首页 / 专利库 / 换热器 / 急冷锅炉 / Pressure fluidized bed compound power plant

Pressure fluidized bed compound power plant

阅读:143发布:2021-03-06

专利汇可以提供Pressure fluidized bed compound power plant专利检索,专利查询,专利分析的服务。并且PROBLEM TO BE SOLVED: To reduce in-plant power at the stoppage and to improve reliability at the stoppage by providing a means for stopping steaming of condensate at an outlet of a low temperature waste heat recovery heat exchanger and steaming of feed water at an outlet of a high temperature waste heat recovery heat exchanger at the normal plant stopping and emergency stopping. SOLUTION: A high temperature gas discharge pipe 29 having a high temperature gas discharge valve 30 is connected between a high temperature gas pipe 25 at the upstream of a gas turbine inlet valve 26 and a gas turbine outlet pipe 28. By a control device 33 for inputting a signals of a pressure detector 31 a temperature sensor 32 and the like of a pressure fluidized bed boiler pressure vessel 5, at the normal plant stopping, fuel inside a pressure fluidized bed boiler 6 is burned, thereafter an air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed, an air supply valve 27 is opened, to isolate a boiler 6 side. Next, the high temperature gas discharge valve 30 is opened, and the high temperature gas is discharged to reduce pressure on the boiler 6 side. Operation of a gas turbine 2 is stopped after completion of pressure reduction of the boiler 6.,下面是Pressure fluidized bed compound power plant专利的具体信息内容。

【特許請求の範囲】
  • 【請求項1】 加圧流動床ボイラと前記加圧流動床ボイラに空気を供給する空気圧縮機と前記加圧流動床ボイラの高温ガスにより駆動されるガスタービンと前記加圧流動床ボイラの蒸気により駆動される蒸気タービンと前記ガスタービンおよび蒸気タービンにより駆動される発電機とを含み、前記空気圧縮機から前記加圧流動床ボイラに圧縮空気を供給する空気供給配管と前記加圧流動床ボイラから前記ガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、 プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を前記空気供給配管に設け、 プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を前記高温ガス配管に設け、 プラント通常停止時または緊急停止時に開き前記空気圧縮機の出口から前記ガスタービン入口までの間の空気および高温ガスを前記ガスタービンの排ガス出口部に排出する高温ガス排出配管および高温ガス排出弁を設けたことを特徴とする加圧流動床複合発電プラント。
  • 【請求項2】 加圧流動床ボイラと前記加圧流動床ボイラに空気を供給する空気圧縮機と前記加圧流動床ボイラの高温ガスにより駆動されるガスタービンと前記加圧流動床ボイラの蒸気により駆動される蒸気タービンと前記ガスタービンおよび蒸気タービンにより駆動される発電機とを含み、前記空気圧縮機から前記加圧流動床ボイラに圧縮空気を供給する空気供給配管と前記加圧流動床ボイラから前記ガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、 プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を前記空気供給配管に設け、 プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を前記高温ガス配管に設け、 プラント通常停止時または緊急停止時に開き前記空気圧縮機の出口から前記ガスタービン入口までの間の空気および高温ガスを前記ガスタービンの入口部に排出する高温ガス排出配管および高温ガス排出弁を前記ガスタービン入口弁と並列に設けたことを特徴とする加圧流動床複合発電プラント。
  • 【請求項3】 請求項1または2に記載の加圧流動床複合発電プラントにおいて、 排出した高温ガスを冷却し希釈するために窒素または空気を供給するガス供給配管およびガス供給弁を設けたことを特徴とする加圧流動床複合発電プラント。
  • 【請求項4】 加圧流動床ボイラと前記加圧流動床ボイラに空気を供給する空気圧縮機と前記加圧流動床ボイラの高温ガスにより駆動されるガスタービンと前記加圧流動床ボイラの蒸気により駆動される蒸気タービンと前記ガスタービンおよび蒸気タービンにより駆動される発電機とを含み、前記空気圧縮機から前記加圧流動床ボイラに圧縮空気を供給する空気供給配管と前記加圧流動床ボイラから前記ガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、 プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を前記空気供給配管に設け、 プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を前記高温ガス配管に設け、 プラント通常停止時または緊急停止時に開き前記空気圧縮機出口からガスタービンまでの間の空気および高温ガスを大気に排出する高温ガス排出配管および高温ガス排出弁を設け、 排出した高温ガスを冷却し希釈するために窒素または空気を供給するガス供給配管およびガス供給弁を設けたことを特徴とする加圧流動床複合発電プラント。
  • 【請求項5】 請求項1ないし4のいずれか一項に記載の加圧流動床複合発電プラントにおいて、 前記加圧流動床ボイラの圧力および出口温度と、前記空気圧縮機出口弁,前記ガスタービン入口弁,前記空気供給弁の開閉状態とに応じて、前記空気圧縮機出口弁,前記ガスタービン入口弁,前記空気供給弁,前記高温ガス排出弁,前記ガス供給弁の開度を制御する高温ガス排出制御装置を設けたことを特徴とする加圧流動床複合発電プラント。
  • 【請求項6】 請求項5に記載の加圧流動床複合発電プラントにおいて、 前記高温ガス排出制御装置が、前記空気圧縮機から前記ガスタービン入口弁までの間の減圧完了後、前記高温ガス排出弁を全閉してからの自然放熱の経過時間を計測するタイマを備えたことを特徴とする加圧流動床複合発電プラント。
  • 说明书全文

    【発明の詳細な説明】

    【0001】

    【発明の属する技術分野】本発明は、加圧流動床ボイラとガスタービンと蒸気タービンとを含む加圧流動床複合発電プラントに係り、特に、プラント通常停止時および緊急停止時の信頼性を向上させるとともに、所内動を低減する手段に関する。

    【0002】

    【従来の技術】図8は、従来の加圧流動床複合発電プラントの系統構成の一例を示す系統図である。 この加圧流動床複合発電プラントにおいては、空気圧縮機1と加圧流動床ボイラ6との間の空気供給配管24および加圧流動床ボイラ6とガスタービン2と間の高温ガス供給配管25にボイラバイパス配管41を設置するとともに、高温ガス供給配管25とボイラバイパス配管41との合流点とガスタービン出口配管28との間に高温ガス排出配管29および高温ガス排出弁30を設置し、障害時にボイラバイパス配管41と高温ガス排出配管29に空気および高温ガスを流すことが提案されている。 なお、この種の装置として関連するものには、例えば特開平9−5
    0107など挙げられる。

    【0003】

    【発明が解決しようとする課題】このような従来の方法では、空気および高温ガスの混合ガスが煙突10に排出されるため、ガスタービン出口配管28から煙突10までの系統を高温のガスに対応可能な設備とする必要がある。

    【0004】この混合ガスを冷却するため、高温ガス排出配管30の接続先を高温排熱回収熱交換器8の入口側に回収することも考えられるが、60%から100%程度のガスを処理する必要があるため、高温排熱回収器8
    出口の給がフラッシュしてスチーミングが発生し、機器を損傷することが予想される。 また、障害発生時の数秒間は、圧力を制御する必要があり、制御が非常に複雑になることが予想される。 さらに、空気圧縮機1と加圧流動床ボイラ6との間の圧力が、一定圧力に保持されるので、ガスタービン停止時に加圧流動床ボイラ6とガスタービン2との間の高温ガスが空気圧縮機1に逆流し、
    空気圧縮機1を損傷することが予想される。 したがって、加圧流動床ボイラ6のガス温度および金属の温度が低下するまで、ガスタービン2を連続的に運転する必要がある。

    【0005】本発明の目的は、プラント通常停止時および緊急停止時、低温排熱回収熱交換器出口の復水および高温排熱回収熱交換器出口の給水のスチーミングを防止し、プラントの信頼性を上げ、停止時の所内動力を低減する手段を備えた加圧流動床複合発電プラントを提供することである。

    【0006】

    【課題を解決するための手段】本発明は、上記目的を達成するために、加圧流動床ボイラと加圧流動床ボイラに空気を供給する空気圧縮機と加圧流動床ボイラの高温ガスにより駆動されるガスタービンと加圧流動床ボイラの蒸気により駆動される蒸気タービンとガスタービンおよび蒸気タービンにより駆動される発電機とを含み、空気圧縮機から加圧流動床ボイラに圧縮空気を供給する空気供給配管と加圧流動床ボイラからガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を空気供給配管に設け、プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を高温ガス配管に設け、プラント通常停止時または緊急停止時に開き空気圧縮機の出口からガスタービン入口までの間の空気および高温ガスをガスタービンの排ガス出口部に排出する高温ガス排出配管および高温ガス排出弁を設けた加圧流動床複合発電プラントを提案する。

    【0007】本発明は、また、加圧流動床ボイラと加圧流動床ボイラに空気を供給する空気圧縮機と加圧流動床ボイラの高温ガスにより駆動されるガスタービンと加圧流動床ボイラの蒸気により駆動される蒸気タービンとガスタービンおよび蒸気タービンにより駆動される発電機とを含み、空気圧縮機から加圧流動床ボイラに圧縮空気を供給する空気供給配管と加圧流動床ボイラからガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を空気供給配管に設け、プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を高温ガス配管に設け、プラント通常停止時または緊急停止時に開き空気圧縮機の出口からガスタービン入口までの間の空気および高温ガスをガスタービンの入口部に排出する高温ガス排出配管および高温ガス排出弁をガスタービン入口弁と並列に設けた加圧流動床複合発電プラントを提案する。

    【0008】いずれの場合も、排出した高温ガスを冷却し希釈するために窒素または空気を供給するガス供給配管およびガス供給弁を追加して設置できる。

    【0009】本発明は、さらに、加圧流動床ボイラと加圧流動床ボイラに空気を供給する空気圧縮機と加圧流動床ボイラの高温ガスにより駆動されるガスタービンと加圧流動床ボイラの蒸気により駆動される蒸気タービンとガスタービンおよび蒸気タービンにより駆動される発電機とを含み、空気圧縮機から加圧流動床ボイラに圧縮空気を供給する空気供給配管と加圧流動床ボイラからガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を空気供給配管に設け、プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を高温ガス配管に設け、
    プラント通常停止時または緊急停止時に開き空気圧縮機出口からガスタービンまでの間の空気および高温ガスを大気に排出する高温ガス排出配管および高温ガス排出弁を設け、排出した高温ガスを冷却し希釈するために窒素または空気を供給するガス供給配管およびガス供給弁を設けた加圧流動床複合発電プラントを提案する。

    【0010】上記いずれの加圧流動床複合発電プラントにおいても、加圧流動床ボイラの圧力および出口温度と、空気圧縮機出口弁,ガスタービン入口弁,空気供給弁の開閉状態とに応じて、空気圧縮機出口弁,ガスタービン入口弁,空気供給弁,高温ガス排出弁,ガス供給弁の開度を制御する高温ガス排出制御装置を設ける。

    【0011】この高温ガス排出制御装置は、空気圧縮機からガスタービン入口弁までの間の減圧完了後、高温ガス排出弁を全閉してからの自然放熱の経過時間を計測するタイマを備えてもよい。

    【0012】

    【発明の実施の形態】次に、図1〜図7を参照して、本発明による加圧流動床複合発電プラントの実施例を説明する。

    【0013】《実施例1》図1は、本発明による加圧流動床複合発電プラントの実施例1の構成を示す系統図である。 起動用電動機4を備えた空気圧縮機1は、空気入口弁22から吸い込んだ空気を圧縮し、空気圧縮機出口弁23,空気供給配管24を介して、圧縮空気を加圧流動床ボイラ圧力容器5内の加圧流動床ボイラ6に供給する。 加圧流動床ボイラ6からの高圧ガスは、高温ガス配管25,高温ガス除塵装置7,ガスタービン入口弁26
    を介して、ガスタービン2に供給され、ガスタービン2
    を駆動し、ガスタービン発電機3により、エネルギーを電力に変換される。 ガスタービン2で仕事をした高圧ガスは、ガスタービン出口配管28,高温排熱回収熱交換器8,低温排熱回収熱交換器9を通り、煙突10から大気に排出される。

    【0014】一方、加圧流動床ボイラ6で加熱された水は、汽水分離器21により、水蒸気のみとなり、主蒸気配管34により高圧タービン11に導かれる。 高圧タービン11で仕事をした蒸気は、低温再熱蒸気配管35で加圧流動床ボイラ6に戻されて再加熱され、高温再熱蒸気配管36で中圧タービン12に導かれる。 中圧タービン12で仕事をした蒸気は、低圧タービン13に導かれる。 高圧タービン11,中圧タービン12,低圧タービン13には、共軸の蒸気タービン用発電機14を設置してあり、蒸気エネルギーを電力に変換する。 低圧タービン13を通過した蒸気は、復水器15により冷却され、
    復水される。 復水された水は、復水ポンプ16により加圧されて、低圧給水加熱器17,上記低温排熱回収熱交換器9を通り、脱気器18で脱気される。 さらに、給水ポンプ19により加圧されて、高圧給水加熱器20,上記高温排熱回収熱交換器8を通り、再び、加圧流動床ボイラ圧力容器5内の加圧流動床ボイラ6に供給される。
    なお、汽水分離器21は、汽水分離器レベル調節弁37
    を備えた配管により、復水器15に接続されている。

    【0015】空気圧縮機1の出口とガスタービン2の入口との間には、空気供給弁27を設けたバイパス配管を接続してある。 また、加圧流動床ボイラ圧力容器5には、加圧流動床ボイラ圧力容器圧力検出器31を取り付け、高温ガス配管25には、加圧流動床ボイラ温度検出器32を取り付けてある。

    【0016】本実施例1においては、特に、ガスタービン入口弁26よりも上流の高温ガス配管25とガスタービン出口配管28との間に、高温ガス排出弁30を持った高温ガス排出配管29を接続してある。

    【0017】少なくとも加圧流動床ボイラ圧力容器圧力検出器31および加圧流動床ボイラ温度検出器32などからの信号を取り込む高温ガス排出制御装置33は、検出信号に応じて、空気圧縮機出口弁23,ガスタービン入口弁26,空気供給弁27,高温ガス排出弁30の開閉を制御する。

    【0018】本実施例1において、通常運転時、空気圧縮機入口弁22から空気圧縮機1に取り込まれた空気は、空気供給配管24により加圧流動床ボイラ圧力容器5内の加圧流動床ボイラ6に導かれる。 加圧流動床ボイラ6からの高温ガスは、高温ガス配管25により高温ガス除塵装置7に導かれ、灰などを除去した後、高温ガス配管25によりガスタービン2に供給され、ガスタービン用発電機3を駆動し、発電する。 ガスタービン2からの排ガスは、ガスタービン出口配管28により高温排熱回収熱交換器8および低温排熱回収熱交換器9に導かれ、蒸気タービン系に熱回収された後、煙突10から大気に放出される。

    【0019】一方、加圧流動床ボイラ6で発生した蒸気は、主蒸気配管34,高圧タービン11,低温再熱蒸気配管35,加圧流動床ボイラ6,高温再熱蒸気配管3
    6,中圧タービン12,低圧タービン13を通り、復水器15に至る間に、蒸気タービン用発電機14を駆動し、発電する。 復水器15で冷却され凝縮し復水となった水は、復水ポンプ16で昇圧され、低圧給水加熱器1
    7および低温排熱回収熱交換器9で昇温され、脱気器1
    8に供給される。 脱気器18に供給された給水は、給水ポンプ19でさらに昇圧され、高圧給水加熱器20および高温排熱回収熱交換器8で昇温された後、加圧流動床ボイラ6に再び供給される。

    【0020】プラント通常停止時は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気圧縮機出口弁23およびガスタービン入口弁26を全閉し、空気供給弁27を開くので、加圧流動床ボイラ6側は、隔離状態となる。
    これに対して、ガスタービン2側は、起動用電動機4により、ガスタービン2の回転数を10%に降下させて運転される。 その際、加圧流動床ボイラ6側の系統は、高温ガス排出配管29の高温ガス排出弁30を開き、ガスタービン出口配管28に高温ガスを排出し、高温排熱回収熱交換器8および低温排熱回収熱交換器9により蒸気タービン系に熱を回収し、煙突10から大気に排気し、
    減圧する。 加圧流動床ボイラ6側の減圧が完了したら、
    ガスタービン2を停止させまたは低速ターニングさせる。

    【0021】この場合に、高温ガス排出弁30からの排出量は、高温ガスが空気圧縮機1に逆流することを防止するために、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1
    の風量と煙突10のドラフト風量との合計値以下にする必要がある。 高温ガス排出制御装置33は、加圧流動床ボイラ圧力容器圧力検出器31からの信号と加圧流動床ボイラ出口温度検出器32からの信号とに応じて、高温ガス排出量を制御し、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量との合計値以下に、高温ガス排出量を制御する。 さらに、高温ガス排出弁30からの排出温度は、加圧流動床ボイラ6の温度検出器32からの信号に応じて、ガスタービン出口の設備計画値以内に制御する。

    【0022】一方、蒸気タービン系では、加圧流動床ボイラ6の発生蒸気量が減少し、汽水分離器21の水位が上昇するので、汽水分離器レベル調節弁37を介して、
    復水器15に復水を十分に回収する。 復水器15に回収された給水は、復水器15で冷却し、復水ポンプ16で昇圧し、低圧給水加熱器17および低温排熱回収熱交換器9を介して、脱気器18に供給される。 脱気器18に供給された給水は、給水ポンプ19で昇圧し、高圧給水加熱器20および高温排熱回収熱交換器8で昇温した後、汽水分離器21,汽水分離器レベル調節弁37を介して、復水器15に供給され、循環運転状態になる。

    【0023】その結果、加圧流動床ボイラ6側の減圧時の高温ガスは、低温排熱回収熱交換器9および高温排熱回収熱交換器8で復水および給水に熱回収し、復水器1
    5により回収熱を冷却できることになる。

    【0024】特に、加圧流動床ボイラ6側の減圧時の高温ガス量は、回転数が10%の空気圧縮機1の風量と煙突1のドラフト風量と高温ガス排出量およびガスタービン入口弁26の合計値となるが、通常運転時のガス量と比べて非常に少ないために、低温排熱回収熱交換器9出口の復水のスチーミングと高温排熱回収熱交換器8出口の給水のスチーミングとを防止できる。

    【0025】さらに、復水ポンプ16および給水ポンプ19が動作可能であり高温排熱回収熱交換器9および低温排熱回収熱交換器9に給水を供給可能なモードの緊急停止時には、加圧流動床ボイラ6側の減圧時の高温ガスは、低温排熱回収熱交換器9および高温排熱回収熱交換器8で復水および給水に熱回収し、復水器15により回収熱を冷却できるため、プラント通常停止と同様に運転できる。

    【0026】《実施例2》図2は、本発明による加圧流動床複合発電プラントの実施例2の構成を示す系統図である。 実施例2は、ガスタービン出口配管28ではなく、空気供給弁27よりも上流の高温ガス配管25に、
    高温ガス排出弁30を持った高温ガス排出配管29を接続し、ガスタービン入口弁26をバイパスするようにしてある点が、実施例1と異なっている。

    【0027】実施例2において、プラント通常停止時は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気圧縮機出口弁23およびガスタービン入口弁26を全閉し、空気供給弁27を開くので、加圧流動床ボイラ6側は、隔離状態となる。 これに対して、ガスタービン2側は、起動用電動機4により、ガスタービン2の回転数を10%に降下させて運転される。 その際、加圧流動床ボイラ6側の系統は、高温ガス排出配管29の高温ガス排出弁30を開き、ガスタービン2の入口部に高温ガスを排出し、ガスタービン2を通過させ、高温排熱回収熱交換器8および低温排熱回収熱交換器9により蒸気タービン系に熱回収し、煙突10から大気に排気し、減圧する。 加圧流動床ボイラ6側の減圧が完了したら、ガスタービン2を停止させまたは低速ターニングさせる。

    【0028】実施例2においても、実施例1と同様に運転できるため、低温排熱回収熱交換器9出口の復水のスチーミングと高温排熱回収熱交換器8出口の給水のスチーミングとを防止し、プラント通常停止時および緊急停止時に、プラントの信頼性を高め、停止時の所内動力を低減できる。

    【0029】《実施例3》図3は、本発明による加圧流動床複合発電プラントの実施例3の構成を示す系統図である。 実施例3は、ガスタービン出口配管28ではなく、高温ガス排出弁30を持った高温ガス排出配管29
    を大気に開放するように接続するとともに、ガス供給弁38を備えたガス供給配管39を併設した点が、実施例1と異なっている。

    【0030】実施例3において、プラント通常停止時は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気圧縮機出口弁23およびガスタービン入口弁26を全閉し、空気供給弁27を開くので、加圧流動床ボイラ6側は、隔離状態となる。 これに対して、ガスタービン2側は、起動用電動機4により、ガスタービン2の回転数を10%に降下させて運転される。 その際、加圧流動床ボイラ6側の系統は、高温ガス排出配管29の高温ガス排出弁30とガス供給弁38とを開き、ガス供給配管39
    からのガスにより高温ガスを冷却または希釈した後、大気に排出する。 加圧流動床ボイラ6側の減圧が完了したら、ガスタービン2を停止させまたは低速ターニングさせる。

    【0031】この場合に、高温ガス排出弁30からの排出量は、高温ガスが空気圧縮機1に逆流することを防止するために、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1
    の風量と煙突10のドラフト風量との合計値以下にする必要がある。 高温ガス排出制御装置33は、加圧流動床ボイラ圧力容器圧力検出器31からの信号と加圧流動床ボイラ出口温度検出器32からの信号とに応じて、高温ガス排出量を制御し、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量との合計値以下に、高温ガス排出量を制御する。 さらに、高温ガス排出弁30からの排出温度は、加圧流動床ボイラ6の温度検出器32からの信号に応じて、ガスタービン出口の設備計画値以内に制御する。

    【0032】また、高温ガス排出制御装置33は、ガス供給弁38からの冷却および希釈に必要なガスすなわち窒素または空気も制御するので、高温ガス中の一酸化炭素などの有害成分を希釈し、大気に排出できる。

    【0033】一方、ガスタービン2側は、回転数が10
    %の空気圧縮機1の風量と煙突10のドラフト風量とガスタービン入口弁26のリーク量との合計値を、低温排熱回収熱交換器9および高温排熱回収熱交換器8の出口を介して、煙突10から大気に放出する。 この場合は、
    ガス量が通常運転時のガス量と比べて非常に少ないので、低温排熱回収熱交換器9出口の復水のスチーミングと高温排熱回収熱交換器8出口の給水のスチーミングとを防止できる。

    【0034】《実施例4》図4は、本発明による加圧流動床複合発電プラントの実施例4の構成を示す系統図である。 実施例4は、実施例1と同様に、ガスタービン入口弁26よりも上流の高温ガス配管25とガスタービン出口配管28との間に、高温ガス排出弁30を持った高温ガス排出配管29を接続した上に、高温ガス排出弁3
    0よりも下流に、ガス供給弁38を備えたガス供給配管39を併設してある。

    【0035】実施例4において、プラント通常停止時は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気圧縮機出口弁23およびガスタービン入口弁26を全閉し、空気供給弁27を開くので、加圧流動床ボイラ6側は、隔離状態となる。 これに対して、ガスタービン2側は、起動用電動機4により、ガスタービン2の回転数を10%に降下させて、転される。 その際、加圧流動床ボイラ6側の系統は、高温ガス排出配管29の高温ガス排出弁30とガス供給弁38とを開き、ガス供給配管39
    からのガスにより高温ガスを冷却または希釈しながら、
    ガスタービン出口配管28を介して、高温排熱回収熱交換器8および低温排熱回収熱交換器9により蒸気タービン系に熱回収した後、煙突10から大気に排出する。 加圧流動床ボイラ6側の減圧が完了したら、ガスタービン2を停止させまたは低速ターニングさせる。

    【0036】この場合に、高温ガス排出弁30からの排出量は、高温ガスが空気圧縮機1に逆流することを防止するために、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1
    の風量と煙突10のドラフト風量との合計値以下にする必要がある。 高温ガス排出制御装置33は、加圧流動床ボイラ圧力容器圧力検出器31からの信号と加圧流動床ボイラ出口温度検出器32からの信号とに応じて、高温ガス排出量を制御し、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量との合計値以下に、高温ガス排出量を制御する。 さらに、高温ガス排出弁30からの排出温度は、加圧流動床ボイラ6の温度検出器32からの信号に応じて、ガスタービン出口の設備計画値以内に制御する。

    【0037】また、高温ガス排出制御装置33は、ガス供給弁38からの冷却および希釈に必要なガスすなわち窒素または空気も制御するので、高温ガス中の一酸化炭素などの有害成分を希釈し、大気に排出できる。

    【0038】一方、ガスタービン2側は、回転数が10
    %の空気圧縮機1の風量と煙突10のドラフト風量とガスタービン入口弁26のリーク量との合計値を、低温排熱回収熱交換器9および高温排熱回収熱交換器8の出口を介して、煙突10から大気に放出する。 この場合は、
    ガス量が通常運転時のガス量と比べて非常に少ないので、低温排熱回収熱交換器9出口の復水のスチーミングと高温排熱回収熱交換器8出口の給水のスチーミングとを防止できる。

    【0039】なお、実施例4は、実施例1の高温ガス排出弁30よりも下流に、ガス供給弁38を備えたガス供給配管39を併設した例であったが、実施例2の高温ガス排出弁30よりも下流に、ガス供給弁38を備えたガス供給配管39を併設してもよいことは、明らかであろう。

    【0040】また、上記各実施例において、空気圧縮機1の回転数を10%に維持することは、単なる例示であって、本発明は、この数値に限定されない。

    【0041】図5は、本発明による加圧流動床複合発電プラントの各実施例における高温ガス排出制御装置33
    の制御ロジックの系統構成を示す図である。 高温ガス排出弁30(およびガス供給弁38)は、ガスの状態値すなわち加圧流動床ボイラ圧力容器5の圧力検出値31および加圧流動床ボイラ6の温度検出値32と、空気圧縮機出口弁23,ガスタービン入口弁26,空気供給弁27
    の開閉状態とに応じて制御される。

    【0042】特に、加圧流動床ボイラ6の温度検出値3
    2は、ガスの自燃温度を基準値とするため、高温ガス排出弁30が開いて高温ガスが流れても、局部的な温度上昇を回避できるように制御する。 すなわち、未燃分のガスが高温ガス配管25または機器に残っていても、自燃温度以下とし、未燃分の燃焼による温度上昇を防止できるようにする。

    【0043】さらに、空気圧縮機1からガスタービン入口弁26までの間の減圧完了後に、高温ガス排出弁30
    を全閉すると、空気圧縮機1からガスタービン入口弁2
    6までの間の金属の温度に応じて、空気圧縮機1からガスタービン入口弁26までの間の圧力が上昇することが考えられるが、このような現象に対しては、タイマを設けて自然放熱すると、十分に冷却できる。

    【0044】図6は、本発明による加圧流動床複合発電プラントの各実施例における風量の時間的変化を示す図である。 図7は、本発明による加圧流動床複合発電プラントの各実施例における弁23,26,27,30の開閉状態と加圧流動床ボイラ圧力容器6の圧力値31とガスタービン回転数との関係を示す図である。

    【0045】図6および図7に示すように、空気圧縮機出口弁23とガスタービン入口弁26とを全閉にして、
    空気供給弁27と高温ガス排出弁30とを開くと、加圧流動床ボイラ6の圧力が低下し、ガスタービン回転数が低下する。 一方、風量は、高温ガス排出弁30からの風量とガスタービン入口弁26からのリーク量との合計値以下、または、空気圧縮機1の風量と煙突10のドラフト量との合計値以下になるので、高温ガスが、空気圧縮機1の側に逆流することがない。 なお、ドラフト量は、
    煙突10の入口のガス温度と大気温度とに基づいて算出できる。

    【0046】

    【発明の効果】本発明によれば、加圧流動床ボイラとガスタービンと蒸気タービンとからなる加圧流動床複合発電プラントにおいて、低温排熱回収熱交換器,高温排熱回収熱交換器出口の復水および給水のスチーミングを防止し、プラント通常停止時および緊急停止時に、プラントの信頼性を高め、停止時の所内動力を低減できる。

    【図面の簡単な説明】

    【図1】本発明による加圧流動床複合発電プラントの実施例1の構成を示す系統図である。

    【図2】本発明による加圧流動床複合発電プラントの実施例2の構成を示す系統図である。

    【図3】本発明による加圧流動床複合発電プラントの実施例3の構成を示す系統図である。

    【図4】本発明による加圧流動床複合発電プラントの実施例4の構成を示す系統図である。

    【図5】本発明による加圧流動床複合発電プラントの各実施例における高温ガス排出制御装置の制御ロジックの系統構成を示す図である。

    【図6】本発明による加圧流動床複合発電プラントの各実施例における風量の時間的変化を示す図である。

    【図7】本発明による加圧流動床複合発電プラントの各実施例における弁開閉状態と加圧流動床ボイラ圧力容器側圧力とガスタービン回転数との関係を示す図である。

    【図8】従来の加圧流動床複合発電プラントの系統構成の一例を示す系統図である。

    【符号の説明】

    1 空気圧縮機 2 ガスタービン 3 ガスタービン発電機 4 起動用電動機 5 加圧流動床ボイラ圧力容器 6 加圧流動床ボイラ 7 高温ガス除塵装置 8 高温排熱回収熱交換器 9 低温排熱回収熱交換器 10 煙突 11 高圧タービン 12 中圧タービン 13 低圧タービン 14 蒸気タービン用発電機 15 復水器 16 復水ポンプ 17 低圧給水加熱器 18 脱気器 19 給水ポンプ 20 高圧給水加熱器 21 汽水分離器 22 空気入口弁 23 空気圧縮機出口弁 24 空気供給配管 25 高温ガス配管 26 ガスタービン入口弁 27 空気供給弁 28 ガスタービン出口配管 29 高温ガス排出配管 30 高温ガス排出弁 31 加圧流動床ボイラ圧力容器圧力検出器 32 加圧流動床ボイラ温度検出器 33 高温ガス排出制御装置 34 主蒸気配管 35 低温再熱蒸気配管 36 高温再熱蒸気配管 37 汽水分離器レベル調節弁 38 ガス供給弁 39 ガス供給配管 40 加圧流動床ボイラバイパス弁 41 加圧流動床ボイラバイパス配管

    ───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 健 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 三島 信義 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 Fターム(参考) 3G081 BA02 BA11 BC07 BD00 DA04 DA06 DA21

    高效检索全球专利

    专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

    我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

    申请试用

    分析报告

    专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

    申请试用

    QQ群二维码
    意见反馈