首页 / 专利库 / 燃料种类 / 合成气 / 用于制氢的变压吸附方法

用于制氢的变压吸附方法

阅读:587发布:2024-02-23

专利汇可以提供用于制氢的变压吸附方法专利检索,专利查询,专利分析的服务。并且本 发明 提供一种变压 吸附 方法,它用于纯化含60-90%(摩尔)氢和杂质,如CO2、CH4、N2和CO的 合成气 物流。本发明的PSA方法还提供一种从进料气体物流中吸附基本上全部氮和其它杂质的方法;其中进料物流在超 大气压 下通过多个吸附剂床,每个吸附剂床至少含CaX,LiA、LiX或含 钙 的混合阳离子沸石,其SiO2/Al2O3比为2.0-2.5。这种方法包括顺序加压、减压,吹洗和再加压含产品氢的吸附剂床,以回收氢的纯度为99.9%以上的产品氢。,下面是用于制氢的变压吸附方法专利的具体信息内容。

1.一种用于纯化含氢在50%摩尔以上的进料流的变压吸附方法, 该方法包括使进料物流在高于大气压的压下通过多层吸附床,其中 来自H2O、N2、CO2、CH4和CO中的至少一种杂质在气体物流通过一层其 SiO2/Al2O3比为2.0-2.5范围的合成沸石吸附剂之前从气流中被吸 附,该合成沸石吸附剂选自CaX、LiX和VSA6吸附剂,其中沸石为X 型,该沸石吸附剂吸附此物流中的基本上全部的氮,并从多层吸附剂 床回收纯的氢作为产品。
2.权利要求1的变压吸附方法,其中进料物流含氮小于3%N2。
3.权利要求1的变压吸附方法,其中进料物流含氮小于1.5%N2。
4.权利要求1的变压吸附方法,其中气体物流在直接通过沸石吸 附剂之前平均含小于0.15%摩尔的CO2。
5.权利要求1的变压吸附方法,其中待处理的进料气体物流是含 氢60-90%摩尔的合成气
6.权利要求1的变压吸附方法,其中进料气体物流首先通过含层的吸附剂床吸附H2O,其次通过活性层吸附CO、CH4和CO2, 然后通过沸石层以吸附氮。
7.权利要求1的变压吸附方法,其中H2O、CO2、CH4和CO在气体 物流通过天然存在的沸石吸附剂或合成的沸石吸附剂之前基本上从气 体物流中被吸附。
8.权利要求1的变压吸附方法,该方法包括使该物流在5-20bar 的压力下,利用下列工序通过四个吸附剂床,每个床包括一层该天然 存在的或合成的沸石以从气体物流中吸附氮:
a.工序1:床1处于压为11.72bar的第一吸附工序,同时床2 正在进行逆流排空,床3正在进行第一均衡下降工序,床4正在进行 第二压力均衡升高工序;
b.工序2:床1处于第二吸附工序,同时向床4供应产品气体, 床4正在进行第一产品加压工序,同一时间内,床2、3和4正在分别 进行吹洗、同流减压和第一产品加压;
c.工序3:床1处于第3吸附工序,同时向床4供应产品气体, 床4正在进行第二产品加压工序,在同一时间周期内,床2、3和4正 在分别进行第一均衡上升工序,第二均衡下降工序和第二产品加压工 序;
d.工序4:床1正在进行第一均衡下降工序,同时床2从床1接 收气体,并正在进行第二均衡上升工序,床3和4这时正在分别进行 排空和第一吸附工序;
e.工序5:床1正在进行同流减压工序,以为床3提供吹洗气, 同时床2和4正在分别进行第一产品加压和第二吸附工序;
f.工序6:床1以向床3送去低压均衡气而进行第二均衡下降工 序,床3正在进行第一平衡上升工序,床2和4正在分别进行第二产 品加压和第三吸附工序;
g.工序7:床1和2分别进行逆流排空和第一吸附工序,在这段 时间内床3和4正在分别进行床到床的均衡,即床3和4正在分别进 行第二均衡上升和第一均衡下降工序;
h.工序8:床1这时正在接收从床4来的吹洗气体,而床2和3 正在分别进行第二吸附工序和第一产品加压工序;
i.工序9:床1以从床4接收低压均衡气体而正在进行第一平衡 上升工序,床4则正在进行第二均衡下降工序,在同一时间内床2和3 正在分别进行第三吸附工序和第二产品加压工序;
j.工序10:床1以接收来自床2的高压均衡气正在进行第二均衡 上升工序,而床2则正在进行第一均衡下降工序,在同一时间内床3 和4正在分别进行第一吸附工序和逆流排空工序;
k.工序11:床1正在接收来自床3的第一产品加压气体,而床3 同时处于第二吸附工序,同时床2正在进行同流减压工序,以向床4 提供吹洗气体;
l.工序12:床1正在接收从床3来的第二产品加压气体,床3 同时处于第三吸附工序,在同一时间内,床2以将低压均衡气体送至 床4进行第二均衡下降工序,而床4正在进行第一均衡上升工序。
9.权利要求1的变压吸附方法,其中总床尺寸因子小于9,000 lb/TPD的氢,氢回收率为80%以上。
10.一种用于纯化含氢进料气体物流的PSA系统,其中每个吸附 剂床包括:
a.用于去除H2O的吸附剂层;
b.用于去除一种或多种选自二氧化碳、甲烷和一氧化碳的污染物 的吸附剂层;和
c.用于去除N2的CaX、LiX或VSA6沸石吸附剂的吸附剂层,其中 沸石为X型,该沸石吸附剂的SiO2/Al2O3比为2.0-2.5的范围。
11.权利要求1的变压吸附方法,其中纯的氢的纯度大于99.9%。

说明书全文

发明涉及一种纯化不纯气流的变压吸附方法(PSA),该气流中 氢的摩尔含量大于50%,更具体而言,涉及从各种含氢进料混合物, 诸如合成气制备高纯氢气的方法。这种改进型方法与先前已知的用于 制氢的PSA方法相比,氢的回收率较高,吸附剂装料量较低。

化学工艺工业对高纯(>99.9%)氢的需求日益增长,例如的热 处理、的制造、脂肪和油脂的氢化、玻璃的制造,氢化裂解,甲醇 的制造,羰基合成醇类的制造和异构化过程。这种增长的需求要求开 发高效分离方法从各种进料混合物制备氢。为了获得高效的PSA分离 方法,PSA系统的基建投资和运行费用两者都应降低。

降低PSA系统费用的一条途径是降低PSA过程的吸附剂装料量和 吸附床数。此外,进一步的在PSA过程中采用先进的循环和吸附剂也 可进一步改进。但是,1-12工序的进料气体含多种杂质,例如CO2(20 %-25%)以及少量H2O(<0.5%)、CH4(<3%)、CO(<1%)和N2 (<1%)。这种组成变化很宽的各种各样的被吸附物加上对氢的高纯 (>99.9%)要求对获得一种高效的PSA过程在每个床层吸附剂的有效 选择、结构和量方面均构成巨大的挑战。

存在多种已知的制氢方法,例如,附图1所示的天然气或石脑油 的蒸汽重整,其中进料,例如天然气物流11经压缩并送入纯化装置12 以去除硫的化合物。经脱硫的进料物流然后与过热蒸汽混合并送入重 整器13以产生初级H2和CO。重整器的流出物流送入热回收装置14, 然后送入变换炉15以得附加的H2。来自变换炉的流出物在装置16中 冷却并回收。流出物即合成气流17的组成约为74.03%的H2、22.54 %的CO2、0.36%的CO、2.16%的CH4和0.91%的N2(以干气计), 然后进入PSA纯化系统18,以制备高纯氢产品物流19。

用于纯化氢的有代表性的现有PSA方法包括下列专利:(1)Wagner, 美国专利No.3,430,418,(2)Batta,美国专利No.3,564,816,(3) Sircar等人,美国专利No.4,077,779,(4)Fudever等人,美国专利 No.4,553,981,(5)Fong等人,美国专利No.5,152,975和(6)Kapoor 等人,美国专利No.5,538,706。

用于氢的PSA过程中的吸附器依据串联区内要被去除的具体杂质 从概念上分成多个区。例如,Wagner(美国专利No.3,430,418)组 合使用两种类型的吸附剂,例如以活性去除H2O和CO2,以及以沸 石A去除CO和CH4(参见例1)。Wagner的专利叙述了一种八工序的 纯化氢的PSA循环。过程中至少采用四个床;其后为床到床的均衡工 序,每个床在逆流排空之前经同流减压以回收空隙空间气体用于吹洗 另一床。

Batta(美国专利No.3,564,816)叙述了一种十二工序的PSA循 环,采用了至少四个吸附剂床和两个压平衡工序以分离天然气蒸汽 重整产生的含杂质H2O、CO2、CH4和CO的含氢气体混合物。在Batta 流程中,同流减压工序接着第一床到床的均衡工序以回收空隙空间气 体用于吹洗另一床。第二床到床的均衡工序在PSA循环逆流排气工序 之前使用。

Sircar(美国专利No.4,171,206)公开了一种PSA流程,其中 粗氢物流(诸如碳氢重整车间变换炉的气体流出物)流经活性碳的第 一床(对去除CO2有效),然后再经过5A沸石的第二床(对去除稀释 杂质如CH4和/或CO有效),以得到高纯(>99.9%)氢。

Golden等人,(美国专利No.4,957,514)公开了利用钡-交换 的X型沸石去除CO、CH4和N2杂质的氢纯化流程。按照Golden方法, 优选的BaX沸石是一种NaX沸石的60-100%钠阳离子被钡阳离子取 代的沸石。Golden比较了氢纯化过程中的BaX(96%Ba、4%Na), CaX(98%Ca、2%Na),Ca/SrX(50%Ca、50%Sr)和市售5A沸石 的吸附剂需求量。对于给定的进料流量和H2纯度。在采用BaX的情况 下,氢纯化过程所需沸石量最小。Golden对用于CO或CH4的吸附剂 排列如下:BaX>Ba/SrX>5A>SrX>Ca/SrX>CaX。具体而言,对于除去 CO和CH4杂质,CaX排到最后。

Scharpf等人,(美国专利No.5,294,247)公开了从来自炼油厂 的含<60%氢的烯尾气中回收氢的真空PSA流程。该专利采用六个吸 附剂床,每床含一层活性碳、一层13X沸石、一层5A沸石和一层CaA 沸石或钙交换X沸石。这种四层排列被认为能有效去除进料浓度大(>1 %)的CO和CO2。

最近,Bomard等人在国际专利申请WO 97/45363中公开了从含 CO以及其它诸如CO2和类杂质的气体混合物中分离氢的方法。在 Bomard的申请中,进料混合物通入第一选择吸附剂(例如活性碳)以 去除CO2和烃类。然后与第二吸附剂即含至少80%锂交换的八面沸石 接触,以去除主要杂质CO,得到高纯氢。此外,第三吸附剂(5A沸 石)可置于第一和第二吸附剂之间,以去除也存在于进料混合物中的 N2。

同样已知利用PSA流程从空气中选择吸附N2,制备富气体的流 程。Berlin,(美国专利No.3,313,091)叙述了锶取代X型沸石在这 种流程中的应用,并且规定Ca2+,Sr2+和Ag+是优选交换的阳离子,而 且Sr2+是最有希望的。在A型沸石的情况下,Ca2+,Mg2+和Ag+是优选离 子。

Coe等人,(美国专利No.4,481,018),公开了包括N2和O2分 离PSA空分流程,该流程采用钙-交换形式的X沸石,并表明随钙含 量的增加PSA流程性能提高。但是,Chao(美国专利Nos,5,698,013 和5,454,857)指出了钙交换形式的X沸石在空分中低于最大钙含量 的峰值性能。具体而言,峰值性能出现在钙交换程度为60-89当量 百分数处,以及SiO2/Al2O3摩尔比在2.0-2.4的范围内。

H2PSA流程的操作条件明显区别于从空气制氧的PSA流程。在 VPSA空分中的典型吸附压力低于2.5bar,而在H2PSA中的吸附压 力为5-20bar。

这两个流程的进料物流中N2的重有明显的差别,例如,N2在空气 中的份额约78%;而在氢的纯中,N2在进料物流中的典型份额低于1 -3%(摩尔)。因此,上述参考文献中所公开的用于空分的N2选择 吸附剂应在不同于H2PSA流程纯化功能所要求的等温线的N2分压区 内操作。此外,N2在O2VPSA和H2PSA流程中的差分负荷对给定的N2 选择吸附剂(例如沸石)完全不同。设计H2PSA流程的其它复杂性来 自混合物中每个被吸附物的竞争吸附和扩散速率。在选择改进型吸附 剂和设计H2PSA流程时,对上述的全部问题应作适当的考虑。

迄今H2PSA流程所用的典型吸附剂为5A沸石,这种沸石由钙(约 75%)与4A沸石中存在的钠离子进行交换制取。

本发明的目的之一在于提供一种从含50%(摩尔)以上氢的不纯 气流中制氢的改进型PSA方法,这种改进表现在氢的收率提高、吸附 剂减少和基建和运行费用降低。本发明的其它目的和优点将用下面的 叙述加上附图予以表述。

本发明提出了一种改进型PSA方法,以纯化含氢大于50%(摩尔) 的气流,该方法包括使气流在超大气压下通过含CaX、LiA或LiX型 沸石吸附剂的吸附床,吸附这股物流中几乎全部的N2,该吸附剂中 SiO2/Al2O3摩尔比在2.0-2.5范围内,并从吸附剂床回收纯化的氢作 为产品。用提供辅助吸附剂层在CaX、LiA或LiX沸石吸附剂的上游 去除其它杂质,诸如,H2O、CO2、CH4、和CO,从而回收高纯(≥99.9 %)氢产品。

根据本发明的另一特征,几乎全部的CO2首先被去除,即留下小 于0.15%(摩尔),优选小于0.10%(摩尔)CO2接着通过沸石层, 使残余CO2同N2一道被去除。按照这种去除杂质的对策所设计的吸附 剂床与现有的制氢PSA方法相比可增加H2的回收和减少除N2所需沸石 的量。

本发明的方法优先采用的吸附剂为CaX沸石,最有前景的为CaX (2.0),这是一种八面沸石型沸石,其中至少90%以钙交换, SiO2/Al2O3的摩尔比为2.0。CaX(2.0)与其它N2-选择吸附剂相比, 在给定的P/F(吹洗:进料)比下单位重量的吸附剂能处理更多的进料 气体。因此,采用CaX(2.0)可使除N2所需的吸附剂量明显降低, 即减少床尺寸因子。此外,床尺寸因子的减小可降低吸附床再生过程 中的H2损失。这反过来又会使氢的回收高于其它N2选择吸附剂。

附图中:

图1表示以天然气蒸汽重整制氢的现有技术流程;

图2表示300°K下CaX(2.0)和其它选择沸石吸附剂对N2的吸 附等温线的比较;

图3表示CaX(2.0)和其它吸附剂的差分N2荷负的比较;

图4表示300°K下CaX(2.0)和其它N2选择吸附剂的CO2吸附等 温线的比较;

图5表示本发明的PSA吸附床;

图6表示实现本发明PSA方法的四床系统;

图7表示本发明的优选实施方案中一个完整的PSA循环过程的代 表性床压分布图;

图8表示所述实施方案中一个吸附床在高压吸附工序终结时的代 表性气体组分的摩尔分数;

图9表示图5所示系统的N2选择层分别采用CaX(2.0)、5A、 LiX和VSA6等沸石吸附剂的计算机模拟PSA流程性能的比较;

图10表示例证的四床PSA方法所需的CaX(2.0)、5A、LiX和 VSA6沸石量的比较;以及

图11表示CaX(2.0)、5A、LiX和VSA6沸石上N2的差分负荷比 较。

如上所述,本发明的PSA方法提供从含50%(摩尔)以上H2,优 选含60-90%(摩尔)氢的气体物流中回收高纯(大于99.9%)氢 的改进回收。该方法特别适用于从图1所示的重整过程中回收的进料 物流中产生的合成气的纯化。这种物流可含60-90%(摩尔)氢及包 括CO2、H2O、CH4、N2和CO等杂质。

人们希望使该物流在超大气压下通过多个吸附剂床实现纯化,每 个床至少包括一个吸附剂层,以吸附气流中几乎全部的N2,该吸附剂 层含CaX、LiA或LiX沸石,其SiO2/Al2O3比例在2.0-2.5范围内。 过程包括顺序有产品氢的吸附剂床的加压、减压、吹洗和再加压等工 序,预期制取的氢产品的纯度在99.9%以上,呈未吸附的流出物从床 流出。

如上所示,本发明实施中所采用的优选CaX沸石吸附剂是CaX (2.0),曾经发现,这种吸附剂与其它N2-选择吸附剂相比具有优 良的氮吸附能力,其它有效的Ca-交换沸石可由天然存在的结晶沸石 分子筛如菱沸石、毛沸石、斜发沸石和八面沸石制备。另外,有效的 CaX沸石包括混合阳离子(例如Ca2+和Na+)沸石,诸如由Des Plaines 的UOP,IL开发的VSA-6,其中含74%的Ca2+,SiO2/Al2O3比例为2.3。 一般说来,“混合阳离子”系指至少含两种不同阳离子的吸附剂。这 种吸附剂还包括例如LiSrX、CaLiX、CaNaX等等。

SiO2/Al2O3比例在2.0-2.5范围内的LiA和LiX沸石对上面所述 的过程是有效的。其它一些显示改进性能的吸附剂包括混合的锂/碱 土金属A型和X型沸石,其SiO2/Al2O3摩尔比在2.0-2.5范围内, 诸如CaLiX(2.3),其钙含量为15-30%(参见Chao等人,美国专 利Nos 5,413,625;5,174,979;5,698,013;5,454,857和 4,859,217)。先前专利所公开的沸石引为本文参考。

CaX(2.0)作为氮吸附剂的优越性可用图2和图3说明。图2比 较了300°K下CaX(2.0)和其它沸石的氮吸附等温线,图3比较了几 种吸附剂上的N2差分负荷。图3中对各吸附剂的差分负荷是作为循环 中吸附和脱附工序终点之间N2在吸附剂上负荷差来测定的。计算中所 采用的吸附和脱附工序终点的压力、温度和N2成分分别为(11.7bar, 306°K,YN2=0.008)以及(1.36bar,306°K,YN2=0.025)。采用纯组 分等温线数据加上多组分等温线模型以确定上述条件下的负荷。

图2表明,CaX(2.0)在较大的吸附分压范围内表现出的N2吸附 比5A和VSA6大得多。从图3还可看出,CaX(2.0)、LiX(2.3)、 VAS6、LiX(2.0)、CaLiX(2.3)和CaX(2.0)/13X混合物与13X、 5A、NaY、活性氧(A201)和活性碳相比表现出优异的差分N2负 荷。

图4说明,300°K下不同沸石吸附CO2量的比较。在CO2分压超过 大约2大气压时,CO2强烈地吸附在CaX(2.0)上,在这个方面只有 LiX超过CaX。在大量CO2吸附在这些N2选择沸石上的情况下,用变压 吸附再生极为困难,即在H2PSA过程的典型操作条件下极为困难。在 CO2同N2共吸附时,对N2和其它痕量杂质的吸附能力降低,其结果将损 害PSA的过程性能和氢的纯度。因此,如上所述,希望在进料气流通 过CaX、LiA或LiX沸石层之前从其中吸附其它杂质,例如CO2、H2O、 CH4和CO。具体而言,重要的是要在气体物流到达沸石之前将气流中的 CO2含量降到0.15%(摩尔)以下,优选降至0.05-0.10%(摩尔) 以下。

在本发明的实施中,优选具有多层的一个或多个吸附剂床以去除 上述杂质。一种优选的层结构示于图5,它表示实施方案的吸附剂床 20。床20包括第一氧化铝层21以从进料气流中去除H2O,该气流即是 图1所示重整技术的合成气流17。接着层21的是活性碳层22以从进 料气流中去除CO2,使其浓度降至约0.15%(摩尔)。最后CaX、LiA 或LiX吸附剂层23置于床的产品端以去除N2,由此产生预期的高纯H2 产品物流19。本领域专业技术人员理解,其它吸附剂可以取代21层的 氧化铝以吸附H2O,例如沸石、硅胶,其它CO2选择吸附剂可取代床20 的22层的活性碳。

本发明的H2PSA方法适于在现有技术所采用的条件下操作,例如 美国专利No.3,564,816所述的条件,其过程参数引为本文参考。这 样,N2在CaX、LiA或LiX吸附剂层上的吸附可在250-350°K的温度 和5-20bar的总压下进行。吸附剂层然后可以减压,并在250-350°K 温度和0.50-1.70bars总压下进行吹洗。采用CaX、LiA或LiX吸 附剂的H2PSA系统的具体温度、压力和其它操作条件,根据本发明将 取决于具体PSA系统的设计。操作条件的选择同样取决于床的其它层 所选的吸附剂、料气组成和流量以及与PSA单元示于图1的其它单元 操作所组成的整体相关的其它参数。

实施例

本发明将用下面的计算机模拟实施方案作更全面的描述,实施方 案采用图6所示的四床系统,每床采用按下列顺序排列的氧化铝、活 性碳和N2选择吸附剂。床压和轴向气相浓度分布分别示于图7和图8。 开关逻辑、时间间隔、PSA循环的工序顺序列于下面的表1。

例证性循环的12个工序的顺序如下:

工序1(AD1):床1(B1)处于压为11.72bar的第一吸附工序 (AD1),同时床2(B2)正在进行逆流排空(BD),床3(B3)正在 进行第一均衡下降工序(EQ1DN),床4(B4)正在进行第二压力均衡 升高工序(EQ2UP)。

工序2(AD2):B1处于第二吸附工序(AD2),同时向床4供应 产品气体,床4正在进行第一产品加压工序(PP1)。同一时间内, 床2、3和4正在分别进行吹洗、同流减压和第一产品加压。

工序3(AD3):床1处于第3吸附工序(AD3),同时向床4供 应产品气体,床4正在进行第二产品加压工序(PP2)。在同一时间 周期内,床2、3和4正在分别进行第一均衡上升工序(EQ1UP),第 二均衡下降工序(EQ2DN)和第二产品加压工序(PP2)。

工序4(EQ1DN):床1正在进行第一均衡下降工序(EQ1DN), 同时床2从床1接收气体,并正在进行第二均衡上升工序(EQ2UP)。 床3和4这时正在分别进行排空(BD)和第一吸附工序(AD1)。

工序5(PPG):床1正在进行同流减压工序,以为床2提供吹洗 气(PPG),同时床2和4正在分别进行第一产品加压(PP1)和第二 吸附工序(AD2)。

工序6(EQ2DN):床1以向床3送去低压均衡气而进行第二均衡 下降工序(EQ2DN),床3正在进行第一平衡上升工序(EQ1UP)。床2 和4正在分别进行第二产品加压(PP2)第三吸附工序。

工序7(BD):床1和2分别进行逆流排空(BD)和第一吸附工序 (AD1)。在这段时间内床3和4正在分别进行床到床的均衡,即床3 和4正在分别进行第二均衡上升(EQ2UP)和第一均衡下降(EQ1DN) 工序。

工序8(PG):床1这时正在接收从床4来的吹洗气体(PG),而 床2和3正在分别进行第二吸附工序和第一产品加压工序(PP1)。

工序9(EQ1UP):床1以从床4接收低压均衡气体而正在进行第 一平衡上升工序(EQ1UP),床4则正在进行第二均衡下降工序 (EQ2DN)。在同一时间内床2和3正在分别进行第三吸附工序(AD3) 和第二产品加压工序(PP2)。

工序10(EQ2UP):床1以接收来自床2的高压均衡气正在进行 第二均衡上升工序(EQ2UP),而床2则正在进行第一均衡下降工序 (EQ1DN)。在同一时间内、床3和4正在分别进行第一吸附工序(AD1) 和逆流排空工序(BD)。

工序11(PP1):床1正在接收来自床3的第一产品加压(PP1) 气体,而床3同时处于第二吸附工序(AD2),同时床2正在进行同流 减压工序,以向床4提供吹洗气体(PPG)。

工序12(PP2):床1正在接收从床3来的第二产品加压(PP2) 气体,床3同时处于第三吸附工序(AD3)。在同一时间内,床2以将 低压均衡气体送至床4进行第二均衡下降工序(EQ2DN),而床4正在 进行第一均衡上升工序(EQ1UP)。

上述12工序的PSA过程综合列于下表1。具体而言,表1综合了 示于图6的四床PSA系统的一个完整循环内的阀门顺序。表1指出, 四床PSA过程平行操作,在整个循环的1/4时间内,一个床处于吸附 工序,同时其它床或者正在进行压力均衡、吹洗、排空或产品加压。

表1:四床H2PSA阀门开关

(0=开,C=关)

  工序     1     2     3     4     5     6     7     8     9     10     11     12   时间   (Sec)     40     85     25     40     85     25     40     85     25     40     85     25   床1   (BD1I)     AD1     AD2     AD3     EQ1     DN     PPG     EQ2     BD     PG     EQ1     UP     EQ2     UP     PP1     PP2   床2   (BD2)     BD     PG     EQ1     UP     EQ2     UP     PPI     PP2     AD1     AD2     AD3     EQ1     DN     PPG     EQ2     DN   床3   (BB3)     EQ1     DN     PPG     EQ2     DN     BD     PG     EQ1     UP     EQ2     UP     PP1     PP2     ADI     AD2     AD3   床4     EQ2     UP     PP1     PP2     AD1     AD2     AD3     EQ1     DN     PPG     DN     BD     PG     EQ1     UP   阀门No.   31     O     O     O     C     C     C     C     C     C     C     C     C   32     C     C     C     C     C     C     O     O     O     C     C     C   33     C     C     C     C     C     C     C     C     C     O     O     O   34     C     C     C     O     O     O     C     C     C     C     C     C   35     O     O     C     O     O     C     O     O     C     O     O     C   36     C     C     C     C     C     C     O     O     C     C     C     C   37     O     O     C     C     C     C     C     C     C     C     C     C   38     C     C     C     O     O     C     C     C     C     C     C     C   39     C     C     C     C     C     C     C     C     C     O     O     C   40     C     O     O     C     O     O     C     O     O     C     O     O   41     O     O     O     C     C     C     C     C     C     C     C     C   42     C     C     C     C     C     C     O     O     O     C     C     C   43     C     C     C     C     C     C     C     C     C     O     O     O   44     C     C     C     O     O     O     C     C     C     C     C     C   45     C     C     C     C     O     O     C     O     O     C     C     C   46     C     O     O     C     C     C     C     C     C     C     O     O   47     C     O     O     C     O     O     C     C     C     C     C     C

    48     C     C     C     C     C     C     C     O     O     C     O     O     49     C     C     C     O     C     C     C     C     C     O     O     O     50     C     C     C     O     O     O     C     C     C     O     C     C     51     O     C     C     C     C     C     O     O     O     C     C     C     52     O     O     O     C     C     C     O     C     C     C     C     C

应该指出,12工序的PSA循环只是示例性的,其目的在于展示, 在示于图6的吸附剂床的上层吸附剂用CaX取代5A提高了PSA过程 性能。其它根据本发明而不偏离其范围的PSA循环同样可用于提高 PSA过程的性能。

一种基于参加过程的主要物料和能量平衡的详细吸附模型已用 于模拟上述的PSA过程。一种可忽略轴向弥散的活塞式流动被用于全 部PSA模拟中。模型的另一些特点包括:床压降、多组分等温度(用 负荷比率关联确定)、绝热能量平衡和吸附速率(用线性推动力确 定)。可以看出,模拟结果与中试规模试验所得过程性能结果符合甚 好。

下列实例1-4所示结果系PSA模拟所得结果,模拟采用下列进 料混合物(以干气计):74.03%H2、22.54%CO2、0.36%CO、2.16 %CH4和0.91%N2。同时,总床尺寸因子为1-12工序每天每吨生成 的吸附剂总量。

实例1-CaX(2.0)吸附剂的应用

下面的表2列出了一种流程的操作条件和PSA性能,该流程采用 CaX(2.0)吸附剂作为图6所示的系统中吸附剂床B1-B4的每个床 的顶层。过程进行的方式按表1和图7,图8所示。表2-5中的符号 表示:TPD=吨/日氢;s=时间,单位为秒;吨为2000磅。

表2-实例1

循环时间s 600 床第一层的吸附剂 氧化铝 氧化铝量(1b/TPD H2) 1.0385×103 床第二层的吸附剂: 活性碳 活性碳量(1b/TPD H2) 4.9170×103 床第三层的吸附剂: CaX(2.0)沸石 CaX(2.0)沸石量(1b/TPD H2) 1.5102×103 高压:kPa 1.171×103 低压:kPa 1.327×102 进料通量:kmol/s m2 1.392×10-2 氢的纯度: 99.993% 氢回收率: 81.6% 总床尺寸因子(1b/TPD H2): 7.4657×103 温度:K 311

实例2-LiX吸附剂的应用

下面的表3列出了一种流程的操作条件和PSA性能,该流程采用 liX沸石吸附剂作为吸附剂层B1-B4各床的顶层,过程的进行方式与 实例1相同。

表3-实例2,LiX沸石

循环时间s 600 床第一层的吸附剂 氧化铝 氧化铝量(1b/TPD H2): 1.0645×103 床第二层的吸附剂: 活性碳 活性碳量(1b/TPD H2): 5.0400×103 床第三层的吸附剂: LiX沸石 LiX沸石量(1b/TPD H2) 2.5801×103 高压:kPa 1.171×103 低压:kPa 1.327×102 进料通量:kmol/s m2 1.392×10-2

氢的纯度: 99.993% 氢回收率: 79.61% 总床尺寸因子(1b/TPD H2): 8.6845×103 温度:K 311

实例3-VSA6吸附剂的应用

下面的表4列出了一种流程的操作条件和PSA性能,该流程采用 VSA6沸石吸附剂作为吸附剂床B1-B4各床的顶层,过程进行的方式 仍与实例1相同。

表4-实例3,VSA6沸石

循环时间s 600 床第一层的吸附剂 氧化铝 氧化铝量(1b/TPD H2) 1.0568×103 床第二层的吸附剂: 活性碳 活性碳量(1b/TPD H2) 5.0035×103 床第三层的吸附剂: VSA6沸石 VSA6沸石量(1b/TPD H2) 2.3906×103 高压kPa 1.171×103 低压:kPa 1.327×102 进料通量:kmol/s m2 1.392×10-2 氢的纯度: 99.984% 氢回收率: 80.19% 总床尺寸因子(1b/TPD H2): 8.4509×103 温度:K 311

实施4对比例-采用5A沸石的对比流程

下面的表5列出了一种流程的操作条件和PSA性能,该流程采用 5A沸石吸附剂作为吸附剂床B1-B4各床顶层,过程进行的方式与实 例1相同。

表5:参照,5A沸石

循环时间s 640 床第一层的吸附剂 氧化铝 氧化铝量(1b/TPD H2) 1.2108×103 床第二层的吸附剂: 活性碳 活性碳量(1b/TPD H2) 5.7326×103 床第三层的吸附剂: 5A沸石 5A沸石量(1b/TPD H2) 7.0511×103 高压kPa 1.171×103 低压:kPa 1.327×102 进料通量:kmol/s m2 1.392×10-2 氢的纯度: 99.991% 氢回收率: 70.0% 总床尺寸因子(1b/TPD H2): 1.3995×104 温度:K 311

如下表6和图9和图10所示,采用CaX(2.0)沸石吸附剂与采 用LiX、VSA6和5A沸石相比,提供了远为优良的结果。另一方面, 采用LiX和VSA6沸石,其结果在明显减少吸附剂的情况下明显提高 H2的回收率,并且其床尺寸因子亦大大小于5A沸石。

表6-CaX(2.0)沸石和其它N2-选择沸石吸附剂的性能对比

    例1     例2     例3     对比     N2吸附剂     CaX(2.0)     LiX     VSA6     5A     N2吸附剂量     (1b./TPD H2)     1.5102×103     2.5801×103     2.3906×103     7.0511×103     H2纯度     99.993%     99.993%     99.984%     99.991%     H2回收率     81.6%     79.61%     80.19%     70.0%     总床尺寸因子     (1b./TPD H2)     7.4657×103     8.6845×103     8.4509×103     1.3995×104

表6和图9的结果表明,在氢纯度(99.99%)相同的情况下, 5A沸石的H2回收率约为70%,其余吸附剂的H2回收率为80%。CaX (2.0)在给定的P/F比下与其余吸附剂相比,单位重量吸附剂能容 许更多的进料气体,即是说,CaX(2.0)的床尺寸因子(BSF)最低。

如图10所示,与5A沸石相比,采用CaX(2.0)沸石,其沸石用 量少78%。同时,采用LiX或VSA6取代5A沸石,在氢纯度(99.99 %)和回收率(>78%)相同的情况下其沸石量可减少65%。由于采用 CaX能使床尺寸因子较小,从而使总的空隙体积减小,这样可减小床再 生过程中的氢损失,即是说,使氢回收率提高。从图8还可看出,N2 基本上在床的CaX沸石层去除(节点32-49),同时其它杂质(例如, CO2、CH4和CO)在沸石层上游的氧化铝层(节点1-17)和活性碳层 (节点17-32)中去除。

CaX(2.0)沸石优良的吸附特性进一步在图11中得到说明,图11 表明N2在CaX(2.0)上的差分负荷或生产能力及其与5A、LiX和VAS6 沸石的比较。N2在CaX(2.0)的差分负荷比5A沸石多5倍,N2在LiX 和VAS6上的差分负荷比5A沸石多3倍。图11中各吸附剂上N2差分负 荷是用与上面的图3相同的条计算的。如对比试验和上述图所示,按 照本发明,CaX(2.0)是选择用于本发明的H2 PSA过程的吸附剂。

虽然上述PSA流程针对H2的制备,但本发明的关键特征都可扩展 到其它分离过程,例如,从合成气和其它含CO2的气源中制取CO2,或 在其它PSA过程中生产H2和CO。例如CaX(2.0)可取代其它一些要 求去除痕量或低浓N2的分离过程中的5A或LiX沸石,以便提高PSA 流程性能和获得高纯产品。

此外,每个吸附剂床的沸石层/区可用多层不同的吸附剂取代。例 如,均相沸石层可用置于各单独区内含有不同吸附剂材料的复合吸附 剂层代替,同时在每个区内可应用的处理条件下使用有利于特定吸附 剂材料的吸附性能的温度条件。

应该理解,在不偏离本发明的前提下,这里的PSA方法的优选参 数可作这样或那样的变化。因此,本文试图从附录的权利要求确定本 发明的范围。

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈