酸的情况下蚀刻的FESEM。图3B是同一测试样品的区域2的FESEM。
[0014] 图4A是测试样品的区域1在五倍子酸存在的情况下蚀刻的FESEM。图4B是同一测试样品的区域2的FESEM。
[0015] 图5A及图5B是测试样品的平面在五倍子酸存在的情况下蚀刻的FESEM图像。
[0016] 图6是测试样品的平面在五倍子酸存在的情况下蚀刻的FESEM图像,其中标识出进行EDS的区域。
[0017] 图7A至图7C是图6中所标识的区域的EDS光谱图。
[0018] 图8A及图8B图解说明在不同蚀刻剂浓度下的氧化铝蚀刻速率。
[0019] 图9图解说明在不同蚀刻剂浓度及温度下的氧化铝蚀刻速率。
[0020] 图10A至图10C是测试样品在不存在五倍子酸的情况下蚀刻的FESEM图像。
[0021] 图11是测试样品在五倍子酸存在的情况下蚀刻的FESEM图像。
[0022] 发明详述
[0023] 本文描述用于清洁半导体反应器(尤其是沉积室)的金属部件或组件上的碱可蚀刻污染物的组合物、方法及系统。CVD及/或ALD反应室通常包括钛及/或钛合金组件,例如Pulsar ALD反应室(ASM International公司,位于荷兰的Bilthoven)。在许多沉积室中,其它易受影响的金属表面包含不锈(例如316L及304)、镍及镍合金。举例而言,在反应室中以ALD法沉积金属氧化物,诸如氧化铝(Al2O3),亦会在反应室的各部分上沉积氧化铝层。取决于包含在反应室中的表面的位置、反应室设计、沉积循环次数、所处理的基板数以及在所述反应室中进行的其它处理的因素而定,这些层通常不均匀,例如约150纳米(nm)至数千纳米厚。这些膜可能会剥脱、脱落、散裂或分层,而形成污染颗粒。特别是,由于氧化铝极为坚硬且对许多蚀刻化学品具有抗性,故难以将其自反应器表面清除。沉积于所述用于半导体处理的ALD或CVD室中的其它金属氧化物包含氧化铪(HfO2)、氧化锆(ZrO2)及铪锆氧化物(HfxZryOz)。在不破坏底层金属表面的情况下,亦很难移除所述金属氧化物。
[0024] 因此,本发明提供在多次沉积循环后(通常离位进行)定期移除沉积于反应器内壁上的金属氧化物的方法。除在基板上进行沉积的过程中,顺带被沉积于沉积室部件上的金属氧化物外,金属氧化物亦能用作反应室表面上的钝化保护层或掀离层(lift-off layer)。亦需要定期移除所述层以进行翻新(refreshing),而且亦可使用本文所述的方法定期移除反应器金属部件(无论是沉积反应器中或是其它反应器中)上的所述钝化层或掀离层。
[0025] 一种蚀刻组合物包括适于蚀刻所选污染物的蚀刻剂,以及增加在污染物与待清洁表面的材料的间的蚀刻选择性的改性剂。在较佳实施例中,所选污染物包括氧化铝,蚀刻组合物包括包含碱(base)或碱性物质(alkali)的性组合物,且待清洁的表面包括钛及/或钛合金。在一些实施例中,改性剂包括抑制钛及/或钛合金蚀刻的化合物,在本文中称为“抑制剂”。在其它实施例中,欲移除的污染物为氧化铪、氧化锆或其混合物。待清洁的表面亦可为不锈钢(例如316L及304)、镍及/或镍合金表面。
[0026] 在一些实施例中,碱蚀刻剂包括碱金属氢氧化物,例如锂、钠、钾、铷、铯的氢氧化物,及其组合。在较佳实施例中,碱为氢氧化钠、氢氧化钾或其组合。碱更佳为氢氧化钾。碱的浓度为约0.1摩尔浓度(M)至约10摩尔浓度,较佳为约0.2摩尔浓度至约5摩尔浓度,更佳为约0.5摩尔浓度至约1摩尔浓度。在一些较佳实施例中,所述浓度为约0.5摩尔浓度、约1摩尔浓度或约5摩尔浓度。通常碱浓度较高,则氧化铝或其它金属氧化物的蚀刻较快。一般而言,在给定蚀刻速率下,相较于氧化铝,蚀刻氧化锆、氧化铪及/或铪锆氧化物将需要较高蚀刻剂浓度。
[0027] 在一些较佳实施例中,提供高选择性的改性剂包括选自以下的抑制剂:五倍子酸(参看下式1)、五倍子酸类似物、其盐;其它聚羟基苯化合物(例如多酚、连苯三酚、儿茶酚),其组合及其类似物。本领域技术人员将理解,五倍子酸将在碱性条件下形成五倍子酸根阴离子盐。术语“五倍子酸”及“五倍子酸盐”在本文中是指蚀刻组合物中存在的物种。较佳所添加的五倍子酸与碱的摩尔比为约1∶50至约1∶1,更佳为约1∶20至约1∶5,最佳为约1∶10。
[0028]
[0029] 所述组合物较佳还包括一或多种硼酸根阴离子物种,例如硼酸根(BO33-)、偏硼2- 2-
酸根(BO )、四硼酸根(B4O7 )及其类似物,其是藉由任何合适的源化合物而添加,例如硼酸盐、硼酸、硼酸酯、其组合及其类似物。较佳的硼酸根来源是硼砂(十水合四硼酸钠,Na2B4O7·10H2O)。本领域技术人员将理解,在碱性条件下,会形成硼酸根物种的复杂混合物,例如硼酸根、二硼酸根、三硼酸根、四硼酸根及更高级的硼酸根。因此,如本文所用,术语“硼酸根”是指组合物中存在的所有硼酸根阴离子。硼酸根物种的浓度是根据所添加的硼酸根前驱体的量而言,而非溶液中所述物种的实际浓度。据信,硼酸根使五倍子酸具有抗氧化性而稳定。五倍子酸与硼酸根的摩尔比较佳为约1∶10至约10∶1,更佳为约1∶2至约
2∶1,最佳为约1∶1。
[0030] 蚀刻组合物的一些实施例包括此项技术中已知的其它添加剂,例如界面活性剂、分散剂、螯合剂、黏度改性剂、研磨剂、其组合及其类似物。合适的界面活性剂包含此项技术中已知的阴离子型、阳离子型及非离子型界面活性剂,例如磺酸盐、铵盐、聚氧乙基醇(polyethoxylate)、其组合及其类似物。合适的分散剂包含衍生自、胺、烷醇胺、碱、其组合及其类似物者,例如三乙醇胺。界面活性剂、分散剂及/或螯合剂可藉由溶解及/或悬浮污染物及蚀刻副产物,以及使待清洁表面的润湿性改良,来改良清洁。黏度改性剂、触变剂及/或流变改性剂适用于配制凝胶及/或糊状物,其例如允许蚀刻调配物紧贴非水平表面。研磨剂提供例如藉由机械作用、超音波、搅动、其组合或其类似作用来适当激活的物理清洁作用。
[0031] 图1是说明用于清洁受包括氧化铝的材料污染的钛及/或钛合金表面的方法100的一个实施例的流程图。如上文所述,蚀刻组合物亦适用于蚀刻不锈钢、镍或镍合金上的氧化锆、氧化铪或其混合物。
[0032] 在步骤110中,视情况准备待清洁的表面以便蚀刻。举例而言,在一些实施例中,拆卸反应室的一或多个组件,以便接近待清洁的表面。一些实施例包括预清洁步骤,例如为藉助此项技术中已知的任何方式移除润滑剂密封剂及/或滑脂。本领域技术人员将了解,特定预清洁条件将视欲移除的特定材料而定。一些实施例包含遮蔽步骤,例如为防止被遮蔽的表面与蚀刻组合物接触。
[0033] 在步骤120中,利用此项技术中已知的任何方法,例如藉由浸没、刷涂、喷雾、浸渍、其组合及其类似方法,使待清洁的表面与本文所述的蚀刻组合物接触。一些实施例系使用高压喷射法将蚀刻组合物喷射到待清洁的表面上。如上文所述,氧化铝的蚀刻速率通常会随碱浓度增加而增加。较高温度亦增加蚀刻速率。合适温度包含约0℃至约100℃,较佳约20℃至约90℃,更佳为约50℃至约80℃。在一些实施例中,氧化铝的蚀刻速率为至少约2微米/小时(μm/hr),较佳为至少约8微米/小时,更佳为至少约17微米/小时。在一些实施例中,底层钛表面以小于约1微米/小时,较佳小于约0.3微米/小时,更佳小于约0.1微米/小时经受氧化。氧化铝与钛的间的选择性为至少约20∶1,较佳为至少约30∶1,更佳为至少约40∶1。本领域技术人员将理解,蚀刻选择性表示暴露于蚀刻剂的不同材料的蚀刻速率比。
[0034] 蚀刻时间将视氧化铝膜的厚度及性质以及蚀刻速率而定。如上文所论述,膜厚度会因单个组件而变化。由于蚀刻组合物的选择性较高,故在一些实施例中,蚀刻组合物与待清洁表面的接触时间可能比蚀刻氧化铝所需的时间长得多,而不会明显氧化钛表面。视欲移除的金属氧化物的厚度而定,合适的蚀刻时间可大于约1小时,大于约5小时或大于约10小时。
[0035] 在一些实施例中,例如藉由超音波及/或藉由例如使用研磨垫及/或研磨刷机械研磨待清洁表面,来以机械法辅助蚀刻。可藉由例如使用搅拌装置及/或流体,搅动或循环新制蚀刻组合物,来补给待清洁表面处的组合物。
[0036] 如上文所论述,蚀刻组合物的一些实施例包括研磨颗粒。在这些实施例中,藉由例如高压洗涤、超音波、搅动、其组合及其类似方式,来启动机械清洁。
[0037] 在步骤130中,例如藉由用任何合适试剂冲洗,例如用去离子水、蒸馏水、醇、氨、有机溶剂、其组合及其类似试剂冲洗,来终止蚀刻。根据选择性所用的抑制剂可能被化学吸附至金属部件上,而应予以移除来恢复表面上钛的天然钝化层并防止对反应器的可能的污染,否则会影响随后反应室表面上沉积物的黏附,或污染上面正沉积有所述层的基板。可藉由暴露于氧化处理,诸如臭氧化的去离子冲洗液、电浆处理、过氧化物、单过氧基硫酸盐(monoperoxysulfate)或二过氧基硫酸盐(diperoxysulfae),或者过氧基无机氧化剂,来帮助移除被化学吸附的抑制剂(例如五倍子酸)。
[0038] 在一些实施例中,例如藉由抛光,进一步处理清洁过的表面。检查清洁过的表面,以评估清洁的功效以及组件的状况。必要时,例如藉由重修表面(refacing)来整修组件。随后,必要时,重新鉴定通过检查的组件,并使其继续工作。
[0039] 钛与碱性蚀刻剂在抑制剂不存在的情况下接触,倾向于使钛氧化,以形成多孔的二氧化钛(TiO2)表面层。此二氧化钛层不会自行钝化,亦即不会防止金属进一步氧化。因此,持续暴露于碱蚀刻剂会产生较厚的二氧化钛层。此外,所述孔也倾向于随时间而生长。接触热的浓碱会加速氧化。
[0040] 当多孔氧化物层存在于反应器表面上时,其会不利地影响制程处理量及再现性。处理气体保留在氧化物的各孔中,而由于所述气体的移除受扩散限制,致使净化时间增加。
多孔表面的表面积亦大于相当的未氧化钛表面,增加了吸附于表面上的处理气体的量,由此使处理气体的消耗量及处理时间增加。这些问题在ALD沉积制程中特别明显。由于二氧化钛不如钛致密,故组件的尺寸将改变,这可能改变关键尺寸。二氧化钛层亦易于剥脱及/或散裂,由此产生污染颗粒。即使移除了氧化物层,钛的氧化亦会改变组件的尺寸,改变关键特征,由此使组件的使用寿命缩短。
[0041] 据信,抑制剂(例如五倍子酸)在钛或钛合金表面上形成对蚀刻剂具有抗氧化特性的层。
[0042] 类似地,若无足够的选择性,则当蚀刻其它金属(例如不锈钢、镍或镍合金)上的金属氧化物时,亦会破坏其它金属反应器部件。
[0043] 实例1
[0044] 五倍子酸对蚀刻速率的影响
[0045] 图2说明测试样品200,其包括钛薄片210(2.3公分×2.8公分×1毫米)及氧化铝条220。形成两组测试样品。每组有一个样品具有较厚的氧化铝层(约49微米),以及一个具有较薄的氧化铝层(约7微米)。用异丙醇清洁测试样品,用蒸馏水冲洗,并在蚀刻前用氮气干燥。在置于控制温度的水浴中的双层烧杯中进行蚀刻。一组测试样品是在80℃的0.5摩尔浓度氢氧化钾(KOH)水溶液中蚀刻40分钟。另一组测试样品在80℃的0.5摩尔浓度氢氧化钾/0.05摩尔浓度五倍子酸/0.05摩尔浓度四硼酸钠(Na2B4O7)水溶液中蚀刻40分钟。除非另作说明,否则所有试剂皆购自Aldrich Chemical公司(位于威斯康星州(WI)的Milwaukee),并且不经纯化即使用。蚀刻后,用蒸馏水冲洗测试样品,并在氮气流中干燥。利用轮廓测绘(profilometry)(KLA-Tencor公司,位于加利福尼亚(CA)的San Jose)量测蚀刻前后的氧化铝的阶差高度(step height)。结果概述于表I中。
[0046] 表I
[0047]
[0048] 在五倍子酸不存在的情况下,氧化铝的蚀刻速率为12.9微米/小时,而在五倍子酸存在的情况下,蚀刻速率为11.8微米/小时。五倍子酸未显著影响氧化铝的蚀刻速率。
[0049] 实例2
[0050] 场发射扫描式电子显微分析
[0051] 对实例1的蚀刻过的测试样品进行场发射扫描式电子显微分析(FESEM),以确定蚀刻对表面形态的影响。在成像的前,依序用280目及1200目的砂纸抛光各样品的边缘。如图2所示,获取区域1(蚀刻前未由氧化铝覆盖的钛)及区域2(蚀刻前为氧化铝所覆盖的钛)的图像。
[0052] 图3A获自在五倍子酸盐不存在的情况下蚀刻的样品的区域1。氧化物层形成于钛表面上。所述氧化物层极薄且自边缘看不见。因此,将样品倾斜以便更好地观察。暗线指示样品的顶面与侧面的间的边缘。在仅暴露40分钟的情况下,氧化物层很薄且不连续。加速电压为5千伏;放大倍率:40,000x。图3B获自同一样品的区域2。由蚀刻所暴露的钛表面显示出一系列(bump),表示在移除此区域的氧化铝后,底层的钛会受到蚀刻。加速电压为5千伏;放大倍率:60,000x。
[0053] 图4A获自在五倍子酸盐存在的情况下蚀刻的样品的区域1。膜形成于样品表面上,其看起来不是多孔二氧化钛。加速电压为5千伏;放大倍率:40,000x。图4B获自同一样品的区域2。形成于钛表面上的膜看起来与图4A中的膜类似,其似乎也不是多孔二氧化钛。加速电压为5千伏;放大倍率:60,000x。
[0054] 在无五倍子酸盐情况下蚀刻的样品上形成氧化钛。在五倍子酸盐存在下蚀刻的样品上留下非多孔的表面。因而,五倍子酸抑制多孔层的形成,但不会影响氢氧化钾溶液中氧化铝的蚀刻速率。
[0055] 实例3
[0056] 蚀刻后钛表面的表征
[0057] 如实例1中所述制备具有7微米厚的氧化铝层的测试样品,并在80℃的0.5摩尔浓度氢氧化钾、0.05摩尔浓度五倍子酸、0.05摩尔浓度四硼酸钠蚀刻溶液中蚀刻1小时。用蒸馏水冲洗样品,并如实例2中所述进行边缘抛光。轮廓测绘显示氧化铝受到完全蚀刻。
[0058] 图5A及图5B提供先前在氧化铝下方的经蚀刻区域的平面的FESEM图像。加速电压为5.0千伏;放大倍率:1000x。
[0059] 亦在先前由氧化铝所覆盖的三个位置(图6中指定为1、2及3)进行能量色散光谱(EDS)X射线显微分析,相应的EDS光谱图分别显示于图7A至图7C中。这些光谱图显示铝实质上不会保留在样品上,表明蚀刻完全移除了氧化铝层。
[0060] 实例4
[0061] 氧化铝蚀刻速率
[0062] 如实例1中所述制备两个测试样品并进行蚀刻。蚀刻在65℃进行。其中一个实验是使用含0.5摩尔浓度氢氧化钾的蚀刻组合物,而另一个实验是使用1摩尔浓度氢氧化钾。利用轮廓测绘监测样品顶面与底面上氧化铝层的厚度。结果列于表II中并于图8A及图8B中图解说明。在这些实验中,在两种浓度氢氧化钾下,蚀刻速率类似。
[0063] 表II
[0064]
[0065] 在另一组实验中,量测在50℃、65℃及80℃的0.5摩尔浓度及1摩尔浓度氢氧化钾下的蚀刻速率。结果列于表III中并于图9中予以说明。
[0066] 表III
[0067]
[0068] 这些结果显示在较高的氢氧化钾浓度及较高的温度下,可获得较高的蚀刻速率。
[0069] 实例5
[0070] 氢氧化物对钛的影响
[0071] 藉由用蒸馏水、异丙醇及蒸馏水冲洗;在蒸馏水中进行超音波处理;用蒸馏水、异丙醇及蒸馏水冲洗;在10%硝酸中浸泡1分钟;以及用蒸馏水冲洗,来清洁钛样品。随后如实例1中所述,在0.5摩尔浓度氢氧化钾(无五倍子酸盐)中蚀刻样品2小时或4小时,随后在蒸馏水内冲洗,并用氮气干燥。如实例2中所述抛光边缘以进行FESEM分析。
[0072] 图10A是蚀刻2小时的样品的边缘的FESEM图像,其显示约3微米厚的二氧化钛层及底层钛。二氧化钛层具有多孔蜂巢状结构。二氧化钛是以约1.5微米/小时(250埃/分钟)形成。加速电压为5千伏;放大倍率:20,000x。
[0073] 图10B是蚀刻2小时的另一样品的边缘的FESEM图像。在此样品中,氧化钛层的厚度不均匀,而是在约1微米至约3微米的范围内。另外,结构亦为多孔蜂巢状。加速电压为5千伏;放大倍率:20,000x。
[0074] 图10C是蚀刻4小时的样品的边缘的FESEM图像。在此样品中,氧化钛层的厚度为约5微米至约6微米。此样品中的孔看起来比蚀刻2小时的样品的孔来得大。加速电压为5千伏;放大倍率:15,000x。
[0075] 实例6
[0076] 氢氧化物及五倍子酸盐对钛的影响
[0077] 如实例5中所述,清洁钛样品,并使用在80℃的0.5摩尔浓度氢氧化钾、0.05摩尔浓度五倍子酸、0.05摩尔浓度四硼酸钠蚀刻1小时,随后冲洗,干燥并进行边缘抛光。图11是样品的边缘的FESEM图像,其显示表面层及底层钛。与实例5的氧化物层相比,所述表面层相对较薄且较为光滑。表面层亦非多孔的。据信此层为五倍子酸或五倍子酸盐层,其保护底层钛层免受化学侵蚀。
[0078] 上文所说明及描述的实施例仅作为某些较佳实施例的实例而提供。在不背离仅受随附申请专利范围限制的本发明精神及范畴的情况下,本领域技术人员可对本文提供的实施例进行各种变更及修改
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈