首页 / 专利库 / 燃料种类 / 燃料 / 生物燃料 / 液化纤维素材料的方法

液化纤维素材料的方法

阅读:4发布:2020-11-15

专利汇可以提供液化纤维素材料的方法专利检索,专利查询,专利分析的服务。并且本 发明 提供一种 液化 纤维 素材料以产生液化产品的方法,所述方法包括使所述纤维材料与包含加氢金属或其前体的加氢催化剂、液体介质和氢源 接触 ,所述加氢催化剂包括巨孔结构,其中所述巨孔结构包含至少60vol%的孔隙率和所述巨孔结构至少30vol%的孔体积存在于直径等于或大于1微米的巨孔内。,下面是液化纤维素材料的方法专利的具体信息内容。

1.一种液化纤维素材料以产生液化产品的方法,所述方法包括使纤维材料与以下物质接触
-包含加氢金属或其前体的加氢催化剂,所述加氢催化剂包括巨孔结构,其中所述巨孔结构包含至少60vol%的孔隙率和所述巨孔结构至少30vol%的孔体积存在于直径等于或大于1微米的巨孔内;
-液体介质;和
-氢源。
2.权利要求1的方法,其中所述方法包括使液体介质中的纤维素材料与固定床中的加氢催化剂接触。
3.前述权利要求任一项的方法,其中所述加氢催化剂的巨孔结构为整泡沫或蜂窝。
4.前述权利要求任一项的方法,其中所述加氢催化剂包含在石墨片上载带的加氢金属和/或其前体,所述石墨片的孔隙率为至少60vol%和至少30vol%的孔体积存在于孔径为至少1微米的巨孔内。
5.前述权利要求任一项的方法,其中所述加氢金属选自、钴、镍、、钌、铑、钯、铱、铂、金及它们的混合物。
6.前述权利要求任一项的方法,其中所述巨孔结构包括无机金属化物。
7.前述权利要求任一项的方法,其中所述加氢催化剂包括:
-包含至少60vol%的孔隙率的巨孔结构,和巨孔结构至少30vol%、更优选至少
50vol%、最优选至少90vol%的孔体积存在于直径等于或大于1微米的巨孔内;
-非巨孔、优选为介孔的催化层,所述催化层等于或大于70vol%的孔体积在直径小于
1微米的孔内,所述非巨孔的催化层沉积在巨孔结构上,和所述非巨孔的催化层包含加氢金属和/或其前体。
8.前述权利要求任一项的方法,其中所述纤维素材料还与附加的酸催化剂接触。
9.一种由纤维素材料生产生物燃料组分的方法,所述方法包括:
a)使所述纤维素材料与包含加氢金属或其前体的加氢催化剂、液体介质和氢源接触,以产生液化产品,其中所述加氢催化剂包括巨孔结构,其中所述巨孔结构包含至少60vol%的孔隙率,和所述巨孔结构至少30vol%的孔体积存在于直径等于或大于1微米的巨孔内;
b)转化至少部分所述液化产品,以产生燃料组分和/或燃料组分前体;和c)应用所述燃料组分和/或燃料组分前体制备燃料。
10.权利要求9的方法,所述方法包括使液体介质中的纤维素材料与固定床中的加氢催化剂接触。
11.权利要求9或10的方法,其中所述燃料为生物柴油、生物油或生物汽油
12.可由权利要求9或10的方法获得的生物燃料组分。

说明书全文

液化纤维素材料的方法

技术领域

[0001] 本发明涉及液化纤维素材料的方法、由纤维素材料生产生物燃料组分的方法和可由所述方法获得的生物燃料组分。

背景技术

[0002] 纤维素材料可以被转化为有价值的中间产物,所述中间产物可以进一步处理为燃料组分,纤维素材料作为原料用于生产可持续的生物燃料和/或化学品引起了相当大的兴趣。
[0003] 来自生物源如纤维素材料的可燃燃料和化学品通常分别被称为生物燃料和/或生物化学品。应用生物源可以允许更加可持续地生产燃料和/或化学品和更加可持续的进行CO2排放,而这种CO2排放可能有助于满足京都协议中的全球CO2排放标准(即减少温室气体排放)。
[0004] 这种生物燃料可以用于与传统的石油衍生燃料共混。用于与传统汽油燃料共混的生物燃料包括醇,特别是乙醇。生物燃料如衍生自油菜籽棕榈油脂肪酸甲酯可以与传统的柴油燃料共混。但这些生物燃料源自可食用原料,和因此与食物生产竞争。
[0005] 衍生自非食用可再生原料如纤维素材料的生物燃料在经济和环境方面变得越来越重要。
[0006] WO 2012/035410描述了例如可由植物如草、树、木片等衍生的生物油,其可以在类液体中分散和经受加氢重整步骤。WO2012/035410表明这种生物油可以通过热化学液化、尤其是热解获得。表明可以加入催化剂以在所谓的催化热解中提高转化率。
[0007] 在WO 2011/141546中描述了液化纤维素材料的方法,其中通过使纤维素材料如木材与酸催化剂、、极性共溶剂、氢源和加氢催化剂同时接触而将其液化。所述加氢催化剂可以包括非均相或均相催化剂。WO 2011/141546表明如果加氢催化剂是非均相催化剂,所述催化剂优选包括在载体上载带的加氢金属。非均相催化剂和/或载体可以具有任何合适的形式,包括介孔粉末、颗粒或挤出物或巨孔结构如泡沫、蜂窝、筛网或布的形式。非均相催化剂可以存在于包含固定床或沸腾床或悬浮浆液的液化反应器中。
[0008] 在液化过程中,从液化产品中深度脱除催化剂颗粒和/或催化剂细粉将会明显增加该过程的成本。另外,液化产品在某种程度上可能仍保持被催化剂颗粒和/或细粉污染,影响其质量。如WO 2011/141546所述,应用巨孔催化剂可以减少这种深度脱除的需要,和可以减小液化产品中催化剂颗粒和/或细粉的污染。
[0009] 但为了获得经济上有利的方法,可能需要进一步提高液化度。
[0010] 提供允许人们减小和/或避免催化剂颗粒污染液化产品同时获得纤维素材料的良好液化度的液化方法,这在本领域中将是一种进步。
[0011] 因此,仍然持续需要开发液化纤维素材料以产生液化产品、特别是在制备生物燃料中应用的燃料组分和/或燃料组分前体的改进方法。

发明内容

[0012] 现在已经发现,当应用特定加氢催化剂时可以处理上述缺点。
[0013] 因此,本发明提供一种液化纤维素材料以产生液化产品的方法,所述方法包括使纤维材料与以下物质接触:
[0014] -包含加氢金属或其前体的加氢催化剂,所述加氢催化剂包括巨孔结构,其中所述巨孔结构包含至少60vol%的孔隙率和所述巨孔结构至少30vol%的孔体积存在于直径等于或大于1微米的巨孔内;
[0015] -液体介质;和
[0016] -氢源。
[0017] 本发明方法可以有利地允许更有效地回收催化剂,导致改进的液化产品质量,同时附加地允许有吸引的纤维素材料的液化度。
[0018] 另外,可以获得产生单体和/或低聚化合物的高饱和度,这可导致产品改进的化学稳定性和增加的热值和/或对于进一步提质加工为生物燃料改进的可加工性。
[0019] 另外,本发明提供由纤维素材料生产生物燃料组分的方法,所述方法包括:a)如上所述使纤维素材料与加氢催化剂、液体介质、氢源接触,以产生液化产品;b)转化至少部分所述液化产品,以产生燃料组分和/或燃料组分前体;和c)应用所述生物燃料组分和/或所述生物燃料组分前体制备生物燃料。

具体实施方式

[0020] 液化在这里被优选理解为转化固体材料如纤维素材料为一种或多种液化产品。液化(Liquefying)有时也被称为液化(liquefaction)。液化固体材料如纤维素材料的方法有时也被称为液化过程。用氢实施的液化过程有时也被称为加氢液化过程。
[0021] 液化产品在这里理解为在环境温度(20℃)和压力(0.1MPa,对应于1bar绝压)下为液体的产品和/或可通过熔化(例如通过施加热量)或在溶剂中溶解转化为液体的产品。液化产品在环境温度(20℃)和压力(0.1MPa,对应于1bar绝压)下优选为液体。纤维素材料的液化可以包括所述纤维素材料中共价键的断裂。例如木质纤维素材料的液化可以包括所存在的纤维素、半纤维素和木质素中共价键的断裂和/或木质素、半纤维素和/或纤维素之间共价键的断裂。
[0022] 正如这里所应用的,纤维素材料指包含纤维素的材料。纤维素材料优选为木质纤维素材料。木质纤维素材料包括木质素、纤维素和任选的半纤维素。任何合适的包含纤维素的材料均可以在本发明方法中应用。用于本发明的纤维素材料可以由包括农业废物、林业废物和食糖加工残渣和/或它们的混合物的各种植物和植物材料获得。包含纤维素材料的合适例子包括:农业废物如玉米秸杆、大豆杆、玉米芯、稻草、稻壳、燕麦皮、玉米纤维、谷草如小麦、大麦、黑麦和燕麦秸;草;林业产品如木材和与木材相关的材料如锯屑;废纸;食糖加工残渣如甘蔗渣和甜菜渣;或它们的混合物。
[0023] 在本发明的方法中应用之前,为了有利于液化,优选将所述纤维素材料处理为小颗粒。优选地,将纤维素材料处理为平均粒径为0.5-30毫米(mm)的颗粒。如果纤维素材料为木质纤维素材料,也可以经受预处理以脱除和/或降解木质素和/或半纤维素。这种预处理的例子包括分馏、制浆和烘焙过程。
[0024] 在本发明的方法中,纤维素材料可以合适地与加氢催化剂、液体介质和氢源同时接触。纤维素材料优选溶解或分散在液体介质中,其中它在加氢催化剂存在下与氢源接触。更优选地,所述方法包括使液体介质中的纤维素材料与固定床中的加氢催化剂接触。
[0025] 按照本发明,应用包含加氢金属或其前体的加氢催化剂,所述加氢催化剂包括巨孔结构,其中所述巨孔结构包含至少60vol%的孔隙率和所述巨孔结构至少30vol%的孔体积存在于直径等于或大于1微米的巨孔内。
[0026] 除非在这里另行指出,孔隙率指巨孔结构的孔隙率。另外,孔隙率在这里可以被理解为指的是作为孔体积存在的巨孔结构总体积百分比。也就是说,它可以理解为指的是以巨孔结构总体积计在巨孔结构内的空隙体积比。孔隙率例如可以由ASTM C830测量,包括表观孔隙率的标准测试方法。
[0027] 按照本发明,所述巨孔结构除了巨孔外,还包含大孔、介孔和/或微孔。
[0028] 巨孔在这里优选理解为孔径等于或大于1微米的孔。微米在这里可以称作微米。这种孔径可以合适地通过目视显微镜电子显微镜测量。
[0029] 大孔在这里优选理解为孔径等于或大于50纳米但小于1微米的孔。
[0030] 介孔在这里优选理解为孔径等于或大于2纳米但小于50纳米的孔。
[0031] 微孔在这里优选地理解为孔径小于2纳米的孔。
[0032] 用词孔径在这里有时也称作孔尺寸或仅为直径。
[0033] 孔体积和/或孔体积分布可以通过本领域技术人员已知的任何合适的方法合适地测量。取决于具体的材料,例如,可以应用压汞法或氮(N2)吸附法确定孔体积。
[0034] 例如,可以应用ASTM D4284,“the Standard Test Method for Determining Pore Volume Distribution of Catalysts and Catalyst Carriers by Mercury Intrusion Porosimetry”测量孔径在0.003-100微米范围内的孔体积和孔体积分布。因此除非在这里另行指出,ASTM D4284对于确定巨孔和大孔的上述孔体积和孔体积分布可能最合适。ASTM D4641,“the Standard Practice for Calculation of Pore Size Distributions of Catalysts and Catalyst Carriers from Nitrogen Desorption Isotherms”对于测量孔径在1.5-100纳米的孔体积和孔体积分布可能更合适。因此除非在这里另行指出,ASTM D4641对于确定微孔和介孔的上述孔体积和孔体积分布可能最合适。
[0035] 巨孔结构优选至少50vol%、更优选至少70vol%、仍更优选至少80vol%、甚至更优选至少85vol%和最优选至少90vol%的孔体积存在于直径等于或大于1微米的巨孔内。合适地,巨孔结构50-98vol%的孔体积存在于直径等于或大于1微米的巨孔内,更合适地,巨孔结构70-95vol%的孔体积存在于直径等于或大于1微米的巨孔内。
[0036] 更优选地,巨孔结构包含至少60vol%的孔隙率;和巨孔结构至少30vol%、更优选至少50vol%、甚至仍更优选至少80vol%和最优选至少90vol%的孔体积存在于直径至少5微米、更优选至少10微米的巨孔内。合适地,巨孔结构包含至少60vol%的孔隙率;和巨孔结构至少30vol%、更优选至少50vol%、甚至仍更优选至少80vol%和最优选至少
90vol%的孔体积存在于直径5-5000微米、优选10-1000微米的巨孔内。
[0037] 巨孔结构优选具有至少70vol%、更优选至少80vol%、仍更优选至少85vol%和最优选至少90vol%的孔隙率。合适地,巨孔结构的孔隙率为70-98vol%,更优选为80-95vol%。
[0038] 加氢催化剂的巨孔结构例如可以包括泡沫、蜂窝或纤维片。
[0039] 在一个优选的实施方案中,加氢催化剂的巨孔结构包括一个或多个碳纤维片。这种碳纤维片的一个例子为石墨片。这种加氢催化剂优选包含在碳纤维片(例如石墨片)上载带的加氢金属和/或其前体,所述碳纤维片具有至少60vol%的孔隙率。碳纤维片合适地包括一个或多个孔径至少为1微米的孔。优选碳纤维片至少30vol%的孔体积存在于孔径至少为1微米的巨孔内。已经发现,这种加氢催化剂允许人们实现改进的液化度。
[0040] 在另一个优选的实施方案中,加氢催化剂为包含催化层的巨孔结构的形式,所述催化层的厚度小于巨孔结构的平均巨孔直径的25%。催化层可以合适地包含加氢金属和/或其前体。催化层可以合适地沉积在巨孔结构上。催化层的厚度优选为0.001-100微米,更优选为0.01-50微米。催化层的厚度更优选为0.1-10微米和最优选为0.2-2微米。
[0041] 催化层的厚度优选小于巨孔结构的平均巨孔直径的15%,更优选小于巨孔结构的平均巨孔直径的10%。催化层可以是多孔或无孔的。
[0042] 巨孔结构优选包含至少70vol%的孔隙率,和至少30vol%、更优选至少50vol%、甚至仍更优选至少80vol%和最优选至少90vol%的孔体积存在于直径为至少5微米的巨孔内,和巨孔结构优选包含厚度小于巨孔结构的平均巨孔直径的15%的催化层。
[0043] 更优选地,巨孔结构包含至少80vol%的孔隙率,和至少30vol%、更优选至少50vol%、甚至仍更优选至少80vol%和最优选至少90vol%的孔体积存在于直径为至少10微米、更优选为至少20微米巨孔内,和巨孔结构优选包含厚度小于巨孔结构的平均巨孔直径的10%的催化层。
[0044] 巨孔结构可以由加氢金属组成或者加氢金属可以直接沉积在巨孔结构上。
[0045] 在一个优选的实施方案中,所述加氢催化剂包括:
[0046] -巨孔结构,其包含至少60vol%的孔隙率,和巨孔结构至少30vol%、更优选至少50vol%、甚至仍更优选至少80vol%和最优选至少90vol%的孔体积在直径等于或大于1微米的巨孔内;
[0047] -非巨孔(如介孔)催化层,其包含在直径小于1微米的孔内等于或大于70vol%的孔体积,其中非巨孔催化层沉积在巨孔结构上,和其中非巨孔催化层包含加氢金属和/或其前体。
[0048] 非巨孔催化层优选为介孔催化层,所述介孔催化层包含在直径等于或大于2纳米但小于50纳米的孔内等于或大于50vol%、更优选等于或大于70vol%的孔体积。
[0049] 介孔催化层可以包括载带加氢金属和/或其前体的介孔载体层,或介孔催化层可以由加氢金属和/或其前体组成。将这种介孔催化层或介孔载体层合适地沉积在巨孔结构上。因此,加氢催化剂可以包含带有载带金属的介孔载体层,将所述载体层沉积在巨孔结构上;或者加氢催化剂可以包含在巨孔结构上直接沉积的非载带金属。
[0050] 合适地,任何介孔催化层以及任何介孔载体层的介孔均小于1微米、优选小于0.1微米,和最优选小于0.05微米。优选地,催化层可以为加氢金属的一个或多个原子层的形式,向巨孔结构上直接施用所述加氢金属。
[0051] 所述催化层可以包含介孔载体层,可以向其上沉积加氢金属或者可以向其中加入加氢金属。通过涂覆、洗涂或由本领域已知技术引入的类似多孔材料层可以将这种介孔载体层沉积在巨孔结构上。例如Cybulski等在Catal.Rev.-Sci.Eng.,第36(2)卷,第179-270(1994)页的“Monolithic Ceramics and Heterogeneous Catalysts”中,公开了用化物层涂覆泡沫的技术,所述氧化物可以用于增加表面积或改变表面组成。洗涂优选使用氧化层、更优选使用氧化铝溶胶。
[0052] 用于浸渍的优选技术包括例如浸润、涂漆、喷涂、浸泡和/或施用催化活性金属和/或其前体的悬浮液或溶液的测量液滴。随后的步骤可能包括在热空气中干燥和/或任选地进行煅烧。优选地,所述浸渍、干燥和任选的煅烧以一定的方式实施,从而实现均匀的浸渍。优选地,在干燥期间在不存在扭曲重力和/或毛细管效应的情况下实施浸渍和/或干燥,其可能提供浸渍金属不想要的梯度或总含量。例如可以以与任何其它不会激励弯液面或毛细管效应的物质接触的方式旋转或悬浮所述巨孔结构。
[0053] 介孔载体层可以包括耐火氧化物,例如上面提到的氧化铝。
[0054] 替代地,介孔载体层可以由多孔含碳材料如碳纳米纤维组成,所述碳纳米纤维通过本领域已知的技术如K.P.De Jong,J.Geus,Catal.在Rev.Sci.Eng.第42(2000)卷第481-510页或N.Jarrah,F.Li,J.G.van Ommen,L.Lefferts,J.Mater.在Chem.第15(2005)卷第1946-1953页中所描述的技术沉积在巨孔结构上。
[0055] 可以制备巨孔结构的合适材料的例子包括金属(例如和/或加氢金属本身如钴、镍或);碳;无机金属氧化物(也称为耐火氧化物)如二氧化、氧化铝、二氧化、氧化锆及它们的混合物(即包含至少一个阳离子、或至少两个阳离子、为二元氧化物、三元氧化物等的无机金属氧化物);金属碳化物;和金属氮化物等。
[0056] 无机金属氧化物的至少一个阳离子优选选自元素周期表的第2-6和12-15族和镧系元素。
[0057] 混合氧化物可能包含任何所需量的两种或更多种阳离子,以所有阳离子的总量计,优选每种独立地为1-99wt%,更优选两种阳离子的量分别为1-50wt%和50-99wt%,最优选分别为15-25wt%和85-75wt%。所述氧化物合适地通过本领域已知的技术制备或者可商购获得。
[0058] 本发明一个优点是催化剂的巨孔结构对于具有较低扩散系数的分子来说可进入,允许改进的纤维素材料的液化度。因此,应了解本发明提到的巨孔具有至少1微米、优选5-5000微米和最优选10-1000微米量级的直径。优选地,可以合适地认为巨孔的直径指的是该巨孔的标称直径。如上文所述,这些巨孔与巨孔结构材料本身中可能存在的和小于1微米的大孔、介孔和微孔形成对比,所述巨孔结构材料本身可以是多孔的。可以根据待液化的纤维素材料选择孔尺寸。
[0059] 有用的巨孔结构可以在以下文献中找到:由A.Cybulski和J.A.Moulin(1998)编辑的关于“Structured Catalysts and Reactors”的书中由J.P.Stringaro,P.Collins和O.Bailer所作的标题为“open cross-flow-channel catalysts and catalyst supports”的章节、和由M.V.Twigg和D.E.Webster所作的标题为“metal and coated-metal catalysts”的第三章(第71-88页),和另外在Catal.Rev.-Sci.Eng.,第36(2)卷,第179-270页(1994)中由Cybulski等发表的标题为"Monoliths in Heterogenous Catalysts"的文章;和在Solid Catalysts and Porous Solids,Current Opinion in Solid State&Materials Science(1996),第1卷,第88-95页中由Carty和Lednor发表的标题为“Monolithic Ceramics and Heterogenous Catalysts:Honeycombs and Foams”的文章,这些文献对合适载体材料以及其制备方法进行了大量的综述,其内容在这里通过参考引入。
[0060] 在本发明方法中应用的合适的巨孔结构可以商购获得。
[0061] 加氢催化剂的巨孔结构可以合适地为泡沫,优选为整泡沫、蜂窝或堆叠或卷制片的组件或波纹板、箔片或金属丝网(包括织造和编织的金属丝网)以及具有较高质量运输特性的其它结构。
[0062] 在巨孔结构中巨孔的孔结构可以是一维、两维或三维的。所述一维孔结构的合适例子包括蜂窝和波纹箔片或板。所述二维孔结构的合适例子包括例如包含两个或多个波纹箔片或板的巨孔结构,所述波纹箔片或板彼此横向排布从而具有横向结构。所述三维孔结构的合适例子包括泡沫、堆叠或卷制的金属丝网(包括织造和编织的金属丝网)、多孔堆叠或卷制的箔片和板以及以开放的错流结构排布的堆叠板。
[0063] 巨孔结构的主体结构可以是一维、两维或三维的。所述一维主体结构的合适例子包括在金属丝网中使用的金属丝和折叠金属丝(在折叠金属丝的情况下孔体积可能位于金属丝之间)。所述两维主体结构的合适例子包括例如金属丝网、板和箔片。所述三维主体结构的合适例子包括泡沫、蜂窝、球和圆柱以及通过任何方式如焊接固定在一起的两维主体的堆叠。合适的巨孔结构还包括微米尺寸的催化剂主体如球、圆柱和多叶体,它们已经被制备以包含巨孔。
[0064] 加氢金属可以为已知适用于加氢反应的任何加氢金属。加氢金属优选选自、钴、镍、铜、钌、铑、钯、铱、铂、金和它们的混合物。
[0065] 在多孔结构上载带/沉积加氢金属的技术在本领域中是周知的,例如浸渍、离子交换、沉淀、沉积/沉淀、化学气相沉积或(在金属结构上)电解沉积。在巨孔结构上沉积金属的最合适技术为浸渍。优选地,巨孔结构的浸渍利用催化活性金属的化合物的溶液进行,随后干燥和任选地煅烧所得的材料。当想要引入金属混合物或含有前面所定义的附加金属的混合物时,浸渍溶液可以是以共浸渍合适的量组合的各种金属盐的溶液的混合物。替代地,可以按顺序浸渍,利用催化活性金属溶液进行第一阶段浸渍、干燥和煅烧,和第二阶段浸渍想要浸渍的其它金属,或者相反。以这种方式,附加的催化剂组分例如随后可以沉积在巨孔结构上,包括在巨孔结构的介孔壁内或包含到在巨孔结构上沉积的介孔载体层内。
[0066] 加氢金属合适地以其氧化物的形式浸渍,或者在煅烧步骤中转化为氧化物。金属氧化物优选通过应用本领域已知的技术还原为金属而转化为其催化活性形式。
[0067] 用于液化方法(即液化纤维素材料的方法)的液体介质可以包括水和/或有机溶剂。在一个优选的实施方案中,液体介质为如WO2011/141546中描述的溶剂混合物,其中所述溶剂混合物包括水和共溶剂,所述共溶剂可以包括一种或多种极性溶剂。最优选地,将至少部分液化产品用作溶剂。在一个特别优选的实施方案中,液体介质包括水和/或烃。
[0068] 纤维素材料与液体介质优选按溶剂混合物与纤维素材料的重量比为2:1至20:1、更优选液体介质与纤维素材料的重量比为3:1至15:1和最优选液体介质与纤维素材料的重量比为4:1至10:1混合。
[0069] 氢源可以为已知适合于加氢目的的任何氢源。例如它可以包括氢气,但也可以为氢供体例如甲酸。氢源优选为氢气。这种氢气可以在氢分压优选为0.2-20MPa、更优选为1-17MPa和最优选为3-15MPa下施用于本发明方法。氢气可以与纤维素材料并流、错流或逆流提供给液化反应器。
[0070] 本发明的液化过程可以在已知适合于液化方法的任何总压下实施。这种方法可以在优选0.2-20MPa、更优选1-17MPa和最优选3-15MPa的总压下实施。
[0071] 本发明的液化过程可以在已知适合于液化方法的任何温度下实施。本发明的方法优选在等于或大于50℃至等于或小于350℃的温度下、更优选在等于或大于100℃至等于或小于300℃的温度下和最优选在等于或大于150℃至等于或小于250℃的温度下实施。
[0072] 本发明的液化方法可以间歇、半间歇和更优选连续实施。在一个优选的实施方案中,所述液化方法在一个或多个固定床中实施。所述一个或多个固定床可以合适地包含加氢催化剂。
[0073] 其它优选在WO 2011/141546中有述。例如,如WO 2011/141546中所述,液化方法可以在附加的酸催化剂的存在下实施。也就是说,在一个优选的实施方案中,纤维素材料也与附加的酸催化剂接触。因此,更优选地,液化方法是用于液化纤维素材料以产生液化产品的一种方法,所述方法包括使纤维素材料与以下物质同时接触:
[0074] -包含加氢金属或其前体的加氢催化剂,所述加氢催化剂包括巨孔结构,其中所述巨孔结构包含至少60vol%的孔隙率和所述巨孔结构至少30vol%的孔体积存在于直径等于或大于1微米的巨孔内;
[0075] -酸催化剂;
[0076] -液体介质;和
[0077] -氢源。
[0078] 所述附加的酸催化剂可以为本领域已知的适合于液化纤维素材料的任何酸催化剂。所述附加的酸催化剂优选为均相的或细分散的非均相催化剂,附加的酸催化剂最优选为均相催化剂。酸催化剂优选为无机酸有机酸或它们的混合物,优选为pKa值小于3.75的无机酸和/或有机酸或它们的混合物。无机酸的合适例子包括硫酸甲苯磺酸、硝酸盐酸磷酸以及它们的混合物。
[0079] 可在本发明方法中应用的有机酸的合适例子包括草酸、甲酸、乳酸、柠檬酸、三氯乙酸和它们的混合物。
[0080] 以液体介质和附加的酸催化剂的重量计,附加的酸催化剂的存在量优选为1-10wt%,更优选为2-5wt%。
[0081] 在本发明的方法中,优选等于或大于50wt%、更优选等于或大于60wt%和最优选等于或大于70wt%的纤维素材料优选在小于3小时内有利地液化为液化产品。
[0082] 由液化产品可以获得包含一种或多种单体化合物和/或一种或多种低聚化合物的产品。例如,当液化产品包含液化中产生的单体化合物、低聚化合物和过量水时,通过蒸馏或其它合适的分离技术可以分离单体和/或低聚化合物以及过量水。
[0083] 液化产品可以包含一种或多种单体化合物和/或一种或多种低聚化合物。液化产品优选包含20-80wt%、更优选25-75wt%的一种或多种分子量(Mw)等于或小于250道尔顿(Da)的单体化合物;和/或20-80wt%、更优选25-75wt%的一种或多种分子量(Mw)大于250道尔顿(Da)的低聚化合物(wt%为重量百分比的缩写)。更优选地,由液化产品获得基本上由20-80wt%、更优选25-75wt%的一种或多种分子量(Mw)等于或小于250道尔顿(Da)的单体化合物和20-80wt%、更优选25-75wt%的分子量(Mw)大于250道尔顿(Da)的一种或多种低聚化合物组成的产品。
[0084] 至少部分液化产品可以在一个或多个步骤中有利地转化为燃料组分或燃料组分前体。这种转化可以以已知适合于此目的的任何方式来实施。
[0085] 因此,本发明还提供一种由纤维素材料生产生物燃料组分的方法,所述方法包括:
[0086] a)这里所描述的液化方法,以产生液化产品;
[0087] b)转化至少部分液化产品,以产生燃料组分和/或燃料组分前体;和[0088] c)应用燃料组分和/或燃料组分前体制备燃料。
[0089] 所述燃料组分或燃料组分前体可以用来制备如生物柴油、生物油或生物汽油的生物燃料。
[0090] 本发明还提供可通过本发明的由纤维素材料生产生物燃料组分的方法获得的生物燃料或生物燃料组分。
[0091] 在本说明书的整个描述和权利要求中,词语“包括”和“包含”以及这些词语的变体如现在分词和现在时指“包括但不局限于”,并且不排除其它部分、添加剂、组分、总体或步骤。
[0092] 通过如下非限定性实施例进一步描述本发明。
[0093] 实施例
[0094] 反应程序
[0095] 桦木(BW)加氢液化实验在由 C22制备的240毫升(mL)间歇高压釜中实施,并且所述高压釜配备有电加热、涡轮搅拌器、压力计、温度记录和取样管。所述高压釜还配备带有玻璃档板的玻璃插件和任选的催化剂支撑器。所述催化剂支撑器由玻璃线制成的含有催化剂挤出物的立式篮组成,或者由带有1x1厘米(cm)孔以竖直地容纳泡沫块或填充碳片的平板玻璃组成。
[0096] 将桦木片研磨成小于1mm尺寸的颗粒且在105℃下干燥过夜,以达到小于5wt%的最终水分含量。
[0097] 在典型的实验中,反应器负载水(63克)、乙酸(26克)、磷酸(1克)、桦木(10克)和载带钌(Ru)的催化剂(0.15-0.3克Ru)。封闭反应器并用氢气(H2)充压至40bar(4.0MPa)。将该压力保持15分钟(min)以检测漏气。随后在45分钟内将高压釜加热至反应温度(220℃),随后调节H2压力至80bar(8.0MPa)。运行加氢液化30分钟,同时由于消耗H2压力降低10-20bar(1.0-2.0MPa)。通过迅速降低温度至小于20℃终止加氢液化,随后排放掉富含氢的气相。打开反应器,并仔细脱除液体和固体残余物用于进一步的产品处理来清空。经P3玻璃过滤器(16-40微米(μm))通过过滤分离固体残余物,用丙洗涤并在50℃和100-150mbar(10-15KPa)下干燥过夜。通过称重固体残余物,任选地在浆液催化剂的情况下减掉与炭混合的催化剂的重量,之后确定炭的量。应用折射指数(RI)检测器和紫外光(UV,254纳米(nm)波长)和气相色谱(GC)通过尺寸排阻色谱法(SEC)分析滤液。间或通过SEC分析富含丙酮的洗涤液和/或使其经受真空蒸发以输送焦油馏分。然后将液化度定义为“100-焦油-炭”。
[0098] 通过应用质量流量控制器测量氢气的吸入量和反应后在室温(约20℃)下由测量的残余压力确定未转化的氢,确定H2的消耗。
[0099] 对比例1和2
[0100] 通过用4.4wt%的Ru初始浸渍二氧化锆(ZrO2)挤出物,且随后在450℃下煅烧而制备催化剂。催化剂挤出物按原样(1.6cm直径和约1cm长)、或者经过压碎和筛分为30-80筛目(0.2-0.6毫米(mm))后进行评价。
[0101] 所述ZrO2载体具有约55平方米/克(m2/g)的BET表面积、0.23毫升/克(mL/g)的孔体积和17纳米(nm)的平均孔径。
[0102] 利用自由悬浮在液体介质中的压碎的Ru/ZrO2颗粒的实验得到了在表2的运行1中给出的由低的炭收率(5%)所表示的良好的木材液化和高的H2消耗(2%)。焦油产率未确定。
[0103] 在玻璃篮中固定以避免在反应过程(表2的运行2)中研磨的完整挤出物显示出较高的炭收率(10%)、较高的焦油收率(34%)和约1wt%的较低的H2消耗,而液化度为56wt%。这确认了所述挤出物相比于压碎的颗粒具有较差的催化性能,尽管在该实验中施用了较高的Ru负载(0.28相对于0.15wt%)。但所述挤出物可以很容易地回收和与液体产品分离。
[0104] 实施例3和4(本发明)
[0105] 在这些实施例中应用了ZrO2泡沫。所述二氧化锆(ZrO2)泡沫由购自Selee Co.(Hendersonville,NC,USA)的孔密度分别为30和60个孔/英寸(ppi)的部分稳定的二氧化锆泡沫(Selee PSZ 11906)组成。它们由5x1x1cm的矩形块组成。
[0106] 60ppi泡沫的孔隙率为约87vol%,而30ppi泡沫的孔隙率为约89vol%。基于泡沫的孔体积、孔隙率和密度,可以估计60ppi泡沫孔体积的至少约82vol%存在于直径等于或大于1微米的巨孔内。可以估计30ppi泡沫孔体积的至少约85vol%存在于直径等于或大于1微米的巨孔内。30ppi泡沫中巨孔的平均直径估计为约0.186mm(约186微米)和60ppi泡沫中巨孔的平均直径估计为约0.085mm(约85微米)。
[0107] 含10wt%氧化镧(La2O3)的二氧化锆洗涂层通过单次、两次或三次浸渍在Zr-前体溶液中且随后进行干燥和煅烧而沉积在泡沫上。所得的洗涂层的负载、孔隙率和估计的2
BET表面积在下表1中给出。假定ZrO2洗涂层的BET为50m /g,估算了下面记录的BET。
[0108] 表1
[0109]洗涂层 无 单次 两次 三次
60ppi
孔隙率 vol% 87 86 85 84
洗涂层 wt% 0 8 15 24
BET m2/g nd 3.8 7.5 11.8
BET m2/mL nd 0.7 1.59 2.4
30ppi
孔隙率 Vol% 89 89 88 88
洗涂层 wt% 0 3 7 10
BET m2/g nd 1.6 3.3 5.2
BET m2/mL nd 0.3 0.7 1.0
[0110] nd=未确定
[0111] 然后用Ru-亚硝酰基硝酸盐的硝酸溶液(10.7wt%的Ru)浸渍多个经过三次浸渍的样品(30和60ppi)且随后离心分离、在120℃下干燥和在350℃下煅烧0.5小时,这形成洗涂层的8-9wt%的Ru负载,对于30和60ppi的样品,对应于以泡沫的总重量计,总的平均Ru负载分别为约1和约1.5wt%的Ru。
[0112] 实施例5(本发明)
[0113] 在该实施例中应用了石墨片。所述石墨片由可由Sulzer Chemtech Ltd(Winterthur,Switzerland)获得的'Mellacarbon EX-CFC波纹片组成。这些片由称作“SIGRABOND”(SIGRABOND是商标)的碳纤维-强化碳材料生产。将所述片切为1x5x0.15cm的小条,其典型重量为0.22克(g)、孔隙率为85vol%,和BET表面积为115-120m2/g。将小条浸渍在Ru-亚硝酰基硝酸盐的硝酸溶液中(10.7wt%的Ru)且随后离心分离、在120℃下干燥和在350℃下煅烧0.5小时,所得的Ru负载为约2.75wt%。
[0114] 实施例1-5的结果
[0115] 在0.14wt%的Ru负载下对四个60ppi的泡沫板进行测试,表现出良好的液化性能,具有高的H2消耗(2.5wt%)和低的炭和焦油产率(分别为5和24wt%)。这对应于71wt%的液化度。应该注意的是在反应过程中泡沫板不可能完全地浸没在反应介质中,开始时它们在没有搅拌的条件下只浸没约50%。因此,有效的Ru负载很可能比上面报导的更低。在实验的最后,催化剂很容易与液体产品分离,移除催化剂支撑器,和可以用丙酮洗涤且随后再次负载在高压釜中以用于第二次运行。
[0116] 由于其较低的BET表面积,四个30ppi泡沫板在0.06wt%的低得多的Ru负载下进行评价。然而它比具有4倍的高Ru负载的挤出催化剂(第2次运行)表现得更好,这体现在更高的H2消耗(1.34相比于1.1wt%)和更低的炭和焦油收率(8相比于10wt%和29相比于34wt%)来表示,即63wt%的较高的液化度。对于第3次运行,催化剂可以很容易地与液体产品分离。应用四组4个波纹石墨纤维片的堆叠实施运行。虽然具有0.1wt%的低的总Ru负载,但碳片在仅运行25分钟后就显示出良好的H2消耗(1.8wt%)和适中的炭+焦油形成(16wt%),这对应于84wt%的液化度。应该注意的是在这种情况下未洗涤炭,从而它还包含焦油。所得的液化结果在下表2中示出。
[0117] 表2-利用载带Ru的催化剂加氢液化(250mL高压釜;10wt%桦木、1wt%的H3PO4、按Ru/ZrO2约0.15wt%的Ru、30wt%乙酸(AA)的水溶液,220℃,8.0MPa的H2,50-60分钟)[0118]
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈