首页 / 专利库 / 水处理 / 序批式反应器 / 环酯的制备方法

环酯的制备方法

阅读:314发布:2021-04-06

专利汇可以提供环酯的制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了生产环酯的新的综合工艺,包括回收原料,例如用 溶剂 萃取从稀的含乳酸 水 溶液中回收乳酸。然后去除水分使原料生成环酯,其中反应组合物中分子量较高的低聚物的浓度保持在重量的约20%以下。该方法还包括提供反应组合物的回收溶剂,并用液-液平衡分离从原料和较高分子量的低聚物中分离出环酯。本发明还涉及整个工艺中独立的新的单元操作。由于使用适当溶剂和循环料液而综合了多种单元操作,因而本发明提供了有效地生产和回收环酯的方法。此外,适当控制工艺参数可达到原料的高转化率和环酯生产的高度选择性。,下面是环酯的制备方法专利的具体信息内容。

1、生产环酯的方法,该方法包括:
(a)使含有XA的溶液与萃取溶液接触以形成含有所述萃取溶 剂,XA和水的第一相和含有残液的第二相;
(b)使所述第一相与生产溶剂接触形成反应组合物,所述的生 产溶剂的沸点高于所述萃取溶剂的沸点,并且高于水的沸点;
(c)从反应组合物中选择性地除去所述萃取溶剂;
(d)从所述反应组合物中选择性地除去水并形成所述环酯,其 中从原料液形成的X5A和分子量更大的低聚物的浓度小于反应 组合物重量的20%左右;
(e)提供所述反应组合物一回收溶剂;
(f)用液-液平衡分离使所述环酯和回收溶剂与X1A和X1A的低聚 物分离;和
(g)从所述回收溶剂中回收环酯。
2、权利要求1的方法,其中所述回收水的步骤包括选择性地蒸 发所述的水。
3、权利要求1的方法,其中所述的XA是LA。
4、权利要求1的方法,其中所述的方法是连续的。
5、权利要求1的方法,其中所述萃取溶剂包括选自下述一组的 溶剂:1-丁醇、2-丁醇、乙酸乙酯、乙酸丁酯、二氯甲烷、二氯 乙烷、MEK、异丙醚、MIBK和它们的混合物。
6、权利要求1的方法,其中所述生产溶剂包括选自下述一组的 溶剂:甲苯、二甲苯、苯甲醚、苯乙醚、4-甲基苯甲醚、1,3-二 甲基苯、和它们的混合物。
7、权利要求1的方法,其中所述回收溶剂包括选自下述一组的 溶剂:二甲苯、甲苯、苯、MIBK、异丙醚和它们的混合物。
8、权利要求1的方法,其中所述回收步骤包括使所述的环酯结 晶。
9、权利要求1的方法,其中所述环酯的产率至少为约25%。
10、权利要求1的方法,其中步骤(c)除去的萃取溶剂循环回用 至步骤(a)。
11、权利要求1的方法,其中步骤(f)分离出来的X1A和其 低聚物循环回用至步骤(a)所述含XA的水溶液。
12、权利要求1的方法,其中步骤(g)的回收溶剂循环回用至步 骤(e)。
13、生产环酯的方法,该方法包含:
(a)提供在溶剂中含XA的原料液;和
(b)从所述原料液中除去水和形成所述环酯,其中在所述过程 中由原料液形成的X5A和分子量更大的低聚物的浓度小于反应混合 物重量的20%左右。
14、权利要求13的方法,其中环酯形成的选择性至少为约30%。
15、权利要求13的方法,其中所述方法的产率至少为约25%。
16、权利要求13的方法,其中所述回收水的步骤包含使所述原 料液中的水浓度保持在低于重量百分数约2%。
17、权利要求13的方法,其中所述回收水的步骤包含选择性地 蒸发所述的水。
18、权利要求13的方法,其中所述XA包含X1A,且其中的X1A选 自下述一组的酸、酯、盐或酰胺:乳酸、甘醇酸、酒石酸扁桃酸来酸、苯甲酸、1-羟基-1-环己基羧酸、2-羟基-2-(2-四 氢呋喃基)乙醇酸、2-羟基-2-(2-呋喃基)乙醇酸、2-羟基-2 -苯基丙酸、2-羟基-2-甲基丙酸、2-羟基-2-甲基丁酸、2 -羟基丁酸、2-羟基戊酸,以及它们的混合物。
19、权利要求13的方法,其中所述的环酯包括D-丙交酯、L- 丙交酯、内消旋丙交酯、D,L-丙交酯,以及它们的混合物。
20、权利要求13的方法,其中所述原料液中XA浓度至少为约重 量的5%。
21、权利要求13的方法,其中所述的溶剂包含混合溶剂。
22、权利要求13的方法,其中所述的原料液还包含酯化催化剂。
23、权利要求13的方法,其中所述的方法是连续的。
24、权利要求13的方法,其中所述的方法包含:
(a)提供XA原料液,其中X1A相对于所有能反应的物料的比例用 X1A当量表示时至少为约80%;
(b)使所述原料液在酯化条件下进行反应,直到X2A相对于所有 能反应的物料的比例用X1A当量表示时至少为约35wt%为止;
(c)稀释原料液使X2A浓度低于X2A的溶解度下限;和
(d)使所述降低了浓度的原料液在酯化条件下进行反应以形成 所述环酯。
25、权利要求13的方法,其中还进一步包括回收所述的环酯。
26、权利要求13的方法,其中所述方法的转化率至少为约30%。
27、权利要求13的方法,其中反应温度高于约110℃。
28、权利要求13的方法,其中所述XA在大气压下,在大约所述 生产溶剂的沸点温度下,其在所述生产溶剂中的溶解度至少为约5%。
29、权利要求13的方法,其中所述生产溶剂选自下述一组溶剂: 基、芳族、脂族、醚、和卤代的溶剂。
30、权利要求13的方法,其中所述生产溶剂包括选自下述一组 的溶剂:甲苯、二甲苯、苯甲醚、苯乙醚、4-甲基苯甲醚、1,3- 二甲氧基苯,和它们的混合物。
31、权利要求25的方法,其中所述回收方法包含:
(a)提供所述生成环酯的回收溶剂,其中所述环酯是在混合物 中含有环酯、X1A和X1A的低聚物,所述回收溶剂选自所述一组生产 溶剂和极性比生产溶剂小的溶剂;
(b)用液-液平衡分离使至少一部分所述环酯和回收溶剂与X1A和 X1A的低聚物分离;和
(c)从所述回收溶剂中回收环酯。
32、权利要求21的方法,其中所述的混合溶剂包含在所述生产 溶剂的沸点温度左右对X1A的溶解度为约2%至约30%的第一溶剂, 和在所述生产溶剂的沸点温度左右对X1A的溶解度大于约30%的第 二溶剂。
33、权利要求25的方法,其中还进一步包含:
(a)使所述混合溶剂在所述环酯生产后进行相分离,这样,所 述第一相包含在第一溶剂中的所述环酯,和所述第二相包含在第二 溶剂中的X1A和X1A的低聚物;和
(b)从所述第一相中回收环酯。
34、权利要求13的方法,其中所述提供原料液的步骤包含:
(a)使含有XA的水溶液与萃取溶液接触以形成含有所述萃取溶 剂、XA和水的第一相和含有残液的第二相;和
(b)使所述第一相与生产溶剂接触形成反应组合物,所述的生 产溶剂的沸点高于所述萃取溶剂的沸点,并且高于水的沸点。
35、生产能用于环酯生产的含XA原料液的方法,该方法包含:
(a)用第一溶剂由含XA的水溶液中萃取XA,所述第一溶剂对XA 的分配效率相对于水至少为约0.2,以形成含有所述萃取溶剂、XA 和水的第一相和含有残液的第二相;
(b)使所述第一相与第二溶剂接触以形成所述含XA的原料液, 所述第二溶剂的沸点高于所述第一溶剂的沸点,并且高于水的沸点。
36、权利要求35的方法,还进一步包含从所述原料液中选择性 地除去所述第一溶剂和水。
37、权利要求36的方法,其中所述被除去的第一溶剂循环回用 至权利要求35的步骤(a)。
38、权利要求35的方法,还包含在所述含XA原料液中加入催化 剂和除去水,以由所述XA生成环酯。
39、权利要求38的方法,还包含分离所述环酯和所述第二溶剂。
40、权利要求39的方法,还包含将分离出的所述第二溶剂循环 回用至权利要求35的步骤(b)。
41、权利要求35的方法,其中所述含XA的含水料液含有其重量 /体积比小于50%的XA。
42、权利要求35的方法,其中所述第一溶剂基本上不溶于水。
43、权利要求35的方法,其中所述第一溶剂部分溶于水,这样 在所述第二相中还含有一部分所述第一溶剂。
44、权利要求43的方法,还包含:
(a)用第二溶剂从所述第二相中萃取所述第一溶剂部分,以形 成含有第一和第二溶剂的萃取溶剂;和
(b)合并所述第一相和所述萃取溶剂以形成所述含XA原料液。
45、权利要求35的方法,其中所述含XA的水溶液与所述第一溶 剂和所述第二溶剂同时接触。
46、权利要求35的方法,其中所述第一溶剂选自下述一组溶剂: 1-丁醇、2-丁醇、乙酸乙酯、乙酸丁酯、二氯甲烷、二氯乙烷、 MEK、异丙醚、MIBK和它们的混合物。
47、权利要求35的方法,其中所述第一溶剂还包含三烷基胺, 它能增加相对于水而言所述第一溶剂对所述XA的分配效率,所述的 三烷基胺的沸点低于所述第二溶剂的沸点。
48、权利要求35的方法,其中所述第二溶剂包括环酯生产溶剂。
49、生产能用于环酯生产的含XA原料液的方法,该方法包含:
(a)用环酯生产溶剂由含XA的水溶液中萃取XA,所述溶剂对XA 的分配效率相对于水至少为约0.2,以形成含有所述萃取溶剂和XA 的第一相和含有残液的第二相。
50、权利要求49的方法,其中所述溶剂还包含三烷基胺,它能 增加相对于水而言所述溶剂对所述XA的分配效率,所述的三烷基胺 的沸点低于所述第二溶剂的沸点。
51、权利要求13的方法,其中所述方法选自间歇式的和分批进 料的工艺。
52、生产环酯的方法,该方法包含:
(a)连续地提供在溶剂中含XA的原料液;和
(b)连续地从所述原料液中除去水和形成所述环酯,其中在所 述过程中由原料液形成的X5A和分子量更高的低聚物的浓度小于反 应混合物重量的20%左右。
53、如权利要求52的方法,其中所述方法至少是在第一和第二 反应容器中顺序进行。
54、如权利要求53的方法,其中所述第一反应容器是一个水提 取柱。
55、如权利要求54的方法,其中由所述第一反应容器出来的所 述原料液中的水浓度小于重量的12%左右。
56、如权利要求53的方法,其中所述的第二反应容器是连续搅 拌的罐反应器。
57、如权利要求52的方法,其中所述方法是在反应蒸馏柱中进 行的。
58、如权利要求57的方法,其中所述方法还进一步包括形成溶 剂回流液。
59、如权利要求58的方法,其中所述提供原料液的步骤包含把 所述原料液从所述柱的顶部引入所述柱,并且还包含在柱中其水浓 度小于重量的12%左右的点或在低于此点的位置将催化剂引入所述 柱。
60、从环酯生产混合物中回收所述环酯的方法,其中所述环酯 生产混合物含有环酯,X1A和X1A的低聚物,该方法包括:
(a)提供所述环酯生产混合物的回收溶剂;
(b)用液-液平衡分离至少使一部分所述环酯和回收溶剂从X1A 和X1A的低聚物中分离;和
(c)从所述环酯和回收溶剂中回收环酯。
61、权利要求60的方法,其中在室温和1大气压下,相对于X1A 回收溶剂中的所述环酯的分离因子至少为1左右。
62、权利要求60的方法,其中所述回收溶剂包含选自下述一组 的溶剂:二甲苯、甲苯、苯、MIBK、异丙醚和它们的混合物。
63、权利要求60的方法,该方法还包含在所述回收步骤前除去 回收溶剂。
64、权利要求60的方法,其中所述X1A包括乳酸,以及环酯包 括丙交酯。
65、权利要求60的方法,其中所述环酯在含有所述回收溶剂的 溶剂中生产。
66、权利要求60的方法,其中所述环酯在含有所述回收溶剂和 比所述回收溶剂极性更大的溶剂混合物中生产。
67、从环酯混合物中纯化环酯的方法,其中所述环酯混合物含 有环酯、X1A、X1A的低聚物和溶剂,该方法包含:
(a)从环酯混合物中选择性地蒸出至少一部分所述X1A和溶剂, 以形成环酯和X1A低聚物的混合物;
(b)从环酯和X1A低聚物的混合物中选择性地蒸出至少一部分环 酯;
(c)回收所述蒸出的环酯。
68、权利要求67的方法,其中所述至少一个蒸馏步骤是在低于 大气压下进行的。
69、如权利要求67的方法,其中所述蒸出的环酯包括环酯的第 一和第二异构体种类,以及所述回收步骤包含:
(a)选择性地结晶所述环酯的所述第一异构体;
(b)回收所述结晶的所述环酯的第一异构体;
(c)结晶所述环酯的所述第二异构体;
(d)回收所述结晶的所述环酯的第二异构体。
70、从环酯混合物中纯化环酯的方法,其中所述环酯混合物含 有环酯的第一和第二异构体种类、X1A和X1A的低聚物,该方法包含:
(a)选择性地结晶所述环酯的第一异构体;
(b)回收所述结晶的所述环酯的第一异构体;
(c)结晶所述环酯的第二异构体;和
(d)回收所述结晶的所述环酯的第二异构体。

说明书全文

发明涉及环酯的制备方法,这一方法是使羟基-羧酸(这里 称之为羟基酸或羟基羧酸)和其衍生物分别转化为它们的环酯,优 选是同环双酯的环状化合物。本发明也包括回收羟基酸回到原料流 和回收环酯的新技术。

包括具有下述通式环酯: (其中R1,R2,R3和R4或者是氢,或者是具有1-约10个原子的取代 或未取代的脂族或芳族)的环酯是可聚合形成聚合物的一类有用的 化合物。这种聚合物在制备可在环境中生物降解的塑料和在应用于 医疗时可被吸收的塑料方面是特别有用的。通过环酯聚合制备的聚 合物如丙交酯是特别有用的,因为在大多数环境条件下,它们可随 着时间的推移通过解降解。得到的羟基酸单元(如乳酸)或其低 聚物可被环境中的微生物很快吸收,有条件下将其转化为二氧化 碳和水,无氧条件下将其转化为二氧化碳和甲烷。环酯也可用作增 塑剂和制备表面活性剂增塑剂的中间体。

根据以前的实践经验,所需环酯的制备首先是使羟基酸,典型 情况是α-羟基酸,缩合得到相对高分子量的低聚物。然后在加热 真空的反应器中使聚合物在高温和低压下解聚得到环酯粗品。需要 许多纯化步骤以得到纯度满足合成所需分子量聚合物所要求的纯度 的环酯。

从α-羟基酸低聚物制备环酯的反应有时称之为反面-咬合 (back-biting)反应,因为这一反应包括从预聚物末端分步分离出 环状二元酯得到环酯,如下文所述的乳酸低聚物那样。

Bellis的U.S.专利4,727,163指出了首先制备含嵌段聚合物的 预聚物的方法,该嵌段聚合物包括热稳定的聚醚核以及聚合于核上 的α-羟基酸或酯。在真空加热条件下,α-羟基酸末端被热降解 形成环酯,这一环酯可在真空条件下缩合。

Bhatia的U.S.专利4,835,293指出了应用惰性气体吹扫的反面 -咬合过程,这使得反应可在大气压或高于大气压条件下进行。惰 性气体与液相中的预聚物紧密结合,在预聚物和惰性气体之间造成 了很大的界面面积,使得环酯汽化并被吹扫出反应器以进行下一步 的回收和纯化步骤。

如上所述,以及如提及的Bellis和Bhatia专利所述,α-羟基 酸的反面-咬合解聚反应可制备环酯。然而,典型的反面-咬合反 应是慢反应,并且需要分批操作历时很长,而且还产生必须处理不 需要的高分子量付产物尾料;而且环酯产物还必须从有毒脱色的热 解产物中分离。

本发明涉及制备环酯如丙交酯的方法。一方面,本发明涉及制 备环酯的起始原料的回收,环酯的生成和环酯的回收这个完整的过 程。在这样的一个过程中,使含XA的水溶液,如稀乳酸溶液,与萃 取溶剂接触以形成含萃取溶剂,XA和水的第一相以及含残液的第二 相。然后使第一相与环酯制备溶剂接触形成反应组合物。制备溶剂 的沸点高于萃取溶剂和水的沸点。这一过程进一步包括从反应组合 物中选择性除去萃取溶剂和从反应组合物中选择性除去水,得到环 酯。在生成环酯的反应组合物中,X5A和较高分子量低聚物少于约 20wt%。这一过程还进一步包括提供对反应组合物的回收溶剂和 通过液-液平衡分离过程从X1A和X1A低聚物中分离环酯和回收溶剂, 然后从回收溶剂中回收环酯。

本发明的内容还进一步包括整个完整过程的多个独立的单位操 作。特别地,本发明一方面的内容包括含有可用于环酯生产含XA的 原料流的生产方法。这一方法包括从含有XA的水溶液中提取XA,采用 对所述XA和水来说分配系数至少是约0.2的第一提取溶剂,形成了 含有所述的第一提取溶剂和XA的第一相以及含有残液的第二相。这 一方法还进一步包括使第一相与第二提取溶剂接触生成含一XA的原 料流,这里第二提取溶剂的沸点高于第一提取溶剂和水。

本发明进一步包括生产环酯的方法,这一方法包括提供在溶剂 中含有XA的原料流和从原料流中除去水并形成环酯,其中在反应中 从原料流中生成的X5A和较高分子量低聚物的浓度少于反应混合物 的约20wt%。另一方面,这一方法是在原料流中保持水浓度低于 约2wt%进行的。再一方面,XA含有X1A并且X1A选自酸、酯、盐或 酰胺组成的组,这一组别是由乳酸、甘醇酸、酒石酸扁桃酸、1 -羟基1-环己烷羧酸、2-羟基-2-(2-四氢呋喃基)乙醇酸、2 -羟基-2-(2-呋喃基)乙醇酸、2-羟基-2-苯基丙酸、2-羟 基-2-甲基丙酸、2-羟基-2-甲基丁醇酸、2-羟基丁醇酸、2 -羟基戊酸及其混合物组成的。

进一方面,本发明包括以高的反应物向产物的转化率生成环酯 的方法。这一内容包括提供在溶剂中含有XA的原料流和从原料流中 除去水并形成环酯,其中在反应中从原料流中生成的X5A和较高分 子量低聚物的浓度少于反应混合物的约20wt%,并且反应的转化 率至少约为30%。一方面,高转化率是通过采用含有至少约5wt% 浓度的XA的原料流实现的。在这方面还进一步包括保持反应温度高 于约110℃。而且,高转化率还可通过采用酯化催化剂实现。

本发明另一方面涉及环酯的高度选择性制备,其中待转化的高 比例XA组分被选择性转化为XD类,而非较高分子量低聚线性的XA类。 一方面,这个方法包括提供在生产溶剂中含有XA的原料流和从原料 流中除去水并形成环酯,在反应过程中X5A和较高分子量低聚物的浓 度少于反应混合物的约20wt%,其中这一反应过程的选择性大于约 30%。一方面制备溶剂选自甲苯、二甲苯、苯甲醚、苯乙醚、4-甲 基苯甲醚、1,3-二甲氧基苯,及其混合物组成的组。进一方面, 生产溶剂包括选自单取代和双取代溶剂的芳香溶剂。再进一方面, 生产溶剂包括由不同极性的第一和第二(提取)溶剂组成的混合溶 剂。生产溶剂和X1A的极性或H-结合溶度参数组分应各自约为10MPa1/2, 生产溶剂的偶极距大于约0.5德拜。

生产环酯的过程可采用多种构成过程进行,这一过程可以是分批, 分批进料或连续进行。一方面,连续的过程至少是在第一和第二反 应器中顺序进行。另一方面,第一反应器可以是水反萃取柱。还一 方面,整个反应可在蒸馏柱中进行。进一方面,这一过程的容积系 数至少是约10g环酯/升/小时。

本发明进一方面涉及从含有环酯、X1A和X1A低聚物的环酯生产 混合物中回收环酯的方法。这方面涉及提供一种对于环酯生产混合 物的回收溶剂并通过液体平衡分离从X1A和X1A低聚物中至少分离出 部分的环酯和回收溶剂。这一过程进一步包括从环酯和回收溶剂中 回收环酯。一方面,在大约室温和1个大气压下,在回收溶剂中环 酯对于X1A的分离系数至少约等于1。回收溶剂选自二甲苯、甲 苯、苯、甲基异丁基(MIBK),异丙醚及其混合物。进一方面,回 收生产环酯的过程可采用多种构成过程进行的步骤选自蒸馏、溶剂 结晶和熔化结晶及这些步骤的结合。

本发明还涉及从包括环酯、X1A、X1A低聚物和溶剂的环酯混合 物中纯化环酯的方法,这个方法包括从环酯混合物中选择性蒸出至 少一部分X1A和溶剂;从混合物中选择性蒸馏出至少一部分的环酯; 并随后回收蒸馏的环酯。

本发明进一步涉及从包括环酯、X1A和X1A低聚物的环酯混合物 中纯化环酯的方法。这个方法包括加热环酯混合物到高于环酯的熔 点,并使混合物温度保持在环酯熔点和低于环酯熔点约20℃之间使 得生成晶体,并回收结晶的环酯。

           对本发明附图的简要描述

图1表示采用不同生产溶剂生产丙交酯时选择性,转化率和产 率的三维图。

图2表示在茴香醚中采用不同浓度硫酸催化剂生产丙交酯时选 择性,转化率和产率的三维图。

图3表示在二甲苯中采用四种不同浓度的硫酸催化剂生产丙交 酯时选择性,转化率和产率的三维图。

图4表示在二甲苯中采用1.2%硫酸催化剂生产丙交酯时相应的 选择性,转化率和产率值。

图5表示在茴香醚中采用四种不同催化剂生产丙交酯时选择性, 转化率和产率的三维图。

图6表示在茴香醚中在高浓度催化剂存在下生产丙交酯以及相应 的选择性,转化率和产率值。

图7表示在二甲苯中三种不同的温度下生产丙交酯的选择性,转 化率和产率的三维图。

图8表示分批进料生产时在二甲苯中生产丙交酯。

图9表示分批进料生产时在茴香醚中生产丙交酯。

图10表示在茴香醚/二甲苯混合溶剂中生产丙交酯的结果,以 转化率表示。

图11表示在茴香醚/二甲苯混合溶剂中生产丙交酯的结果,以 选择性表示。

图12表示在茴香醚/二甲苯混合溶剂中生产丙交酯的结果,以 产率表示。

图13表示联合使用多种溶剂和催化剂的丙交酯合成反应4小时 后的转化百分比。

图14表示联合使用多种溶剂和催化剂的丙交酯合成反应1小时 后的转化百分比。

图15表示采用多种的溶剂和催化剂联合使用生成丙交酯的选择 性。

本发明提供了生产环酯如丙交酯的完整的方法。这一方法包括 对起始原料如乳酸的回收;从起始原料生产环酯;以及环酯的回收。 这个方法是有利的,因为通过采用在多元单位操作中优选的溶剂和 /或催化剂使得多个单位操作结合完整了。因此,一个单位操作中 的产品流可以作为下一个单位操作中的原料流。因此,这一方法过 程或各阶段可连续进行。而且,这一方法包括在多个单位操作之间 的一系列再循环料流。这个方法是生产环酯的有效方法。而且,独 立于整个方法,这个方法的很多方面都是新的并且有用的。 环酯生产化学

本发明提供了从羟基羧酸、羟基羧酸酯、羟基羧酸盐或羟基羧 酸酰胺衍生的环酯的生产方法。这里所用的术语“衍生”是指环酯 是由通过上述组分或上述组分的产物是反应物的反应制备的。优选 的,环酯是通过将由任何两个羟基酸、酯、盐或其酰胺生成的酯转 化为环酯制备的。如此优选的环酯这里称之为XD。这里所用的X1A是 指羟基羧酸、羟基羧酸酯、羟基羧酸盐或羟基羧酸酰胺。X2A是指羟 基羧酸或其衍生物的线性二聚物分子。X3A是指羟基羧酸或其衍生物 的线性三聚物分子,及XnA是指羟基羧酸或其衍生物的线性n-聚物 分子。这里所用的无下标的XA是指一个或多个X1A、X2A、X3A和X4A或 含有上述种类的溶液。应该可以知道,当X被L、G或T取代时,分别 是指建立在乳酸、甘醇酸和酒石酸基础之上相应的化合物。例如, LA是建立在乳酸基础上的混合物,包括L1A、L2A、L3A和L4A,及LD是 指丙交酯。

按本发明的一个具体方案,由X1A衍生的环酯的生产是通过 提供含有但不局限于此XA组分,并对原料流进行处理生成环酯。 不希望被理论所约束,我们认为环酯是主要从X2A直接生成的。在某 些反应条件下,认为X3A和X4A可对少量环酯的生成有贡献。然而, 这个机理对本发明不是必须的。正如这里指出的,主要从X2A直接生 成环酯是指下述反应,其中X2A已存在于原料流中或由两个X1A分子 间的酯化反应生成的X2A通过酯反应转化为环酯。这样看起来,环酯 并非通过聚酯链的反面咬合方式生成,如现有技术所述从X5A或更高 聚合物生成环酯时那样。

本发明及U.S.专利5,139,107中所述的方法是新的,并且与先 有技术中已知的高级低聚物的解聚过程有明显区别,因为生成XD的 本发明方法是直接由X2A分子通过其环化反应进行的。应该注意到, 与已知解聚反应的反应条件相比,本发明方法的反应条件是极其温 和的。例如,(已知)解聚反应典型是在高于约200℃条件下进行 的。由于认为XD直接从X2生成,大量的高级低聚物如X5A和更高级的 低聚物不能由XA生成,如采用预聚物在传统解聚反应中生产XD的过 程所需的那样。因此,本发明的一个独特的方面是本发明原料流的 反应是在下述条件下进行的,即使得反应混合物中从原料流XA生成 的X5A和高级低聚物的总浓度保持在反应混合物浓度的约20wt%以 下,更优选是保持在约15wt%以下,和最优选在约10wt%以下。

根据本发明,优选的X1A是α-羟基羧酸,或其酯、盐或酰胺。 不希望受到理论的约束,我们认为α-羟基羧酸或其衍生物特别适 合用于生产XD环酯。根据本发明,许多α-羟基羧酸及其衍生物可 以被转化为环酯。这样的酸包括式R1R2C(OH)-COOH的酸,其中R1和 R2各自独立的表示氢或含1-10个碳原子的取代或未取代的脂族烃 或芳烃,以及上式羧酸的可溶性酯、盐或酰胺。可以采用单一的X1A 或不同类X1A的混合物。合适的X1A包括但不局限于下述羧酸,及其 相应的酯、盐或酰胺:乳酸(L1A)、甘醇酸(G1A)、酒石酸(T1A)、扁 桃酸、苹果酸、1-羟基1-环己烷羧酸、2-羟基-2-(2-四氢呋 喃基)乙酸、2-羟基-2-(2-呋喃基)乙醇酸、2-羟基-2-苯基 丙酸、2-羟基-2-甲基丙酸、2-羟基-2-甲基丁酸、2-羟基 丁酸、2-羟基戊酸及它们的混合物。

优选的酸是乳酸、甘醇酸和酒石酸,其中乳酸是更优选的。优 选的盐是XA的烷基或芳基胺盐,更优选的是XA的铵盐,例如乙酸铵 或烷基乳酸铵。其它优选的盐包括乳酸盐、甘醇酸盐和酒石酸盐。 合适的酯包括短链烷基酯,如与甲基、乙基或丁基链形成的酯,以 及与较长的链形成的酯,如乳酸十八烷酯。优选的酯包括乳酸甲酯、 乳酸乙酯以及乳酸十八烷酯。提及X1A的酯时并非指X1A的低聚酯或 聚酯。X1A可为其立体异构体形式,即L-或D-型。

优选的X2A组分是在任意两个羟基酸、盐、酯、酰胺或其混合 物之间形成的酯,包括L1A-L1A(或L2A,也称之为乳酰乳酸或乳酸 二聚物),L1A-G1A,L1A-T1A,G1A-G1A(或G2A),G1A-T1A和T1A -T1A(或T2A)酯。例如,L2A可以表示如下:

优选的X2A组分是L2A,L1A-G1A和G2A酯。X2A可以含有两种L-异构 体,两种D-异构体或同时含D-和L-异构体。而且,优选的X2A型 酯是乳酰基乳酸甲酯、乳酰基乳酸乙酯、乳酰基乳酸丁酯、乳酰基 乳酸十八烷酯以及乳酰基乳酸铵。

当X1A是相对来说高分子量的种类时,本发明的方法是特别有 用的,这是因为采用这样的X1A分子通过传统的反面咬合的方法生 产环酯是困难的或不可能的,因为环酯产物的分离典型是通过酯的 蒸发实现。高分子量酯更倾向于沉积而非蒸发。本发明中,回收产 物不需要蒸发。例如,所述的高分子量X1A类包括,但不限于羟基 异丁酸、α-羟基异戊酸、α-羟基己酸、α-羟基异己酸和α- 羟基辛酸。

本发明方法中水的作用可通过下面的平衡反应理解:

2X1A�X2A+H2O

X2A�环酯+H2O

X1A+X2A�X3A+H2O

因此,可以看到在平衡中X1A是与X1A的较高级低聚物、环酯和 水一起存在的。通过除去水,反应可向右移动,以及通过加入水, 反应可向左移动。

本发明的一个重要的方面就是控制多个反应参数以利于得到所 需的反应产物。为了更详细地理解这些参数的应用,下述定义的术 语是有用的。

术语“转化率”是指反应生成XD或XA低聚物的X1A和X2A(以相 当于X1A的当量计)的百分比。因此,如果原料流最初含100单位X1A 和X2A(以X1A为基础表示),并且其中60单位反应生成30XD分子, 30单位反应生成X3A或较高级低聚物,还余10单位X1A和X2A未参加反 应,那么计算转化率是90%。

“选择性”是指生成XD分子而非X3A或较高级低聚物的原料流 转化百分比。因此,在上述实施例中,转化的原料流占初使原料流 的90%,而在这90%之中,67%(60%/90%)选择性地转化为XD而 非X3A或较高级低聚物。应强调采用这些术语时是假定反应是在非 解聚条件(即非-反面咬合)下发生的。因此,XD是直接从X2A类 生成,而不是通过高级低聚物的解聚生成。

这里所用的反应“产率”是指反应转化率和反应选择性值的乘 积。因此,在上述实例中,转化率是90%和选择性值是67%时,总 产率是60%。 环酯生产的原料流

除了XA外,本方法原料流中还可含有的其它成分包括少量X1A 的低聚物,如X5A或X6A,以及含其它的物质。优选地,XA成分占总 XnA的70wt%,较优选85wt%和更优选90wt%。例如市场购得的 乳酸即为合适的原料流,并且典型情况下在无水基料中含有约70 wt%到约81wt%L1A,约17wt%到约23wt%L2A,约3wt%到约7 wt%L3A,约0.6wt%到约2wt%L4A。

原料流纯度

原料流中可选择性含有大量的杂质,例如部分纯化的从发酵反 应中得到的含XA的发酵肉汤。例如乳酸或乳酸盐,如乳酸铵,可从 发酵肉汤中直接反应生成XD。从乳酸铵生产XD是有更多优势的,因 为这一反应的副产物水和气很容易从产物流中分离并循环使用。

或者,原料流中含有纯的成分,如高纯度L1A或高纯度L2A。可 以调节原料流中活性成分的浓度,使得在如下所述的环酯生产过程 中得到环酯的高产率。这里所用的术语活性成分是指XnA成分,其 中n≤4,并且优选是指X1A和X2A。

或者,原料流中可以包含热稳定的成分,如热稳定的LA。这里 所用的术语热稳定LA是指乳酸混合物,其中含有多种LA,但除去了 加热导致着色的杂质。

再循环原料流

本发明优选的方面,在原料流中含有从聚合物或低聚物的回收 衍生的活性成分,其中的聚合物来自例如根据本发明制备的环酯。 例如诸如丙交酯,聚合乳酸或低聚乳酸的环酯可在丙交酯的生产过 程中得到。上述乳酸的聚合物或低聚物可通过水解为乳酸再次循环。 这样的水解产物适合用于原料流中。

从低浓度含水原料流生产环酯的反应混合物

在本发明的一个方面,包括含XA原料流(即含有至少一种羟基 羧酸、其酯、盐或酰胺的原料流)的本发明原料流是根据本发明下 述优选的含XA原料流的生产方法生产的。这个方法包括使含XA的水 溶液与第一提取溶剂接触得到在第一提取溶剂中含XA的第一相(即 “含XA第一提取溶液”)以及第二相,其中含有可从中提取XA的溶 液(即“残液”)。根据第一提取溶剂的特点,含XA的第一提取溶 液可用多种方式处理以生产制备环酯所用的含XA原料流。这些内容 在后面公开。

将XA提取入第一提取溶剂的能取决于几个因素,这些因素包 括XA的浓度,XA在第一提取溶剂中的溶解度与在水中的溶解度的比 较,水在第一提取溶剂中的溶解度,从残液中分离含XA第一提取溶 液的能力,温度,PH和溶剂比。

本发明采用溶剂提取法从XA制备环酯的优点在于不需要将XA浓 缩以实现本发明优选的含XA原料流制备。而且由于稀释的含XA的原 料流对于本发明的环酯生产过程来说是优选的,那么采用这种优选 的含XA原料流的生产方法使得XA和XD的生产过程完整了,即不需浓 缩含XA的溶液即可进行连续生产和溶剂回收。这里,虽然优选的含 XA原料流的生产过程可在含任何浓度XA的含XA水溶液的基础上进行, 这一过程特别优选是采用含有稀释量XA的水溶液进行的,例如从环 酯生产中得到的含XA的再循环料流(如本发明所述那些)以及含有 微生物制备的XA的发酵肉汤。这样的发酵肉汤通常含有羟基酸的盐, 所述的含羟基酸盐肉汤可在提取前酸化或直接用于提取,优选在提 取前从所述的发酵肉汤中除去细胞。其它合适的含XA的含水料流包 括,但不局限于:含XA的副产物料流,含XA的废料流和含XA料流, 其中的XA是通过例如水解含XA的聚合物生产的。含XA的水溶液优选 含有少于约50wt/vol%XA,更优选含有少于约12wt/vol%,和 更优选含有少于约5wt/vol%XA。

优选的第一提取溶剂是对XA来说,溶剂对水的分配系数(KD)至 少约是0.2,优选至少约0.5,更优选至少约1.0的溶剂。优选的第 一提取溶剂可以基本上不溶于水或部分溶于水,其溶解的程度应该 使得在提取时含XA的第一提取溶液可与残液分开形成独立的一相, 从而提供了使第一提取溶液和残液分离的简单的方法。对上述体系 相平衡的测定是本领域技术人员熟知的。如果用极性较大的溶剂提 取XA,溶剂和水溶液这两个独立相的形成可通过向提取混合物中加 入极性较低溶剂而改善,例如加入二甲苯至甲乙酮以形成混合溶剂。

本发明优选的方面涉及使用可使得XA原料流生产环酯的完整化 的第一提取溶剂,这时步骤和成本都减少了。所述第一提取溶剂的 沸点应当使其在环酯生产中可通过蒸发选择性除去;即优选的第一 提取溶剂的沸点低于生产环酯的生产溶剂。在环酯生产过程中,在 含XA第一提取溶剂中存在的水也可通过蒸发除去。或者,如果环酯 生产溶剂具有从含XA水溶液中提取XA的上述合适的特性,那么第一 提取溶剂中也可含环酯生产溶剂。

本发明合适的第一提取溶剂包括具备上述特征的有机和基溶 剂。优选的第一提取溶剂的一类包括基本上不溶于水的溶剂,优选 其在水中的溶解度小于约3wt/vol%,更优选小于约0.5wt/vol%, 而且XA在溶剂和水之间的KD应当是可接受的。这样的溶剂的合适的 实例包括1-丁醇、2-丁醇、乙酸乙酯、乙酸丁酯、二氯甲烷和二 氯乙烷。这些溶剂的优点在于,提取后残液中只含很少的提取溶剂, 从而降低了回收溶剂至提取过程所需的费用。在环酯生产中,可将 含XA第一提取溶液与所需的环酯生产溶剂混合,形成了制备环酯的 原料流。这样的原料流可进入本发明的环酯生产过程,在这过程中, 第一提取溶剂被蒸发并再循环进入提取过程。

优选的第一提取溶剂的第二类是指在水中有一定的溶解度,并 且由于其极性,XA在溶剂和水之间的KDS是理想的溶剂。该类中合 适的溶剂包括2-丁酮(甲基乙基酮或MEK),异丙醚,和甲基异丁 基酮(MIBK)。例如,在乳酸和水间MEK的KD约为0.81,在大气压下 沸点约为79.6℃,在水中的溶解度约25%。然而,由于在水中是部 分溶解的,所以大部分的这类溶剂是存在于残液中。这样的限制可 通过第二步提取克服,其中使第二提取溶剂与残液接触,将大量第 一提取溶剂提取入第二提取溶剂,从而得到第二提取溶液。根据本 发明,第二提取溶剂优选是环酯生产溶剂,例如二甲苯。其余合适 和优选的生产溶剂在后面公开。如下文所述,第二提取溶剂优选是 环酯回收过程的再循环料流。在这一方面,使第一和第二提取溶液 混合并进行本发明的环酯生产。在环酯生产过程中,第一提取溶剂 和存在的水均被蒸发并再循环进入XA提取过程。另一方面,还有大 部分的第一提取溶剂存在于残液中这一局限性,可通过在一个单独 的提取步骤中使第一和第二提取溶剂混合成为混合溶剂而克服。如 果需要,可用所得的含XA的提取溶液再进行环酯生产并如本文所述 使提取溶剂回收和再循环。

本发明提取方法的另一方面涉及采用包括稀释溶剂和胺的第一 提取溶剂,胺如三烷基胺,这样可以提高XA在第一提取溶剂和水之 间的KD。在以前已证明加入三烷基胺可提高羟基酸在适当的溶剂和 水之间的KD值;参见例如U.S.专利4,698,303,由Bailey等人申请, 在1987年10月6日公开;U.S.专利4,771,001,由Bailey等人申请, 在1988年9月13日公开;以及被King在1992年5月,在Chemtech, pp.285-291中述及。本发明优选的三烷基胺是在本发明环酯生产 过程中可蒸发的三烷基胺。合适的三烷基胺包括三乙基胺(TEA)和 三甲基胺(TMA),其中TEA是优选的。可稀释三烷基胺得到第一提取 溶剂的合适的溶剂是指:极性足够大可以从水中提取TEA和羟基羧 酸盐所形成的复合物。这种溶剂包括MEK,MIBK,和二氯甲烷,其 中MEK是优选的。例如,对于乳酸含TEA的MEK和水间的KD约至少为 2.0。采用胺提取XA的理想条件可由本领域熟练技术人员决定。在提 取中或在提取之后,可使第一提取溶液与环酯生产溶剂接触并投入 环酯生产,在这一过程中,包括三烷基胺在内的第一提取溶剂可被 蒸发并再循环回到XA萃取过程中。在环酯生产中,三烷基胺的蒸发 使羟基酸盐转化为各自的羟基酸。或者,在第一提取溶剂中可含有 用适当的环酯生产溶剂稀释的三乙胺,环酯生产溶剂如茴香醚、二 甲苯或甲苯,在这种情况下,所得的第一提取溶液可直接进行环酯 生产。

这里公开的提取方法可采用常规技术进行,这些技术包括但不 限于连续多步提取方法。在提取方法中,如果合适的话,可采用任 何数目所需步骤,以完成XA或第一提取溶剂的充分提取。

应当注意到,根据本发明优选方法制备的含XA原料流不仅可用 于环酯生产,而且可用于任何其中羟基羧酸是原料的合适的生产过 程,这些过程包括但不限于通过直接缩合或酯化反应生产低聚物或 聚合物。

将含XA原料流引入环酯生产过程中

本发明另一方面涉及将XA料流投入环酯生产单位中。可将前面 所述的含XA料流投入环酯生产单位中,以满足合适的条件最有利于 环酯的生产和减少X1A低聚物的产生。正如别处已讨论过的,反应 物的浓度影响环酯生产的转化率和选择性。可以控制反应器中XA 进料的浓度使得转化率和选择性理想化。可控制使反应达到理想化 的投料条件是:XA进料浓度,溶剂的选择和温度。应控制各种因素 使得在将混合物投入环酯生产过程之前或在刚刚进入这一生产过程 之时,形成均匀的反应混合物。可采用多种方式得到XA和溶剂的均 匀反应混合物。一方面,各物质在投入环酯生产单位之前要预热。 将可由XA和溶剂组成的原料流加热到使得XA类可溶于溶剂中的温度。

环酯生产的反应机理和条件

本发明独特和新的方面是通过控制反应机理和条件,使环酯 的生产理想化的能力。由于系统内竞争反应,而且实际上反应混合 物中往往含有来源于上料过程的杂质和/或来源于再循环料流的各 种低聚成分和其它成分,因此对反应条件的综合和控制改善了反应 过程,出乎意料之外使产率和容积效率增加了。本发明控制反应的 重要方面是溶剂选择、温度、压力、进料浓度、催化剂选择和浓度, 以及反应时间。

在环酯生产中除去水的效果

根据本发明,处理含XA原料流生成环酯。典型情况下这种处理 包括从原料流中除去水以促进环酯的生成。不受理论限制,我们认 为被除去的水有至少三个来源:(1)开始存在于原料流中的游离水; (2)在由两个XA分子生成线性酯(XnA,其中n至少是2)的酯化反应中 产生的水;和(3)在由X2A生成环酯的酯化反应中产生的水。原料流 一般含有游离水,它被首先除去。这样当原料流基本上脱水后,有 利于X1A到X2A的酯化反应的进行,这种反应又产生水。由于已基 本上除去水,所以有利于X2A到环酯的酯化反应的进行。应当注意 到,这里所述的依序除去水的步骤,(实际上)是可以同时进行的。 由于在处理过程中除去游离水,因此原料流中初始的水浓度不需限 制。典型地,原料流中初始游离水的量少于约50wt/vol%,和更优 选少于约30wt/vol%。

优选的,快速除去原料流中的游离水,得到基本脱水的原料流, 其中水的浓度低于约2wt%。酯化反应生成的水优选应尽可能快地 除去。具体地说,典型的除水速率应当是使得处理原料流中水的浓 度低于约2wt%,较优选少于约1wt%,和更优选低于约0.5wt%。

可采用多种方法从液相原料流中除去水,这些方法包括但不限 于:蒸发、以溶剂为基础的反应过程,如反应蒸馏过程(详述如下), 以共沸物形式从原料流中除去水,其中反应性成分稀释于与水形成 共沸物的溶剂中,加入优选与水反应的吸水剂,采用分子筛或分配 (例如渗透)膜,采用可与水生成水合晶体的无水盐,使原料流与 吸水性物质接触,如多糖(例如Ficoll)或硅胶。

环酯生产中溶剂的作用

本发明优选的原料流含有XA和溶剂。根据应用方式,溶剂具有 许多的功能,包括(i)决定给定压力下最高的反应温度;(ii)从反 应中除去水;(iii)稀释X1A以增强选择性;(iv)作为反应物载体溶 解各类反应物;和优选的,(v)从反应生成的低聚物中分离XD。

本发明所用溶剂优选是在所需反应温度、XA浓度和压力下,使 得XA和在初始原料流中存在的任意量的水能够溶解的溶剂。如果在 反应温度、浓度和压力下XA和/或水仅能部分溶解,不溶的XA部分 可在含XA相中与水一起被分离,其中的XA浓度很高,这么高的XA浓 度会促进低聚物的生成,而不是从X2A直接生成所需XD。此外,所 述的含XA相的形成可能使得许多催化剂分离至含XA相中。优选的, 溶剂选择满足:在反应温度、浓度和压力下,XA是100%可溶的。

本发明重要的一方面就是选择溶剂使得在环酯生产中达到高选 择性。不受理论限制,我们认为与XA高级低聚物的生产相比,极性 较高的溶剂更有利于X2A或XD的生产因而提高选择性。然而,还应当 注意到,随着溶剂极性增加,转化率下降了。高极性溶剂比低极性 溶剂对催化剂的反应性更高。这种反应将降低对XD生成反应的催化 能力。例如硫酸催化剂对溶剂如茴香醚的相对反应性更高。

对溶剂极性的衡量之一是溶度参数,溶度参数可通过直接测量, 与其它物理参数相关联,或通过非直接的计算得到。通常可直接测 定溶剂的溶度参数。溶度参数被定义为内聚能密度(cohesive energy density)的平方根并表示了物质分子之间的吸引力。在下述讨论中 所用的单位是MPa1/2。由于X1A类如乳酸的极性往往较高,优选的极 性溶剂典型地与XA混溶。如果各成分间溶度参数是类似的且氢键程 度是类似的,那么会出现溶剂和XA成分之间的完全混溶。

复合的或Hildebrand溶度参数提供了溶剂极性的另一衡量标准。 它分成几个项,表示对混合能的不同的贡献。这些项是指色散力、 极性和氢键项。当溶剂和溶质彼此间复合值在10MPa1/2单位内,优 选在5MPa1/2单位内时,更可能得到很好的溶解度。更具体地说, 当极性或氢键项各自是在10MPa1/2和优选在5MPa1/2之内时,溶解度 较好。最优选的,当极性和氢键项各自在10MPa1/2和优选在5MPa1/2 之内时,溶解度较好。例如,下述溶剂以及乙酸的极性和氢键项分 别在括号表示:二甲苯(1.0,3.1);茴香醚(4.1,6.8);2-丙醇 (6.0,16)和乙酸(8.0,14)。

极性的另一度量标准是溶剂的偶极距。术语“偶极距”通常是 指分子的极性,更具体地说,是指电荷的值与电偶极中电荷和其相 反电荷间距离的乘积。本发明溶剂的选择优选满足:具有的偶极距 可使反应达到适当的选择性。具体来说,优选的溶剂的偶极距大于 约0.5德拜,更优选大于约0.75德拜,再优选大于约1.0德拜。

溶剂极性的另一衡量标准是介电常数。物质的介电常数是指抵 制静电力从一个带电体向另一个带电体转移的能力。本发明溶剂的 选择优选满足:其具有的介电常数可使反应具有适当的选择性。具 体来说,优选溶剂的介电常数大于约1.5,更优选大于约2,和再优 选大于约3。

本发明所用的合适的溶剂包括有机或硅基溶剂。例如,合适的 溶剂包括芳香溶剂、脂族溶剂、醚、酮、硅基溶剂和卤代溶剂。优 选的溶剂是芳香溶剂。

具体的本发明溶剂包括2-丁酮、2-庚酮、2-己酮、2-戊酮、 丙酮、茴香醚、丁基醚、乙醚、异丙醚、甲基苯基醚、苯、枯烯、 间二甲苯、邻二甲苯、对二甲苯、甲苯、环己烷、庚烷、己烷、壬 烷、辛烷、1-戊烯、2-辛酮、二甲亚砜、苯乙醚、4-甲基茴香 醚、1,3-二甲氧基苯、1,2-二甲氧基苯、1,4-二甲氧基苯、1, 3,5-三甲基苯、氯苯、1,2-二氯代苯、1,3-二氯代苯、1,4,- 二氯代苯、2-氯甲苯、4-氯甲苯、邻二甲氧基苯和3-氯甲苯。 优选的溶剂包括甲苯、二甲苯、茴香醚、苯乙醚、4-甲基茴香醚、 1,3-二甲氧基苯和1,3,5-三甲基苯。本发明特别优选的溶剂包括 二甲苯、茴香醚、和4-甲基茴香醚。

本发明特别优选的是取代的芳香溶剂。典型的上述溶剂是极性 的并因此提供了高选择性。例如茴香醚是极性的并提供了很高的选 择性。双取代的芳香溶剂也是优选的,如4-甲基茴香醚。

根据上述参数选择溶剂,可以达到很高的反应选择性。例如, 选择性大于约30%,更优选大于约50%,再优选大于约70%。

优选的,本发明的溶剂包括各自如本发明所述的溶剂的混合物。 例如,可采用具备不同优点的溶剂的混合物。例如混合溶剂中可含 极性溶剂如茴香醚,以利于得到高选择性。这样的混合物中也可含 极性较小的第二溶剂,如二甲苯,这种溶剂在回收XD方面是特别有 用的,这是因为在冷却时,低极性溶剂会与X1A和X1A低聚物分相, 而XD由于极性较低,会在低极性溶剂中分配。合适的溶剂混合物选 自一种或多种下述溶剂。极性较高的溶剂选自茴香醚、4-甲基茴 香醚、1,3-二甲氧基苯以及其它类似的溶剂。极性较低的溶剂选 自二甲苯、甲苯、1,3,5-三甲基苯以及其它类似的溶剂。一方面, 在约是生产溶剂的沸点温度时,X1A在极性较低溶剂中的溶解度是 约2%-约30%,和在约是生产溶剂的沸点温度时,优选的溶解度 是约5%-约10%。在约是生产溶剂的沸点温度时,X1A在极性较高 溶剂中的溶解度是大于约30%,和更优选大于约50%。

这种混合溶剂可包括大量各种组成。例如,上述混合物中可含 有极性较高的溶剂和极性较低的溶剂,如含有茴香醚和二甲苯,混 合溶剂的比例优选是在约5∶95到约50∶50的范围内,更优选在约10∶ 90到约30∶70的范围内。应该注意到极性溶剂的量增加会引起选择 性的增加。然而,正如文中所述,随着极性溶剂的增加转化率会下 降。因此,在高极性溶剂浓度时,在指定反应时间中可能的转化率 的降低可通过采用高浓度催化剂补偿。 在环酯生产中原料浓度的影响

控制本发明的另一个反应参数项是在原料流中采用低浓度的反 应物高选择性生产环酯。不希望被理论所约束,我们认为比起X2A 和X1A分子生成X3A分子的双分子线性酯化反应来说,低原料流浓度 可能有利于X2A生成XD的单分子酯化反应。成功的线性酯化反应的 可能性取决于在合适的几何空间内,线性酯(X2A或更高级低聚物) 与游离X1A分子或其它的线性低聚物遭遇的可能程度。在低X1A浓度时, 线性酯化反应(即低聚)的可能性降低了。然而,从X2A至XD的环 酯生产并不依赖于X1A的浓度,因为这种酯化反应不需要与X1A分子 的碰撞。而是,X2A分子的两端必须按适当的构象彼此碰撞。因此, 一旦X2A分子生成,成功的碰撞就取决于系统中存在的能量(通过 分子的弯曲和旋转试验测定),而不是依赖于各反应物的浓度。

具体来说,采用低反应物浓度获得选择性的方法包括:提供含 有XA和溶剂的原料流,并除去水以生产环酯。应保持原料流中XA的 浓度足够低,使得在反应中由XA生成的X5A或更高级低聚物的浓度 低于约20%。更优选在反应中由XA生成的X5A或更高级低聚物的浓 度低于约15%和再优选低于约10%。更具体地说,在原料流中X1A 和X2A的浓度应保持在不超过在那一溶剂中反应物的溶解度。具体 地,在原料流中X1A和X2A的浓度应保持在不超过原料流中X1A和X2A溶 解度的约95%,更优选不超过约50%,再优选不超过约25%。按照 与原料流组分浓度有关的上述参数,可以达到约高于40%的选择性, 优选高于约50%,再优选高于约70%。

本发明也包括提供具有高浓度XA的原料流以获得高的转化率, 在这一方面,XA中的各类反应物更加可能在给定的一系列条件下反 应。可以通过适当选择反应变量,如文中所述的选择溶剂和压力, 得到高的XA的浓度。为了获得高的转化率,本发明方法采用的原料 流中XA的浓度(以X1A为基础计算)优选至少约是5wt%,更优选至少 约25wt%,再优选至少约50wt%。因此,在大约是生产溶剂的沸 点下和在大气压下,XA在生产溶剂中的溶解度优选是至少约5%, 更优选至少约25%,再优选至少约50%。

应该注意到,如文中别处所讨论的,高的反应物浓度可以负面 影响选择性。因此,通过采用高反应物浓度获得高转化率这一优势, 可通过采用其它的参数获得可接受的选择性率而得到采纳。例如, 通过采用选择性相对较高的溶剂,高反应物浓度对选择性的负面影 响变得可接受了。

环酯生产中温度的影响

在环酯生产过程中温度控制着游离水除去的速率和酯化反应的 速率。在给定其一系列处理参数的情况下,用于处理原料流使其酯 化和除去水的温度应当足够高到可使环酯有效生成,并且又不高到 将XA转化为一氧化碳或其它降解产物。优选的环酯的生产温度 在约55℃到约250℃范围内,更优选在约60℃到约225℃范围内。当 反应是在溶剂的沸点温度进行时,溶剂的选择部分取决于反应的温 度。

优选的,本发明进一步涉及进行环酯生产得到高的转化率。影 响转化率的一个因素是采用高反应温度。如上所述,典型的反应温度 在55-250℃范围内。为了获得高的转化率,反应温度应在约110℃ 以上,更优选约135℃以上,和再优选约155℃以上。

环酯生产中压力的影响

环酯生产过程中的压力也是一个需要控制的反应参数。例如, 在高压下,给定溶剂时可以获得高的反应温度,这导致反应速率加 快,因而在固定反应时间下获得高转化率。而且在这些高温下,XA 组分在溶剂中的溶解度增加了,特别是那些在其中XA的溶解度很低 的溶剂,因此使转化率提高。然而,压力可以是大气压,高于大气 压或低于大气压。本发明优选的压力是大气压或高于大气压。

环酯生产中反应时间的影响

环酯的生产可在可变的时间下进行并且典型情况是进行到环酯 的生成基本完成。当然反应时间随着其它的参数如温度和催化剂的 存在变化。例如,环酯如丙交酯的生成是采用在甲苯中稀释的商品 乳酸,通过在室温到甲苯沸点温度下加热除去水,在间歇式反应器 中约2小时到约5小时内反应完全。

环酯生产中催化剂的影响

有许多XD生成的酯化反应催化剂可用于本发明,这些催化剂包 括但不限于离子交换酸性催化剂,如Nafion和Dowex50;可溶的酸 催化剂,如硫酸、甲磺酸、三氟甲磺酸、和甲基苯磺酸;硅基催化 剂,如氧化-硅酸盐催化剂;其它固体多相酸催化剂,如氧化铝, η-,θ-,δ-,γ-氧化铝,硅胶,硫酸铝,氧化铅,三氧化 锑,氧化铍,二氧化二钇;金属酯催化剂,如辛酸亚四 (异丙氧基);酶如水解酶;沸石;所谓模板催化剂,如二-正- 丁基锡氧化物;胶束催化剂,包括极性催化剂如磺基瑚珀酸盐如 二(2-乙基己基)磺基瑚珀酸盐,商品名Aerosol OT,由Pfizer出 售;非极性催化剂如聚氧乙烯壬基苯酚,和磷酸盐(酯)。优选的催 化剂包括沸石和酸催化剂如硫酸,Dowex50和γ-氧化铝,以及甲 基苯磺酸。

在本发明优选的方法中,采用沸石催化剂作为酯化反应催化剂。 沸石催化剂是具有多孔结构的固体催化剂,在孔中有质子给予位点。 本发明优选的沸石催化剂是具有足够大的质子给予位点可容纳催化 X1A和X2A分子,但并不大到可容纳更高级低聚物的沸石催化剂。在 这一方面,沸石催化剂可以提高选择率。而且,要求优选的沸石催 化剂对水的亲和性低使得水可从反应体系中除去,但是还需对X1A 和X2A有足够的亲和性以催化形成X2A和XD的酯化反应。XD一旦生成, 催化剂对X1A和X2A的亲和性必须与其抵制XD的能力相平衡。

在本发明方法中催化剂的用量随着控制参数的变化而变化,这 些参数如温度和压力,催化剂的活性和所需的反应增长率。而且, 应当认识到对于一个给定的体系来说,任何特定的催化剂的用量必 须说明除其它方面外,由X2A制备环酯的酯化反应和由X2A制备更高 级低聚物的酯化反应之间的竞争。因此,根据反应动力学和对原料 流的处理方式,本领域熟练技术人员可以决定环酯生产中催化剂的 优选的用量。

可控制催化剂的浓度达到高的转化率,而且已经发现可以提供 高选择性的某些溶剂,即较高极性的溶剂,对某些优选的催化剂是 有反应活性的,这些催化剂如硫酸盐型催化剂。因此这些溶剂可以 降低催化剂水平导致转化率降低。所以,当使用这样的溶剂和催化 剂时,需要特别高的催化剂浓度才能获得高转化率。例如在采用硫 酸催化剂和其它类似的催化剂的情况下,当其与极性溶剂如茴香醚, 4-甲基茴香醚和1,3-二甲氧基苯结合使用时,催化剂的浓度是上 述通常的催化剂浓度参数的至少约2倍,更优选至少约5倍,再优选 至少约10倍。相反的,对催化剂反应活性较低的溶剂可特别用于获 得高转化率。在硫酸催化剂体系中,如二甲苯、甲苯和1,3,5-三 甲基苯可用于获得高转化率,因为这些溶剂是相对非反应活性的。

可控制某一催化剂和其它的反应参数获得所需的内消旋-环酯 产物。例如环酯如丙交酯,丙交酯含有两个不对称碳原子,所以可 以得到它的三种立体异构形式:L-丙交酯,其中两个不对称碳原 子均具有L(或S)构型;D-丙交酯,其中,两个不对称碳原子均 具有D(或R)构型;和内消旋-丙交酯,其中一个不对称碳原子具 有L-构型和另一个碳原子具有D-构型。L-丙交酯和D-丙交酯是 对映异构体,而内消旋-丙交酯是L-丙交酯和D-丙交酯的非对映 异构体,其中在二噁烷二酮环上甲基彼此处于反位。保持L-乳酸 的手性可以生成唯一的丙交酯,它可用于制备可降解聚合物。在乳 酸中原有手性的外消旋化可产生外消旋-丙交酯,它在制备可降解 聚合物时作为共聚用单体方面也有重要的应用。通过改变本发明各 方面所述的条件和催化剂,从L-乳酸原料或原料流中制备的L-丙 交酯或者几乎是单一的L-丙交酯,或者除了含L-丙交酯外,还含 控制量的外消旋-丙交酯和D-丙交酯。

乳酸或其它X1A种类的外消旋可通过称之为Walden重排反应进 行。在这个反应中,α-OH被卤素和其它的离去基团取代,取代 时α碳周围的相对构型保持不变。这是通过用合适的试剂如五氯化 磷或亚硫酰氯处理完成的。在所得的卤代-羧酸中通过用OH通常是 氢氧化再取代卤素基团,重新产生乳酸。然而,在这种取代中, 在α碳周围的构型翻转产生与原始相反的乳酸分子构型。

或者,外消旋可在乳酸剧烈脱水条件下发生,通常是采用强 时,(这一处理包括在α碳和甲基碳之间双键的生成和不进行酯化 反应),然后再水合重新产生乳酸。这种水合反应产生了L-和D- 异构体的随机混合物。

XA的L-和D-异构体的外消旋混合物也可通过产生XA的微生物 产生,这种微生物产生XA的外消旋混合物。而且,可以将市场得到 的L-和D-异构体混合提供外消旋混合物。

环酯生产中的转化率和产率

如文中别处所述,本发明多方面包括应用反应参数以达到高转 化率。根据本发明采用合适的反应参数,可以达到至少约30%的转 化率,更优选至少约70%和再优选至少约90%。

本发明进一步包括由于同时获得高选择性和转化率,从而得到 高产率。因此,通过适当选择所述的反应参数,可以达到至少约 25%的产率,优选至少约50%和再优选至少约80%。

环酯生产中的反应装置

本发明进一步涉及合适的和特别用于本发明的生产过程的多种 反应容器装置的采用。根据本发明,环酯生产在间歇式,进料-间 歇式和连续的反应器中进行。而且,连续的反应器可为连续搅拌的 反应罐设计(CSTR)或活塞式流动反应器设计。进一步应当注意到不 同反应器类型和数目的许多装置有利于提高产率、选择性和/或容 积效率。容积效率是指每单位体积单位时间内生产XD的速率。较高 的容积效率是指对于指定的总XD产率来说,可采用较小的因而较便 宜的设备。

间歇式反应器在化学工业中是熟知的。对于本领域熟练技术人 员来说,对反应参数如温度、压力、水蒸气的除去、浓度控制以及 添加和除去反应物和产物的控制是公知的技术。这些反应参数控制 的用途在文中别处已讨论。

本发明间歇式反应的一个特别有用的类型是进料间歇式反应器 的采用。在这种类型反应器中,根据本发明初加的制备的反应混合 物的允许使反应进行一段时间。在反应器中必须存在一些空间。 应当注意到,随着反应的进行和酯化反应的发生,XA特别是X1A和 X2A被消耗了。在这方面,由于XA的浓度降低了,可用于转化和生 产环酯的反应物XA混合物也减少了。因此如果对转化的XA加以补充, 在指定时间内XD的总产量会增加。因此,保持X1A和X2A浓度是初始 浓度水平的约70%也是本发明的一个方面,优选保持在初始浓度水 平的约80%,和再优选保持在初始浓度水平的约90%。有多种方法 可以使X1A和X2A保持在上述讨论的参数范围内。例如,可以向XD反 应器中引入另外的或补充的原料流。当反应进行到所需的程度时, 可将所有的反应混合物移出反应器并回收XD产物。在反应混合物中, 通过进料间歇式过程生产的XD产物比通过间歇式反应生产的XD的浓 度更高,因此提高了回收效率。如文中别处所述,对浓度的控制可 以提高选择性。而且,采用进料间歇式可以提高反应器的容积效率。

在化学工业中采用连续的过程在提高过程的效率方面也有许多 的优点,已经发现本发明的方法以连续过程进行是有优势的,已经 发现了进行本发明过程的特别好的反应器装置。

一个优势反应器装置就是采用两个或更多个顺序连续反应器, 包括但不限于顺序CSTR。另一反应器装置是活塞式流动反应器,其 中反应混合物在反应容器径程有最低的回流。这些反应器的实际设 计对本领域熟练技术人员是公知的。

本发明方法一方面可在含两个或更多个顺序连续的反应器的装 置中进行。合适装置的建立在下面实施例13.1中讨论。我们发现, 以这种方式进行反应比起在单一连续反应器中进行反应的反应产率 要高。特别,我们发现采用两个或更多个连续反应器时可以获得高 的容积效率,例如溶剂效率高于约10g/l/hr,优选高于约25g/l /hr,和再优选高于约35g/l/hr。

分段连续反应器装置的一方面是建立在下述认识的基础上的:即 随着XA原料流反应生成XD,反应第一步是由X1A分子生成X2A分子, 反应第二步是由X2A分子生成XD。在第一步,由于反应的分子间的 性质,相对较高的原料流浓度提高了X1A分子向X2A分子的转化率。 然而优选反应的第二步是由X2A生成XD的分子内反应。如上所述, 低的反应组分浓度有利于环化反应,而高浓度有利于高级低聚物的 生成。

因此,本发明的两步生产过程包括具有相对较高浓度X1A的原 料流以促进X2A分子的生成。随之,在X3A和高级低聚物大量生成之 前,原料流的浓度降低了,因而选择性环化X2A分子。更具体地说, 这方面内容包括提供XA的原料流,其中X1A占所有潜在的反应物类 别(所有的类别均以相当于X1A的当量表示)的比例是至少约80%, 优选是至少约90%,和更优选接近100%。然后,在酯化反应条件 下使原料流反应生成X2A。优选是使反应进行到使X2A占所有潜在反 应物类别的比例是至少约35%,更优选是至少约50%,和再优选至 少约75%。或者,使反应连续进行直到X3A或高级低聚物占所有潜 在反应物类别的比例接近约35%,更优选接近约25%,和再优选接 近约20%。在这一步中,中间体液流的浓度降低到可提高选择性的 反应组分浓度,这种降低可通过加入相同类型或不同类型的溶剂实 现。例如,可在水相中生成X2A,而在有机相中反应生成XD,或者 可采用两种不同的有机溶剂。典型的,浓度降低到在第二步体系中 X2A溶解度或低于这一溶解度的X2A浓度。然后使反应维持在酯化反 应条件下生成XD。

在进一步的分段反应器装置中,第一步有效除去进入的XA原料 流原始存在的大部分的水。随后将反应混合物转移到第二和任意后 序反应器中,在不存在大量水的情况下可生成环酯,否则会使环酯 生成反应反向移动。在第一反应容器中流出的原料流中的水的浓度 优选低于约12wt%,更优选低于约1wt%,和再优选低于约0.5 wt%。如上所述,分段连续反应装置可采用两个或更多个容器,以 及最优选采用两个或三个容器。

在上述讨论中,第一反应器的脱水功能可以采用多种类型的反 应器来完成,包括活塞流动式反应器如水提塔和CSTR,其中水提塔 是优选的。可以采用多种类型的水提塔,例如填充柱,采用高表面 面积和惰性的填充物质。或者装有孔板的柱,其中采用浮塔板或 泡罩。与CSTR相对照,在柱中很容易除去水,这时因柱子具有较好 的质量转移和热量转移特性。而且,柱子也比其它标准的活塞流动 式反应器更适合于除去水,从其它的反应容器中除去水是比较复杂 的。在初始存在于XA原料流中的水和XD生成过程中产生的水,在柱 子中从原料流中除去后,根据在柱中的停留时间,将反应混合物转 移到CSTR。包括柱子和两个CSTR的合适的反应容器装置在实施例 13.2中讨论。

在前面的部分,当水提塔作为第一反应器,随之采用CSTR时, 当从原料流中除去水并将产物加入CSTR时,如果水是完全提过的, 那么X1A可能有所损失,这是因为X1A与水生成了共沸物。已经发现 通过采用适当的反应溶剂,本发明很好地克服了这一限制。如果允 许溶剂蒸气进入水提塔并冷凝生成回流液体,则可控制水提塔使得 产生无水的反应混合物并防止X1A从塔中损失。采用任何沸点低于 X1A的生产溶剂都会在水提塔中获得这一优势。

本发明发现了另外的有利反应器装置。如上所述采用顺序反应 步骤可在产率、选择性和容积效率方面有优势。已发现可以通过采 用蒸馏塔形式的单一连续反应器获得所有这些优势。这样的塔称之 为反应蒸馏塔。

所用的反应蒸馏塔可具有本发明所需的各种特征。一方面,是 在接近塔的顶部将XA和生产溶剂一起进料。顶端阶段使原料流脱 水,并使X1A返回塔中。随着反应混合物从塔中流下到低段,使其 与进入塔中的溶剂蒸气流连续接触。在某一个适当的点上,将催化 剂引入无水反应混合物中,使反应混合物维持在适合X1A到X2A的转 化和随后生成XD的反应条件下。在多个点上可引入另外的含X1A的 原料流使得X1A浓度保持在所需的水平上。在适当的停留时间内, 反应混合物从塔的底部流出,并进入到XD的回收过程中。在柱中的停 留时间可通过适当设计上的考虑来加以控制。采用深度多道的泡罩 可保留大量的液体,因此可获得反应混合物的较长的停留时间而不 增加所需的溶剂的蒸出速率。可控制溶剂的蒸出速率以提供足够的 溶剂蒸气,使其携带从柱上除去水所需的热量。也可采用中间的或 接续的CSTR控制停留时间。例如可从塔的底部除去侧线馏分,进入 CSTR使其保留一段时间,然后在返回到塔的同样的部位或较低的部 位。或者,在反应混合物从塔的底部流出时可传导到CSTR并保留一 段时间以进行进一步的反应,之后将其送至XD的回收过程。

实施本发明时采用反应蒸馏过程具有很多的优点。蒸馏塔提供 了极好的质量和热量转移,并且发现可以增加除去水的速率和X1A 的转化率。在反应器全程除去水可能是在塔中进行,与系列CSTR相 对照,这提供了设计简单的活塞流动式反应器。这样的反应蒸馏柱 是真正连续的。可以中间进料的真正的活塞流动式反应器具有高的 容积效率。

环酯的回收和纯化

从上述的环酯生成过程得到了在溶剂和其它组分中XD的稀溶液。 本发明的目的之一是提供回收和纯化XD的方法,使其可以用作反应 原料,例如作为单体生产聚合物。回收或纯化的几种优选的方法如 下所述。这些方法的内在的优点在于它们在环酯生产过程是一个完整 的过程。根据本发明,处理含XD的反应混合物以回收和纯化XD。

本发明包括二种回收XD的方法。第一种,以某种方式进行环酯 生产工艺,该方式使反应混合物在回收工艺中能形成二种平衡的液 相,从而使XD和其它组分基本分离,此分离是独特的和新颖的技术。 第二种,环酯的生产工艺以某种方式进行,这种工艺能产生均相的 反应混合物,然后使该混合物经过后续的回收步骤。

本发明还包括二种纯化由回收步骤获得的XD的方法。纯化方法 的原料可由任一回收方法的任一实施方案中获得。在纯化XD的第一 种方法中,蒸馏是由其它组分中分离XD的主要机制。在第二种方法 中,结晶技术(熔融或溶剂结晶)作为主要的分离技术。出人意料 的是,我们可以把熔融结晶作为纯化XD的适当和优选的方法。进一 步的,在有XD低聚物和光学异构体存在时,此技术也能得到高纯XD 而没有降解作用。实际应用中是如下文所述将这些纯化方法结合使 用。

在一套优选的实施方案中,用液-液平衡分离完成回收操作使 其中主要含有环酯和溶剂的一相和主要含有X1A和X2A低聚物的第二 相进行相分离。此方法包括提供环酯生产混合物的回收溶剂,然后 用此溶剂使相分离成第一相包括环酯和回收溶剂,和第二相包括X1A 和X1A的低聚物。应注意的是第二相也可包括第二相溶剂和基本由 X1A组成。然后从第一相中回收环酯。环酯生产混合物可进一步包 括可溶性酯化催化剂,例如硫酸,优选将其分配至第二相中。用这 种方法很容易将催化剂与环酯分离。

提供环酯生产混合物的回收溶剂的步骤可用多种方法完成。例 如,环酯可在包括了反应溶剂的反应混合物中生成,而该反应溶剂 也适于用作回收溶剂。在此情况下使用混合溶剂,调节极性较大和 极性较小的溶剂的比例使之能达到最大的反应选择性,同时在反应 混合物冷却的情况下又能保持相分离。这种相分离使溶剂和环酯分 离成为一相,而X1A和低聚物成为另一相。另外,也可以在环酯生 产完成后在环酯生产混合物中混入回收溶剂以回收环酯。此实施方 案是回收XD的溶剂萃取方法。

本发明这一实施方案中的回收溶剂的特征在于环酯优先分配至 回收溶剂中。正如下文论及的,回收溶剂有相对来说较小的极性。 这样,XD类,如丙交酯比相应的X1A类如乳酸更容易溶于此溶剂。 在此方法中,就相分配而言,环酯主要分配在回收溶剂相。在室温 上下和一个大气压下,环酯在回收溶剂中的分离系数优选至少大约 为1,较优选至少大约为5,更为优选的为至少大约15。分离系数定 义为XD的分配系数除以要讨论的一类物质如X1A的分配系数的 比值。

在另一实施方案中,分离系数可通过改变使其出现相分离的温 度来控制。例如,对丙交酯/二甲苯体系,40℃时丙交酯和乳酸的 分离系数为35,而70℃时分离系数降至26。但是,在低温下,XnA 和XD类趋向于更多地分配至非溶剂相,所以本发明成功实践的关键 在于确定温度的最佳值。

具有上述回收溶剂功能参数的适宜特征的任何溶剂都适用于本 发明的方法。更具体的,适当的回收溶剂包括二甲苯、甲苯、苯、 MIBK和异丙醚,较优选的回收溶剂包括二甲苯和甲苯,更优选的是 二甲苯。

使环酯生产混合物相分离为第一、第二相的步骤典型的是冷却 混合物,同时停止任何或搅拌操作而简单地完成。此方法可用本领 域熟练技术人员已知的常规相分离设备分批进行或连续进行。

除了通过相分离使环酯和溶剂与X1A和X2A低聚物分离以外,另 一实施方案是可把富含X1A和X1A低聚物的第二相再进行一次溶剂萃 取步骤,进行这一溶剂萃取步骤以回收留在第二相中的环酯和溶剂。 例如把溶剂,具体地说是回收溶剂,以及第二相引入萃取单元以回 收第二相中的残留环酯和溶剂。由该萃取单元流出二份流出物,第 一份富含X1A和X2A低聚物,这份流出物可在环酯再生产中循环使用, 例如通过水解反应器水解低聚物返回成X1A单元。从萃取单元中流出 的第二份流出物是环酯和溶剂馏份。此流出物可循环加入到进入相 分离单元的液流,或者,另一种方案是将其与来自相分离单元的, 富含环酯和溶剂的第一相合并进入下一工艺步骤。

另一种用液-液平衡分离的环酯回收的实施方案包括用回流萃 取器完成液-液平衡分离而不是用相分离器。在此方法中,把环酯 生产混合物送入回流的萃取体系的中间点。该萃取器另外还有加入 的回收溶剂,该溶剂优选是环酯生产混合物中的溶剂,以及还有来 自后续环酯纯化步骤的含X1A和X1A低聚物的回流物。此回流物典型 地包括有结晶环酯离心后的浓溶液(Centrate)。在萃取单元内,环 酯生产混合物中的环酯被分配到溶剂相,而X1A和X1A的低聚物分配 至溶剂以外。然后,可把含X1A和X1A低聚物的流出物再循环回用至 环酯生产工艺,例如,使其通过一水解反应器将低聚物水解成X1A 单元。把含环酯和溶剂相的流出物导入下一工艺步骤。

如下文所述,本发明环酯回收工艺的另一实施方案包括把由环 酯生产操作得到的环酯生产混合物直接进行环酯回收,而不先进行 液-液平衡分离。在此方法中,把均相反应混合物直接进行进一步 的XD回收和纯化操作。此方法特别适用于在较大极性溶剂中生产环 酯的操作。例如,如果环酯生产混合物中含有苯甲醚作溶剂,不会 形成分离的X1A相。

具体地说,将由液-液平衡分离得到的富环酯和溶剂相或均相 反应混合物再进行环酯回收。使液流首先经过一蒸发单元蒸去溶剂。 典型地是蒸出足够的溶剂,使留下的环酯含有约1%~80%重量的 溶剂,优选约5%~50%重量溶剂,更优选约15%~30%重量的溶 剂。除去的溶剂可回用至整个工艺的其他阶段,包括环酯制备前回 收X1A或直接返回环酯制备操作。这些溶剂也可以在后续回收 或纯化操作中使用,例如溶剂结晶。从蒸发单元出来后,在其他环 酯回收或纯化操作前,含环酯物流可被冷却。

进一步的对回收XD物流的纯化可采用蒸馏、溶剂结晶和熔融 结晶。可能需要这些方法的一种或多种结合以经济地制备高纯XD 产品。另外,安排这些方法的合适顺序有可能连续制备含不同比例 的XD光学异构体的两种或更多高纯XD产品。这种结果是特别有 用的,因为可和两种XD产物以控制以XD为基的聚合物骨架上的 最佳光学异构体含量。而聚合物骨架上光学异构体含量对一些以XD 为基的聚合物的物理和降解性能有很大影响,所以需要这种控制。

蒸馏工艺第一步是由环酯生产混合物中选择性地蒸出X1A和溶 剂从而形成环酯和X1A低聚物的混合物,然后处理此混合物以从其 中选择性的蒸出环酯,然后回收蒸发的环酯。例如,将前述回收步 骤得到的物料直接送入蒸馏柱,由环酯生产混合物可在此柱上选择 地蒸出X1A和溶剂,这样,X1A和溶剂由蒸馏柱顶蒸出而同时环酯和 较高分子量的X1A低聚物由柱底流出。用此工艺由混合物中得到的 X1A和溶剂可是循环回用至整个工艺的早期阶段中。例如X1A可回用 于环酯生产,溶剂可回用于X1A回收操作、环酯生产操作或用于后 续的溶剂萃取步骤。

然后第一蒸馏步骤的底流进入第二步骤。蒸馏柱需在能使环酯 由环酯和X1A低聚物的混合物中选择地蒸出的条件下进行操作。这 样,由此蒸馏柱出来的底流主要含有X1A低聚物,它可循环回用于 后续的工艺再水解生成X1A单元。另外,也可把此底流物料送回至 XD回收的液-液平衡分离操作中去以回收残留的XD。然后由第二蒸 馏单元塔顶流出的环酯可接着用其它方法纯化,例如用结晶纯化。 最后结晶的精加工步骤是否需要取决于二点:蒸馏步骤的效率和XD 产品必须满足的纯度要求。例如,如果不用结晶的精加工步骤,又 要求聚合级的XD,则要满足XD产品的质量要求就要求蒸馏条件能达 到很高的回流比,但是,如果加入结晶步骤就会在满足单体级XD的 纯度要求的同时大大降低对蒸馏的回流比的要求。

应该提及的是在此工艺中蒸发步骤可在能得到所需回收率的真 空条件下进行。而且,当X1A是L1A和XD是LD的有更高分子量的种类 时,在实际操作中蒸发X1A和XD所需真空度更高此工艺可更容易进 行。

环酯回收操作也可包括环酯结晶,然后使其与非结晶物料分离。 在一附加环酯纯化操作的实施方案中,环酯用溶剂结晶回收。在溶 剂结晶中所使用溶剂会在结晶工艺过程中显示出多种作用。使用溶 剂时可比无溶剂存在时在更低的温度下进行结晶。此外,溶剂的存 在可减小体系的粘度从而使物料的加工和送更容易。再者,由于 溶剂的存在提供了包含结晶时的不纯物如X1A和X1A低聚物的介质,因 而可达到更纯化的结晶的过程。因此,在后续的结晶混合物的结晶 分离中,诸如X1A和X1A低聚物的不纯物可以很容易地从液体物流中 分离出来而不粘附于晶体上。

在溶剂结晶中,把含有环酯和溶剂的给料物流引入结晶系统 (loop)。在此工艺中可使用常规的结晶设备。含环酯和溶剂的料 液通过一结晶器导入,其功能是使料液去热以引起结晶。例如,使 用刮板式表面热交换器,其中结晶室由含有冷却流体套管冷却, 结晶室中有把在结晶室壁上形成的结晶移出的刮板。料液从结晶器 到生长桶循环,此桶作为增加和控制物料在结晶体系中的停留时间 的容器。在体系中所需停留时间在能达到适当晶体大小的条件下要 尽可能地短。典型的停留时间是由约1/12至约6小时,较优选由约 1/6至约3小时,更为优选的是由1/4小时左右至大约1小时。生长桶 中还可以对桶中物料进行搅拌以达到生长桶中物料的均匀混合。然 后由生长桶出来的物料再回到结晶单元中。

由该体系和生长桶流出的侧流包括有结晶的环酯、溶剂、未结 晶环酯以及含有X1A和X1A低聚物的不纯物。然后处理上述侧流由该 液流中移出固体结晶。结晶环酯的移出可用本领域熟练技术人员已 知的任何常规技术完成,这些技术包括离心、过滤或用旋分离器。 结晶的离心是优选的。在移出环酯晶体时产生环酯结晶饼和一液流。 此结晶饼构成最终产品,或如在下文讨论的再进一步用附加的纯化 步骤加工。由离心或环酯晶体的浓溶液(Centrate)得到的液流可进 一步处理从液流中再回收环酯。另外,也可以处理该液流回收利用 其中存在的X1A和X1A低聚物。

在进行一次结晶后,环酯的纯度以无溶剂为基准计算具体地说 至少为80%(重量)左右,较优选为至少85%左右,更优选为至少 90%左右。典型的不纯物是X1A、X1A低聚物和溶剂。

对由第一次结晶步骤回收的环酯结晶可再进行一次结晶以得到 更纯的晶体。后一次结晶可以是溶剂结晶或熔融结晶。在第二次结 以后,以无溶剂为基准计环酯的纯度具体地说至少为95%(重量) 左右,较优选至少为97%左右,更优选至少为98%左右。在第三次 结晶以后,以无溶剂为基准计环酯的纯度通常超过99%(重量)。 如果第二、第三次结晶是用溶剂结晶方法,例如,把由离心回 收得到的环酯滤饼在搅拌和/或温和的加热帮助下溶于溶剂,然后 将溶解的环酯如上文所述再经过溶剂结晶系统。

本发明另一新颖的方面是用熔融结晶回收环酯。在此工艺中, 使环酯结晶达到足以使环酯滤饼熔融的温度,然后把熔解的材料送 入如上文所述的结晶系统。应该特别提到的,相对于溶剂结晶工艺 而言熔融结晶有一些特殊的优点。例如,由于没有溶剂,要得到同 样的产量,要加工的材料的体积大大减小,所需设备更小;另外, 不必加工溶剂和由系统中去除溶剂,对熔融结晶来说整个的能量消 耗也较低;此外,已经发现,熔融结晶可得到较大的晶体。一般地 说较大的晶体比较小的晶体纯度更高,这是由于体积与表面比值较 高,从而减小了可粘附不纯物的表面面积。

熔融结晶在结晶体系中的停留时间典型地是较溶剂结晶更长, 例如,典型的停留时间是大约1/12至大约6小时,较优选的是大约1 /4至大约4小时,更优选的是大约1/2至2小时。熔融结晶的温度典 型地是保持至物料的熔融温度和比物料的熔融温度低20℃的范围之 内。适宜的操作温度取决于在给定的操作温度下浆液中的固体量。 虽然可以在浆液的固体负载量低到1%重量百分数和高达60%时进 行加工,但是典型地是固体负载量为20%-30%左右时加工设备 (泵、刮板式表面热交换器、离心机等)运行的最好。

如上文关于溶剂结晶所讨论的,由结晶系统中将侧流移出并导 入一分离环酯结晶和不纯物与非结晶环酯的单元。所述不纯物和非 结晶环酯可循环用于其它工艺,例如作为第一结晶单元的进料。

本发明的另一实施方案是从包括有一种以上异构体的环酯、X1A 和X1A低聚物的环酯生产混合物中回收环酯。此方法包括选择地使 异构体中的一种作为环酯结晶出来并回收该异构体,此方法在此之 后还包括使第二种异构体结晶并回收。此种回收方法适合于X1A是 一个手性分子,因此有多种异构体形式的情况。例如,乳酸是一种 手性的X1A类,乳酸有二种光学异构,L-乳酸和D-乳酸。其结果 是丙交酯可以是L-LD(由二个L-乳酸分子形成的丙交酯分子)、 D-LD(由二个D-乳酸分子形成的丙交酯分子)、meso(内消旋)-LD (一个L-乳酸分子和一个D-乳酸分子形成的内交酯分子),或者是 D,L-LD(由一个L-LD分子和一个D-LD分子组成的分子间连接的 化合物类别)。不同类别的丙交酯有不同的熔点,meso-LD熔点最 低,为52.8℃,异构体纯的D-LD和L-LD二者的熔点为98.7℃,纯 的D,L-LD熔点最高,为128℃。

例如,有比其它类别异构体有较高熔点的给定XD分子的一类 异构体在熔融结晶过程中可以被选择性的结晶出来。使整个环酯混 合物熔融,在高于较低熔点的环酯类别的温度下使较高熔点的一类 环酯结晶,这样就把较高熔点的类别选择性结晶出来。接着,回收 晶体,例如用离心方法回收,在得到的浓溶液中含有较低熔点的异 构体类别加上残存的较高熔点的异构体类别。由此结晶工艺得到的 滤饼可以作为两种XD中的一种而用作XD聚合步骤的原料。XD聚合步 骤的另一种原料可以从熔融结晶后的浓液进行熔剂结晶获得。当结 晶溶剂是用低异构体选择性溶剂,例如甲苯时,由溶剂结晶阶段生 产的XD和由熔融结晶生产的XD其异构体含量有很大的不同。应当注 意的是,正如上文所论及的,选择性结晶不会达到100%的选择性。 因此,在上文讨论的实施例中,第一结晶组分会含有残留量的较低 熔点类别;同样,第二结晶组分中也会含有显著数量的较高熔点类 别。但是,可以用简单的混合操作调节光学异构体的实际比例,只 要是聚合物骨架上所需光学异构体的比例是在二类XD产品的含量之 间即可。这一点至关重要,因为这样才可以控制XD为基的聚合物上 的光学异构体含量,而此含量又控制着许多以XD为基聚合物的物理 和降解性能。

下面的实施例说明如何实施本发明,但不构成任何限制。

                    实施例 实施例1

此实施例通过对苯甲醚、二甲苯、苯乙醚、4-甲基苯甲醚和1, 3-二甲基苯溶剂进行比较,测定了用本发明的方法由乳酸生产 丙交酯时溶剂的极性对其产率、转化率和选择性的影响。

在装有迪安-斯达克(Dean-Stark)分水器、冷凝管、温度计 和进样阀隔片的500ml圆底三口瓶中加入190ml溶剂并加热回流, 在此加热的溶液中加入10ml 88%乳酸水溶液和相对于XA原料重量 比0.2%的硫酸,加热回流反应混合物6小时。在220分钟后,取出 0.1ml样品用HPLC分析丙交酯含量,结果如表1所示和如图1说明。

                   表1

        溶剂的极性对丙交酯生产的影响

溶剂          选择性    转化率    产率 苯甲醚             .77       .35      .27 二甲苯             .40       .89      .36 苯乙醚             .82       .42      .35 4-甲基苯甲醚       .73       .69      .50 1,3-二甲氧基苯    .45       .95      .45

上述结果表明极性较大的溶剂比极性较小的溶剂选择性更高; 二取代的芳族溶剂的转化率最高;4-甲基苯甲醚的产率最高。 实施例2

本实施例测定了按本发明在苯甲醚中由乳酸制备丙交酯时不同 硫酸催化剂浓度的影响,以评价催化剂浓度对产率、转化率和选择 性的影响。

在装有迪安-斯达克分水器、冷凝管、温度计的进样阀隔片的 500ml圆底三颈瓶中加入190ml溶剂并加热回流,在加热的溶液中 加入10ml 88%乳酸水溶液和不加催化剂,或加入相对于XA原料的 重量比为0.2%,0.8%,2.0%或10%的硫酸,将反应混合物加热 回流6小时。在290分钟后,取出0.1ml样品,用HPLC分析丙交酯含 量。结果列于下表2,并如图2说明。

                     表2

     催化剂浓度对在苯甲醚中生产丙交酯的影响 硫酸浓度       选择性         转化率         产率 (wt%)  0               NA             NA           .24  0.2             .72            .49          .35  0.8             .73            .74          .54  2.0             .73            .67          .49 10.0             .86            .64          .55

上述结果表明在使用相对极性高的溶剂,如苯甲醚,其转化率、 选择性和产率随催化剂的增加有增高的趋势,但在高浓度,0.80% 和0.8%以上的情况下,产率趋于稳定;在最高的催化剂浓度10% 的情况下,选择性略有提高。 实施例3

本实施例测定了按本发明在二甲苯中由乳酸制备丙交酯时不同 硫酸催化剂浓度的影响,以评价催化剂浓度对产率、转化率和选择 性的影响。

在装有迪安-斯达克分水器、冷凝管、温度计和进样阀隔片的 500ml圆底三口瓶中加入190ml二甲苯并加热回流。在加热的溶液 中加入10ml 88%乳酸水溶液和不加催化剂,或者加入相对于XA原 料的重量比为0.1%、0.2%、0.4%或0.8%的硫酸,回流加热反应 混合物6小时。在96分钟时取出0.1ml样品用HPLC分析丙交酯含量。 结果列于下表3和如图3说明。

                      表3

      催化剂浓度对在二甲苯中生产丙交酯的影响 硫酸浓度            选择性        转化率        产率 (wt%)   0.1                .49           .73          .35   0.2                .42           .87          .36   0.4                .40           .82          .33   0.8                .30           .90          .27

此实施例的结果表明在二甲苯中提高催化剂浓度可得到高转化 率;而且在催化剂限度为0.2%时总产率达到最大值。 实施例4

此实施例是以二甲苯为溶剂由乳酸生产丙交酯时使用高浓度催 化剂以及其对转化率、选择性和产率的影响。

在装有迪安-斯达克分水器、冷凝管、温度计和进样阀隔片的 500ml圆底三口瓶中加入190ml二甲苯并加热回流,在加热的溶液 中加入10ml 88%乳酸水溶液和占XA进料重量比1.2%的硫酸,反 应混合物加热回流2.5小时。实验结果在图4中说明。

此实施例说明在极性较低的溶剂如二甲苯中,1.2%硫酸的高 浓度催化剂条件下产率明显降低。此发现与实施例2中用极性较大 的溶剂如苯甲醚作溶剂,在高达10%的高催化剂浓度下得到的高产 率恰恰相反。 实施例5

此实施例考察了在苯甲醚中用由乳酸生产丙交酯时五种不同催 化剂对产率、选择性和转化率的影响。

在装有迪安-斯达克分水器、冷凝管、温度计和进样阀隔片的 500ml圆底三颈瓶中加入190ml溶剂并加热回流,在加热的溶液中 加入10ml 88%乳酸水溶液和催化剂,催化剂浓度见表5。将反应 混合物加热回流6小时。在315分钟后,取0.1ml样品用HPLC分析丙 交酯含量。结果列于表5并用图5说明。

                       表5

不同催化剂浓度对在苯甲醚中生产丙交酯于315分钟时的影响 催化剂        wt%       选择性        转化率       产率 硫酸          0.8          .75          .65         .49 甲苯磺酸      1.1          .72          .78         .56 Dowex         55.0         .86          .88         .50 溴化锡        14.0         NA*         NA*        .33 无催化剂      -            NA*         NA*        .25 *未测

此实施例的结果表明,对于转化率和产率而言甲苯磺酸是最有 效的催化剂。但是Dowex的选择性最好。 实施例6

此实施例考察了八种不同的催化剂对在苯甲醚中由乳酸生产丙 交酯的产率的影响。

在装有迪安-斯达克分水器、冷凝管、温度计和进样阀隔片的 三口圆底烧瓶中加入190ml溶剂并加热回流,在加热的溶液中加入 10ml 88%乳酸水溶液和各种催化剂。将反应混合物回流加热6小 时。在300分钟后,取出0.1ml样品并用HPLC分析丙交酯含量。结 果如下表6说明。

                      表6 不同催化剂对在苯甲醚中生产丙交酯于300分钟时的产率的影响

     催化剂                     产率

     硫酸(.2%)                 .35

     硫酸(.8%)                 .49

     硫酸(2%)                  .50

     硫酸(10%)                 .54

     甲苯磺酸(1.1%)            .55

     溴化锡(14%)               .33

     Dowex(55%)                .48

此实施例的结果说明用1.1%的甲苯磺酸和10%的硫酸时达到 最高产率,在用0.8%和2%硫酸以及Dowex时也达到高产率。 实施例7

此实施例说明了在苯甲醚中乳酸原料以相对较稀的溶液在高催 化剂浓度下丙交酯的生产状况。

在装有迪安-斯达克分水器、冷凝管、温度计、进样阀隔片的 500ml三口圆底瓶中加入190ml苯甲醚并加热回流,在加热的溶液 中加入5ml 88%乳酸水溶液和以XA原料重量比计为10%的硫酸, 将反应混合物加热回流6小时。在7小时后取样0.1ml并用HPLC分析, 试验结果见图6。

试验结果表明可以得到极高的产率。用高极性溶剂和低原料液 浓度可得到高选择性,用高催化剂浓度得到高转化率,在404分钟 时产率为81%。 实施例8

此实施例评价了溶剂的温度对用本发明的方法用乳酸生产丙交 酯的影响。

在装有迪安-斯达克分水器、冷凝器、温度计和进样阀隔片的 500ml三口圆底烧瓶中装入190ml二甲苯并加热回流,在加热的溶 液中加入10ml 88%乳酸水溶液和以XA进料的重量比计为0.2%的 硫酸,加热回流反应混合物6小时。

此试验的结果列于表8和用图7说明。

                        表8

        温度对在二甲苯中生产丙交酯的影响 温度(℃)          选择性            转化率         产率   110              .26               .15           .04   120              .30               .44           .13   133              .41               .88           .36

此实施例的结果表明较高的温度有利于丙交酯的生产。据信此 结果部分是因为在较高的温度下乳酸更易溶解,和在较高温度下反 应速率加快。 实施例9

此实施例考察了在二甲苯中间歇进料反应过程的丙交酯生产状 况。

在装有迪安-斯达克分水器、冷凝器、温度计和进样阀隔片的 500ml三口圆底烧瓶中装入190ml二甲苯并加热回流,在此加热的 溶液中于400分钟内分成九个5ml的增量分批加入45ml 88%乳酸 水溶液和XA进料量0.2%的硫酸的混合物,以25分钟的间隔取样0.1 ml并用HPLC分析丙交酯含量,结果如图8所示。

图8说明丙交酯的生成量呈线性增长,最高达30,000mg/L。此 实施例的结果说明间歇式进样生产丙交酯是切实可行的。操作中, 丙交酯生产操作要求在低于这个最大值的浓度时从反应容器中回收 丙交酯以确保连续生产丙交酯。 实施例10

此实施例考察了在苯甲醚中间歇进料反应过程的丙交酯生产状 况。

在装有迪安-斯达克分水器、冷凝器、温度计和进样阀隔片的 500ml三口圆底烧瓶中装入190ml苯甲醚并加热回流,在此加热的 溶液中于400分钟内分成九个5ml的增量分批加入45ml 88%乳酸 水溶液和XA进料量0.2%的硫酸的混合物,以25分钟的间隔取样0.1 ml并用HPLC分析丙交酯含量,结果如图9所示。

图9说明使用苯甲醚时丙交酯的生成量呈线性增长,最高达 50,000mg/L后呈水平。此实施例的结果说明间歇式进样生产丙交 酯是切实可行的。操作中,丙交酯生产操作要求在低于这个最大值 的浓度时从反应容器中回收丙交酯以确保连续生产丙交酯。 实施例11

此实施例考察了在由乳酸生产丙交酯时极性和非溶剂的混合溶 剂的应用以及它们对产率、转化率和选择性的影响。

在装有迪安-斯达克分水器、冷凝器、温度计和进样阀隔片的 500ml三口圆底烧瓶中装入190ml混合溶剂,该混合溶剂是在二甲 苯中含有10、20或30%体积比的苯甲醚,将该混合溶剂加热至回流 温度,在回流的溶液中加入10ml 88%乳酸水溶液和0.2%的硫酸 并继续加热375分钟。每40分钟取样0.1ml,用HPLC分析丙交酯含 量。三种混合物的转化率、选择性和产率的比较结果分别见图10、 11和12。

图10说明混合溶剂介质中二甲苯浓度较高时乳酸生成丙交酯的 百分转化率增加,虽然三种混合溶剂都得到相对来说较高的产率。 图11说明丙交酯生成的选择性随混合溶剂体系中苯甲醚浓度的增加 而提高。图12表明在此反应条件下三种混合溶剂的产率几乎是等同 的。 实施例12

此实施例考察了九种环酯生产溶剂与12种催化剂的各种结合以 及它们用于生产丙交酯时的转化率、选择性和产率。选择溶剂在宽 的沸点、共沸浓度和离子强度范围内。考察了四类溶剂:醚、酮、 芳族化合物和烷烃。选择催化剂以研究丙交酯的产率和选择性的不 同催化机理。这些包括均相的酸催化剂、无机(mineral)表面催化 剂、金属催化剂、胺碱催化剂和template(样板)催化剂。溶剂和 催化剂列于表12.1和12.2。

      表12.1 溶剂                命名 异丙醚                A 2-戊酮                B 甲苯                  C 辛烷                  D 二甲苯                E 丁醚                  F 苯甲醚                G 2-辛酮                H 二甲亚砜              I

              表12.2

催化剂                命名        量

Dowex50                1          0.025g

Nafion NR50            2          0.1625g

氧化铝,Brockmann I    3          0.1g

Zn粉                   5          0.0026g

Sn粉                   6          0.0047g

LiBr                   7          0.0204g

MgSO2                 8          0.0282g

SnBr2                 9          0.0653g

H2SO4               10         0.18mol%

对甲苯磺酸             11         0.18mol%

              表12.2(续)

催化剂                        命名             量

吡啶                           12              7.5vol%

磷酸                           13              0.18mol%

无催化剂                       14              ...

在40ml玻璃样品管形瓶中装入催化剂、9.5ml溶剂和0.5ml 88%乳酸,催化剂量和溶剂如表12.1和12.2所列。把一12英寸× 1.5英寸直径的玻璃管封入管形瓶。将定量滤纸折成锥形装在管形 瓶顶端并装入大约2g硫酸镁。将管形瓶和内容物在油浴中加热至 略高于溶剂的沸腾温度。在试验期间,管瓶用溶剂加至顶部(top off)以保持恒定体积。每个试验包括一种溶剂、所有的催化剂和在 在1小时和4小时时取样。每次取样时,在把设备由热油浴中取出时 要尽快地从管瓶中直接取出大约0.5ml,用高效液体色谱分析样品 中的乳酸、丙交酯和最多6个乳酸重复单元的低聚物。

图13和14表明了每种溶剂/催化剂结合在4小时和1小时时的转 化率。苯甲醚作溶剂和用SnBr2和Nafion作催化剂的结合是最好的 结合,运行4小时时转化率差不多为39%,1小时为26%。此外H2SO4、 Dowex、Nafion和SnBr2都是成功的催化剂。作为溶剂,苯甲醚、甲 苯和二甲苯的使用情况良好。一般来说,一种以上溶剂的一组溶剂 (醚、酮和芳族)在试验中,有较高沸点的溶剂得到较高的转化率。

图15的结果表明苯甲醚和甲苯的选择性最高,二甲苯和丁醚也 有高选择性。

对甲苯磺酸好象是最有选择性的催化剂,MgSO4、SnBr2和H2SO4也有高选择性。 实施例13

下面的实施例考察了用各种反应组合的环酯生产率和效率。各 种反应组合如下文所述试验13.1-13.6。表13给出了各种工艺参数 和结果。在下面的实施例中,催化的乳酸是指在88%的乳酸中加入 了乳酸进料重量0.1%的硫酸。

试验13.1:四级CSTR

四个500ml三口圆底烧瓶,装备有回流冷凝管,迪安-斯达克 分水器,采样部分通过管子连接于柱上,每个烧瓶中装入180g二 甲苯和20g催化的乳酸。将烧瓶加热回流1小时,在此温度下把二 甲苯和催化的乳酸以360g/h二甲苯和40g/h催化的乳酸的加料速 度加至第一个烧瓶,由第一烧瓶出来的反应介质被引入相邻的烧瓶, 以此类推,直到把含有丙交酯的溶液从第四烧瓶中移出,移出速度 与向第一烧瓶加入二甲苯和乳酸的速度相同。

试验13.2:1英尺柱和二级CSTR

给一500ml三口圆底烧瓶装上填充有5mm腊希圈的1英尺柱, 该填充柱装有迪安-斯达克分水器、回流冷凝管和加热套。通过加 热的柱顶加入40g/h催化的乳酸,得到的无水乳酸从柱中成阶梯式 地流入300ml回流的二甲苯中。二甲苯加入反应容器的速度为440 g/h,同时以相同的速度移出含有产品的溶液,这样就能使第一烧 瓶中的反应体积维持在300ml左右。把来自第一个三口瓶的溶液加 料至第二个1000ml圆底烧瓶,该瓶中装有700ml正回流的二甲苯 并配备有回流冷凝管和迪安-斯达克分水器。将含有产物的溶液以 使反应瓶体积维持常量的速度从第二瓶中移出。第一瓶中装入20 g催化的乳酸,第二瓶中装入60g催化的乳酸。

试验13.3:4英尺填充柱和一级CSTR

在500ml三口圆底烧瓶上装上填有5mm腊希圈的4英尺填充柱, 该填充柱装有迪安-斯达克分水器、回流冷凝管和加热套。烧瓶中 装入25g催化的乳酸。通过加热的塔顶以25g/h的速度加入催化的 乳酸,得到的无水乳酸从柱中成阶梯式流入300ml正回流的二甲苯 中。二甲苯加入反应容器的速度为230g/h,同时以相同的速度移 出含有产物的溶液以使反应体积保持在300ml左右。

试验13.4:2英尺填充柱和一级CSTR

在1000ml三口圆底烧瓶上装上填有5mm腊希圈的2英尺填充柱, 该填充柱装有迪安-斯达克分水器、回流冷凝管和加热套。烧瓶中 装入25g催化的乳酸。通过加热的塔顶以25g/h的速度加入催化的 乳酸,得到的无水乳酸从柱中成阶梯式流入500ml正回流的二甲苯 中。二甲苯加入反应容器的速度为460g/h,同时以相同的速度移 出含有产物的溶液以使反应体积保持在500ml左右。

试验13.5:孔板柱和一级CSTR

给1000ml三颈圆底烧瓶配备40英寸×3英寸外径的真空套层孔 板柱,配备装于此柱顶端的2英寸×18英寸绝热套层柱,其中填有5 mm腊希圈,还配备有回流冷凝器、迪安-斯达克分水器,并装入了 800ml二甲苯。在加乳酸溶液平衡该柱之前将该体系回流1小时。 为了使孔板柱的塔板上能保持液层,最小的回流量必须为约1400g /h二甲苯。烧瓶中装入80g催化的乳酸。通过加热的柱顶加入80g /h催化的乳酸,得到的无水乳酸阶梯式流入进入孔板柱的蒸发的/ 回流的二甲苯中。二甲苯加入反应容器的速度为400g/h,同时以 相同的速度移去含有产物的溶液,这样才能使反应体积保持在1000 ml左右。

试验13.6:孔板柱和一级CSTR

给2000ml三颈圆底烧瓶配备40英寸×3英寸外径的真空套层孔 板柱,配备装于此柱顶端的2英寸×18英寸绝热套层柱,其中填有5 mm腊希圈,还配备有回流冷凝器、迪安-斯达克分水器,并装入了 1000ml二甲苯。在加乳酸溶液平衡该柱之前将该体系回流1小时。 为了使孔板柱的塔板上能保持液层,最小的回流量必须为约1400g /h二甲苯。烧瓶中装入180g催化的乳酸。通过加热的柱顶加入180 g/h催化的乳酸,得到的无水乳酸阶梯式流入进入孔板柱中蒸发的/ 回流的二甲苯中。二甲苯加入反应容器的速度为820g/h,同时以相 同的速度移去含有产物的溶液,这样才能使反应体积保持在1150 ml左右。

                  表13 试验    级/柱        L1A 柱停留时    总停留

               浓度(%)    间(min.)    时间(h) 13.1    4/无柱       7.7         ...         1.9 13.2    2/1英尺柱    7.7         3           1.9 13.3    1/4英尺柱    8.8         10          1.0 13.4    1/2英尺柱    4.1         5           1.1 13.5    孔板柱       16.6        15          1.7 13.6    孔板柱       14.1        15          1.0

                  表13(续) 试验    L1A-      LD-       LD-    溶剂      效率

   转化率    选择性     产率            (g/l/hr.) 13.1    0.84      0.45      0.37    二甲苯    13.4 13.2    0.85      0.45      0.39    二甲苯    13.9 13.3    0.82      0.46      0.38    二甲苯    27.3 13.4    0.72      0.55      0.40    二甲苯    13.0 13.5    0.82      0.47      0.39    二甲苯    38.1 13.6    0.82      0.40      0.33    二甲苯    48

效率=系统中L1A浓度×产率/停留时间

上述结果表明用多级反应器组合可达到高产率和高效率。特别 是在高的柱停留时间时效率可大大提高。与CSTR相比,由于提高了 柱中能达到的质量和热量交换,蒸馏柱增加了整个反应速率。提高 质量和热量交换使液相中的水含量保持低水平,从而使反应能更完 全的酯化,并使反方向的竞争反应最少。 实施例14

此实施例说明了α-羟基异丁酸的环二酯的制备。

在200ml其重量比为10%苯甲醚和90%二甲苯的有机溶剂中溶 解可从商业购得的α-羟基异丁酸原料。得到的混合物中有大约5% 重量比的α-羟基异丁酸原料,其余是溶剂。混合物中加入相对于 α-羟基异丁酸重量比为约0.2%至约2.0%的硫酸。混合物加热沸 腾,回流蒸气,同时在迪安-斯达克分水器中由蒸气中收集水。回 流几小时后由混合物中取样进行高效液相色谱分析(HPLC),带有质 谱检测器的HPLC分析指出在样品中存在有α-羟基异丁酸的环二酯。 实施例15

本实施例说明了α-羟基异戊酸的环二酯的制备。

把在200ml二甲苯中溶解有大约重量比为5%的商业上购得的 α-羟基异戊酸的混合物按实施例1的方法制备,混合物中加入少 量硫酸(相对于α-羟基异戊酸重量百分数为约0.2%至约2%)。 混合物加热至沸,蒸气回流,而蒸气中的水如实施例14那样收集在 迪安-斯达克分水器中。回流数小时后采样,用带有质谱检测器的 HPLC分析证明存在着α-羟基异戊酸的环二酯。 实施例16-18

按实施例15的方法在二甲苯中制备α-羟基己酸、α-羟基异 己酸和α-羟基辛酸的环二酯。每个试验中各自用商业上可购得的 α-羟基羧酸作为原料,样品用带质谱的HPLC分析证明制得了环二 酯。 实施例19

此实施例说明了α-羟基辛酸的环二酯的制备和纯化。

在一个配备有加热炉、pot温度计、磁力搅拌器、迪安- 斯达克分水器、回流冷凝管和橡胶隔片的三口圆底烧瓶中加入大约 5g α-羟基辛酸、95ml甲苯和0.22g Dowex-50TM催化剂 (由Dow Chemical购得)。加热回流混合物(约116℃),48小时内 按不同的时间间隔取出多份样品,将其用重氮甲烷衍生,GC/MS分 析表明在回流1、29和48小时时取得样品中有α-羟基辛酸的环二酯。

试验结束时将反应混合物中留有的环二酯由原料α-羟基辛酸 中分离出来,分离是用离子交换树脂(AmberlystTM A-21,由Rohm & Haas购得),把大约200-300ml离子交换树脂放于1英寸内径的 色谱柱。配制1∶1甲苯/丙酮溶液(体积比),用它处理离子交换树 脂直至洗出液呈中性。然后把反应混合物样品用丙酮按1∶1(体积 比)稀释,使稀释后的反应混合物通过树脂并回收洗脱液。分析洗 脱液指出其主要组成是α-羟基辛酸的环二酯。以洗脱液中环酯的 量为基础计算,分离出的环酯的产量大约是15%。 实施例20

此实施例说明用(1,3,5-三甲基苯)作溶剂时α-羟基辛酸 环酯的制备。用α-羟基辛酸在中的浓度分别为20%、10%和 5%(重量/体积)进行三个试验。按实施例19的方法使反应混合物 加热回流5.5小时。在每个反应过程中定期取出多份样品进行衍生 并用气相色谱分析。20%溶液得到的环酯产量最高,在回流2.5至 3.5小时时产率峰值在大约25%和30%之间。回流约3.5小时时10% 溶液的峰值在大约25%。5%溶液在5.5小时后产率达到大约15%。

对本发明的各种实施方案已经进行了详细的描述,很显然,本 领域的熟练技术人员可以对这些实施方案进行改进和修改。但是, 可以理解的是,这些改进和修改都在下述权利要求书提出的本发明 范围之内。

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈