首页 / 专利库 / 表面处理和涂层 / 真空镀膜 / 化学气相沉积 / 原子层沉积 / 一种金属含量可调的金属氮化物薄膜的制备方法及反应器

一种金属含量可调的金属氮化物薄膜的制备方法及反应器

阅读:957发布:2023-03-03

专利汇可以提供一种金属含量可调的金属氮化物薄膜的制备方法及反应器专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种金属含量可调的金属氮化物 薄膜 的制备方法及反应器,该方法包含若干次第一半反应过程及若干次第二半反应过程,通过控制第一半反应过程的循环次数与第二半反应过程循环次数的比例,制备金属含量可调的金属氮化物薄膜;该第一半反应过程是指利用光辐照使 吸附 在衬底表面的金属有机前驱体发生离解,而在衬底表面留下金属 原子 层;该二半反应过程是指利用NH3 等离子体 与衬底表面的金属原子层反应,形成金属氮化物薄膜。本发明的方法可调控薄膜中金属与氮元素之间的比值,实现薄膜 电阻 率 的调制;且制备的金属氮化物薄膜具有理想的台阶 覆盖 率和精确的薄膜厚度控制能 力 ,尤其适合高深宽比的沟槽的填充,能够满足先进CMOS集成 电路 工艺的需求。,下面是一种金属含量可调的金属氮化物薄膜的制备方法及反应器专利的具体信息内容。

1.一种金属含量可调的金属氮化物薄膜的制备方法,其特征在于,该方法包含若干次第一半反应过程及若干次第二半反应过程,通过控制第一半反应过程的循环次数与第二半反应过程循环次数的比例,来控制薄膜中金属原子与氮原子的比例,制备金属含量可调的金属氮化物薄膜;其中,所述的第一半反应过程是指利用光辐照使吸附在衬底表面的金属有机前驱体发生离解,而在衬底表面留下金属原子层;所述的第二半反应过程是指利用NH3等离子体与衬底表面的金属原子层反应,形成金属氮化物薄膜;所述的第一半反应过程具体包含以下步骤:
步骤1,向装有衬底的反应腔中以脉冲方式通入金属有机前驱体,使得该金属有机前驱体能在衬底表面吸附至饱和或与衬底表面活性基团反应至饱和;
步骤2,向反应腔中通入惰性气体进行吹洗,以去除腔体中多余的金属有机前驱体和反应副产物;
步骤3,开启光源,使衬底表面接受光辐照;金属有机前驱体受光辐照后,离解为金属原子和有机配体气态分子,其中,有机配体气态分子离开衬底表面,而金属原子附着在衬底表面;
步骤4,向反应腔中通入惰性气体进行吹洗,以去除反应腔中从金属有机前驱体上解离下来的气态配体分子。
2.如权利要求1所述的金属含量可调的金属氮化物薄膜的制备方法,其特征在于,所述的金属选择Ta、Ti、Hf、W、Mo中的任意一种或任意两种及以上的混合物。
3.如权利要求1所述的金属含量可调的金属氮化物薄膜的制备方法,其特征在于,该方法是采用光辐照辅助的原子层沉积方法制备金属氮化物薄膜。
4.如权利要求3所述的金属含量可调的金属氮化物薄膜的制备方法,其特征在于,该方法是利用引入了光源的ALD反应器制备金属氮化物薄膜。
5.如权利要求4所述的金属含量可调的金属氮化物薄膜的制备方法,其特征在于,所述的ALD反应器包含反应腔,光源设置在反应腔内上方。
6.如权利要求1所述的金属含量可调的金属氮化物薄膜的制备方法,其特征在于,在步骤1之前,还包含:将反应腔加热至100-300℃。
7.如权利要求1所述的金属含量可调的金属氮化物薄膜的制备方法,其特征在于,所述的第二半反应过程具体包含以下步骤:
步骤5,向反应腔中通入NH3,同时开启等离子体发生器,以产生NH3等离子体,使得NH3等离子体与衬底表层的金属原子发生化学反应,形成金属氮化物;
步骤6,向反应腔中通入惰性气体进行吹洗,以去除反应腔中多余的NH3等离子体及反应副产物。

说明书全文

一种金属含量可调的金属氮化物薄膜的制备方法及反应器

技术领域

[0001] 本发明属于集成电路制造领域,涉及一种金属含量可调的金属氮化物薄膜的制备方法,针对互连技术中扩散阻挡层以及场效应晶体管中金属栅的制备,提出了一种基于脉冲光辅助的原子层淀积技术,可以实现金属含量可调的金属氮化物的制备生长,如氮化钽(TaxNy)、氮化(TixNy)、氮化铪(HfxNy)、氮化钨(WxNy)等薄膜。

背景技术

[0002] 在现代CMOS集成电路中,铜(Cu)互连技术是最关键的技术之一。然而,由于金属Cu在基材料和其它介质材料中具有很强的扩散能,如果不采用有效的隔离措施,容易导致集成电路失效。据报道,金属氮化物(如氮化钽、氮化钛、氮化钨等)不仅具有良好的抗铜扩散性能,还具有较好的导电性,以及与SiOC等低介电常数互连材料之间很好的黏附性,现已成为Cu互连工艺中首选的扩散阻挡层材料。此外,这些金属氮化物也被用于金属-化物-半导体场效应晶体管的栅极材料,作为高介电常数介质和金属栅集成的优选方案,以及用于射频集成电路中金属-绝缘体-金属电容中的电极材料。
[0003] 传统的制备金属氮化物薄膜的方法主要包括物理气相沉积(PVD)和化学气相沉积(CVD)两大类。然而,随着集成电路特征尺寸不断减小,集成密度不断提高,元器件之间的间距不断减小,三维器件结构已成为主流,后道互连通孔的深宽比不断增大。所有这些变化使得传统的PVD和CVD薄膜制备技术无法满足集成电路发展的需求,即满足超薄金属氮化物薄膜的生长、高深宽比沟槽的填充、高共形覆盖的形成,以及良好的大面积均匀性。譬如,CVD方法只有在沟槽深宽比不超过10:1的情况下可实现100%的台阶覆盖率,而PVD在同等条件下只能达到50%的台阶覆盖率[3]。此外,CVD方法也很难保证超薄金属氮化物薄膜的生长以及大面积的均匀性。虽然,采用通常的原子层淀积(ALD)技术可以实现上述要求。譬如,以金属有机前驱体和NH3等离子体反应,可以实现ALD金属氮化物薄膜。然而,根据ALD的生长机理可知,金属原子和氮原子是交替生长的,即所形成的薄膜中金属原子与氮原子的比例是相对稳定的,无法实现金属原子和氮原子之间相对浓度的调制,尤其是无法增加金属原子的相对百分含量,因此制约了电阻率更低的金属氮化物薄膜的获得。
[0004] 因此,亟需研发一种金属原子含量可调控的金属氮化物薄膜的制备工艺。

发明内容

[0005] 本发明的目的是提供一种金属原子含量可调控的金属氮化物薄膜的制备方法,采用光脉冲辅助的原子层淀积反应,依靠光辐照致金属有机前驱体中配体的离解来实现金属原子层的叠加生长,利用通常的原子层淀积反应来实现氮原子层的生长以及与金属原子的键合。通过控制光脉冲辅助生长的周期数,来制备金属组份可调的金属氮化物薄膜,从而可以实现薄膜的电阻率可控。
[0006] 为达到上述目的,本发明提供了一种金属含量可调的金属氮化物薄膜的制备方法,该方法包含若干次第一半反应过程及若干次第二半反应过程,通过控制第一半反应过程的循环次数与第二半反应过程循环次数的比例,来控制薄膜中金属原子与氮原子的比例,制备金属含量可调的金属氮化物薄膜;其中,所述的第一半反应过程是指利用光辐照使吸附在衬底表面的金属有机前驱体发生离解,而在衬底表面留下金属原子层;所述的第二半反应过程是指利用NH3等离子体与衬底表面的金属原子层反应,形成金属氮化物薄膜。
[0007] 所述的金属选择Ta、Ti、Hf、W、Mo中的任意一种或任意两种以上的混合物。
[0008] 较佳地,该方法是采用光辐照辅助的原子层沉积方法制备金属氮化物薄膜。
[0009] 较佳地,该方法是利用引入了光源的ALD反应器制备金属氮化物薄膜。
[0010] 所述的ALD反应器包含反应腔,光源设置在反应腔内上方。
[0011] 所述的第一半反应过程具体包含以下步骤:
[0012] 步骤1,向装有衬底的反应腔中以脉冲方式通入金属有机化合物前驱体,使得该前驱体能在衬底表面吸附至饱和或与衬底表面活性基团反应至饱和;
[0013] 步骤2,向反应腔中通入惰性气体进行吹洗,以去除腔体中多余的金属前驱体和反应副产物;
[0014] 步骤3,开启光源,使衬底表面接受光辐照;金属有机前驱体受光辐照后,离解为金属原子和有机配体气态分子,其中,有机配体气态分子离开衬底表面,金属原子仍然停留在衬底表面;
[0015] 步骤4,向反应腔中通入惰性气体进行吹洗,以去除反应腔中从金属有机前驱体上解离下来的气态配体分子。
[0016] 在步骤1之前,还包含:将反应腔加热至100-300℃。
[0017] 所述的第二半反应过程具体包含以下步骤:
[0018] 步骤5,向反应腔中通入NH3,同时开启等离子体发生器,以产生NH3等离子体,使得NH3等离子体与衬底表层的金属原子发生化学反应,形成金属氮化物;
[0019] 步骤6,向反应腔中通入惰性气体进行吹洗,以去除反应腔中多余的NH3等离子体及反应副产物。
[0020] 本发明采用光脉冲辅助的原子层淀积反应,依靠光辐照致金属有机前驱体中配体的离解来实现金属原子层的叠加生长,利用通常的原子层淀积反应来实现氮原子层的生长以及与金属原子的键合。通过控制光脉冲辅助生长的周期数,来制备金属组份可调的金属氮化物薄膜,从而可以实现薄膜的电阻率可控。
[0021] 本发明还提供了一种适用于上述的金属含量可调的金属氮化物薄膜的制备方法的ALD反应器,该ALD反应器包含反应腔,该反应腔内部上方设有光源,用于光辐照;优选地,所述的光源采用紫外光源或红外光源。
[0022] 本发明的优点:
[0023] 1)本发明制备金属氮化物薄膜的方法不仅可以调控薄膜中金属与氮元素之间的比值,还可以实现薄膜电阻率的调制。
[0024] 2)本发明与传统的ALD工艺相兼容,因此具有理想的台阶覆盖率和精确的薄膜厚度控制能力,尤其适合高深宽比的沟槽的填充,能够满足先进CMOS集成电路工艺的需求。
[0025] 3)本发明采用光辐照,可以有效使金属有机前驱体的配体发生离解,对衬底损伤较小,同时不会在薄膜中引入杂质(通常来自配体),有效改善了薄膜的导电性和延展性。附图说明
[0026] 图1是本发明的引入光源的ALD反应器的反应腔内部结构示意图。
[0027] 图2是本发明的制备金属含量可调的氮化物薄膜的反应循环示意图。
[0028] 图3a-3e为本发明的引入光源的ALD方式沉积TaxNy薄膜的第一半反应过程(生长Ta原子层)的原理图。
[0029] 图4a-b为本发明的引入光源的ALD方式沉积TaxNy薄膜的第二半反应过程(生长Ta-N原子层)的原理图。
[0030] 图5为本发明制备的Ta原子组份变化的TaxNy薄膜结构示意图(m=1,n≥1)。
[0031] 图6为本发明制备的由一定厚度的Ta和TaN层交替生长形成的TaxNy薄膜结构示意图(m≥1,n≥1)。

具体实施方式

[0032] 以下结合附图通过具体实施例(沉积TaxNy)对本发明作进一步的描述,这些实施例仅用于说明本发明,并不是对本发明保护范围的限制。
[0033] 如图1所示为本发明引入光源的ALD反应器的结构示意图,该ALD反应器包含反应腔10,光源20位于腔体内部上方,在反应腔10中放置P型(100)晶向的单晶硅片作为TaxNy薄膜生长的衬底30,然后将衬底30加热到目标温度,作为TaxNy薄膜生长的温度条件。
[0034] 为了让反应源(五(二甲基)钽)能够产生足够的蒸汽压,需要对盛有(五(二甲氨基)钽)的容器进行加热,加热温度优选为120℃;为防止反应源在输运过程中冷凝,将五(二甲氨基)钽的输运管路亦加热至130℃。
[0035] 图2为本发明生长TaxNy薄膜的一个完整的生长循环示意图,包含光源辐照金属有机配体解离的第一半反应和通入NH3等离子体氮化的第二半反应。以上所述的第一半反应包含以下步骤:
[0036] 步骤1(S1),向反应腔中通入Ta源(五(二甲氨基)钽),并让Ta源在反应腔中停留一段时间,使Ta源分子在衬底表面发生吸附或与衬底表面发生化学反应,如图3a所示;
[0037] 步骤2(S2),向反应腔中通入惰性气体N2,对没有形成表面吸附的Ta源进行吹洗,留下形成表面吸附饱和的单层Ta源,如图3b所示;
[0038] 步骤3(S3),如图3c所示,开启光源,对衬底表面Ta源进行辐照,金属与配体之间的化学键发生断裂,即吸附于衬底表面Ta源分解成为Ta原子(附着在衬底表面)和气态配体(离开衬底表面);
[0039] 步骤4(S4),通入惰性气体N2进行吹洗,较重的Ta原子仍吸附于衬底表面,较轻的气态Ta源配体被N2带走,因此在衬底表面留下一个原子层Ta原子,如图3d所示。
[0040] 循环步骤S1-S4至n(n=1,2,3,…n)次,在衬底表面形成n个Ta原子层的堆积,如图3e所示,至此完成ALD沉积TaxNy薄膜的第一个半反应。
[0041] 上述的第二半反应包括以下步骤:
[0042] 步骤5(S5),向腔体内通入N源(NH3),开启等离子体发生器,在此作用下形成NH3等离子体,与表层金属Ta原子发生键合,在表面生成一层Ta-N化合物,如图4a所示。
[0043] 步骤6(S6),向反应腔内通入惰性气体N2,将反应副产物及未参与反应的N源带走,留下Ta-N原子层,如图4b所示。至此完成ALD沉积TaxNy薄膜的一个完整反应循环。
[0044] 生长过程中若改变第一半反应(步骤S1-S4)的循环次数n,固定第二半反应循环次数m=1,便可获得不同Ta原子相对含量的TaxNy薄膜,如图5所示。生长过程中若将步骤S1-S6循环m(m=1,2,3…m)次,将步骤S1-S4循环n次(n=1,2,3…n),便可获得由一定厚度的Ta和TaN层交替生长形成的纳米叠层TaxNy薄膜,如图6所示。
[0045] 综上所述,本发明提出了一种引入光源提供额外能量的ALD反应器,并提出了一种使用该反应腔来生长金属原子含量可控的金属氮化物薄膜的方法。本发明生长出的金属氮化物可调控薄膜中金属与氮元素之间的比值可变,从而实现电阻率的调控,引入光照使金属有机源分解,在薄膜产物中引入杂质会更少。并与传统ALD工艺兼容,很适合在集成电路Cu互连、金属栅和高介电常数介质领域中推广应用。
[0046] 在此,将本发明的衬底描述为单晶硅,但本发明并不局限于此,本发明可适用于硅基衬底、氧化物衬底、氮化物衬底、金属衬底和柔性衬底上的薄膜沉积;本发明生长方法描述为金属氮化物的生长,但本发明同样适用于其他金属原子可控的金属化合物薄膜的生长。
[0047] 尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。
相关专利内容
标题 发布/更新时间 阅读量
原子层沉积系统 2020-05-12 608
原子层沉积装置 2020-05-12 892
原子层沉积技术 2020-05-12 475
原子层沉积装置 2020-05-11 604
原子层沉积设备 2020-05-11 30
原子层沉积装置 2020-05-11 986
原子层沉积装置 2020-05-12 815
原子层沉积系统 2020-05-11 513
原子层沉积方法 2020-05-12 593
原子层沉积装置 2020-05-13 916
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈