首页 / 专利库 / 工业自动化和数控机床 / 关节角度 / 双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器

双层气浮正交解耦与滚动关节轴承度解耦的电涡流阻尼隔振器

阅读:1018发布:2020-05-22

专利汇可以提供双层气浮正交解耦与滚动关节轴承度解耦的电涡流阻尼隔振器专利检索,专利查询,专利分析的服务。并且双层气浮 正交 解耦与滚动关节 轴承 角 度解耦的电 涡流 阻尼隔振器属于精密隔振技术领域,隔振器主体的套筒与气浮板通过气浮面进行润滑与 支撑 ,通过电涡流阻尼器衰减振动 能量 、提高 稳定性 ,气浮板与下安装板、 活塞 筒与套筒通过气浮面进行润滑与支撑,上、下安装板之间的 水 平直线运动 自由度 通过双层正交气浮 导轨 进行解耦,角运动自由度通过滚动关节轴承进行解耦,音圈 电机 、位移 传感器 、限位 开关 和 控制器 、 驱动器 构成 位置 闭环反馈控制系统,对上、下安装板的相对位置进行精确控制;本 发明 具有三维零 刚度 、高 定位 精度 、直线运动自由度和角运动自由度解耦的特性,可有效解决超精密测量仪器与加工装备、尤其是步进扫描 光刻 机中的高性能隔振问题。,下面是双层气浮正交解耦与滚动关节轴承度解耦的电涡流阻尼隔振器专利的具体信息内容。

1.一种双层气浮正交解耦与滚动关节轴承度解耦的电涡流阻尼隔振器,由上安装板(1)、下安装板(2)、洁净压缩气源(3)、气管(26)和隔振器主体(4)组成,隔振器主体(4)安装在上安装板(1)与下安装板(2)之间,洁净压缩气源(3)通过气管(26)与隔振器主体(4)连接,其特征在于:所述隔振器主体(4)的结构中,套筒(6)的下表面与气浮板(34)通过轴向承载平面气浮面(21)润滑与支撑活塞筒(5)倒扣安装在套筒(6)内,并与套筒(6)通过径向承载圆柱气浮面(22)润滑与支撑,滚动关节轴承(7)安装在活塞筒(5)和上安装板(1)之间,X向气浮导轨(29)的下表面与气浮板(34)刚性连接,套筒(6)与X向气浮导轨(29)通过X向导轨气浮面(31)润滑与导向,Y向气浮导轨(30)的下表面与下安装板(2)刚性连接,气浮板(34)与下安装板(2)通过Z向承载气浮面(33)润滑与支撑,气浮板(34)与Y向气浮导轨(30)通过Y向导轨气浮面(32)润滑与导向;Z向音圈电机(10)、Z向位移传感器(13)、Z向限位开关(16)、Z向电涡流阻尼器(42)安装在活塞筒(5)与套筒(6)之间,X向音圈电机(8)、X向位移传感器(11)、X向限位开关(14)、X向电涡流阻尼器(40)、Y向电涡流阻尼器(41)安装在套筒(6)与气浮板(34)之间,Y向音圈电机(9)、Y向位移传感器(12)、Y向限位开关(15)安装在气浮板(34)与下安装板(2)之间;Z向音圈电机(10)的驱动方向为竖直方向,X向音圈电机(8)与Y向音圈电机(9)的驱动力方向在平面内且相互垂直,X、Y、Z向位移传感器(11、12、13)和X、Y、Z向限位开关(14、15、16)的作用线方向与X、Y、Z向音圈电机(8、9、10)的驱动力方向一致,X、Y、Z向电涡流阻尼器(40、41、42)的阻尼力方向分别与X、Y、Z向音圈电机(8、9、10)的驱动力方向一致;X、Y、Z向位移传感器(11、12、13)和X、Y、Z向限位开关(14、15、16)分别与控制器(19)的信号输入端连接,控制器(19)的信号输出端与驱动器(20)的信号输入端连接,驱动器(20)的信号输出端分别与X、Y、Z向音圈电机(8、9、10)连接。
2.根据权利要求1所述的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,其特征在于:所述X向电涡流阻尼器(40)由套筒(6)下表面侧壁沿X向音圈电机(8)驱动力方向安装的X向永磁体(40A)构成,Y向电涡流阻尼器(41)由套筒(6)下表面侧壁沿Y向音圈电机(9)驱动力方向安装的Y向永磁体(41A)构成,Z向电涡流阻尼器(42)由套筒(6)内圆柱面侧壁沿Z向音圈电机(10)驱动力方向安装的Z向永磁体(42A)构成,X、Y、Z向永磁体(40A、41A、42A)的磁极方向垂直于套筒(6)的表面,且N、S极交替布置,套筒(6)采用磁材料,活塞筒(5)与气浮板(34)采用不导磁的良导体材料。
3.根据权利要求1所述的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,其特征在于:所述活塞筒(5)内设有气体压力传感器(17),活塞筒(5)上设有进气口(23)和电磁(18),气体压力传感器(17)与控制器(19)的信号输入端连接,控制器(19)的信号输出端与驱动器(20)的信号输入端连接,驱动器(20)的信号输出端与电磁阀(18)连接。
4.根据权利要求1所述的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,其特征在于:所述X、Y、Z向音圈电机(8、9、10)为圆筒型音圈电机或平板型音圈电机。
5.根据权利要求1所述的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,其特征在于:所述X向气浮导轨(29)和Y向气浮导轨(30)为单导轨结构或双导轨结构。
6.根据权利要求1所述的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,其特征在于:所述X、Y、Z向位移传感器(11、12、13)为光栅尺、磁栅尺、容栅尺或直线式电位器。
7.根据权利要求1所述的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,其特征在于:所述X、Y、Z向限位开关(14、15、16)为机械式限位开关、霍尔式限位开关或光电式限位开关。
8.根据权利要求1所述的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,其特征在于:所述活塞筒(5)内气体压力为0.1MPa~0.8MPa。
9.根据权利要求1所述的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,其特征在于:所述轴向承载平面气浮面(21)、径向承载圆柱气浮面(22)、X向导轨气浮面(31)、Y向导轨气浮面(32)和Z向承载气浮面(33)的气膜厚度为10μm~20μm。
10.根据权利要求1所述的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,其特征在于:所述活塞筒(5)上的圆柱气浮面节流孔(25)和套筒(6)上的平面气浮面节流孔(24)的直径为φ0.1mm~φ1mm。

说明书全文

双层气浮正交解耦与滚动关节轴承度解耦的电涡流阻尼

隔振器

技术领域

[0001] 本发明属于精密隔振技术领域,主要涉及一种双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器

背景技术

[0002] 随着超精密加工与测量精度的不断提高,环境振动成为制约超精密加工装备与测量仪器精度和性能提高的重要因素。尤其是步进扫描光刻机为代表的超大规模集成电路加工装备,技术密集度与复杂度极高,关键技术指标均达到了现有技术的极限,代表了超精密加工装备的最高平,超精密隔振成为此类装备中的核心关键技术;步进扫描光刻机的线宽已达到22nm及以下,定位精度与套刻精度均达到几纳米,而工件台运动速度达到1m/s以上,工件台加速度达到加速度的几十倍,这对现有的隔振技术提出了新的挑战。
首先,光刻机需要为计量系统与光刻物镜提供“超静”的工作环境,同时又需要驱动工件台以高速度与高加速度运动,这对隔振系统的隔振性能提出了极其苛刻的要求,其三个方向的固有频率均需要达到1Hz以下;其次,光刻机各部件之间的相对位置,例如光刻物镜与硅片表面的距离,均具有非常严格的要求,且处于位置闭环反馈控制系统的控制之下,要求隔振器上、下安装板之间的相对位置精度达到10μm量级,传统隔振器的定位精度远远不能满足要求。
[0003] 根据隔振理论,被动式隔振器的固有频率与刚度成正比、与负载质量成反比,因此在负载质量一定的前提下,降低隔振器的刚度是降低固有频率、提高低频与超低频隔振性能的有效途径。传统空气弹簧等形式的隔振器存在静态承载能力与刚度的固有矛盾,同时受材料特性、结构刚度等因素制约,要进一步降低其刚度、尤其是水平向刚度十分困难。针对这一问题,研究人员将“摆”式结构引入到空气弹簧隔振器中,达到降低隔振器水平刚度的目的(1.Nikon Corporation.Vibration Isolator With Low Lateral Stiffness.美国专利公开号:US20040065517A 1;2.U.S.Philips Corporation.Positioning Device with a Force Actuator Systemfor Compensating Center-of-gravity Displacements,and Lithographic Device Provided with Such APositioning Device.美国专利号:US005844664A)。该方法能够在一定程度上降低空气弹簧隔振器的水平刚度,提升其低频隔振性能。该方法存在的问题在于:1)受材料特性与结构刚度制约,隔振器垂向与水平向刚度降低的幅度有限;2)空气弹簧隔振器的垂向与水平向定位精度均很差,无法满足光刻工艺的要求;3)要达到较低的水平刚度需要较大的摆长,导致隔振器高度过大,容易发生弦膜共振,稳定性差。
[0004] 通过对现有空气弹簧隔振器技术方案的分析可见,现有空气弹簧隔振器难以满足光刻机对超低刚度与高定位精度的要求。德国IDE公司提出了一种摒弃传统橡胶空气弹簧的隔振器技术方案(1.Integrated Dynamics Engineering GmbH.Isolatorgeometrie EinesSchwingungsisolationssystem.欧洲专利号:EP1803965A2;2.Integrated Dynamics EngineeringGmbH.Schwingungsisolationssystem Mit Pneumatischem Tiefpassfilter.欧洲专利号:EP1803970A2;3.Integrated Dynamics Engineering GmbH.Air Bearing with Consideration ofHigh-Frequency Resonances.美国专利公开号:US20080193061A1)。该方案采用垂向与水平向气浮面对各方向的振动进行解耦与隔振,可以达到极低的刚度与固有频率。该方案存在的问题在于:1)已公开技术方案中,隔振器无法实现精确定位;2)专利EP1803965A2中,上、下安装板之间不存在绕水平轴旋转的角运动自由度,该方向的角刚度与固有频率都很高;专利EP1803970A2与US20080193061A1采用橡胶为上、下安装板提供绕水平轴旋转的角运动自由度,但由于橡胶块角刚度很大,无法有效地进行角运动自由度解耦,角运动自由度解耦机构部件之间存在摩擦力而引入附加刚度,制约隔振性能。
[0005] 荷兰ASML公司也提出了类似的隔振器技术方案(1.U.S.Philips Corp,ASM LithographyB.V.Pneumatic Support Device with A Controlled Gas Supply,and Lithographic Device Providedwith Such A Support Device. 美 国 专 利号:US006144442A;2.Koninklijke Philips ElectronicsN.V.,ASM Lithography B.V.Lithographic Pneumatic Support Device with Controlled Gas Supply.国 际 专 利 公 开 号:WO99/22272;3.ASML Netherlands B.V.Support Device,LithographicApparatus,and Device Manufacturing Method Employing A Supporting Device,and A PositionControl System Arranged for Use in A Supporting Device.美国专利号:US007084956B2;4.ASML Netherlands B.V.Support Device,Lithographic Apparatus,and Device ManufacturingMethod Employing A Supporting Device and A Position Control System Arranged for Use in ASupporting Device.欧洲专利号:EP1486825A1)。专利US006144442A与WO99/22272中对气源压力进行闭环反馈控制,达到提高隔振器的稳定性与性能的目的;专利US007084956B2与EP1486825A1中在上安装板上设有振动传感器,同时引入参考振动系统,通过控制算法提升隔振器的隔振性能。但所提出技术方案仍然没有解决隔振器的精确定位与上、下安装板的角运动自由度解耦问题。

发明内容

[0006] 本发明的目的是针对超精密测量仪器与加工装备、尤其是步进扫描光刻机等超大规模集成电路加工装备对隔振器低固有频率、高定位精度的迫切要求,提供一种双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,隔振器在三维均具有近似零刚度与极低的固有频率,上、下安装板之间能够进行精确定位与三维直线运动自由度、角运动自由度解耦,从而有效解决超精密测量仪器与加工装备、尤其是步进扫描光刻机中的精密隔振问题。
[0007] 本发明的技术解决方案是:
[0008] 一种双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,由上安装板、下安装板、洁净压缩气源、气管和隔振器主体组成,隔振器主体安装在上安装板与下安装板之间,洁净压缩气源通过气管与隔振器主体连通,所述隔振器主体的结构中,套筒的下表面与气浮板通过轴向承载平面气浮面润滑与支撑活塞筒倒扣安装在套筒内,并与套筒通过径向承载圆柱气浮面润滑与支撑,滚动关节轴承安装在活塞筒和上安装板之间,X向气浮导轨的下表面与气浮板刚性连接,套筒与X向气浮导轨通过X向导轨气浮面润滑与导向,Y向气浮导轨的下表面与下安装板刚性连接,气浮板与下安装板通过Z向承载气浮面润滑与支撑,气浮板与Y向气浮导轨通过Y向导轨气浮面润滑与导向;Z向音圈电机、Z向位移传感器、Z向限位开关、Z向电涡流阻尼器安装在活塞筒与套筒之间,X向音圈电机、X向位移传感器、X向限位开关、X向电涡流阻尼器、Y向电涡流阻尼器安装在套筒与气浮板之间,Y向音圈电机、Y向位移传感器、Y向限位开关安装在气浮板与下安装板之间,Z向音圈电机的驱动力方向为竖直方向,X向音圈电机与Y向音圈电机的驱动力方向在水平面内且相互垂直,X、Y、Z向位移传感器和X、Y、Z向限位开关的作用线方向与X、Y、Z向音圈电机的驱动力方向一致,X、Y、Z向电涡流阻尼器的阻尼力方向分别与X、Y、Z向音圈电机的驱动力方向一致;X、Y、Z向位移传感器和X、Y、Z向限位开关分别与控制器信号输入端连接,控制器的信号输出端与驱动器的信号输入端连接,驱动器的信号输出端分别与X、Y、Z向音圈电机连接。
[0009] 所述X向电涡流阻尼器由套筒下表面侧壁沿X向音圈电机驱动力方向安装的X向永磁体构成,Y向电涡流阻尼器由套筒下表面侧壁沿Y向音圈电机驱动力方向安装的Y向永磁体构成,Z向电涡流阻尼器由套筒内圆柱面侧壁沿Z向音圈电机驱动力方向安装的Z向永磁体构成,X、Y、Z向永磁体的磁极方向垂直于套筒的表面,且N、S极交替布置,套筒采用磁材料,活塞筒与气浮板采用不导磁的良导体材料。
[0010] 所述活塞筒内设有气体压力传感器,活塞筒上设有进气口和电磁,气体压力传感器与控制器的信号输入端连接,控制器的信号输出端与驱动器的信号输入端连接,驱动器的信号输出端与电磁阀连接。
[0011] 所述X、Y、Z向音圈电机为圆筒型音圈电机或平板型音圈电机。
[0012] 所述X向气浮导轨和Y向气浮导轨为单导轨结构或双导轨结构。
[0013] 所述X、Y、Z向位移传感器为光栅尺、磁栅尺、容栅尺或直线式电位器。
[0014] 所述X、Y、Z向限位开关为机械式限位开关、霍尔式限位开关或光电式限位开关。
[0015] 所述活塞筒内气体压力为0.1MPa~0.8MPa。
[0016] 所述轴向承载平面气浮面、径向承载圆柱气浮面、X向导轨气浮面、Y向导轨气浮面和Z向承载气浮面的气膜厚度为10μm~20μm。
[0017] 所述活塞筒上的圆柱气浮面节流孔和套筒上的平面气浮面节流孔的直径为φ0.1mm~φ1mm。
[0018] 本发明的技术创新性及产生的良好效果在于:
[0019] (1)本发明摒弃了传统基于弹性元件/机构的隔振器技术方案,采用轴向承载平面气浮面、径向承载圆柱气浮面分别对水平向与垂向振动进行解耦与隔振,气浮面无摩擦,刚度近似为零,可使隔振器获得近似的零刚度特性和突出的超低频隔振性能,解决了现有技术受结构刚度、材料特性限制,刚度难以进一步降低,刚度与稳定性不能兼顾的问题。这是本发明区别于现有技术的创新点之一。
[0020] (2)本发明采用位移传感器、限位开关、控制器、驱动器与音圈电机等构成竖直方向与水平方向的位置闭环反馈控制系统,对上、下安装板之间的相对位置进行精确控制,定位精度可达到10μm级及以上,可有效解决现有技术方案定位精度低、定位精度与刚度、隔振性能不能兼顾的问题。这是本发明区别于现有技术的创新点之二。
[0021] (3)本发明采用双层正交气浮导轨和滚动关节轴承对隔振器上、下安装板之间的直线运动自由度和角运动自由度进行解耦,气浮导轨与滚动关节轴承的摩擦、磨损以及引入的附加刚度可以忽略,可有效解决现有采用弹性体解耦的技术方案引入较大附加刚度等问题。这是本发明区别于现有技术的创新点之三。
[0022] (4)本发明采用气体压力传感器、电磁阀与控制器、驱动器等构成压力闭环反馈控制系统,精确控制套筒内的气体压力使之保持恒定,对隔振器的轴向载荷进行重力平衡与补偿,在径向承载圆柱气浮面的作用下,承载负载重力的活塞筒可沿套筒以零刚度自由上下滑动,从而实现理想的重力平衡与零刚度隔振效果。这是本发明区别于现有技术的创新点之四。
[0023] (5)本发明采用主动执行器对上、下安装板之间的相对位置进行主动控制,隔振器参数可根据被隔振对象特点与工作环境变化实时调节,从而适应不同的工况,具有较好的灵活性、适应性与稳定性。这是本发明区别于现有技术的创新点之五。
[0024] (6)本发明采用基于磁极交替永磁阵列的电涡流阻尼器,能够很好地与隔振器集成于一体,电涡流阻尼器具有较理想的线性阻尼特性,可有效衰减振动能量,减小电机驱动定位的超调,提供隔振器的稳定性。这是本发明区别于现有技术的创新点之六。附图说明
[0025] 图1为拆除上安装板后的双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器的结构示意图;
[0026] 图2为双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器的剖面结构示意图;
[0027] 图3为轴向承载平面气浮面、径向承载圆柱气浮面和X向导轨气浮面的示意图;
[0028] 图4为Z向承载气浮面和Y向导轨气浮面的示意图;
[0029] 图5为套筒结构示意图;
[0030] 图6为单排滚珠滚动关节轴承的滚珠保持架的结构示意图;
[0031] 图7为满布滚珠滚动关节轴承的结构示意图;
[0032] 图8为双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器的控制结构框图
[0033] 图9为套筒上平面气浮面节流孔的示意图;
[0034] 图10为活塞筒上圆柱气浮面节流孔的示意图;
[0035] 图11为电涡流阻尼器的剖面结构示意图;
[0036] 图12为Z向永磁体在套筒内圆柱面侧壁一种安装方式的A-A向剖视图;
[0037] 图13为Z向永磁体在套筒内圆柱面侧壁另一种安装方式的A-A向剖视图;
[0038] 图14为X、Y向永磁体在套筒下表面侧壁的一种安装方式示意图;
[0039] 图15为X、Y向永磁体在套筒下表面侧壁的另一种安装方式示意图。
[0040] 图中件号说明:1上安装板、2下安装板、3洁净压缩气源、4隔振器主体、5活塞筒、6套筒、7滚动关节轴承、7a轴承体、7b滚珠保持架、7c滚珠、7d轴承座、8X向音圈电机、8a X向电机铁轭、8b X向电机磁、8c X向电机线圈骨架、8d X向电机线圈、9Y向音圈电机、
10Z向音圈电机、10a Z向电机铁轭、10b Z向电机磁钢、10c Z向电机线圈骨架、10d Z向电机线圈、10e Z向电机过渡件、11X向位移传感器、11a X向光栅读数头过渡件、11b X向光栅读数头、11c X向玻璃光栅尺、12Y向位移传感器、13Z向位移传感器、13a Z向光栅读数头过渡件、13b Z向光栅读数头、13c Z向玻璃光栅尺、14X向限位开关、14a X向限位块、14b X向霍尔开关、14c X向限位开关过渡件、14d X向限位块过渡件、15Y向限位开关、16Z向限位开关、16a Z向限位块、16b Z向霍尔开关、16c Z向限位开关过渡件、17气体压力传感器、18电磁阀、19控制器、20驱动器、21轴向承载平面气浮面、22径向承载圆柱气浮面、23进气口、24平面气浮面节流孔、25圆柱气浮面节流孔、26气管、29X向气浮导轨、30Y向气浮导轨、31X向导轨气浮面、32Y向导轨气浮面、33Z向承载气浮面、34气浮板、40X向电涡流阻尼器、40A X向永磁体、41Y向电涡流阻尼器、41A Y向永磁体、42Z向电涡流阻尼器、42A Z向永磁体。

具体实施方式

[0041] 下面结合附图给出本发明的具体实施例
[0042] 一种双层气浮正交解耦与滚动关节轴承角度解耦的电涡流阻尼隔振器,由上安装板1、下安装板2、洁净压缩气源3、气管26和隔振器主体4组成,隔振器主体4安装在上安装板1与下安装板2之间,洁净压缩气源3通过气管26与隔振器主体4连通,所述隔振器主体4的结构中,套筒6的下表面与气浮板34通过轴向承载平面气浮面21润滑与支撑,活塞筒5倒扣安装在套筒6内,并与套筒6通过径向承载圆柱气浮面22润滑与支撑,滚动关节轴承7安装在活塞筒5和上安装板1之间,X向气浮导轨29的下表面与气浮板34刚性连接,套筒6与X向气浮导轨29通过X向导轨气浮面31润滑与导向,Y向气浮导轨30的下表面与下安装板2刚性连接,气浮板33与下安装板2通过Z向承载气浮面33润滑与支撑,气浮板34与Y向气浮导轨30通过Y向导轨气浮面32润滑与导向;Z向音圈电机10、Z向位移传感器13、Z向限位开关16、Z向电涡流阻尼器42安装在活塞筒5与套筒6之间,X向音圈电机8、X向位移传感器11、X向限位开关14、X向电涡流阻尼器40、Y向电涡流阻尼器41安装在套筒6与气浮板34之间,Y向音圈电机9、Y向位移传感器12、Y向限位开关15安装在气浮板34与下安装板2之间;Z向音圈电机10的驱动力方向为竖直方向,X向音圈电机8与Y向音圈电机9的驱动力方向在水平面内且相互垂直,X、Y、Z向位移传感器11、12、
13和X、Y、Z向限位开关14、15、16的作用线方向与X、Y、Z向音圈电机8、9、10的驱动力方向一致,X、Y、Z向电涡流阻尼器40、41、42的阻尼力方向分别与X、Y、Z向音圈电机8、9、10的驱动力方向一致;X、Y、Z向位移传感器11、12、13和X、Y、Z向限位开关14、15、16分别与控制器19的信号输入端连接,控制器19的信号输出端与驱动器20的信号输入端连接,驱动器20的信号输出端分别与X、Y、Z向音圈电机8、9、10连接。
[0043] X、Y、Z向位移传感器11、12、13对X、Y、Z向音圈电机8、9、10输出的位移进行测量,X、Y、Z向限位开关14、15、16对X、Y、Z向音圈电机8、9、10运动的行程进行限制;控制器19根据X、Y、Z向位移传感器11、12、13和X、Y、Z向限位开关14、15、16的反馈信号,控制X、Y、Z向音圈电机8、9、10对上、下安装板1、2之间的相对位置进行精确控制。
[0044] 所述X向电涡流阻尼器40由套筒6下表面侧壁沿X向音圈电机8驱动力方向安装的X向永磁体40A构成,Y向电涡流阻尼器41由套筒6下表面侧壁沿Y向音圈电机9驱动力方向安装的Y向永磁体41A构成,Z向电涡流阻尼器42由套筒6内圆柱面侧壁沿Z向音圈电机10驱动力方向安装的Z向永磁体42A构成,X、Y、Z向永磁体40A、41A、42A的磁极方向垂直于套筒6的表面,且N、S极交替布置,套筒6采用铁磁材料,活塞筒5与气浮板2采用不导磁的良导体材料。
[0045] 所述活塞筒5内设有气体压力传感器17,活塞筒5上设有进气口23和电磁阀18,气体压力传感器17与控制器19的信号输入端连接,控制器19的信号输出端与驱动器20的信号输入端连接,驱动器20的信号输出端与电磁阀18连接。
[0046] 所述X、Y、Z向音圈电机8、9、10为圆筒型音圈电机或平板型音圈电机。
[0047] 所述X向气浮导轨29和Y向气浮导轨30为单导轨结构或双导轨结构。
[0048] 所述X、Y、Z向位移传感器11、12、13为光栅尺、磁栅尺、容栅尺或直线式电位器。
[0049] 所述X、Y、Z向限位开关14、15、16为机械式限位开关、霍尔式限位开关或光电式限位开关。
[0050] 所述活塞筒5内气体压力为0.1MPa~0.8MPa。
[0051] 所述轴向承载平面气浮面21、径向承载圆柱气浮面22、X向导轨气浮面31、Y向导轨气浮面32和Z向承载气浮面33的气膜厚度为10μm~20μm。
[0052] 所述活塞筒5上的圆柱气浮面节流孔25和套筒6上的平面气浮面节流孔24的直径为φ0.1mm~φ1mm。
[0053] 下面结合图1~图5、图8给出本发明的一个实施例。本实施例中,隔振器工作时,下安装板2安装在地基、仪器的基座基础框架上,上安装板1与被隔振的负载连接。X、Y、Z向音圈电机8、9、10均采用圆筒型音圈电机。以X向音圈电机8为例,其主要包括X向电机铁轭8a、X向电机磁钢8b、X向电机线圈骨架8c、X向电机线圈8d。X向电机铁轭8a和X向电机线圈骨架8c为圆筒形,X向电机磁钢8b为圆柱形,X向电机线圈8d绕于线圈骨架8c上。X向电机铁轭8a和X向电机磁钢8b构成电机的定子,X向电机线圈骨架8c和X向电机线圈8d构成电机的动子。Z向音圈电机10中,Z向电机过渡件10e提供Z向电机线圈骨架10c的安装结构。电机工作时线圈中通以电流,根据电磁理论,通电线圈在磁场中会受到音圈力作用,通过控制电流的大小和方向可以控制电机输出驱动力的大小和方向。
[0054] X、Y、Z向位移传感器11、12、13采用光栅尺。以Z向位移传感器13为例,其主要包括Z向光栅读数头过渡件13a、Z向光栅读数头13b和Z向玻璃光栅尺13c等部件,Z向光栅读数头过渡件13a提供Z向光栅读数头13b的安装结构。光栅尺工作时,Z向光栅读数头13b能够将其与Z向玻璃光栅尺13c的相对位移检测出来,并通过信号导线送给控制器19。
[0055] X、Y、Z向限位开关14、15、16采用霍尔式限位开关。以Z向限位开关16为例,其主要包括Z向限位块16a、Z向霍尔开关16b和Z向限位开关过渡件16c等部件。两个Z向霍尔开关16b背靠背安装,两个Z向限位块16a为金属材料,与Z向霍尔开关16b的敏感端相对安装。Z向限位开关过渡件16c提供Z向霍尔开关16b的安装结构。限位开关工作时,当Z向霍尔开关16b接近Z向限位块16a时,Z向霍尔开关16b给出限位信号,并通过信号导线送给控制器19。
[0056] 本实施例中,Z向音圈电机10、Z向位移传感器13和Z向限位开关16安装在活塞筒5和套筒6之间,且均安装在活塞筒5内部。
[0057] 隔振器对负载的承载采用如下方式实现:洁净压缩气源3通过气管26、经电磁阀18、进气口23向活塞筒5内输送洁净压缩空气。控制器19根据气体压力传感器17的反馈信号,控制电磁阀18的开度,调节输入到活塞筒5内的气体流量,从而调节活塞筒5内洁净压缩空气的压力,使洁净压缩空气对活塞筒5向上的作用力与负载、活塞筒5及加载于活塞筒5上的其它零部件的重力相平衡,实现理想的重力补偿与零刚度隔振效果。
[0058] 本实施例中,活塞筒5内洁净压缩空气的压力为0.4Mpa,活塞筒5下表面的有效2
半径为100mm,则单个隔振器承载的质量为:m=p×πr/g≈1282kg,其中p为气体压力,
2
p=0.4Mpa,r为活塞筒5下表面的有效半径,r=100mm,g为重力加速度,g=9.8m/m。
[0059] 下面结合图2、图6给出单排滚珠滚动关节轴承的一个实施例。本实施例中,滚动关节轴承7的主要组成部件包括轴承体7a、滚珠保持架7b、滚珠7c和轴承座7d,滚珠7c绕轴线方向单排均布,滚珠保持架7b在对应滚珠7c的位置具有圆孔,滚珠7c的位置由滚珠保持架7b来保持。
[0060] 图7给出满布滚珠滚动关节轴承的一个实施例。本实施例中,滚珠7c在轴承体7a和轴承座7d的作用面上均匀满布,滚珠保持架7b为球面形式,且在对应滚珠7c的位置具有圆孔,滚珠7c的位置由滚珠保持架7b来保持。
[0061] 图9给出套筒上平面气浮面节流孔的一个实施例。本实施例中,套筒6下表面围绕圆心沿圆周方向均布8个平面气浮面节流孔24,直径为φ0.2mm。
[0062] 图10给出活塞筒上圆柱气浮面节流孔的一个实施例。本实施例中,活塞筒5侧壁上沿圆周方向均布两排圆柱气浮面节流孔25,每排圆柱气浮面节流孔25的数量为8个,直径为φ0.2mm。
[0063] 下面结合图11、图12给出Z向电涡流阻尼器的一个实施例。本实施例中,隔振器具有二个Z向电涡流阻尼器42,由安装在套筒6内圆柱面侧壁的Z向永磁体42A阵列构成,套筒6采用45号钢材料,具有较高的导磁率,活塞筒5采用紫材料,不导磁且具有高电导率。Z向永磁体42A为条形,沿Z向音圈电机10的驱动力方向、即套筒6的轴线方向布置,磁极方向垂直于套筒6的内圆柱面,且N、S极交替布置。当套筒6与活塞筒5产生Z向相对运动时,活塞筒5切割磁力线而产生电涡流和阻尼力,Z向阻尼力与套筒6与活塞筒5的Z向相对运动速度成正比,方向与Z向音圈电机10的驱动力方向、即套筒6的轴线方向一致,达到消耗振动能量,提高定位稳定性的目的。
[0064] 图11、图13给出了Z电涡流阻尼器的另一个实施例。本实施例中,隔振器具有四个Z向电涡流阻尼器42,由安装在套筒6内圆柱面侧壁的Z向永磁体42A阵列构成。Z向永磁体42A为条形,沿Z向音圈电机10的驱动力方向、即套筒6的轴线方向布置,磁极方向垂直于套筒6的内圆柱面,且N、S极交替布置。
[0065] 下面结合图11、图14给出X、Y向电涡流阻尼器的一个实施例。本实施例中,隔振器具有两个X向电涡流阻尼器40,两个Y向电涡流阻尼器41,分别由安装在套筒6下表面侧壁的X、Y向永磁体40A、41A阵列构成,套筒6采用45号钢材料,具有较高的导磁率,气浮板34采用紫铜材料,不导磁且具有高电导率。X、Y向永磁体40A、41A为长条形状,分别沿X、Y向音圈电机8、9的驱动力方向布置,磁极方向垂直于套筒6的下表面,且N、S极交替布置。当套筒6与气浮板34产生相对运动时,气浮板34切割磁力线而产生电涡流和阻尼力,X、Y向阻尼力与套筒6与气浮板34在X、Y向的相对运动速度成正比,方向与X、Y向音圈电机8、9的驱动力方向一致,达到消耗振动能量,提高定位稳定性的目的。
[0066] 图11、图15给出了X、Y向电涡流阻尼器的另一个实施例。本实施例中,隔振器具有一个X向电涡流阻尼器40,一个Y向电涡流阻尼器41,分别由安装在套筒6下表面侧壁的X、Y向永磁体40A、41A阵列构成。X、Y向永磁体40A、41A为长条形状,分别沿X、Y向音圈电机8、9的驱动力方向布置,磁极方向垂直于套筒6的下表面,且N、S极交替布置。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈