首页 / 专利库 / 专利权 / 居所 / 半导体陶瓷组合物及其制备方法

半导体陶瓷组合物及其制备方法

阅读:443发布:2023-02-07

专利汇可以提供半导体陶瓷组合物及其制备方法专利检索,专利查询,专利分析的服务。并且[问题]本 发明 的目的是提供其中BaTiO3的一部分Ba被Bi-Na替代的 半导体 陶瓷组合物,其可在 煅烧 步骤中抑制Bi的 蒸发 ,通过防止Bi-Na的组成改变抑制二次相的形成,进一步降低室温下 电阻 ,和抑制 居里 温度 的发散,以及提供制备其的方法。[解决方案]通过分别制备(BaQ)TiO3的组合物(Q是半导体掺杂物)和(BiNa)TiO3的组合物,并在相对高的温度下煅烧(BaQ)TiO3的组合物和在相对低的温度下煅烧(BiNa)TiO3的组合物,以从而在它们各自最佳的温度下煅烧所述组合物,在(BiNa)TiO3的组合物中Bi的蒸发可以被抑制,二次相的形成可以通过防止Bi-Na的组成改变而被抑制;并且通过混合、形成和 烧结 所述煅烧的粉末,可以提供具有小的室温下电阻和所述居里温度的发散被抑制的半导体陶瓷组合物。,下面是半导体陶瓷组合物及其制备方法专利的具体信息内容。

1.一种制备半导体陶瓷组合物的方法,该半导体陶瓷组合物的组成式是[(BiNa)x(Ba1-yRy)1-x]TiO3,其中R是选自La、Dy、Eu、Gd和Y中的至少一种,x和y各自满足0<x≤0.2和0<y≤0.02,所述方法包括:
制备(BaR)TiO3的煅烧粉末的步骤,其中R是选自La、Dy、Eu、Gd和Y中的至少一种,制备(BiNa)TiO3的煅烧粉末的步骤,
混合(BaR)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末的步骤,以及
形成和烧结所述混合的煅烧粉末的步骤,
其中,在制备(BaR)TiO3的煅烧粉末的步骤中,煅烧温度为900℃至1300℃,在制备(BiNa)TiO3的煅烧粉末的步骤中,煅烧温度为700℃至950℃,
(BiNa)TiO3的煅烧粉末的煅烧温度低于(BaR)TiO3的煅烧粉末的煅烧温度,上述烧结是在气含量小于1%的惰性气体气氛中进行的。
2.如权利要求1所述的制备半导体陶瓷组合物的方法,其中在混合(BaR)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末的步骤中,进行干式混合。
3.如权利要求1所述的制备半导体陶瓷组合物的方法,其中在制备(BaR)TiO3的煅烧粉末的步骤中或在制备(BiNa)TiO3的煅烧粉末的步骤中,或在这两个步骤中,在煅烧之前添加3.0mol%或更少的氧化,和4.0mol%或更少的氧化钙
4.如权利要求1所述的制备半导体陶瓷组合物的方法,其中在混合(BaR)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末的步骤中,添加3.0mol%或更少的氧化硅,和4.0mol%或更少的碳酸钙或氧化钙。
5.一种制备半导体陶瓷组合物的方法,在该半导体陶瓷组合物的组成式是[(BiNa)xBa1-x][Ti1-zMz]O3中,其中M是选自Nb、Ta和Sb中的至少一种,x和z各自满足0<x≤0.2和0<z≤0.005,所述方法包括:
制备Ba(TiM)O3的煅烧粉末的步骤,其中M是选自Nb、Ta和Sb中的至少一种,制备(BiNa)TiO3的煅烧粉末的步骤,
混合Ba(TiM)O3的煅烧粉末和(BiNa)TiO3的煅烧粉末的步骤,以及
形成和烧结所述混合的煅烧粉末的步骤,
其中,在制备Ba(TiM)O3的煅烧粉末的步骤中,煅烧温度为900℃至1300℃,在制备(BiNa)TiO3的煅烧粉末的步骤中,煅烧温度为700℃至950℃,
(BiNa)TiO3的煅烧粉末的煅烧温度低于Ba(TiM)O3的煅烧粉末的煅烧温度,上述烧结是在氧气含量小于1%的惰性气体气氛中进行的。
6.如权利要求5所述的制备半导体陶瓷组合物的方法,其中在混合Ba(TiM)O3的煅烧粉末和(BiNa)TiO3的煅烧粉末的步骤中,进行干式混合。
7.如权利要求5所述的制备半导体陶瓷组合物的方法,其中在制备Ba(TiM)O3的煅烧粉末的步骤中或在制备(BiNa)TiO3的煅烧粉末的步骤中,或在这两个步骤中,在煅烧之前添加3.0mol%或更少的氧化硅,和4.0mol%或更少的碳酸钙或氧化钙。
8.如权利要求5所述的制备半导体陶瓷组合物的方法,其中在混合Ba(TiM)O3的煅烧粉末和(BiNa)TiO3的煅烧粉末的步骤中,添加3.0mol%或更少的氧化硅,和4.0mol%或更少的碳酸钙或氧化钙。
9.如权利要求1或5所述的制备半导体陶瓷组合物的方法,其中所述烧结步骤在如下条件下进行:烧结温度为1290℃至1350℃,烧结时间为小于4小时。
10.如权利要求1或5所述的制备半导体陶瓷组合物的方法,其中所述烧结步骤在如下条件下进行:烧结温度为1290℃至1350℃,烧结时间满足如下所示的方程;并且随后在烧结后进行冷却,冷却速度满足如下所示的方程,
ΔT≥25t,
其中,t指烧结时间(小时)以及ΔT指在烧结后的冷却速度(℃/小时)。
11.如权利要求1或5所述的制备半导体陶瓷组合物的方法,其中Bi与Na的比满足Bi/Na=0.78至1的关系。

说明书全文

半导体陶瓷组合物及其制备方法

技术领域

[0001] 本发明涉及用于PTC热敏电阻、PTC发热体、PTC开关温度检测器等的半导体陶瓷组合物,其具有正的电阻温度系数;并涉及制备其的方法。

背景技术

[0002] 通常,作为显示出PTCR特性(正电阻温度系数:PositiveTemperatureCoefficient of Resistivity)的材料,已经有人提出其中将多种半导体搀杂物添加到BaTiO3中的组合物。这些组合物的居里温度(Curie)为约120℃。取决于用途,需要改变这些组合物的居里温度。
[0003] 例如,尽管已经有人提出通过向BaTiO3中加入SrTiO3改变居里温度,但在这种情况下,所述居里温度仅在负方向上改变并且不在正方向上改变。目前,已知仅有PbTiO3可作为用于在正方向上改变居里温度的添加成分。然而,PbTiO3包括引起环境污染的元素,并且因此近年来,需要其中不采用PbTiO3的材料。
[0004] 在BaTiO3半导体陶瓷中,为了防止由Pb的替代导致电阻温度系数的降低,以及降电压依赖性和提高生产率或可靠性的目的,已经有人提出制造BaTiO3半导体陶瓷的方法,在该方法中在氮气中烧结不采用PbTiO3、并通过向如下组合物中添加一种或多种Nb、Ta和稀土元素中的任一种而获得的组合物,以及之后在还原性气氛中进行热处理,在所述组合物中,在其中BaTiO3的一部分Ba被Bi-Na替代的Ba1-2x(BiNa)xTiO3中的x被控制在0<x≤0.15的范围内(参见专利文献1)。
[0005] 专利文献1:JP-A-56-169301

发明内容

[0006] 专利文献1公开了如下实施方案,将用作起始原料的组成所述组合物的所有成分,例如BaCO3、TiO2、Bi2O3、Na2O3和PbO,在煅烧之前进行混合,并然后进行煅烧、成形、烧结和热处理。
[0007] 然而,在其中BaTiO3的一部分Ba被Bi-Na替代的组合物中,当如专利文献1中那样,将构成所述组合物的所有成分在在煅烧之前进行混合时,产生的问题是Bi被蒸发,产生了Bi-Na的组成改变,从而促进了二次相的形成,室温下的电阻升高,并且引起所述居里温度分散。
[0008] 尽管为了抑制Bi的蒸发,在低温下煅烧所述成分是可行的,但产生的问题是,尽管Bi的蒸发被抑制了,但不能形成完全固溶体,并且不能获得需要的特性。
[0009] 另一方面,在BaTiO3其它材料体系中,当处理所述材料以使得室温下电阻被降低,如在还原性气氛中烧结时,产生的问题是降低了电阻的温度系数(跃升特性)(参见非专利文献1和2)。当所述电阻的温度系数降低时,产生的问题是在目标温度下不发生转换。为了解决这个问题,在非专利文献1和2中,通过进行在大气中(在空气中)的热处理而改进所述电阻温度系数。
[0010] 非专利文献1:109 proceeding of Ceramics Material Committee ofSociety of Material Science 13-14(2003)
[0011] 非专利文献2:J.Soc.Mat.Sci.Japan,第52卷,1155-1159(2003)
[0012] 即使在专利文献1的Ba1-2x(BiNa)xTiO3材料中,当处理该材料,例如在所述还原气氛中烧结,使得室温下电阻降低时,所述电阻温度 系数倾向于降低。然而,在Ba1-2x(BiNa)xTiO3材料的情况下,当在大气中进行热处理时,室温下电阻倾向于升高,并且所述BaTiO3材料的热处理条件不适用所述条件。
[0013] 本发明的目的是提供能够不使用Pb的情况下在正方向改变居里温度和显著降低室温下电阻的半导体陶瓷组合物,以及提供其制备方法。
[0014] 另外,本发明的另一个目的是提供其中BaTiO3的一部分Ba被Bi-Na替代的半导体陶瓷组合物,该半导体陶瓷组合物可以抑制在煅烧步骤中的Bi的蒸发、通过防止Bi-Na的组成改变而抑制二次相的形成、进一步降低室温下的电阻、和抑制居里温度的发散,以及提供其制备方法。
[0015] 另外,本发明的另一个目的是提供了其中一部分BaTiO3被Bi-Na替代的半导体陶瓷组合物,该半导体陶瓷组合物能够提高在高温区域(居里温度或更高)下电阻的温度系数,同时保持室温下的电阻低,而不用进行在大气中的热处理等,以及提供其制备方法。 [0016] 为了达到上述目的,作为深入研究的结果,本发明的发明人已经发现,在其中BaTiO3的Ba被Bi-Na替代的半导体陶瓷组合物的制备中,通过分别制备(BaQ)TiO3(Q是半导体掺杂物)的组合物和(BiNa)TiO3的组合物,以及在相对高的温度下煅烧(BaQ)TiO3的组合物,和在相对低的温度下煅烧(BiNa)TiO3的组合物,以从而在它们各自最佳的温度下煅烧所述组合物,可以抑制在(BiNa)TiO3的组合物中Bi的蒸发,可以通过防止Bi-Na的组成改变而抑制二次相的形成;并且通过混合、形成和烧结所述煅烧的粉末,可以提供室温下具有小的电阻和抑制所述居里温度的发散的半导体陶瓷组合物。
[0017] 另外,为了抑制室温下电阻变低,本发明的发明人尝试在惰性气 氛中烧结其中BaTiO3的一部分Ba被Bi-Na替代的半导体陶瓷组合物,并且发现,所述电阻的温度系数(跃升特性)随烧结温度、烧结时间、烧结气氛、样品大小等而改变。因此,在进一步深入研究之后,本发明的发明人已经发现所述烧结时间越长,室温下所述电阻和所述电阻温度系数被降低得越多,并且甚至当将所述烧结时间延长时,仍可通过控制烧结后的冷却速度而提高所述电阻温度系数。因此,本发明的发明人已经发现可在高温区(居里温度或更高)提高电阻的温度系数,同时保持室温下所述电阻为低的,而不用如在所述BaTiO3材料中那样,在烧结后在大气中进行热处理。
[0018] 即,本发明涉及制备其中BaTiO3的一部分Ba被Bi-Na替代的半导体陶瓷组合物的方法,该方法包括制备(BaQ)TiO3(其中Q是半导体掺杂物)的煅烧粉末的步骤,制备(BiNa)TiO3的煅烧粉末的步骤,混合(BaQ)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末的步骤,和形成和烧结混合的煅烧粉末的步骤。
[0019] 根据本发明,可以提供如下半导体陶瓷组合物,其不必使用引起环境污染的Pb而能够改变所述居里温度,并室温下具有显著降低的电阻。
[0020] 根据本发明,可以提供如下半导体陶瓷组合物,其中在所述煅烧步骤中的Bi的蒸发被抑制,通过防止Bi-Na的组成改变而抑制包含Na的二次相的形成,室温下的电阻被进一步降低,和所述居里温度的发散被抑制。
[0021] 根据本发明,可以提供如下半导体陶瓷组合物,其中改进了在高温区域(居里温度或更高)下的电阻温度系数,同时保持室温下的电阻低而不用在烧结后在大气中进行热处理等。附图说明
[0022] 图1是根据本发明的半导体陶瓷组合物在各煅烧温度下的X射线衍射图案的图。 [0023] 图2是根据比较例的半导体陶瓷组合物在各煅烧温度下的X射线衍射图案的图。 具体实施方式
[0024] 在制备本发明(BaQ)TiO3(其中Q是半导体掺杂物)的煅烧粉末的步骤中,首先将BaCO3、TiO2的原料粉末和半导体掺杂物例如La2O3 或Nb2O3混合,以制备待被煅烧的混合的原料粉末。优选煅烧温度为900℃至1300℃,并优选煅烧时间等于或长于0.5小时。当所述煅烧温度小于900℃或所述煅烧时间小于0.5小时时,不能完全形成(BaQ)TiO3,未反应的BaO与在气氛和混合介质中的反应,导致组成改变,并且因此这不是优选的。另外,当所述煅烧温度超过1300℃时,在煅烧粉末中产生烧结体,妨碍待形成的固溶体与(BiNa)TiO3的煅烧粉末以后的混合。
[0025] 在制备本发明(BiNa)TiO3的煅烧粉末的步骤中,首先将组成原料粉末的NaCO3、Bi2O3和TiO2混合以制备待被煅烧的混合的原料粉末。优选所述煅烧温度为700℃至950℃,并优选所述煅烧时间为0.5小时至10小时。当所述煅烧温度小于700℃或所述煅烧时间小于0.5小时时,未反应的NaO与在气氛中的水或者在湿润混合物的情况下与其溶剂反应,导致组成改变或者特性发散,并且因此这不是优选的。当所述煅烧温度超过950℃或当所述煅烧时间超过10小时时,出现Bi的蒸发,引起组成改变,和促进形成二次相,因此这不是优选的。
[0026] 关于这一点,对于在制备(BaQ)TiO3的煅烧粉末的步骤中的优选煅烧温度(900℃至1300℃)和在制备(BiNa)TiO3的煅烧粉末的步骤中的优选煅烧温度(700℃至950℃),优选根据用途等适当地选择最佳温度。例如,对于(BiNa)TiO3的煅烧温度,为了充分进行反应,同时抑制Bi的蒸发,优选在相对低的的温度下通过调节所述煅烧时间等而进行 该反应。另外,优选将(BiNa)TiO3的煅烧温度设定为低于(BaQ)TiO3的煅烧温度。
[0027] 本发明的主要特征是分别进行制备(BaQ)TiO3(Q是半导体掺杂物)的煅烧粉末的步骤和制备(BiNa)TiO3的煅烧粉末的步骤,并且从而可以提供如下半导体陶瓷组合物,在该半导体陶瓷组合物中,在所述煅烧步骤中(BiNa)TiO3的Bi的蒸发被抑制,通过防止Bi-Na的组成改变而抑制了二次相的形成,室温下电阻被进一步降低和所述居里温度的发散被抑制。
[0028] 在制备各煅烧粉末的步骤中,在混合所述原料粉末的过程中,可根据所述原料粉末的粒度进行压碎。另外,尽管混合和压碎是其中使用纯水或乙醇的润湿型混合和压碎,或者是干式混合和压碎,但在进行干式混合和压碎的情况下,组成改变可被进一步防止,并因此其是优选的。在上文中,尽管BaCO3、NaCO3、TiO2等被例举为原料粉末,但甚至当使用其它Ba化合物、Na化合物时也不会劣化本发明的效果。
[0029] 如上所述,分别制备(BaQ)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末,并然后将各煅烧粉末掺混至预定的量并随后混合。尽管混合可以是其中使用纯水或乙醇的润湿型混合,或者是干式混合,但在进行干式混合的情况下,组成改变可被进一步防止,并因此其是优选的。另外,根据煅烧粉末的粒度,可以在混合后进行压碎,或者可以同时进行混合和压碎。优选在混合和压碎后的混合煅烧粉末的平均粒度为0.6μm至1.5μm。
[0030] 在制备(BaQ)TiO3的煅烧粉末的步骤和/或制备(BiNa)TiO3的煅烧粉末的步骤,或混合各煅烧粉末的步骤中,优选添加3.0mol%或更低的,和4.0mol%或更低的氧化钙,因为所述氧化硅可以抑制晶体颗粒的异常生长和便于控制所述电阻,并且碳酸钙或氧化钙可以促进在低温下的烧结性能。在任一情况下,当加入超过限定量 时,所述组合物不显示半导体形成,并且因此这不是优选的。优选在各步骤中在混合之前进行所述加入。
[0031] 可以通过形成和烧结所述混合的煅烧粉末而制备本发明的半导体陶瓷组合物,所述混合的煅烧粉末通过混合(BaQ)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末而提供。尽管将在下文中举例说明在所述煅烧粉末的混合步骤中和之后的优选步骤的实施例,但本发明不限于此,而是可以使用所有已知的方法。
[0032] 将通过混合(BaQ)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末的步骤制备的混合煅烧粉末通过所需的形成手段形成。压碎的粉末可以任选在形成之前通过造粒装置造粒。优3
选形成后的生坯密度为2至3g/cm。
[0033] 烧结可以在如下条件下进行,烧结温度为1200℃至1400℃,烧结时间为2小时至6小时,在大气中,在还原性气氛中或在具有低氧气含量的惰性气体气氛中,并且优选的例子是采用构成本发明的特征之一的下示烧结步骤。另外,当在形成之前造粒时,优选在烧结之前在300℃至700℃下进行将结合料除去的过程。
[0034] 烧结步骤在如下条件下进行,烧结温度为1290℃至1350℃,在氧气含量小于1%的气氛中,(1)烧结时间为小于4小时,或(2)烧结时间满足方程:ΔT≥25t(t=烧结时间(小时),ΔT=在烧结后的冷却速度(℃/小时)),并且在烧结后的冷却在满足上述方程的冷却速度下连续进行。
[0035] 即使当进行所述烧结步骤中的任一个步骤时,即,将所述烧结时间缩短或将所述烧结时间延长,但根据所述烧结时间在适当快的冷却速度下进行快速冷却,可以提供在高温区域(居里温度或更高)下具有改进的电阻温度系数的半导体陶瓷组合物,同时保持室温下电阻低, 而不用进行在BaTiO3材料的情况下要进行的在大气中的热处理。
[0036] 在上述烧结步骤中,具有氧气含量小于1%的气氛指具有氧气含量小于1%的真空或惰性气体气氛。优选地,优选在惰性气体气氛中,例如氮气或氩气气氛中进行所述烧结步骤。另外,尽管上述气氛也优选用于在冷却中的气氛,但所述气氛可以不必须是这样的气氛。
[0037] 在上述烧结步骤中,当实施(1)的方法时,在烧结后的冷却条件可以被任意选择。另一方面,当实施(2)的方法时,所述冷却速度ΔT(℃/小时)由所述烧结时间t的长度确定。例如,当所述烧结时间t是一小时时,所述冷却速度ΔT变为25×1=25℃/小时或
更高,以及当所述烧结时间t为4小时时,所述冷却速度ΔT变为25×4=100℃/小时或
更高。即,当所述烧结时间t被延长时,所述冷却速度ΔT根据所述烧结时间被加速。尽管当将所述烧结时间t延长时该方法是有效的,但甚至当将所述烧结时间t缩短(例如小于
4小时)时,该方法也是适用的。
[0038] 在作为本发明目的的半导体陶瓷组合物中,Bi-Na替代了BaTiO3 的一部分Ba,并且如上所述地,通过分别进行制备(BaQ)TiO3(Q是半导体掺杂物)的煅烧粉末的步骤和制备(BiNa)TiO3的煅烧粉末的步骤,和然后将它们混合,随后通过形成和烧结而提供该组合物。
[0039] 通过加入半导体掺杂物和进行化合价控制,使其中BaTiO3的一部分被Bi-Na替代的组合物成为半导体陶瓷组合物。根据本发明,将所述半导体掺杂物加入到BaTiO3中以构成(BaQ)TiO3(其中Q是半导体掺杂物)的煅烧粉末。
[0040] 作为所述半导体掺杂物Q,优选R(其中R是选自La、Dy、Eu、Gd和Y中的至少一种)或M(其中M是选自Nb、Ta和Sb中的至少一种)。当将R(R是选自La、Dy、Eu、Gd和Y中的至少一种)用 作所述半导体掺杂物Q时,所获得的半导体陶瓷组合物具有表示为下式的组成式,[(BiNa)x(Ba1-yRy)1-x]TiO3,其中x和y各自满足0<x≤0.2和0<y≤0.02。 [0041] 另一方面,当将M(M是选自Nb、Ta和Sb中的至少一种)用作所述半导体掺杂物Q时,所获得的半导体陶瓷组合物具有表示为下式的组成式,[(BiNa)xBa1-x][Ti1-zMz]O3,其中x和z各自满足0<x≤0.2和0<z≤0.005。甚至当使用R或甚至当使用M作为半导
体掺杂物Q时,它们中的任一种总是其中一部分BaTiO3被Bi-Na替代的组合物。
[0042] 两种组合物[(BiNa)x(Ba1-yRy)1-x]TiO3和[(BiNa)xBa1-x][Ti1-zMz]O3的详细描述如下所示。
[0043] 在组合物[(BiNa)x(Ba1-yRy)1-x]TiO3中,R是选自La、Dy、Eu、Gd和Y中的至少一种,其中优选La。在该组成式中,x表示Bi+Na的含量比,并且其优选的范围是0<x≤0.2。当4
x是0时,所述居里温度不能改变到高温侧,而当x超过0.2时,室温下的电阻变为10Ωcm,并且其难于应用于PTC发热体等。因此,这些情况不是优选的。
[0044] 另外,在所述组成式中,y表示R的含量比,并且其优选范围是0<y≤0.02。当y是0时,所述组合物不能被制成半导体,而当y超过0.02时,所述室温下电阻增加。因此,这些情况不是优选的。尽管通过改变y值可进行化合价控制,但在其中部分Ba被Bi-Na替代的组合物中,当进行该组合物的化合价控制时,引起的问题是当将化合价为3的正离子作为半导体掺杂物加入时,半导体形成的效果由于存在1价Na离子而降低,并且所述室温下电阻增加。因此,进一步优选的范围是0.002≤y≤0.02。在本文中,0.002≤y≤0.02对应于以mol%表示的0.02mol%至2.0mol%。顺便提及,在上述专利文献1中,尽管将0.1mol%的Nd2O3作为半导体掺杂物加入,但似乎不能由此实现待被用作PTC的足够的半导体形成。
[0045] 在[(BiNa)xBa1-x][Ti1-zMz]O3组合物中,M是选自Nb、Ta和Sb中的至少一种,并且其中优选Nb。在该组成式中,x表示Bi+Na的含量比,并且其优选的范围是0<x≤0.2。当x4
是0时,所述居里温度不能改变到高温侧,而当x超过0.2时,室温下电阻变为接近10Ωcm,并且其难于应用于PTC发热体等。因此,这些情况不是优选的。
[0046] 另外,在所述组成式中,z表示M的含量比,并且其优选范围是0<z≤0.005。当z是0时,不能进行所述化合价控制并且所述组合物不能被制成半导体,而当z超过0.0053
时,所述室温下的电阻超过10 Ωcm。因此,这些情况不是优选的。在本文中,0<z≤0.005对应于以mol%表示的0至0.5mol%(其中不包括0)。
[0047] 在[(BiNa)xBa1-x][Ti1-zMz]O3组合物的情况下,为了进行化合价控制,M元素替代Ti。在这种情况下,因为M元素的加入(加入量0<z≤0.005)构成通过4价元素构成的Ti位点的化合价控制的目标,可通过比在利用R作为半导体掺杂物的[(BiNa)x(Ba1-yRy)1-x]TiO3组合物中的R元素的优选加入量(0.002≤y≤0.02)更小的量进行所述化合价的控
制,以获得能够减轻本发明的半导体陶瓷组合物的内部应变的优点。
[0048] 在两种组合物[(BiNa)x(Ba1-yRy)1-x]TiO3和[(BiNa)xBa1-x][Ti1-zMz]O3 中,优选Bi和Na为1∶1,即,所述组成式优选为[(Bi0.5Na0.5)x(Ba1-yRy) 1-x]TiO3和[(Bi0.5Na0.5)xBa1-x][Ti1-zMz]O3。然而,如同样在背景技术部分中所述的,当构成所述组合物的所有元素在被煅烧之前被混合时,在所述煅烧步骤中,Bi被蒸发,导致Bi-Na的组成改变,从而引起的问题是,促进了二次相的形成,增大了所述室温下的电阻,并引起居里温度发散。
[0049] 根据本发明,通过在各自最佳温度下分别煅烧(BaQ)TiO3组合物和(BiNa)TiO3组合物,Bi与Na的比可被控制为Bi/Na=0.78至1,所述室温下电阻可被进一步降低,并且居里温度的发散可被抑制。当Bi/Na超过1时,与(BaNa)TiO3的形成不相关的Bi保留在所述材料中并且倾向于在烧结过程中形成二次相,从而所述室温下电阻增加,而当其小于
0.78时,二次相倾向于在烧结阶段形成,从而所述室温下电阻增加。因此,这些情况不是优选的。
[0050] 通过上述制备方法,可以提供具有下式表示的组成式的半导体陶瓷组合物,[(BiNa)x(Ba1-yRy)1-x]TiO3,(R是选自La、Dy、Eu、Gd和Y中的至少一种),其中x和y各自满足0<x≤0.2和0<y≤0.02,并且其中Bi与Na的比满足关系Bi/Na=0.78至1;或
者具有表示为下式的组成式的半导体陶瓷组合物,[(BiNa)xBa1-x][Ti1-zMz]O3(M是选自Nb、Ta和Sb中的至少一种),其中x和z各自满足0<x≤0.2和0<z≤0.005,并且其中
Bi与Na的比满足关系Bi/Na=0.78至1。这些半导体陶瓷组合物具有如下效果:不使用
引起环境污染的Pb而改变居里温度和显著降低所述室温下的电阻。
[0051] 实施例
[0052] 实施例1
[0053] 制备作为主要原料的BaCO3和TiO2,以及作为半导体掺杂物的La2O3原料粉末并将它们掺混以满足(Ba0.994La0.006)TiO3。另外,将0.3mol%的SiO2和1.2mol%的CaCO3作为烧结助剂加入,并且将它们在乙醇中混合。将这样获得的混合的原料粉末在100℃下煅烧4小时以制备(BaLa)TiO3的煅烧粉末。
[0054] 制备Na2CO3、Bi2O3和TiO2的材料粉末并将它们掺混以满足(Ba0.5Na0.5)TiO3。另外,将0.08mol%的SiO2和0.27mol%的CaO作为烧结助剂加入,并将形成的物质在大气中(干燥型)或在乙醇中(润湿型)混合。将这样获得的混合的原料粉末在大气中在600℃至900℃下煅烧4小时,以制备(BiNa)TiO3的煅烧粉末。图1示出了各自在600℃至900℃的烧结温度下所获得的(Ba0.5Na0.5)TiO3的煅烧粉末的X-射 线衍射图案。
[0055] 将上述(BaLa)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末掺混以满足[(Bi0.5Na0.5)0.1(Ba0.994La0.006)0.9]TiO3,并然后将它们通过球磨机(potmill)利用乙醇作为介质进行混合、压碎,和然后干燥,直至所述混合的煅烧粉末具有0.9μm的大小。将所述混合的煅烧粉末的压碎粉末加入并与PVA混合,并且之后通过造粒设备造粒。在通过单轴压具设备形成这样获得的粒状粉末,并在500℃下除去压坯的结合料后,在大气中在1320℃的烧结温度下进行4小时烧结以从而获得烧结体。表1显示这样获得的烧结体的Na量和Bi量的含
量分析。在该表中,Bi量是根据作为100的Na量转换的值。另外,在表1中的混合方法是(Ba0.5Na0.5)TiO3的混合方法。
[0056] 比较例1
[0057] 制备作为主要原料的BaCO3和TiO2、作为半导体掺杂物的La2O3、以及作为居里温度改变剂的Na2CO3、Bi2O3和TiO2,并在开始将组成所述组合物的所有成分掺混以满足[(Bi0.5Na0.5)0.1(Ba0.994La0.006)0.9]TiO3。另外,将0.4mol%的SiO2和1.4mol%的CaCO3作为烧结助剂加入,并且将它们在乙醇中(润湿型)混合。将这样获得的混合的原料粉末在氮气中在200℃至1200℃下煅烧4小时以获得煅烧粉末。图2示出了各自在200℃至900℃的煅烧温度下所获得的[(Bi0.5Na0.5)0.1(Ba0.994La0.006)0.9]TiO3的煅烧粉末的X-射线衍射图案。 [0058] 将这样获得的煅烧粉末加入并与PVA混合,并且之后通过造粒设备造粒。在通过单轴压具设备形成这样获得的粒状粉末,并在500℃下除去压坯的结合料之后,在大气中在
1320℃的烧结温度下进行烧结4小时以获得烧结体。表1显示这样获得的烧结体的Na量
和Bi量的含量分析结果。另外Bi量是根据作为100的Na量转换的值。
[0059] 如从图1和图2中显而易见的,实施例1的(BiNa)TiO3的煅烧粉 末在700℃下完全变成单一相。另一方面,当从开始即掺混组成所述组合物的所有成分时,所述成分不能形成完全固溶体,除非温度为900℃或更高,并且可以看到不能获得充分煅烧的粉末。
[0060] 另外,如从表1中可见的,根据实施例1的(BiNa)TiO3的煅烧粉末,Bi的蒸发量在各煅烧温度下是小的,并且Bi甚至在形成完全固溶体的温度(700℃)下也难于蒸发。另外,可以看到Bi的蒸发通过在干燥状态混合而被抑制。另一方面,根据在开始与构成所述组合物的所有成分掺混的煅烧粉末,可以看到Bi的蒸发量比实施例1中的更大,并且在形成固溶体的900℃下,大量的Bi已经被蒸发。
[0061] 实施例2
[0062] 制备作为主要原料的BaCO3和TiO2以及作为半导体掺杂物的La2O3的原料粉末,并将它们掺混以满足(Ba0.994La0.006)TiO3。另外,将0.3mol%的SiO2和1.2mol%的CaCO3作为烧结助剂加入,并且将它们在乙醇中混合。将这样获得的混合的原料粉末在1000℃下煅烧4小时以制备(BaLa)TiO3的煅烧粉末。
[0063] 制备Na2CO3、Bi2O3和TiO2的原料粉末并将它们掺混以满足(Bi0.5Na0.5)TiO3。然后,将0.08mol%的SiO2和0.27mol%的CaCO3作为烧结助剂加入,并将形成的物质在大气中或在乙醇中混合。将这样获得的混合的原料粉末在650℃至1000℃下煅烧4小时以制备(BiNa)TiO3的煅烧粉末。
[0064] 将(BaLa)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末掺混以满足[(Bi0.5Na0.5)0.1(Ba0.994La0.006)0.9]TiO3,并然后将它们通过球磨机利用乙醇作为介质进行混合、压碎,和然后干燥,直至所述混合的煅烧粉末具有0.9μm的大小。将所述混合的煅烧粉末的压碎粉末加入并与PVA混合,并且之后通过造粒设备造粒。在通过单轴压具设备形成这样获得的粒状粉末,并在500℃下除去压坯的结合料后,在大气中在1290℃、 1320℃或1350℃的烧结温度下进行烧结以获得烧结体。
[0065] 将这样获得的烧结体加工成为大小为10mm×10mm×1mm的板形状以制备测试片,通过电阻测量仪器测量各测试片在室温至270℃范围内的电阻值的温度变化。测量结果示于表2中。另外,进行Bi和Na的含量分析以计算Bi/Na的比。其结果示于表2中。在本文中,在制备(BiNa)TiO3的煅烧粉末的步骤中在大气中混合表1中的样品6,其它的在乙醇中混合。采用2小时的烧结时间获得样品5。样品11在掺混过程中与过量的Bi2O3一起加入。另外,在样品编号一侧带有*标记的那些是比较例。
[0066] 比较例2
[0067] 制备作为主要原料的BaCO3和TiO2、作为半导体掺杂物的La2O3、以及作为居里温度改变剂的Na2CO3、Bi2O3和TiO2,并在开始将组成所述组合物的所有成分掺混以满足[(Bi0.5Na0.5)0.1(Ba0.994La0.006)0.9]TiO3。另外,将0.4mol%的SiO2和1.4mol%的CaCO3作为烧结助剂加入,并且将它们在乙醇中混合。之后将该原料混合粉末在大气中在1000℃下煅烧4小时。
[0068] 将这样获得的煅烧粉末通过球磨机利用乙醇作为介质进行混合、压碎和然后干燥,直至所述煅烧粉末具有0.9μm的大小。将所述压碎粉末加入并与PVA混合,并且之后通过造粒设备造粒。在通过单轴压具设备形成这样获得的粒状粉末,并在500℃下除去压坯的结合料后,在1290℃、1320℃或1350℃的烧结温度下进行烧结4小时以获得烧结体。 [0069] 将这样获得的烧结体加工成为大小为10mm×10mm×1mm的板形状以制备测试片,通过电阻测量仪器测量各测试片在室温至270℃范围内的电阻值的温度变化。测量结果示于表3中。另外,进行Bi和Na的含量分析以计算Bi/Na的比。其结果示于表3中。
[0070] 如从表2和表3中显而易见的,可以看到根据本发明实施例的半导体陶瓷组合物的居里温度得到提高并且室温下电阻显著下降。另外,通过单独进行制备(BaQ)TiO3(Q是半导体掺杂物)的煅烧粉末的步骤和制备(BiNa)TiO3的煅烧粉末的步骤,Bi的蒸发被抑制,并且甚至在烧结之后获得高的Bi/Na比,并且因此抑制了二次相的形成,进一步降低了所述室温下的电阻并且抑制了所述居里温度的发散。另外,在所述实施例中,尽管给出了利用La作为在半导体掺杂物Q中的R的情况,甚至当使用其它R元素和M元素时,证实可获得类似于使用La的情况下的特性。
[0071] 与此相反,根据所述比较例的半导体陶瓷组合物,尽管所述居里温度被提高了,但室温下的电阻高,并且电阻的温度系数低。另外,因为大量的Bi在所述煅烧步骤和所述烧结步骤中被蒸发,在烧结后的Bi/Na比等于或小于0.77。可以认为所述室温下电阻的提高是由于Bi的蒸发导致的二次相的形成而引起的。
[0072] 实施例3
[0073] 制备作为主要原料的BaCO3和TiO2,以及作为半导体掺杂物的La2O3原料粉末,并将它们掺混以满足(Ba0.994La0.006)TiO3,并将它们在乙醇中混合。将这样获得的混合的原料粉末在1000℃下煅烧4小时以制备(BaLa)TiO3的煅烧粉末。
[0074] 制备Na2CO3、Bi2O3和TiO2的原料粉末并将它们掺混以满足(Bi0.5Na0.5)TiO3,并将它们在乙醇中混合。将这样获得的混合的原料粉末在600℃下煅烧4小时以制备(BiNa)TiO3的煅烧粉末。
[0075] 将(BaLa)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末掺混以满足[(Bi0.5Na0.5)0.1(Ba0.994La0.006)0.9]TiO3,并然后将它们通过球磨机利用乙醇作为介质进行混合、压碎和然后干燥,直至所述混合的煅烧粉末的大 小变为0.9μm。将所述混合的煅烧粉末的压碎粉末加入并与PVA混合,并且之后通过造粒设备造粒。在通过单轴压具设备形成这样获得的粒状粉末,并在500℃下除去压坯的结合料后,在1290℃、1320℃或1350℃的烧结温度下进行烧结4小时以从而获得烧结体。
[0076] 将这样获得的烧结体加工成为大小为10mm×10mm×1mm的板形状以制备测试片,通过电阻测量仪器测量各测试片在室温至270℃范围内的电阻值的温度变化。测量结果示于表4中。另外,进行Bi和Na的含量分析以计算Bi/Na的比。其结果示于表4中。
[0077] 尽管实施例3给出了其中在所述步骤中不加入氧化硅和碳酸钙或氧化钙的实施例,但如在表4中可看出的,可以看到的是即使不加入氧化硅和碳酸钙或氧化钙,也可以获得基本上类似于其中进行其加入的实施例2的那些实施例的特性。
[0078] 实施例4
[0079] 制备作为主要原料的BaCO3和TiO2,以及作为半导体掺杂物的La2O3原料粉末并将它们掺混以满足(Ba0.994La0.006)TiO3,并将它们在乙醇中混合。将这样获得的混合的原料粉末在1000℃下煅烧4小时以制备(BaLa)TiO3的煅烧粉末。
[0080] 制备Na2CO3、Bi2O3和TiO2的原料粉末并将它们掺混以满足(Bi0.5Na0.5)TiO3,并将形成的物质在乙醇中混合。将这样获得的混合的原料粉末在800℃下煅烧4小时以制备(BiNa)TiO3的煅烧粉末。
[0081] 将(BaLa)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末掺混以满足[(Bi0.5Na0.5)0.1(Ba0.994La0.006)0.9]TiO3,并然后将它们通过球磨机利用乙醇作为介质进行混合、压碎和然后干燥,直至所述混合的煅烧粉末具有为0.9μm的大小。将所述混合的煅烧粉末的压碎粉末加入并与PVA混合,并且之后通过造粒设备造粒。在通过单轴压具设备形成这样获得 的粒状粉末,并在500℃下除去压坯的结合料后,在具有氧气含量小于1%的氮气气氛中在烧结温度下在示于表5中的烧结时间下进行烧结,以获得烧结体。在这里,在所述烧结时间中的0小时表示烧结时间超过0(零)小时并小于1小时。
[0082] 将这样获得的烧结体加工成为大小为10mm×10mm×1mm的板形状以制备测试片,通过电阻测量仪器测量各测试片在室温至270℃范围内的电阻值的温度变化。测量结果示于表5中。在样品编号一侧带有*标记的是比较例。通过将样品14在空气中在1000℃的温度下热处理而制得样品16。另外,对样品6的样品进行Bi和Na的含量分析以计算Bi/
Na的比。结果,Bi/Na的比计算为1.00。
[0083] 比较例3
[0084] 制备作为主要原料的BaCO3和TiO2、作为半导体掺杂物的La2O3、以及作为居里温度改变剂的Na2CO3、Bi2O3和TiO2,并将组成所述组合物的所有成分在煅烧前(原料掺混阶段)混合以满足[(Bi0.5Na0.5)0.1(Ba0.994La0.006)0.9]TiO3,并将它们在乙醇中混合。之后将这样获得的混合的原料粉末在氮气中在1000℃下煅烧4小时以提供煅烧粉末。
[0085] 将这样获得的煅烧粉末通过球磨机利用乙醇作为介质进行混合、压碎和然后干燥,直至所述混合的煅烧粉末具有为0.9μm的大小。将所述混合的煅烧粉末的压碎
粉末加入并与PVA混合,并且之后通过造粒设备造粒。在通过单轴压具设备形成这样
获得的粒状粉末,并在500℃下除去压坯的结合料后,在具有低于1%的氧气含量的氮气气氛中在1320℃下进行烧结3小时以获得烧结体。将这样获得的烧结体加工成为大小
为10mm×10mm×1mm的板形状以制备测试片,通过电阻测量仪器测量各测试片在室温至
270℃范围内的电阻值的温度变化。测量结果如下所示:ρ30(Ωcm)=602,Tc(℃)=154,和电阻温度系数(%/℃)=12。另外,进行所述烧结体的Bi和Na的含量分析以计算 Bi/Na的比,结果Bi/Na比计算为0.76。
[0086] 如从表5中结果可见的,通过在具有氧气含量小于1%的大气中进行在1290℃至1350℃的烧结温度下的烧结步骤,持续小于4小时的烧结时间,可以提高在高温区域(等于或高于所述居里温度)下的电阻温度系数,同时保持室温下电阻是低的。另外,电阻温度系数的发散也可被抑制。
[0087] 从实施例4和比较例3的结果可知,通过单独进行制备(BaLa)TiO3的煅烧粉末的步骤和制备(BiNa)TiO3的煅烧粉末的步骤,提高了所述居里温度并且可显著降低室温下的电阻。另外,由于Bi的蒸发被抑制并且甚至在烧结后仍可提供高的Bi/Na比,二次相的形成被抑制,所述室温下的电阻被降低,和所述居里温度的发散被抑制。可以看出,根据比较例3的半导体陶瓷组合物,由于大量的Bi被蒸发,产生二次相,结果,增大了室温下的电阻。 [0088] 实施例5
[0089] 将通过实施例4获得的(BaLa)TiO3的煅烧粉末和(BiNa)TiO3的煅烧粉末掺混以满足[(Bi0.5Na0.5)0.1(Ba0.994La0.006)0.9]TiO3,并然后将它们通过球磨机利用乙醇作为介质进行混合、压碎和然后干燥,直至所述混合的煅烧粉末具有为0.9μm的大小。将所述混合的煅烧粉末的压碎粉末加入并与PVA混合,并且之后通过造粒设备造粒。在通过单轴压具设备形成这样获得的粒状粉末,并在500℃下除去压坯的结合料后,在具有氧气含量小于1%的氮气气氛中在烧结温度下进行烧结,持续示于表2中的烧结时间,随后在示于表6中的冷却速度下冷却以从而获得烧结体。在这里,通过在超过550℃/小时的冷却速度下的快速冷却产生在表6冷却速度下的“骤冷(quench)”。
[0090] 将这样获得的烧结体加工成为大小为10mm×10mm×1mm的板形状以制备测试片,通过电阻测量仪器测量各测试片在室温至270℃范围内的电阻值的温度变化。测量结果示于表6中。比较例在样品编号的一侧带有*标记。
[0091] 如从表6中所示的结果可知的,通过进行在1290℃至1350℃的烧结温度下的烧结步骤,持续满足下式的烧结时间:ΔT≥25t(t=烧结时间(小时),ΔT=在烧结后的冷却速度(℃/小时)),以及随后进行在满足上式的冷却速度下的烧结后冷却,在高温区域(等于或高于所述居里温度)的电阻温度系数可被提高,同时保持室温下电阻是低的。另外,电阻温度系数的发散也可被抑制。
[0092] 在本文中,在所有的实施例中,通过下式计算所述电阻温度系数。
[0093] TCR=(lnR1-lnRc×100/(T1-Tc)
[0094] 在这点上,符号Rc表示最大电阻,符号Rc表示在Tc下的电阻,符号T1表示显示R1的温度,和符号Tc表示居里温度。
[0095] 表1
[0096]编号 煅烧温度 Na的量 Bi的量 混合方法
实施例 1 1 600℃ 100 97.3 润湿型
2 650℃ 100 97.0 润湿型
3 700℃ 100 96.9 润湿型
4 750℃ 100 96.9 润湿型
5 800℃ 100 97.4 润湿型
6 800℃ 100 98.4 干燥型
7 850℃ 100 97.3 润湿型
8 900℃ 100 97.6 润湿型
比较例 1 9 900℃ 100 89.0 润湿型
10 1000℃ 100 89.0 润湿型
11 1100℃ 100 87.4 润湿型
12 1200℃ 100 86.9 润湿型
[0097] [0097] 表2
[0098]样品编号 (BiNa)TiO3的煅烧温烧结温度(℃) Bi/Na比 ρ30 Tc (℃ ) 电阻温度系数度(℃) (x) (Ωcm ) (%/ ℃)
1 800 1350 0.84 128 161 20.2
2 800 1320 0.84 67 161 14.1
3 800 1290 0.86 122 156 19
4 800 1350 0.92 86 162 13.8
5 800 1350 0.99 101 157 19.4
6 800 1350 0.88 72 160 14.3
7 700 1350 0.87 94 157 18.2
8 950 1350 0.83 98 156 14.2
9* 650 1350 0.8 912 146 21.2
10* 1000 1350 0.75 823 145 21.7
11* 800 1350 1.02 386 159 18.8
[0099] 表3
[0100]样品编号 煅烧温 烧结温度 Bi/Na比 ρ30 Tc 电阻温度系
度(℃) (℃) (x) (Ωcm) (℃) 数(%/℃)
1* 1000 1350 0.77 834.6 151 13
2* 1000 1320 0.77 602.1 154 12
3* 1000 1290 0.76 593.3 156 12
[0101] [0101] 表4
[0102]样品编号 BNT煅 烧温度 烧结温度 Bi/Na比 ρ30 Tc 电阻温度系(℃) (℃) (x) (Ωcm) (℃ ) 数(%/℃)
1 800 1350 0.92 115 158 18.2
2 800 1320 0.96 94 161 17.1
3 800 1290 0.96 99 162 16.9
[0103] 表5
[0104])
℃/
%(



温阻 8. 6. 4. 3. 6. 6. 5. 2. 4. 5. 7. 8 3 2 1 6.
电 41 41 41 31 31 41 41 41 41 01 81 .9 .4 .4 .4 31 )
℃(c 16 95 85 55 75 65 75 65 06 25 54 36 56 66 76 84
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

)mc
Ω(
03 3. 9. 2. 6. 7. 3. 7. 4. 5. 4. 6.0 2. 1. 9. 8. 0
ρ 19 78 88 68 18 97 97 87 77 99 21 85 14 43 23 62

)


(



结 0 0 0
烧 0 1 3 0 1 3 0 1 3 8 1 1 1 1 1
)

(

温 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
结烧 921 921 921 231 231 231 531 531 531 231 821 631 921 231 631



品 * 0 * 1 * 2 * 3 * 4 * 5 * 6
样 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1
[0105] [0105] 表6
[0106]样品编 烧结温度 烧结时间 冷却速度 ρ30(Ωcm) Tc (℃) 电阻温度系数 号 (℃) (小时) (℃/小时) (%/℃)
17* 1320 4 10 66.3 167 11.8
18* 1320 4 25 74.1 159 12.5
19* 1320 4 50 73.7 156 12.9
20 1320 4 100 79.3 152 14.1
21 1320 4 150 81.2 154 14.4
22 1320 4 250 81.3 157 14.6
23 1320 4 350 79.1 156 14.9
24 1320 4 450 79.9 155 14.5
25 1320 4 550 78.9 154 14.2
26 1320 4 骤冷 86.6 152 14.4
27* 1320 10 150 30.7 215 4.1
28 1320 8 250 68.7 157 14.3
29 1320 1 25 77.7 154 14.4
30* 1260 4 150 181.3 144 15.6
31 1290 4 150 75.1 156 14.6
32 1350 4 150 79.9 153 14.5
33 1380 4 150 48.9 164 11.6
[0108] 本发明的半导体陶瓷组合物最适合作为用于PTC热敏电阻、PTC发热体、PTC开关、温度检测器等的材料。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈