首页 / 专利库 / 排气系统和排放控制 / NOx储存催化剂 / 使设有贫NOX阱和选择性催化还原催化剂的废气净化系统的贫NOX阱再生的方法及废气净化系统

使设有贫NOX阱和选择性催化还原催化剂的废气净化系统的贫NOX阱再生的方法及废气净化系统

阅读:747发布:2020-05-08

专利汇可以提供使设有贫NOX阱和选择性催化还原催化剂的废气净化系统的贫NOX阱再生的方法及废气净化系统专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种用于使具有LNT和 选择性催化还原 (SCR)催化剂的废气 净化 系统的贫NOX阱(LNT)再生的方法,其包括以下步骤:确定是否满足LNT的再生释放条件;确定是否满足LNT的再生需求条件;以及如果满足LNT的再生释放条件和LNT的再生需求条件,实施LNT的再生,其中基于LNT中吸收的NOX量、SCR催化剂中储存的NH3量和SCR催化剂上游的 温度 来确定LNT的再生释放条件的满足。,下面是使设有贫NOX阱和选择性催化还原催化剂的废气净化系统的贫NOX阱再生的方法及废气净化系统专利的具体信息内容。

1.一种用于使具有贫NOX阱和选择性催化还原催化剂的废气净化系统的贫NOX阱再生的方法,其包括以下步骤:
确定是否满足所述贫NOX阱的再生释放条件;
确定是否满足所述贫NOX阱的再生需求条件;以及
当满足所述贫NOX阱的再生释放条件和所述贫NOX阱的再生需求条件时,实施所述贫NOX阱的再生,
其中基于所述贫NOX阱中吸收的NOX量、所述选择性催化还原催化剂中储存的NH3量、以及所述选择性催化还原催化剂上游的温度来确定所述贫NOX阱的再生释放条件的满足,其中当所述贫NOX阱中吸收的NOX量大于或等于阈值NOX量,并且基于基础因子、与所述选择性催化还原催化剂中储存的NH3量相应的第一校正因子、以及与所述选择性催化还原催化剂上游的温度相应的第二校正因子而计算的最终因子大于或等于预定值时,满足所述贫NOX阱的再生释放条件。
2.根据权利要求1所述的方法,其中随着所述选择性催化还原催化剂中储存的NH3量增加,所述第一校正因子降低或保持。
3.根据权利要求1所述的方法,其中随着所述选择性催化还原催化剂上游的温度降低,所述第二校正因子增加或保持。
4.一种用于使具有贫NOX阱和选择性催化还原催化剂的废气净化系统的贫NOX阱再生的方法,其包括以下步骤:
确定是否满足所述贫NOX阱的再生释放条件;
确定是否满足所述贫NOX阱的再生需求条件;以及
当满足所述贫NOX阱的再生释放条件和所述贫NOX阱的再生需求条件时,实施所述贫NOX阱的再生,
其中基于所述贫NOX阱中吸收的NOX量、所述选择性催化还原催化剂中储存的NH3量、以及所述选择性催化还原催化剂上游的温度来确定所述贫NOX阱的再生释放条件的满足,其中当基于与所述贫NOX阱中吸收的NOX量相应的基础因子、与所述选择性催化还原催化剂中储存的NH3量相应的第一校正因子、以及与所述选择性催化还原催化剂上游的温度相应的第二校正因子而计算的最终因子大于或等于预定值时,满足所述贫NOX阱的再生释放条件。
5.根据权利要求4所述的方法,其中随着所述选择性催化还原催化剂中储存的NH3量增加,所述第一校正因子降低或保持。
6.根据权利要求4所述的方法,其中随着所述选择性催化还原催化剂上游的温度降低,所述第二校正因子增加或保持。
7.根据权利要求1或4所述的方法,其还包括以下步骤:
在实施所述贫NOX阱的再生期间,确定是否满足所述贫NOX阱的再生停止条件;以及当满足所述贫NOX阱的再生停止条件时,停止所述贫NOX阱的再生并切换至正常工作模式。
8.一种废气净化系统,其包括:
发动机,包括将燃料喷射到其中的喷射器,通过使空气和燃料的混合物燃烧而产生动,并通过排气管将燃烧过程中产生的废气排出至其外部;
贫NOX阱,其被安装在所述排气管上,在贫空燃比下吸收废气中包含的化氮NOX,在富空燃比下将所吸收的氧化氮释放,并使用废气中包含的包括或氢的还原剂使废气中包含的氧化氮或者所释放的氧化氮还原;
喷射模,其被安装在所述贫NOX阱下游的排气管处,并且将还原剂直接喷射到废气中;
选择性催化还原催化剂,其被安装在所述喷射模块下游的排气管处,并通过使用由所述喷射模块喷射的还原剂使所述废气中包含的NOX还原;以及
控制器,其被配置为通过使用所述贫NOX阱和/或所述选择性催化还原催化剂根据所述发动机的驱动条件实施脱氮,
其中当所述贫NOX阱的再生需求条件和所述贫NOX阱的再生释放条件两者都得到满足时,所述控制器实施所述贫NOX阱的再生,并且
其中所述控制器基于所述贫NOX阱中吸收的NOX量、所述选择性催化还原催化剂中储存的NH3量和所述选择性催化还原催化剂上游的温度来确定是否满足所述贫NOX阱的再生释放条件,
其中当所述贫NOX阱中吸收的NOX量大于或等于阈值NOX量,并且基于基础因子、与所述选择性催化还原催化剂中储存的NH3量相应的第一校正因子、以及与所述选择性催化还原催化剂上游的温度相应的第二校正因子而计算的最终因子大于或等于预定值时,满足所述贫NOX阱的再生释放条件。
9.根据权利要求8所述的废气净化系统,其中随着所述选择性催化还原催化剂中储存的NH3量增加,所述第一校正因子降低或保持。
10.根据权利要求8所述的废气净化系统,其中随着所述选择性催化还原催化剂上游的温度降低,所述第二校正因子增加或保持。
11.一种废气净化系统,其包括:
发动机,包括将燃料喷射到其中的喷射器,通过使空气和燃料的混合物燃烧而产生动力,并通过排气管将燃烧过程中产生的废气排出至其外部;
贫NOX阱,其被安装在所述排气管上,在贫空燃比下吸收废气中包含的氧化氮NOX,在富空燃比下将所吸收的氧化氮释放,并使用废气中包含的包括碳或氢的还原剂使废气中包含的氧化氮或者所释放的氧化氮还原;
喷射模块,其被安装在所述贫NOX阱下游的排气管处,并且将还原剂直接喷射到废气中;
选择性催化还原催化剂,其被安装在所述喷射模块下游的排气管处,并通过使用由所述喷射模块喷射的还原剂使所述废气中包含的NOX还原;以及
控制器,其被配置为通过使用所述贫NOX阱和/或所述选择性催化还原催化剂根据所述发动机的驱动条件实施脱氮,
其中当所述贫NOX阱的再生需求条件和所述贫NOX阱的再生释放条件两者都得到满足时,所述控制器实施所述贫NOX阱的再生,并且
其中所述控制器基于所述贫NOX阱中吸收的NOX量、所述选择性催化还原催化剂中储存的NH3量和所述选择性催化还原催化剂上游的温度来确定是否满足所述贫NOX阱的再生释放条件,
其中当基于与所述贫NOX阱中吸收的NOX量相应的基础因子、与所述选择性催化还原催化剂中储存的NH3量相应的第一校正因子、以及与所述选择性催化还原催化剂上游的温度相应的第二校正因子而计算的最终因子大于或等于预定值时,满足所述贫NOX阱的再生释放条件。
12.根据权利要求11所述的废气净化系统,其中随着所述选择性催化还原催化剂中储存的NH3量增加,所述第一校正因子降低或保持。
13.根据权利要求11所述的废气净化系统,其中随着所述选择性催化还原催化剂上游的温度降低,所述第二校正因子增加或保持。
14.根据权利要求8或11所述的废气净化系统,其中在实施所述贫NOX阱的再生期间,当满足所述贫NOX阱的再生停止条件时,所述控制器停止所述贫NOX阱的再生并且切换至正常工作模式。

说明书全文

使设有贫NOX阱和选择性催化还原催化剂的废气净化系统的贫

NOX阱再生的方法及废气净化系统

[0001] 相关申请的交叉参考
[0002] 本申请要求2015年9月15日向韩国知识产权局提交的韩国专利申请第10-2015-0130419号的优先权权益,其全部内容并入本文以供参考。

技术领域

[0003] 本公开内容涉及一种用于使废气净化系统的贫NOX阱(LNT)再生的方法以及废气净化系统。更具体而言,本公开内容涉及一种用于使具有LNT和选择性催化还原(SCR)催化剂的废气净化系统的LNT 再生的方法,其能够改进NOX的净化效率和燃料效率并防止(NH3) 的泄露(slip)。

背景技术

[0004] 通常,通过排气歧管发动机出来的废气流入安装在排气管上的催化转换器并在其中净化。然后,废气的噪音在通过消音器时降低,且废气通过尾管(tail pipe)排放至空气中。催化转换器将废气中包含的污染物净化。此外,用于捕获废气中包含的颗粒物质(PM)的颗粒过滤器被安装在排气管中。
[0005] 脱氮催化剂(DeNOx催化剂)转换器作为催化转换器使废气中包含的化氮(NOx)净化。如果向废气中提供还原剂,例如尿素、氨、一氧化(HC),废气中包含的NOx在DeNOx催化剂中通过与还原剂的氧化还原反应而被还原。
[0006] 近来,贫NOx阱(LNT)催化剂被用作这样的DeNOx催化剂。当空燃比(air/fuel ratio)低时,LNT催化剂吸收废气中包含的NOx,并且当空燃比为富集气氛时,LNT催化剂释放所吸收的NOx并使所释放的氧化氮和废气中包含的氧化氮还原(在下文中,这将被成为“LNT 的再生”)。
[0007] 通常的柴油发动机在贫空燃比下工作,然而,需要将空燃比人工地调节至富空燃比以便使所吸收的NOX从LNT释放。为此,需要确定用于使LNT中吸收的NOX释放的时机(即,再生时机)。
[0008] 此外,如果废气的温度较高(例如,废气的温度高于400℃),LNT 无法去除废气中包含的NOX。为解决此类问题,与LNT一起使用选择性催化还原(SCR)催化剂。
[0009] 如果独立地控制LNT和SCR催化剂,由于LNT和SCR催化剂的不同性质可能发生以下问题。
[0010] 当SCR催化剂上游的温度较低时,SCR催化剂的净化效率可能变差,且NOX废气可能增加。在此情况下,LNT必须代替SCR催化剂除去NOX。
[0011] 此外,当SCR催化剂中储存的NH3量较高时,通过LNT除去NOX, NH3可能从SCR催化剂中泄露。在此情况下,必须停止LNT的再生直到SCR催化剂中储存的NH3量小于或等于预定量。
[0012] 在此背景部分公开的上述信息仅用于增强对本发明背景的理解,因此,其可能包含不构成在本国中对本领域普通技术人员已知的现有技术的信息。

发明内容

[0013] 本公开内容致于提供一种用于使设有LNT和选择性催化还原(SCR)催化剂的废气净化系统的贫NOX阱(LNT)再生的方法以及一种废气净化系统,所述方法能够通过在考虑SCR催化剂状态的情况下精确地确定LNT的再生时机而改进NOX净化效率和燃料经济性并防止NH3泄露。
[0014] 根据本公开内容的示例性实施方式的使设有LNT和选择性催化还原(SCR)催化剂的废气净化系统的贫NOX阱(LNT)再生的方法包括以下步骤:确定是否满足LNT的再生释放条件;确定是否满足LNT 的再生需求条件;以及当满足LNT的再生释放条件和LNT的再生需求条件时实施再生,其中基于LNT中吸收的NOX量、SCR催化剂中储存的NH3量和SCR催化剂上游的温度来确定LNT再生释放条件的满足。
[0015] 当LNT中吸收的NOX量大于或等于阈值NOX量,并且基于基础因子、与SCR催化剂中储存的NH3量相应的第一校正因子、以及与 SCR催化剂上游的温度相应的第二校正因子而计算的最终因子大于或等于预定值时,满足LNT的再生释放条件。
[0016] 随着SCR催化剂中储存的NH3量增加,第一校正因子可降低或可保持。
[0017] 随着SCR催化剂上游的温度降低,第二校正因子可增加或可保持。
[0018] 当基于与LNT中吸收的NOX量相应的基础因子、与SCR催化剂中储存的NH3量相应的第一校正因子、以及与SCR催化剂上游的温度相应的第二校正因子而计算的最终因子大于或等于预定值时,可满足 LNT的再生释放条件。
[0019] 随着SCR催化剂中储存的NH3量增加,第一校正因子可降低或可保持。
[0020] 随着SCR催化剂上游的温度降低,第二校正因子可增加或可保持。
[0021] 使LNT再生的方法还可包括以下步骤:在实施LNT的再生的过程中,确定是否满足LNT的再生停止条件;以及如果满足LNT的再生停止条件,停止LNT的再生并切换至正常工作模式。
[0022] 根据本发明的另一示例性实施方式的废气净化系统可以包括:发动机,包括用于将燃料喷射到其中的喷射器,通过使空气和燃料的混合物燃烧而产生动力,并通过排气管将燃烧过程中产生的废气排出至其外部;贫NOX阱(LNT),其被安装在排气管上,并配置为在贫空燃比下吸收废气中包含的氧化氮(NOX),在富空燃比下将吸收的氧化氮释放,并使用废气中包含的包括碳或氢的还原剂使废气中包含的氧化氮或者释放的氧化氮还原;喷射模,其被安装在LNT下游的排气管处,并被配置为将还原剂直接喷射到废气中;选择性催化还原(SCR) 催化剂,其被安装在喷射模块下游的排气管处,并被配置成通过使用由喷射模块喷射的还原剂使废气中包含的NOX还原;以及控制器,其被配置为通过使用LNT和/或SCR催化剂根据发动机的驱动条件实施脱氮(DeNOX),其中如果LNT的再生需求条件和LNT的再生释放条件两者都得到满足,控制器实施LNT的再生,并且其中控制器基于LNT 中吸收的NOX量、SCR催化剂中储存的NH3量和SCR催化剂上游的温度来确定是否满足LNT的再生释放条件。
[0023] 当LNT中吸收的NOX量大于或等于阈值NOX量,并且基于基础因子、与SCR催化剂中储存的NH3量相应的第一校正因子、和与SCR 催化剂上游的温度相应的第二校正因子而计算的最终因子大于或等于预定值时,可满足LNT的再生释放条件。
[0024] 随着SCR催化剂中储存的NH3量增加,第一校正因子可降低或可保持。
[0025] 随着SCR催化剂上游的温度降低,第二校正因子可增加或可保持。
[0026] 当基于与LNT中吸收的NOX量相应的基础因子、与SCR催化剂中储存的NH3量相应的第一校正因子、以及与SCR催化剂上游的温度相应的第二校正因子而计算的最终因子大于或等于预定值时,可满足 LNT的再生释放条件。
[0027] 随着SCR催化剂中储存的NH3量增加,第一校正因子可降低或可保持。
[0028] 随着SCR催化剂上游的温度降低,第二校正因子可增加或可保持。
[0029] 在实施LNT再生的过程中,如果满足LNT的再生停止条件,控制器可以使LNT的再生停止并且可以切换至正常工作模式。
[0030] 如上所述,通过在考虑SCR催化剂状态的情况下精确地确定LNT 的再生时机,可以改进NOX的净化效率。
[0031] 此外,可以防止NH3从SCR催化剂中泄露。附图说明
[0032] 图1是根据本公开内容中一示例性实施方式的废气净化系统的示意图。
[0033] 图2是说明根据本公开内容中一示例性实施方式的废气净化系统的LNT再生方法中使用的控制器的输入和输出的关系的块图。
[0034] 图3是根据本公开内容中一示例性实施方式的LNT再生方法的流程图
[0035] 图4说明图3中确定是否满足LNT再生释放条件的一个实施例
[0036] 图5说明图3中确定是否满足LNT再生释放条件的另一个实施例。

具体实施方式

[0037] 本公开内容的示例性实施方式将在下文中参考附图进行详细描述。
[0038] 图1是根据本公开内容中一示例性实施方式的废气净化系统的示意图。
[0039] 如图1所示,内燃机的排气系统包括发动机10、排气管20、废气再循环(EGR)装置30、贫NOX阱(LNT)40、颗粒过滤器45、喷射模块50、选择性催化还原(SCR)催化剂60和控制器
70。
[0040] 发动机10使混合有燃料和空气的空气/燃料混合物燃烧以便使化学能转化为机械能。发动机10连接至进气歧管16以便在燃烧室12中接收空气,并连接至排气歧管18,使得燃烧过程中产生的废气被收集在排气歧管18中并被排放至外部。喷射器14安装在燃烧室12中以便将燃料喷射到燃烧室12中。
[0041] 本文中柴油机是示例性的,还可以使用贫燃汽油机。在使用汽油机的情况下,空气/燃料混合物通过进气歧管16流入燃烧室12,并且火花塞(未显示)安装在燃烧室12的上部。此外,如果使用汽油直喷 (GDI)发动机,喷射器14安装在燃烧室12的上部。
[0042] 排气管20连接至排气歧管18以便将废气排放至车辆外部。 LNT40、颗粒过滤器45、喷射模块50和SCR催化剂60安装在排气管 20上以便除去废气中包含的烃、一氧化碳、颗粒物质和氧化氮(NOX)。
[0043] 废气再循环装置30安装在排气管20上,并且从发动机10排出的一部分废气经由废气再循环装置30被供应回发动机10。另外,废气再循环装置30连接至进气歧管16以通过将这部分废气与空气混合来控制燃烧温度。这种对燃烧温度的控制通过控制器70的控制而控制供应回进气歧管16的废气的量来实施。因此,由控制器70控制的再循环(未示出)可以安装在将废气再循环装置30和进气歧管16相连的管线上。
[0044] 第一氧传感器72安装在废气再循环装置30下游的排气管20上。第一氧传感器72检测通过废气再循环装置30的废气中的氧量,并将与其对应的信号传输至控制器70,以便帮助通过控制器70实施的废气的贫/富控制。在本说明书中,第一氧传感器72的检测值被称为LNT 上游的λ。
[0045] 此外,第一温度传感器74安装在废气再循环装置30下游的排气管20上,并检测通过废气再循环装置30的废气的温度。
[0046] LNT40安装在废气再循环装置30下游的排气管20上。LNT40在贫空燃比下吸收废气中包含的氧化氮(NOX),并且在富空燃比下将吸收的氧化氮释放且使废气中包含的氧化氮或释放的氧化氮还原。此外, LNT40可以使废气中包含的一氧化碳(CO)和烃(HC)氧化。
[0047] 在此,烃表示废气和燃料中包含的包括碳和氢的所有化合物。
[0048] 第二温度传感器75安装在LNT40下游的排气管20上。第二温度传感器75检测流入颗粒过滤器45的废气的温度并将与其对应的信号传输至控制器70。
[0049] 颗粒过滤器45安装在LNT40下游的排气管20上并捕获废气中包含的颗粒物质。此外,颗粒过滤器45使捕获的颗粒物质燃烧以便除去颗粒物质。通常,颗粒过滤器45包括多个入口通道和出口通道。每个入口通道包括开放的一端和封闭的另一端,并且从颗粒过滤器45的前端接收废气。此外,每个出口通道包括封闭的一端和开放的另一端,并且将废气从颗粒过滤器45排出。通过入口通道流入颗粒过滤器45 的废气经由将入口通道和出口通道分开的多孔壁进入出口通道。之后,废气通过出口通道从颗粒过滤器45排出。当废气通过多孔壁时,废气中包含的颗粒物质被捕获。
[0050] 压力差传感器66安装在排气管20上。压力差传感器66检测颗粒过滤器45前端部与后端部之间的压力差并将与其对应的信号传输至控制器70。如果由压力差传感器66检测的压力差大于预定压力,控制器 70可以控制颗粒过滤器以再生。喷射器14后喷射燃料以便使颗粒过滤器45中捕获的颗粒物质燃烧。
[0051] 第二氧传感器76、第三温度传感器78、和第一NOX传感器80安装在颗粒过滤器45下游的排气管20上。
[0052] 第二氧传感器76检测流入颗粒过滤器45的废气中包含的氧含量,并将与其对应的信号传输至控制器70。控制器70可以基于第一氧传感器72和第二氧传感器76的检测值,实施废气的贫/富控制。在本说明书中,第二氧传感器62的检测值被称为LNT下游的λ。
[0053] 第三温度传感器78检测流入SCR催化剂60的废气的温度并将与其对应的信号传输至控制器70。
[0054] 第一NOX传感器80检测流入SCR催化剂60的废气中包含的NOX量,并将与其对应的信号传输至控制器70。由第一NOX传感器80检测的NOX量可以确定由喷射模块50喷射的还原剂的量。
[0055] 喷射模块50安装在SCR催化剂60上游的排气管20上,并且通过控制器70的控制将还原剂喷射到废气中。通常,喷射模块50喷射尿素,并且所喷射的尿素解并转换成氨。然而,还原剂不限于氨。
[0056] 混合器55安装在喷射模块50下游的排气管20上并且将还原剂和废气均匀地混合。
[0057] SCR催化剂60安装在混合器55下游的排气管20上并使用通过喷射模块50喷射的还原剂将废气中包含的氧化氮还原。
[0058] 此外,第二NOX传感器82安装在SCR催化剂60下游的排气管 20上。第二NOX传感器82检测从SCR催化剂60排出的废气中包含的氧化氮的量,并将与其对应的信号传输至控制器70。控制器70可基于第二NOX传感器82的检测值,检查废气中包含的氧化氮是否在SCR 催化剂60中被正常除去。即,第二NOX传感器82可以评估SCR催化剂60的性能。
[0059] 控制器70基于从每个传感器传输的信号确定发动机的驱动条件,并且基于发动机的驱动条件实施贫/富控制并控制通过喷射模块50喷射的还原剂的量。例如,控制器70可以通过将空燃比控制为富集气氛而将NOX从LNT40中释放,并且可以通过使用废气中包含的还原剂将释放的NOX还原(在本说明书中,将称作“LNT的再生”)。此外,控制器70可以通过使还原剂喷射而除去SCR催化剂60处的NOX。贫/ 富控制可以通过控制由喷射器14喷射的燃料量来实施。
[0060] 控制器70包括多个映射(map)、LNT特征和校正系数,并且在此基础上可以确定再生开始时机和再生结束时机。可以通过多个实验设定该多个映射、LNT的特征和校正系数。
[0061] 此外,控制器70控制颗粒过滤器45的再生和LNT40的脱氮。
[0062] 出于这些目的,控制器70可以通过由预定程序激活的一个或多个处理器实现,并且预定的程序可以编程为实施根据示例性实施方式的 LNT再生方法的每个步骤。
[0063] 图2是说明根据本公开内容中一示例性实施方式的废气净化系统的LNT再生方法中使用的控制器的输入和输出的关系的块图。
[0064] 如图2所示,第一氧传感器72、第一温度传感器74、第二温度传感器75、第二氧传感器76、第三温度传感器78、第一NOX传感器80、第二NOX传感器82、压力差传感器66和进气流量计11与控制器70 电连接,并且将检测值传输至控制器70。
[0065] 第一氧传感器72检测通过废气再循环装置30的废气中的氧量并将与其对应的信号传输至控制器70。控制器70可以基于通过第一氧传感器72检测的废气中的氧量实施废气的贫/富控制。第一氧传感器72 的检测值可以表示为λ。λ是指实际空燃比与化学计量空燃比的比率。如果λ大于1,空燃比是贫的。如果λ小于1,空燃比是富的。
[0066] 第一温度传感器74检测通过废气再循环装置30的废气的温度并将与其对应的信号传输至控制器70。
[0067] 第二温度传感器75检测流入颗粒过滤器45的废气的温度并将与其对应的信号传输至控制器70。
[0068] 第二氧传感器76检测流入SCR催化剂60的废气的氧量并将与其对应的信号传输至控制器70。
[0069] 第三温度传感器78检测流入SCR催化剂60的废气的温度并将与其对应的信号传输至控制器70。
[0070] 第一NOX传感器80检测流入SCR催化剂60的废气中包含的NOX量并将与其对应的信号传输至控制器70。
[0071] 第二NOX传感器82检测从SCR催化剂60排出的废气中包含的 NOX量并将与其对应的信号传输至控制器70。
[0072] 压力差传感器66检测颗粒过滤器45前端部与后端部之间的压力差并将与其对应的信号传输至控制器70。
[0073] 进气流量计11检测供应至发动机10的进气系统的进气流量并将与其对应的信号传输至控制器70。
[0074] 控制器70基于传输值确定发动机的驱动条件、燃料喷射量、燃料喷射时机、燃料喷射模式、还原剂的喷射量、颗粒过滤器45的再生时机、LNT40的脱氮/再生时机、以及通过喷射模块50喷射的还原剂的量,并且向喷射器14和喷射模块50输出用于控制喷射器14和喷射模块50的信号。此外,控制器70可以基于传输值确定LNT40的再生开始时机和再生结束时机。
[0075] 除图2中示出的传感器以外的多个传感器也可以安装在根据示例性实施方式的废气净化装置上。但是,为了更好的理解和易于说明,将省略多个传感器的说明。
[0076] 在下文中,参考图3至图5,将详细描述根据本公开内容中一示例性实施方式的LNT再生方法。
[0077] 如图3所示,当车辆行驶时实施根据示例性实施方式的LNT再生方法。当车辆起动时,控制器70在步骤S200中控制发动机10在正常工作模式下工作。同时,控制器70在步骤S210中计算LNT40中吸收的NOX量。基于根据发动机10的驱动条件产生的NOX量(其可以通过另外的NOX传感器检测或通过建模计算)、与LNT40的温度(通过 LNT40的废气的温度)相应的NOX吸收效率、与硫中毒相应的NOX吸收效率等,可以计算LNT40中吸收的NOX量。
[0078] 如果计算出LNT40中吸收的NOX量,控制器70在步骤S220中确定是否满足LNT的再生释放条件。
[0079] 在下文中,参考图4和图5,将进一步详述是否满足LNT的再生释放条件。
[0080] 图4说明图3中确定是否满足LNT再生释放条件的一个实施例。
[0081] 控制器70在步骤S300中确定基础因子。基础因子根据SCR催化剂60的状态调整LNT40的再生时机。基础因子可以被预先确定为特定值或者可以根据发动机10的驱动条件而改变。图4中示出的示例性实施方式中使用的基础因子是预定的特定值且不会改变。然而,基础因子不限于示例性实施方式中的那些。
[0082] 如果确定出基础因子,控制器70在步骤S310中确定LNT40中吸收的NOX量是否大于或等于阈值NOX量。在存储器(未示出)中预先确定与LNT40上游的温度相应的阈值NOX量、根据发动机10的驱动条件产生的NOX量、以及LNT40中的硫中毒。因此,控制器70根据发动机10的驱动条件、LNT40上游的温度、以及LNT40中的硫中毒来读取阈值NOX量,并且将LNT40中吸收的NOX量与阈值NOX量相比较。
[0083] 如果在步骤S310中LNT40中吸收的NOX量小于阈值NOX量,控制器70返回步骤S210并继续计算LNT40中吸收的NOX量。
[0084] 如果在步骤S310中LNT40中吸收的NOX量大于或等于阈值NOX量,控制器70在步骤S320中计算SCR催化剂60中储存的NH3量并且在步骤S330中检测SCR催化剂60上游的温度(在SCR催化剂60 上游通过的废气的温度)。可以由基于SCR催化剂60的温度、SCR催化剂60上游的λ、SCR催化剂60的NOX净化效率的预定映射来计算 SCR催化剂60中储存的NH3量,并且SCR催化剂60上游的温度可以通过第三温度传感器78检测或者可以由第三温度传感器78的检测值来计算。
[0085] 然后,控制器70在步骤S340中根据SCR催化剂60中储存的NH3 量计算第一校正因子。随着SCR催化剂60中储存的NH3量增加,第一校正因子可降低或保持。即,随着SCR催化剂60中储存的NH3量增加,LNT40的再生时机推迟,使得NOX主要由SCR催化剂60除去。因此,可以防止NH3从SCR催化剂60中泄露。
[0086] 此外,控制器70在步骤S350中根据SCR催化剂60上游的温度计算第二校正因子。随着SCR催化剂60上游的温度降低,第二校正因子可增加或保持。即,随着SCR催化剂60上游的温度降低,LNT40 的再生时机被提前,使得NOX主要由LNT40除去。因此,可以提高 NOX的净化效率。
[0087] 控制器70然后在步骤S360中基于基础因子以及第一和第二校正因子计算最终因子。例如,可以通过将基础因子乘以第一和第二校正因子来计算最终因子,但不限于此。
[0088] 然后,控制器70在步骤S370中确定最终因子是否大于或等于预定值。如果在步骤S370中最终因子小于预定值,控制器70返回至步骤S320。如果在步骤S370中最终因子大于或等于预定值,控制器70 确定LNT的再生释放条件得到满足并进行步骤S230。
[0089] 图5说明图3中确定是否满足LNT再生释放条件的另一个实施例。在图5中示出的示例性实施方式中根据LNT40中吸收的NOX量确定基础因子。由于图5中的其他步骤与图4中的那些相似,将简要描述图5 中示出的示例性实施方式。
[0090] 即,控制器70在步骤S300’中根据LNT40中吸收的NOX量确定基础因子。随着LNT40中吸收的NOX量增加,基础因子可以增加或保持。即,随着LNT40中吸收的NOX量增加,LNT40的再生时机被提前。因此,可以提高NOX的净化效率。
[0091] 控制器70在步骤S320中计算SCR催化剂60中储存的NH3量并在S330中检测SCR催化剂60上游的温度。此外,控制器70在步骤 S340中根据SCR催化剂60中储存的NH3量计算第一校正因子,并且在步骤S350中根据SCR催化剂60上游的温度计算第二校正因子。
[0092] 之后,控制器70在步骤S360中基于基础因子以及第一和第二校正因子计算最终因子,并且如果最终因子大于或等于预定值,控制器 70确定LNT的再生释放条件得到满足并进行至步骤S230。
[0093] 参考图3,当在步骤S220中不满足LNT的再生释放条件时,控制器70返回S210并继续计算LNT40中吸收的NOX量。如果在步骤S220 中满足LNT的再生释放条件,控制器70在步骤S230中确定是否满足 LNT的再生需求条件。即,控制器70确定发动机速度、发动机扭矩、 LNT40的温度、冷却剂温度、环境温度、车速、以及传动比是否满足进入使LNT40再生的富集模式的条件。
[0094] 如果在步骤S230中不满足LNT的再生需求条件,控制器70重复步骤S230直到满足LNT的再生需求条件。如果在步骤S230中满足 LNT的再生需求条件,控制器70在步骤S240中实施LNT40的再生。即,LNT40中吸收的NOX通过制造富集气氛而释放。所释放的NOX通过废气中包含的还原剂而被还原。
[0095] 在实施LNT40的再生期间,控制器70在步骤S250中确定是否满足LNT40的再生停止条件。如果LNT40上游和下游的λ之差小于预定值、NOX释放大于或等于预定值、或者LNT的再生持续时间大于或等于预定持续时间,则满足LNT40的再生停止条件。
[0096] 如果在步骤S250中不满足LNT40的再生停止条件,控制器70在步骤S240中继续实施LNT40的再生。如果在步骤S250中满足LNT40 的再生停止条件,控制器70在步骤S260中停止LNT40的再生并切换至正常工作模式。
[0097] 尽管本发明结合目前被认为是实用的示例性实施方式加以描述,但是应当理解,本发明不限于所公开的实施方式,相反的,旨在涵盖包括在所附权利要求的主旨和范围内的多种修改方式和等效布置。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈